CHAPTER 8 PROBLEMS AND EXERCISES

Problem 1: Consider a linear PWAS transducer mounted on a thin-wall aluminum structure; the PWAS has $E_{a}=63 \mathrm{GPa}, t_{a}=0.2 \mathrm{~mm}, l_{a}=7 \mathrm{~mm}, d_{31}=-175 \mathrm{~mm} / \mathrm{kV}$; the structure has $E=70 \mathrm{GPa}, t=2 \mathrm{~mm}$; the adhesive has $G_{b}=2 \mathrm{GPa} t_{b}=100 \mu \mathrm{~m}$; the applied voltage is $V=10 \mathrm{~V}$.
(a) Calculate and plot the shear lag distribution of the shear stress in the adhesive layer.
(b) Find the maximum shear stress and its location
(c) Find the required adhesive thickness to decrease the maximum shear stress by a factor of 2 and give the new shear stress value
(d) Find the effective PWAS size in physical units and as percentage of the actual PWAS size
(e) Find the required adhesive thickness to bring the effective PWAS size within 5% of the actual PWAS size and give the new value of the effective PWAS size

Solution
(a) To calculate and plot the shear lag distribution of the shear stress in the adhesive layer, recall Eq. (8.54) of the textbook Chapter 8, i.e.,

$$
\begin{equation*}
\tau(x)=\frac{t_{a}}{a} \frac{\psi}{\alpha+\psi} E_{a} \varepsilon_{I S A}\left(\Gamma a \frac{\sinh \Gamma x}{\cosh \Gamma a}\right) \quad \text { (shear stress in adhesive) } \tag{8.54}
\end{equation*}
$$

where $\alpha=4, \varepsilon_{I S A}$ is given by Eq. (8.1), ψ by Eq. (8.32), and Γ by Eq. (8.33), i.e.,

$$
\begin{gather*}
\varepsilon_{I S A}=d_{31} \frac{V}{t_{a}} \tag{8.1}\\
\psi=\frac{E t}{E_{a} t_{a}} \quad \quad \text { (relative stiffness coefficient) } \tag{8.32}\\
\Gamma^{2}=\frac{G_{b}}{E_{a}} \frac{1}{t_{a} t_{b}} \frac{\alpha+\psi}{\psi} \quad \text { (shear-lag parameter) } \tag{4.33}
\end{gather*}
$$

Upon calculation, one gets $\varepsilon_{I S A}=8.75 \mu \mathrm{~m}, \psi=11.11, \Gamma=1.469 / \mathrm{mm}$ and the following plot:

(b) The maximum shear stress is obtained at the ends of the PWAS, i.e., at $x= \pm a= \pm 3.5 \mathrm{~mm}$

$$
\begin{equation*}
\tau_{\max }=\left.\tau(x)\right|_{x=a}=\frac{t_{a}}{a} \frac{\psi}{\alpha+\psi} E_{a} \varepsilon_{I S A}\left(\Gamma a \frac{\sinh \Gamma a}{\cosh \Gamma a}\right) \quad(\text { max shear stress in adhesive }) \tag{5}
\end{equation*}
$$

The calculated value is $\tau_{\max }=119.1 \mathrm{kPa}$. This is a small value because the adhesive layer is already relatively thick ($t_{b}=100 \mu \mathrm{~m}$); as indicated in the textbook Chapter 8, Section 8.2.2, Figure 8.7, the maximum shear stress is very high for very thin bonding layer and decreases rapidly beyond a bonding layer of approx. $20 \mu \mathrm{~m}$
(c) To find the required adhesive thickness to decrease the maximum shear stress by a factor of 2 we proceed as follows: explore the dependence of the maximum shear stress with adhesive thickness, write the maximum shear stress as a function of t_{b} and plot to identify the value of t_{b} that will give the required reduction in the shear stress. Define the shear lag parameter as a function of t_{b}, i.e.,

$$
\begin{equation*}
\Gamma\left(t_{b}\right)=\sqrt{\frac{G_{b}}{E_{a}} \frac{1}{t_{a} t_{b}} \frac{\alpha+\psi}{\psi}} \quad \text { (shear-lag parameter) } \tag{6}
\end{equation*}
$$

Using Eq. (6), write Eq. (5) as
$\tau_{\max }\left(t_{b}\right)=\frac{t_{a}}{a} \frac{\psi}{\alpha+\psi} E_{a} \varepsilon_{I S A}\left(a \Gamma\left(t_{b}\right) \frac{\sinh a \Gamma\left(t_{b}\right)}{\cosh a \Gamma\left(t_{b}\right)}\right) \quad\left(\max\right.$ shear stress as function of $\left.t_{b}\right)$
The plot of $\tau_{\max }\left(t_{b}\right)$ for various values of t_{b} is shown below. It is apparent that it $\tau_{\max }\left(t_{b}\right)$ decreases rapidly with t_{b}.

The target shear stress value is half of the value found in item (b) above, i.e., $\tau_{\max }^{(\mathrm{b})} / 2 \simeq 60 \mathrm{kPa}$. As shown in the above plot, the approximate value of t_{b} that will give a shear stress of approximately 60 kPa is $t_{b 1}=385 \mu \mathrm{~m}$. If more accuracy is needed, then, by iterations, we find that $t_{b 1}=390 \mu \mathrm{~m}$ gives $\tau_{\max }\left(t_{b}\right)=59.5 \mathrm{kPa}$, which exactly half of the one found in item (b) above.
(d) To find the effective PWAS size, use Eq. (8.85) of textbook Chapter 8, i.e.,

$$
\begin{equation*}
a_{e}=a\left(\frac{1-\frac{\sinh \Gamma a}{\Gamma a \cosh \Gamma a}}{1-\frac{1}{\cosh \Gamma a}}\right) \quad \text { (location of the effective shear stress) } \tag{8.85}
\end{equation*}
$$

Upon calculation, one gets $a_{e}=2.85 \mathrm{~mm}$. The effective PWAS size is twice a_{e}, i.e., $l_{e}=2 a_{e}=5.70 \mathrm{~mm}=81.5 \%$ of l_{a}.
(e) To calculate the adhesive thickness to bring the PWAS size within 5\% of the actual PWAS size we proceed as follows: Calculate the new value of the effective PWAS size and get $l_{e 2}=6.65 \mathrm{~mm}$. The corresponding location of the effective shear stress is $a_{e 2}=3.325 \mathrm{~mm}$. Express Eq. (8) as function of t_{b}, i.e.,

$$
\begin{equation*}
a_{e}\left(t_{b}\right)=a\left(\frac{1-\frac{\sinh a \Gamma\left(t_{b}\right)}{a \Gamma\left(t_{b}\right) \cosh a \Gamma\left(t_{b}\right)}}{1-\frac{1}{\cosh a \Gamma\left(t_{b}\right)}}\right) \tag{9.85}
\end{equation*}
$$

Plot $a\left(t_{b}\right)$ vs. t_{b} and estimate the required value of $t_{b 2}$ to get $a_{e 2}=3.325 \mathrm{~mm}$, i.e.,

The approximate value is $t_{b 2} \simeq 6.6 \mu \mathrm{~m}$. This value should be accurate enough for practical purposes because adhesive thickness is not easy to control very precisely.
scale units

$$
\mathrm{mm}:=10^{-3} \quad \mu \mathrm{~m}:=10^{-6}
$$

GPa $:=10^{9} \quad$ MPa $:=10^{6}$
$\mathrm{kPa}:=10^{3}$
applied voltage $\quad \mathrm{V}:=10$
Actuator (APC 850): \quad Ea $:=63 \cdot \mathrm{GPa} \quad$ ta $:=0.2 \cdot \mathrm{~mm} \quad \mathrm{La}:=7 \cdot \mathrm{~mm} \quad \mathrm{~d} 31:=175 \cdot 10^{-12}$

$$
\mathrm{a}:=\frac{\mathrm{La}}{2} \quad \text { \&ISA }:=\mathrm{d} 31 \cdot \frac{\mathrm{~V}}{\mathrm{ta}}
$$

$\mathrm{a}=3.510^{-3} \quad \varepsilon$ ISA $=8.7510^{-6}$

Structure (Aluminum):	$\mathrm{E}:=70 \cdot 10^{9}$	$\mathrm{t}:=2 \cdot \mathrm{~mm}$	$\mathrm{t}=2 \times 10^{-3}$
Bond (super glue):	$\mathrm{Gb}:=2 \cdot 10^{9}$	$\mathrm{tb}:=100 \cdot \mu \mathrm{~m}$	$\mathrm{tb}=1 \times 10^{-4}$

$$
\text { distribution factor } \quad \alpha:=4
$$

(a) Calculate and plot the shear lag distribution of the shear stress in the adhesive layer

$$
\begin{array}{ll}
\psi:=\frac{\mathrm{E} \cdot \mathrm{t}}{\mathrm{Ea} \cdot \mathrm{ta}} & \Gamma:=\sqrt{\frac{\mathrm{Gb}}{\mathrm{Ea}} \cdot \frac{1}{\mathrm{ta} \cdot \mathrm{tb}} \cdot \frac{\psi+\alpha}{\psi}} \quad \tau(\mathrm{x}):=\frac{\mathrm{ta}}{\mathrm{a}} \cdot \frac{\psi}{\alpha+\psi} \cdot \mathrm{Ea} \cdot\left(\Gamma \cdot \mathrm{a} \cdot \frac{\sinh (\Gamma \cdot \mathrm{x})}{\cosh (\Gamma \cdot \mathrm{a})}\right) \cdot \varepsilon \operatorname{ISA} \\
\psi=11.111 & \Gamma=1.469 \times 10^{3}
\end{array}
$$

$$
\mathrm{x}:=-\mathrm{a},-0.99 \cdot \mathrm{a} . . \mathrm{a}
$$

position along PWAS, mm
(b) The maximum shear stress is found at the tip of the PWAS, i.e., $x=a$; its value is
$\tau(\mathrm{a})=119.1 \mathrm{kPa}$
(c) To explore the dependence of maximum shear stress with adhesive thickness write it as function of tb, i.e.,

$$
\begin{aligned}
& \Gamma 1(\mathrm{tb} 1):=\sqrt{\frac{\mathrm{Gb}}{\mathrm{Ea}} \cdot \frac{1}{\mathrm{ta} \cdot \mathrm{tb} 1} \cdot \frac{\psi+\alpha}{\psi}} \\
& \tau \max (\mathrm{tb} 1):=\frac{\mathrm{ta}}{\mathrm{a}} \cdot \frac{\psi}{\alpha+\psi} \cdot \mathrm{Ea} \cdot\left(\Gamma 1(\mathrm{tb} 1) \cdot \mathrm{a} \cdot \frac{\sinh (\Gamma 1(\mathrm{tb} 1) \cdot \mathrm{a})}{\cosh (\Gamma 1(\mathrm{tb} 1) \cdot \mathrm{a})}\right) \cdot \varepsilon \mathrm{ISA} \\
& \operatorname{tbmin}:=100 \cdot 10^{-6} \quad \quad \mathrm{tbmax}:=10 \cdot \mathrm{tbmin} \quad \mathrm{dtb}:=\frac{(\mathrm{tbmax}-\mathrm{tbmin})}{1000} \quad \mathrm{tb} 1:=\mathrm{tbmin}, \mathrm{tbmin}+\mathrm{dtb} . . \mathrm{tbmax}
\end{aligned}
$$

$\tau \max (392 \cdot \mu \mathrm{~m})=59.5 \mathrm{kPa}$
(d) The effective PWAS size is calculated as follows.

Calculate ae with Eq. (8.85) of the textbook Chapter 8, ie.:

$$
\text { ae := a. }\binom{1-\frac{\sinh (\Gamma \cdot \mathrm{a})}{\Gamma \cdot \mathrm{a} \cdot \cosh (\Gamma \cdot \mathrm{a})}}{1-\frac{1}{\cosh (\Gamma \cdot \mathrm{a})}} \quad \begin{aligned}
& \text { ae }=2.85 \mathrm{~mm} \\
& \mathrm{Le}:=2 \cdot \mathrm{ae} \\
& \frac{\mathrm{Le}}{\mathrm{La}}=81.5 \%
\end{aligned} \quad \mathrm{Le}=5.71 \mathrm{~mm}
$$

(e) To calculate the adhesive thickness to bring the PWAS size within 5% of the actual PWAS size we proceed as follows:

Calculate the new value of the effective PWAS size

$$
\mathrm{Le} 2:=(1-5 \cdot \%) \cdot \mathrm{La} \quad \mathrm{Le} 2=6.65 \mathrm{~mm}
$$

aRe $:=\frac{\text { Le }}{2} \quad$ aLe $=3.325 \mathrm{~mm}$

$$
\operatorname{tbmin}:=1 \cdot 10^{-6} \quad \text { tbmax }:=15 \cdot \mathrm{tbmin} \quad \mathrm{dtb}:=\frac{(\mathrm{tbmax}-\mathrm{tbmin})}{1000} \quad \mathrm{tb} 2:=\mathrm{tbmin}, \mathrm{tbmin}+\mathrm{dtb} . . \mathrm{tbmax}
$$

$$
\Gamma 2(\mathrm{tb} 2):=\sqrt{\frac{\mathrm{Gb}}{\mathrm{Ea}} \cdot \frac{1}{\mathrm{ta} \cdot \mathrm{tb} 2} \cdot \frac{\psi+\alpha}{\psi}} \quad \quad \mathrm{ae} 2(\mathrm{tb} 2):=\mathrm{a} \cdot\left(\frac{1-\frac{\sinh (\Gamma 2(\mathrm{tb} 2) \cdot \mathrm{a})}{\Gamma 2(\mathrm{tb} 2) \cdot \mathrm{a} \cdot \cosh (\Gamma 2(\mathrm{tb} 2) \cdot \mathrm{a})}}{1-\frac{1}{\cosh (\Gamma 2(\mathrm{tb} 2) \cdot \mathrm{a})}}\right)
$$

Problem 2: Consider a circular PWAS transducer mounted on a thin wall structure; the PWAS has $E_{a}=63 \mathrm{GPa}, v_{a}=0.35, t_{a}=0.2 \mathrm{~mm}, d_{31}=-175 \mathrm{~mm} / \mathrm{kV}$, the PWAS diameter is $2 a=7 \mathrm{~mm}$; the structure has $E=70 \mathrm{GPa}, v=0.33, t=2 \mathrm{~mm}$; the adhesive has $G_{b}=2 \mathrm{GPa}$ $t_{b}=100 \mu \mathrm{~m}$; the applied voltage is $V=10 \mathrm{~V}$.
(a) Calculate and plot the radial and circumferential shear lag distribution of the shear stress in the adhesive layer.
(b) Find the maximum shear stress and its location
(c) Find the required adhesive thickness to decrease the maximum shear stress by a factor of 2 and give the new shear stress value
(d) Find the effective PWAS size in physical units and as percentage of the actual PWAS size
(e) Find the required adhesive thickness to bring the effective PWAS size within 5% of the actual PWAS size and give the new value of the effective PWAS size

Solution

(a) To calculate and plot the radial and circumferential shear lag distribution of the shear stress in the adhesive layer, proceed as follows:

The circumferentially-oriented shear stress is zero because the problem is axisymmetric. The radial-oriented shear stress $\tau(r)$ is given by Eq. (8.184), i.e.,

$$
\begin{equation*}
\tau(r)=C I_{1}(\Gamma r) \quad r \leq a \tag{8.184}
\end{equation*}
$$

where

$$
\begin{align*}
& \varepsilon_{I S A}=d_{31} \frac{V}{t_{a}} \tag{8.1}\\
& \Gamma^{2}=\frac{G_{b}}{t_{b}}\left(\frac{1-v_{a}^{2}}{E_{a} t_{a}}+\alpha \frac{1-v^{2}}{E t}\right)=\frac{G_{b}}{t_{b}} \frac{1-v_{a}^{2}}{E_{a} t_{a}} \frac{\alpha+\psi}{\psi} \quad \text { (2-D shear lag parameter) } \tag{8.178}\\
& \alpha=4 \quad \psi=\frac{E t}{1-v^{2}} / \frac{E_{a} t_{a}}{1-v_{a}^{2}} \quad \text { (2-D relative stiffness coefficient) } \tag{8.179}\\
& C=\left[\Gamma I_{0}(\Gamma a)\left(\frac{1-v_{a}}{E_{a} t_{a}}+\alpha \frac{1-v}{E t}\right)-\left(\frac{\left(1-v_{a}\right)^{2}}{E_{a} t_{a}}+\alpha \frac{(1-v)^{2}}{E t}\right) \frac{I_{1}(\Gamma a)}{a}\right]^{-1} \Gamma^{2} \varepsilon_{I S A} \tag{8.216}
\end{align*}
$$

Upon calculation, one gets $\varepsilon_{I S A}=8.75 \mu \mathrm{~m}, \psi=10.94, \Gamma=1.379 / \mathrm{mm}, K=499 \mathrm{~N}$, and the following plot:

(b) The maximum shear stress is obtained at the edge of the PWAS, i.e., at $r=a=3.5 \mathrm{~mm}$

$$
\begin{equation*}
\tau_{\max }=\left.\tau(r)\right|_{r=a}=C I_{1}(\Gamma a) \quad(\text { max shear stress in adhesive }) \tag{6}
\end{equation*}
$$

The calculated value is $\tau_{\max }=172.5 \mathrm{kPa}$. This is a small value because the adhesive layer is already relatively thick $\left(t_{b}=100 \mu \mathrm{~m}\right)$; as indicated in the textbook Chapter 8, Section 8.2.2, Figure 8.7, the maximum shear stress is very high for very thin bonding layer and decreases rapidly beyond a bonding layer of approx. $20 \mu \mathrm{~m}$
(c) To find the required adhesive thickness to decrease the maximum shear stress by a factor of 2 we proceed as follows: Explore the dependence of the maximum shear stress with adhesive thickness, write the maximum shear stress as a function of t_{b} and plot to identify the value of t_{b} that will give the required reduction in the shear stress. Define the shear lag parameter as a function of t_{b}, i.e.,

$$
\begin{equation*}
\Gamma\left(t_{b}\right)=\sqrt{\frac{G_{b}}{t_{b}} \frac{1-v^{2}}{E_{a} t_{a}} \frac{\alpha+\psi}{\psi}} \quad \text { (shear-lag parameter) } \tag{7}
\end{equation*}
$$

Also define the constant K as a function of t_{b}, i.e.,
$C\left(t_{b}\right)=\left[\Gamma\left(t_{b}\right) I_{0}\left(\Gamma\left(t_{b}\right) a\right)\left(\frac{1-v_{a}}{E_{a} t_{a}}+\alpha \frac{1-v}{E t}\right)-\left(\frac{\left(1-v_{a}\right)^{2}}{E_{a} t_{a}}+\alpha \frac{(1-v)^{2}}{E t}\right) \frac{I_{1}\left(\Gamma\left(t_{b}\right) a\right)}{a}\right]^{-1} \Gamma^{2}\left(t_{b}\right) \varepsilon_{I S A}$
Using Eqs. (7), (8), write Eq. (6) as

$$
\begin{equation*}
\tau_{\max }\left(t_{b}\right)=C\left(t_{b}\right) I_{1}\left(\Gamma\left(t_{b}\right) a\right) \quad\left(\text { max shear stress as function of } t_{b}\right) \tag{9}
\end{equation*}
$$

The plot of $\tau_{\text {max }}\left(t_{b}\right)$ for various values of t_{b} is shown below. It is apparent that it $\tau_{\max }\left(t_{b}\right)$ decreases rapidly with t_{b}.

The target shear stress value is half of the value found in item (b) above, i.e., $\tau_{\max }^{(\mathrm{b})} / 2 \simeq 85 \mathrm{kPa}$.
As shown in the above plot, the approximate value of t_{b} that will give a shear stress of approximately 185 kPa is $t_{b 1}=369 \mu \mathrm{~m}$. If more accuracy is needed, then, by iterations, we find that $t_{b 1}=360 \mu \mathrm{~m}$ gives $\tau_{\max }\left(t_{b 1}\right)=86.3 \mathrm{kPa}$, which exactly half of the one found in item (b) above.
(d) To find the effective PWAS size, use the second part of Eq. (8.226) of textbook Chapter 8, i.e.,

$$
\begin{equation*}
a_{e}=\frac{\int_{0}^{a} I_{1}(\Gamma r) r^{2} d r}{\int_{0}^{a} I_{1}(\Gamma r) r d r} \tag{8.226}
\end{equation*}
$$

The integrals in Eq. (10) can be found numerically. Upon calculation, one gets $a_{e}=2.92 \mathrm{~mm}$. The effective PWAS diameter is $2 a_{e}=5.84 \mathrm{~mm}$, which is 83.5% of the actual PWAS size.
(e) To calculate the adhesive thickness to bring the PWAS size within 5\% of the actual PWAS size we proceed as follows: Calculate the new value of the effective PWAS size and get $a_{e 2}=3.325 \mathrm{~mm}$. Express Eq. (8) as function of t_{b}, i.e.,

$$
\begin{equation*}
a_{e}\left(t_{b}\right)=\frac{\int_{0}^{a} I_{1}\left(\Gamma\left(t_{b}\right) r\right) r^{2} d r}{\int_{0}^{a} I_{1}\left(\Gamma\left(t_{b}\right) r\right) r d r} \tag{8.85}
\end{equation*}
$$

Plot $a\left(t_{b}\right)$ vs. t_{b} and estimate the required value of $t_{b 2}$ to get $a_{e 2}=3.325 \mathrm{~mm}$, i.e.,

The approximate value is $t_{b 2} \simeq 6.2 \mu \mathrm{~m}$. This value should be accurate enough for practical purposes because adhesive thickness is not easy to control very precisely.
scale units

$$
\mathrm{mm}:=10^{-3} \quad \mu \mathrm{~m}:=10^{-6}
$$

GPa $:=10^{9} \quad$ MPa $:=10^{6}$
$\mathrm{kPa}:=10^{3}$
applied voltage $\quad \mathrm{V}:=10$
Actuator (APC 850): \quad Ea $:=63 \cdot \mathrm{GPa} \quad$ ta $:=0.2 \cdot \mathrm{~mm} \quad$ Da $:=7 \cdot \mathrm{~mm} \quad \mathrm{~d} 31:=175 \cdot 10^{-12} \quad$ va $:=0.35$

$$
\mathrm{a}:=\frac{\mathrm{Da}}{2} \quad \varepsilon \text { ISA }:=\mathrm{d} 31 \cdot \frac{\mathrm{~V}}{\mathrm{ta}}
$$

$a=3.510^{-3} \quad \varepsilon$ ISA $=8.7510^{-6}$

Structure (Aluminum): $\quad \mathrm{E}:=70 \cdot \mathrm{GPa} \quad \mathrm{t}:=2 \cdot \mathrm{~mm} \quad \mathrm{v}:=0.33$
Bond (super glue): $\quad \mathrm{Gb}:=2 \cdot \mathrm{GPa} \quad \mathrm{tb}:=100 \cdot \mu \mathrm{~m}$
distribution factor $\quad \alpha:=4$
(a) Calculate and plot the shear lag distribution of the shear stress in the adhesive layer

$$
\begin{array}{ll}
\psi:=\frac{\frac{\mathrm{E} \cdot \mathrm{t}}{\frac{1-v^{2}}{\mathrm{Ea} \cdot \mathrm{ta}}} \frac{1-v \mathrm{a}^{2}}{}}{\psi}=10.942 & \Gamma:=\sqrt{\left(\frac{\mathrm{Gb}}{\mathrm{tb}} \cdot \frac{1-\mathrm{va}^{2}}{\mathrm{Ea} \cdot \mathrm{ta}} \cdot \frac{\alpha+\psi}{\psi}\right)} \\
\psi & \Gamma=1.379 \times 10^{3}
\end{array}
$$

$\mathrm{T} 1:=\Gamma \cdot \mathrm{I} 0(\Gamma \cdot \mathrm{a}) \cdot\left(\frac{1-\mathrm{va}}{\mathrm{Ea} \cdot \mathrm{ta}}+\alpha \cdot \frac{1-v}{\mathrm{E} \cdot \mathrm{t}}\right) \quad \mathrm{T} 2:=\left[\frac{(1-\mathrm{va})^{2}}{\mathrm{Ea} \cdot \mathrm{ta}}+\alpha \cdot \frac{(1-v)^{2}}{\mathrm{E} \cdot \mathrm{t}}\right] \cdot \frac{\mathrm{I}(\Gamma \cdot \mathrm{a})}{\mathrm{a}} \quad \mathrm{K}:=(\mathrm{T} 1-\mathrm{T} 2)^{-1}$
$\mathrm{T} 1=2.278 \times 10^{-3} \mathrm{~T} 2=2.75 \times 10^{-4}$
$\mathrm{C}:=\left[\Gamma \cdot \mathrm{I} 0(\Gamma \cdot \mathrm{a}) \cdot\left(\frac{1-v \mathrm{a}}{\mathrm{Ea} \cdot \mathrm{ta}}+\alpha \cdot \frac{1-v}{\mathrm{E} \cdot \mathrm{t}}\right)-\left[\frac{(1-v \mathrm{a})^{2}}{\mathrm{Ea} \cdot \mathrm{ta}}+\alpha \cdot \frac{(1-v)^{2}}{\mathrm{E} \cdot \mathrm{t}}\right] \cdot \frac{\mathrm{I} 1(\Gamma \cdot \mathrm{a})}{\mathrm{a}}\right]^{-1} \cdot \Gamma^{2} \cdot \varepsilon \mathrm{ISA}$ $\tau(\mathrm{r}):=\mathrm{C} \cdot \mathrm{I} 1(\Gamma \cdot \mathrm{r})$
$r:=0,0.01 \cdot a . . a$

(b) The maximum shear stress is found at the PWAS edge, i.e., $r=a$; its value is

$$
\tau(\mathrm{a})=172.5 \mathrm{kPa} \quad \frac{\tau(\mathrm{a})}{2}=86.272 \mathrm{kPa}
$$

(c) To explore the dependence of maximum shear stress with adhesive thickness write it as function of tb, i.e.,

$$
\begin{array}{ll}
\mathrm{N}:=1000 & \text { tbmin }:=100 \cdot 10^{-6} \quad \text { tbmax }:=10 \cdot \mathrm{tbmin} \quad \mathrm{dtb}:=\frac{(\mathrm{tbmax}-\mathrm{tbmin})}{\mathrm{N}} \\
\mathrm{n}:=1 . . \mathrm{N} & \mathrm{tb} 1_{\mathrm{n}}:=\mathrm{tbmin}+(\mathrm{n}-1) \cdot \mathrm{dtb}
\end{array}
$$

$$
\Gamma 1_{\mathrm{n}}:=\sqrt{\frac{\mathrm{Gb}}{\mathrm{Ea}} \cdot \frac{1-\mathrm{va}}{} \mathrm{ta}^{2} \cdot \mathrm{tb} 1_{\mathrm{n}}} \cdot \frac{\alpha+\psi}{\psi} \quad \quad \Gamma 1_{1}=1.379 \times 10^{3}
$$

$$
\mathrm{C} 1_{\mathrm{n}}:=\left[\Gamma 1_{\mathrm{n}} \cdot \mathrm{I} 0\left(\Gamma 1_{\mathrm{n}} \cdot \mathrm{a}\right) \cdot\left(\frac{1-v \mathrm{a}}{\text { Ea } \cdot \mathrm{ta}}+\alpha \cdot \frac{1-v}{\mathrm{E} \cdot \mathrm{t}}\right)-\left[\frac{(1-v \mathrm{a})^{2}}{\mathrm{Ea} \cdot \mathrm{ta}}+\alpha \cdot \frac{(1-v)^{2}}{\mathrm{E} \cdot \mathrm{t}}\right] \cdot \frac{\mathrm{I} 1\left(\Gamma 1_{\mathrm{n}} \cdot \mathrm{a}\right)}{\mathrm{a}}\right]^{-1} \cdot\left(\Gamma 1_{\mathrm{n}}\right)^{2} \cdot \varepsilon \mathrm{ISA}
$$

$$
\tau \max 1_{\mathrm{n}}:=\mathrm{C} 1_{\mathrm{n}} \cdot \mathrm{I1}\left(\Gamma 1_{\mathrm{n}} \cdot \mathrm{a}\right)
$$

$10^{-3} \cdot \tau \max 1_{\mathrm{n}}=$

| 86.704 |
| :--- | :--- |
| 86.575 |
| 86.446 |
| 86.318 |
| 86.191 |
| 86.063 |
| 85.937 |

(d) The effective PWAS size is calculated as follows.

Calculate ae with Eq. (8.226) of the textbook Chapter 8, i.e.:

$$
\begin{array}{lll}
\text { num }:=\int_{0}^{\mathrm{a}} \mathrm{I} 1(\Gamma \cdot \mathrm{r}) \cdot \mathrm{r}^{2} \mathrm{dr} & \operatorname{den}:=\int_{0}^{\mathrm{a}} \mathrm{I} 1(\Gamma \cdot \mathrm{r}) \cdot \mathrm{rdr} & \text { ae }:=\frac{\text { num }}{\mathrm{den}} \\
\text { num }=1.31 \times 10^{-7} & \text { den }=4.48 \times 10^{-5} & \text { ae }=2.92 \mathrm{~mm} \\
& 2 \cdot \mathrm{ae}=5.847 \mathrm{~mm} \\
& \frac{\text { ae }}{\mathrm{a}}=83.5 \%
\end{array}
$$

(e) To calculate the adhesive thickness to bring the PWAS size within 5% of the actual PWAS size we proceed as follows:

Calculate the new value of the effective PWAS size

$$
\text { ae2_ }:=(1-5 \cdot \%) \cdot \mathrm{a} \quad \text { ae2_ }=3.325 \mathrm{~mm}
$$

$\operatorname{tbmin}:=1 \cdot 10^{-6} \quad$ tbmax $:=10 \cdot \operatorname{tbmin} \quad \mathrm{dtb}:=\frac{(\mathrm{tbmax}-\mathrm{tbmin})}{\mathrm{N}} \quad \mathrm{tb} 2_{\mathrm{n}}:=\mathrm{tbmin}+(\mathrm{n}-1) \cdot \mathrm{dtb}$
$\Gamma 2_{\mathrm{n}}:=\sqrt{\frac{\mathrm{Gb}}{\mathrm{Ea}} \cdot \frac{1-\mathrm{va}{ }^{2}}{\mathrm{ta} \cdot \mathrm{tb} 2_{\mathrm{n}}} \cdot \frac{\alpha+\psi}{\psi}} \quad \Gamma 2_{1}=1.379 \times 10^{4}$
num2 $2_{n}:=\int_{0}^{a} \mathrm{I} 1\left(\Gamma 2_{\mathrm{n}} \cdot \mathrm{r}\right) \cdot \mathrm{r}^{2} \mathrm{dr} \quad \operatorname{den} 2_{\mathrm{n}}:=\int_{0}^{\mathrm{a}} \mathrm{I} 1\left(\Gamma 2_{\mathrm{n}} \cdot \mathrm{r}\right) \cdot \mathrm{r} d r \quad \mathrm{dr} 2_{\mathrm{n}}:=\frac{\mathrm{num} 2_{\mathrm{n}}}{\operatorname{den} 2_{n}}$

$\mathrm{y} 0:=1.01 \cdot 10$

$$
\mathrm{f}(\mathrm{y}, \mathrm{y} 0):=\frac{\sinh (\mathrm{y})}{\cosh (\mathrm{y} 0)}
$$

Problem 3: Obtain Eqs. (8.314) through (8.320) by using the solution Eq. (8.313) and the appropriate equations from the range (8.285) through (8.306).

Given:

$$
\begin{align*}
& \tau(x)=\frac{G_{b} \varepsilon_{\text {ISA }} a}{t_{b}} \frac{\sinh \Gamma x}{\Gamma a \cosh \Gamma a}=\frac{t_{a}}{a} \frac{\psi}{\alpha+\psi} E_{a} \varepsilon_{I S A}\left(\Gamma a \frac{\sinh \Gamma x}{\cosh \Gamma a}\right) \tag{8.313}\\
& t_{a} \sigma_{a}^{\prime}-\tau=0 \tag{8.285}\\
& t \sigma^{\prime}+\alpha \tau=0 \\
& \varepsilon_{a}=\frac{d u_{a}}{d x} \tag{8.287}\\
& \gamma=\frac{u_{a}-u}{t_{b}} \tag{8.288}\\
& \varepsilon=\frac{d u}{d x} \tag{8.289}\\
& \sigma_{a}=E_{a}\left(\varepsilon_{a}-\varepsilon_{I S A}\right) \tag{8.290}\\
& \tau=G_{b} \gamma \tag{8.291}\\
& \sigma=E \varepsilon \\
& \text { (PWAS) } \\
& \text { (Structure) } \tag{8.286}\\
& \text { (PWAS) } \\
& \text { (bonding layer) } \\
& \text { (structure) } \\
& \text { (PWAS) } \\
& \text { (bonding layer) } \\
& \text { (structure) } \tag{8.292}\\
& t_{a} E_{a} \varepsilon_{a}^{\prime}-\tau=0 \tag{8.293}\\
& t E \varepsilon^{\prime}+\alpha \tau=0 \tag{8.294}\\
& \text { (relative stiffness coefficient) (8.300)(12) } \\
& \psi=\frac{E t}{E_{a} t_{a}} \tag{8.300}\\
& \text { (shear-lag parameter) } \tag{8.301}\\
& \left\{\begin{array}{l}
\sigma_{a}(\pm a)=0 \\
\sigma(\pm a)=0
\end{array}\right. \tag{8.304}\\
& \left\{\begin{array}{l}
\varepsilon_{a}(\pm a)=\varepsilon_{I S A} \\
\varepsilon(\pm a)=0
\end{array}\right. \tag{8.305}\\
& \left\{\begin{array}{l}
u_{a}^{\prime}(\pm a)=\varepsilon_{\text {ISA }} \\
u^{\prime}(\pm a)=0
\end{array}\right. \tag{8.306}
\end{align*}
$$

Find: We need to achieve the following results:
$\varepsilon_{a}(x)=\frac{\alpha}{\alpha+\psi} \varepsilon_{I S A}\left(1+\frac{\psi}{\alpha} \frac{\cosh \Gamma x}{\cosh \Gamma a}\right)$
(PWAS actuation strain)
$\sigma_{a}(x)=-\frac{\psi}{\alpha+\psi} E_{a} \varepsilon_{I S A}\left(1-\frac{\cosh \Gamma x}{\cosh \Gamma a}\right)$
(PWAS stress)
$u_{a}(x)=\frac{\alpha}{\alpha+\psi} \varepsilon_{I S A} a\left(\frac{x}{a}+\frac{\psi}{\alpha} \frac{\sinh \Gamma x}{(\Gamma a) \cosh \Gamma a}\right) \quad$ (PWAS displacement)
$\tau(x)=\frac{t_{a}}{a} \frac{\psi}{\alpha+\psi} E_{a} \varepsilon_{I S A}\left(\Gamma a \frac{\sinh \Gamma x}{\cosh \Gamma a}\right) \quad$ (interfacial shear stress in bonding layer)
$\varepsilon(x)=\frac{\alpha}{\alpha+\psi} \varepsilon_{I S A}\left(1-\frac{\cosh \Gamma x}{\cosh \Gamma a}\right) \quad$ (structure strain at the surface)
$\sigma(x)=\frac{\alpha}{\alpha+\psi} E \varepsilon_{I S A}\left(1-\frac{\cosh \Gamma x}{\cosh \Gamma a}\right) \quad$ (structure stress)
$u(x)=\frac{\alpha}{\alpha+\psi} \varepsilon_{I S A} a\left(\frac{x}{a}-\frac{\sinh \Gamma x}{(\Gamma a) \cosh \Gamma a}\right) \quad$ (structure displacement at the surface)

Solution:

Get ε_{a}^{\prime} from Eq. (10) and substitute Eq. (1) for τ to obtain

$$
\begin{equation*}
\varepsilon_{a}^{\prime}=\frac{1}{E_{a} t_{a}} \tau=\frac{1}{E_{a} \star_{a}} \frac{\psi_{a}}{\not \alpha} \frac{\psi}{\alpha+\psi} E_{a} \varepsilon_{I S A}\left(\Gamma \not\left(\frac{\sinh \Gamma x}{\cosh \Gamma a}\right)=\frac{\psi}{\alpha+\psi} \varepsilon_{I S A}\left(\Gamma \frac{\sinh \Gamma x}{\cosh \Gamma a}\right)\right. \tag{24}
\end{equation*}
$$

Integrate ε_{a}^{\prime} to obtain ε_{a}, i.e.,

$$
\begin{aligned}
\varepsilon_{a}(x) & =\int \varepsilon_{a}^{\prime}(x) d x+C=\frac{\psi}{\alpha+\psi} \varepsilon_{I S A} \frac{\Gamma}{\cosh \Gamma a} \int \sinh \Gamma x d x+C \\
& =\frac{\psi}{\alpha+\psi} \varepsilon_{I S A} \frac{\not \subset}{\cosh \Gamma a} \frac{\cosh \Gamma x}{\not \subset}+C \\
& =\frac{\psi}{\alpha+\psi} \varepsilon_{I S A} \frac{\cosh \Gamma x}{\cosh \Gamma a}+C
\end{aligned}
$$

The constant C is found from the boundary condition. Recall Eq. (15) at $x=a$, i.e.,

$$
\begin{equation*}
\varepsilon_{a}(a)=\varepsilon_{I S A} \tag{26}
\end{equation*}
$$

Substitution of Eq. (26) into Eq. (25) yields

$$
\begin{equation*}
\varepsilon_{a}(a)=\frac{\psi}{\alpha+\psi} \varepsilon_{I S A} \frac{\cosh \Gamma a}{\cosh \Gamma a}+C=\frac{\psi}{\alpha+\psi} \varepsilon_{I S A}+C=\varepsilon_{I S A} \tag{27}
\end{equation*}
$$

Upon solution, Eq. (27) gives

$$
\begin{equation*}
C=\left(1-\frac{\psi}{\alpha+\psi}\right) \varepsilon_{I S A}=\frac{\alpha}{\alpha+\psi} \varepsilon_{I S A} \tag{28}
\end{equation*}
$$

Substitution of Eq.(28) into Eq. (25) yields the required Eq. (307), i.e.,

$$
\begin{equation*}
\varepsilon_{a}(x)=\frac{\psi}{\alpha+\psi} \varepsilon_{I S A} \frac{\cosh \Gamma x}{\cosh \Gamma a}+\frac{\alpha}{\alpha+\psi} \varepsilon_{I S A}=\frac{\alpha}{\alpha+\psi} \varepsilon_{I S A}\left(1+\frac{\psi}{\alpha} \frac{\cosh \Gamma x}{\cosh \Gamma a}\right) \tag{29}
\end{equation*}
$$

Next, substitute Eq. (29) into Eq. (7) to obtain σ_{a}

$$
\begin{align*}
\sigma_{a} & =E_{a}\left(\varepsilon_{a}-\varepsilon_{I S A}\right)=E_{a}\left[\frac{\alpha}{\alpha+\psi}\left(1+\frac{\psi}{\alpha} \frac{\cosh \Gamma x}{\cosh \Gamma a}\right)-1\right] \varepsilon_{I S A} \\
& =E_{a}\left[\left(\frac{\alpha}{\alpha+\psi}-1\right)+\frac{\psi}{\alpha+\psi} \frac{\cosh \Gamma x}{\cosh \Gamma a}\right] \varepsilon_{I S A}=E_{a}\left(\frac{\alpha-\psi-\psi}{\alpha+\psi}+\frac{\psi}{\alpha+\psi} \frac{\cosh \Gamma x}{\cosh \Gamma a}\right) \varepsilon_{I S A} \tag{30}\\
& =E_{a}\left(\frac{-\psi}{\alpha+\psi}+\frac{\psi}{\alpha+\psi} \frac{\cosh \Gamma x}{\cosh \Gamma a}\right) \varepsilon_{I S A}=-\frac{\psi}{\alpha+\psi} E_{a} \varepsilon_{I S A}\left(1-\frac{\cosh \Gamma x}{\cosh \Gamma a}\right)
\end{align*}
$$

The end part of Eq. (30) has the required form of Eq. (8.308).
Next, substitute Eq. (29) into Eq. (4) and integrate the result to get u_{a}, i.e.,

$$
\begin{equation*}
\frac{d u_{a}}{d x}=\varepsilon_{a}=\frac{\alpha}{\alpha+\psi} \varepsilon_{I S A}\left(1+\frac{\psi}{\alpha} \frac{\cosh \Gamma x}{\cosh \Gamma a}\right) \tag{31}
\end{equation*}
$$

Upon integration, Eq. (31) yields

$$
\begin{align*}
u_{a}(x) & =\int \frac{d u_{a}}{d x} d x+C=\frac{\alpha}{\alpha+\psi} \varepsilon_{I S A} \int\left(1+\frac{\psi}{\alpha} \frac{1}{\cosh \Gamma a} \cosh \Gamma x\right) d x+C \tag{32}\\
& =\frac{\alpha}{\alpha+\psi} \varepsilon_{I S A}\left(x+\frac{\psi}{\alpha} \frac{1}{\cosh \Gamma a} \frac{\sinh \Gamma x}{\Gamma}\right)+C
\end{align*}
$$

The constant C is found from the symmetry condition $\left.u_{a}(x)\right|_{x=0}=0$, i.e.,

$$
\begin{equation*}
u_{a}(0)=\left.\frac{\alpha}{\alpha+\psi} \varepsilon_{I S A}\left(x+\frac{\psi}{\alpha} \frac{1}{\cosh \Gamma a} \frac{\sinh \Gamma x}{\Gamma}\right)\right|_{x=0}+C=0+C=0 \tag{33}
\end{equation*}
$$

Solving Eq. (33) for C yields $C=0$; hence, Eq. (32) becomes

$$
\begin{align*}
u_{a}(x) & =\frac{\alpha}{\alpha+\psi} \varepsilon_{I S A}\left(x+\frac{\psi}{\alpha} \frac{1}{\cosh \Gamma a} \frac{\sinh \Gamma x}{\Gamma}\right) \\
& =\frac{\alpha}{\alpha+\psi} \varepsilon_{I S A}\left(\frac{x}{a}+\frac{\psi}{\alpha} \frac{\sinh \Gamma x}{\Gamma a \cosh \Gamma a}\right) \tag{34}
\end{align*}
$$

The end part of Eq. (34) has the required form of Eq. (8.309).
Next, Get ε^{\prime} from Eq. (11) and substitute Eq. (1) for τ to obtain

$$
\begin{align*}
\varepsilon^{\prime} & =-\frac{\alpha}{E t} \tau=-\frac{\alpha}{E t} \frac{t_{a}}{a} \frac{\psi}{\alpha+\psi} E_{a} \varepsilon_{I S A}\left(\Gamma a \frac{\sinh \Gamma x}{\cosh \Gamma a}\right)=-\alpha \frac{\psi}{\alpha+\psi} \frac{E_{a} t_{a}}{E t} \frac{\varepsilon_{I S A}}{\alpha}\left(\Gamma \alpha \frac{\sinh \Gamma x}{\cosh \Gamma a}\right) \\
& =-\alpha \frac{\nless}{\alpha+\psi} \frac{1}{\nless} \varepsilon_{I S A}\left(\Gamma \frac{\sinh \Gamma x}{\cosh \Gamma a}\right)=-\alpha \frac{\mathcal{\chi}}{\alpha+\psi} \frac{1}{\mathcal{K}} \varepsilon_{I S A}\left(\Gamma \frac{\sinh \Gamma x}{\cosh \Gamma a}\right) \tag{35}\\
& =-\frac{\alpha}{\alpha+\psi} \varepsilon_{I S A}\left(\Gamma \frac{\sinh \Gamma x}{\cosh \Gamma a}\right)
\end{align*}
$$

Integrate ε^{\prime} to get ε, i.e.,

$$
\begin{equation*}
\varepsilon(x)=\int \varepsilon^{\prime}(x) d x+C=-\frac{\alpha}{\alpha+\psi} \varepsilon_{I S A}\left(\Gamma \frac{\int \sinh \Gamma x d x}{\cosh \Gamma a}\right)+C=-\frac{\alpha}{\alpha+\psi} \varepsilon_{I S A} \frac{\cosh \Gamma x}{\cosh \Gamma a}+C \tag{36}
\end{equation*}
$$

The constant C is found from the boundary condition. Recall Eq. (15) at $x=a$, i.e.,

$$
\begin{equation*}
\varepsilon(a)=0 \tag{37}
\end{equation*}
$$

Substitution of Eq. (36) into Eq. (37) gives

$$
\begin{equation*}
\varepsilon(a)=-\left.\frac{\alpha}{\alpha+\psi} \varepsilon_{I S A} \frac{\cosh \Gamma x}{\cosh \Gamma a}\right|_{x=a}+C=-\frac{\alpha}{\alpha+\psi} \varepsilon_{I S A}+C=0 \tag{38}
\end{equation*}
$$

Solving Eq. (38) for C yields

$$
\begin{equation*}
C=\frac{\alpha}{\alpha+\psi} \varepsilon_{I S A} \tag{39}
\end{equation*}
$$

Hence, Eq. (36) becomes

$$
\begin{equation*}
\varepsilon(x)=-\frac{\alpha}{\alpha+\psi} \varepsilon_{I S A} \frac{\cosh \Gamma x}{\cosh \Gamma a}+\frac{\alpha}{\alpha+\psi} \varepsilon_{I S A}=\frac{\alpha}{\alpha+\psi} \varepsilon_{I S A}\left(1-\frac{\cosh \Gamma x}{\cosh \Gamma a}\right) \tag{40}
\end{equation*}
$$

The end part of Eq. (40) has the required form of Eq. (8.311).
Next, substitute Eq. (40) into Eq. (9) to obtain σ, i.e.,

$$
\begin{equation*}
\sigma=E \varepsilon=\frac{\alpha}{\alpha+\psi} E \varepsilon_{I S A}\left(1-\frac{\cosh \Gamma x}{\cosh \Gamma a}\right) \tag{41}
\end{equation*}
$$

Eq. (41) has the required form of Eq. (8.312).
Finally, substitute Eq. (40) into Eq. (6) and integrate the result to get u, i.e.,

$$
\begin{equation*}
\frac{d u}{d x}=\varepsilon(x)=\frac{\alpha}{\alpha+\psi} \varepsilon_{I S A}\left(1-\frac{\cosh \Gamma x}{\cosh \Gamma a}\right) \tag{42}
\end{equation*}
$$

Upon integration, Eq. (42) becomes

$$
\begin{equation*}
u(x)=\int \frac{d u}{d x} d x+C=\frac{\alpha}{\alpha+\psi} \varepsilon_{I S A} \int\left(1-\frac{\cosh \Gamma x}{\cosh \Gamma a}\right) d x+C=\frac{\alpha}{\alpha+\psi} \varepsilon_{I S A}\left(x-\frac{\sinh \Gamma x}{\Gamma \cosh \Gamma a}\right)+C \tag{43}
\end{equation*}
$$

The constant C is found from the symmetry condition $\left.u(x)\right|_{x=0}=0$, i.e.,

$$
\begin{equation*}
u(0)=\left.\frac{\alpha}{\alpha+\psi} \varepsilon_{I S A}\left(x-\frac{\sinh \Gamma x}{\Gamma \cosh \Gamma a}\right)\right|_{x=0}+C=0+C=0 \tag{44}
\end{equation*}
$$

Solving Eq. (44) for C yields $C=0$; hence, Eq. (43) becomes, upon rearrangement,

$$
\begin{equation*}
u(x)=\frac{\alpha}{\alpha+\psi} \varepsilon_{I S A} a\left(\frac{x}{a}-\frac{\sinh \Gamma x}{\Gamma a \cosh \Gamma a}\right) \tag{45}
\end{equation*}
$$

Eq. (45) has the required form of Eq. (8.313).

Problem 4: Prove the integral in Eqs. (8.344), (8.345), i.e.

$$
\begin{gather*}
\int_{-a}^{a}\left(1-\frac{\cosh \Gamma x}{\cosh \Gamma a}\right)^{2} d x=l_{a} I(\Gamma a) \tag{8.344}\\
I(\Gamma a)=1-\frac{3}{2} \frac{\sinh \Gamma a}{\Gamma a \cosh \Gamma a}+\frac{1}{2} \frac{1}{(\cosh \Gamma a)^{2}} \quad \text { (bond efficiency) } \tag{8.345}
\end{gather*}
$$

Solution
Expand Eq. (1)

$$
\begin{align*}
\int_{-a}^{a}\left(1-\frac{\cosh \Gamma x}{\cosh \Gamma a}\right)^{2} d x & =\int_{-a}^{a}\left[1-2 \frac{\cosh \Gamma x}{\cosh \Gamma a}+\left(\frac{\cosh \Gamma x}{\cosh \Gamma a}\right)^{2}\right] d x \\
& =\left[x-\frac{2}{\Gamma} \frac{\sinh \Gamma x}{\cosh \Gamma a}+\frac{\int(\cosh \Gamma x)^{2} d x}{(\cosh \Gamma a)^{2}}\right]_{-a}^{a} \tag{3}
\end{align*}
$$

The integral $\int(\cosh \Gamma x)^{2} d x$ is evaluated as

$$
\begin{equation*}
\int(\cosh \Gamma x)^{2} d x=\frac{1}{4 \Gamma} \sinh 2 \Gamma x+\frac{x}{2}+C \quad \text { (Wikipedia) } \tag{4}
\end{equation*}
$$

After apply the limits of integration, Eq. (4) becomes

$$
\begin{align*}
\int_{-a}^{a}(\cosh \Gamma x)^{2} d x & =\left.\left(\frac{1}{4 \Gamma} \sinh 2 \Gamma x+\frac{x}{2}+C\right)\right|_{-a} ^{a}=\frac{1}{4 \Gamma} 2 \sinh 2 \Gamma a+\frac{2 a}{2} \tag{5}\\
& =\frac{1}{2 \Gamma} \sinh 2 \Gamma a+a
\end{align*}
$$

Substitution of Eq. (5) into Eq. (3) yields

$$
\begin{align*}
& {\left[x-\frac{2}{\Gamma} \frac{\sinh \Gamma x}{\cosh \Gamma a}+\frac{\int(\cosh \Gamma x)^{2} d x}{(\cosh \Gamma a)^{2}}\right]_{-a}^{a}=\left[2 a-\frac{2}{\Gamma} \frac{2 \sinh \Gamma a}{\cosh \Gamma a}+\frac{\frac{1}{2 \Gamma} \sinh 2 \Gamma a+a}{(\cosh \Gamma a)^{2}}\right]} \\
& =2\left[a-\frac{2}{\Gamma} \frac{\sinh \Gamma a}{\cosh \Gamma a}+\frac{\sinh 2 \Gamma a}{4 \Gamma(\cosh \Gamma a)^{2}}+\frac{a}{2(\cosh \Gamma a)^{2}}\right] \tag{6}\\
& =2\left[a-\frac{2}{\Gamma} \frac{\sinh \Gamma a}{\cosh \Gamma a}+\frac{\sinh 2 \Gamma a}{4 \Gamma(\cosh \Gamma a)^{2}}+\frac{a}{2(\cosh \Gamma a)^{2}}\right]
\end{align*}
$$

Further simplification of Eq. (6) gives

$$
\begin{align*}
& 2\left[a-\frac{2}{\Gamma} \frac{\sinh \Gamma a}{\cosh \Gamma a}+\frac{\sinh \Gamma a}{2 \Gamma \cosh \Gamma a}+\frac{a}{2(\cosh \Gamma a)^{2}}\right]=2\left[a-\frac{2}{3 \Gamma} \frac{\sinh \Gamma a}{\cosh \Gamma a}+\frac{a}{2(\cosh \Gamma a)^{2}}\right] \tag{7}\\
& =2 a\left(1-\frac{3}{2} \frac{\sinh \Gamma a}{\Gamma a \cosh \Gamma a}+\frac{1}{2} \frac{1}{(\cosh \Gamma a)^{2}}\right)=l_{a}\left(1-\frac{3}{2} \frac{\sinh \Gamma a}{\Gamma a \cosh \Gamma a}+\frac{1}{2} \frac{1}{(\cosh \Gamma a)^{2}}\right)=l_{a} I(\Gamma a)
\end{align*}
$$

Comparison of Eqs. (1), (2), (7) indicates that

$$
\begin{equation*}
\int_{-a}^{a}\left(1-\frac{\cosh \Gamma x}{\cosh \Gamma a}\right)^{2} d x=l_{a} I(\Gamma a) \tag{8}
\end{equation*}
$$

QED

Problem 5: Prove that the integral in Eq. (8.355) gives the function $I(\Gamma a)$ of Eq. (8.345)

$$
\begin{align*}
\int_{-a}^{+a}\left(\Gamma a \frac{\sinh \Gamma x}{\cosh \Gamma a}\right)\left(\frac{x}{a}-\frac{\sinh \Gamma x}{(\Gamma a) \cosh \Gamma a}\right) d x=l_{a} I(\Gamma a) \tag{8.355}\\
I(\Gamma a)=1-\frac{3}{2} \frac{\sinh \Gamma a}{\Gamma a \cosh \Gamma a}+\frac{1}{2} \frac{1}{(\cosh \Gamma a)^{2}} \quad \text { (bond efficiency) } \tag{8.345}
\end{align*}
$$

Solution

Expand the integral in Eq. (1) to get

$$
\begin{equation*}
\int_{-a}^{a}\left(\Gamma a \frac{\sinh \Gamma x}{\cosh \Gamma a}\right)\left(\frac{x}{a}-\frac{\sinh \Gamma x}{(\Gamma a) \cosh \Gamma a}\right) d x=\frac{\Gamma a}{\cosh \Gamma a} \int_{-a}^{a}\left(\frac{x}{a} \sinh \Gamma x-\frac{(\sinh \Gamma x)^{2}}{(\Gamma a) \cosh \Gamma a}\right) d x \tag{3}
\end{equation*}
$$

Evaluate the integral in Eq. (3), i.e.,

$$
\begin{equation*}
\int_{-a}^{a}\left(\frac{x}{a} \sinh \Gamma x-\frac{(\sinh \Gamma x)^{2}}{(\Gamma a) \cosh \Gamma a}\right) d x \tag{4}
\end{equation*}
$$

First, do the first term in the integral Eq. (4)

$$
\begin{equation*}
\int_{-a}^{a} x \sinh \Gamma x d x=\left.\frac{x \cosh \Gamma x}{\Gamma}\right|_{-a} ^{+a}-\frac{1}{\Gamma} \int_{-a}^{a} \cosh \Gamma x d x=\frac{2 a}{\Gamma} \cosh \Gamma a-\frac{2}{\Gamma^{2}} \sinh \Gamma a \tag{5}
\end{equation*}
$$

Next, recall the primitive

$$
\begin{equation*}
\int(\sinh \Gamma x)^{2} d x=\frac{1}{4 \Gamma} \sinh 2 \Gamma x-\frac{x}{2}+C \quad \text { (Wikipedia) } \tag{6}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
\int_{-a}^{a}(\sinh \Gamma x)^{2} d x=\left.\left(\frac{1}{4 \Gamma} \sinh 2 \Gamma x-\frac{x}{2}+C\right)\right|_{-a} ^{+a}=\frac{2}{4 \Gamma} \sinh 2 \Gamma a-\frac{2 a}{2}=\frac{1}{2 \Gamma} \sinh 2 \Gamma a-a \tag{7}
\end{equation*}
$$

Substitute Eqs. (5), (7) into Eq. (4) to get

$$
\begin{align*}
& \int_{-a}^{a}\left(\frac{x}{a} \sinh \Gamma x-\frac{(\sinh \Gamma x)^{2}}{(\Gamma a) \cosh \Gamma a}\right) d x \tag{8}\\
& =\frac{1}{a}\left(\frac{2 a}{\Gamma} \cosh \Gamma a-\frac{2}{\Gamma^{2}} \sinh \Gamma a\right)-\frac{1}{(\Gamma a) \cosh \Gamma a}\left(\frac{1}{2 \Gamma} \sinh 2 \Gamma a-a\right)
\end{align*}
$$

Substitute Eq. (8) into Eq. (3) to obtain

$$
\begin{align*}
& \int_{-a}^{a}\left(\Gamma a \frac{\sinh \Gamma x}{\cosh \Gamma a}\right)\left(\frac{x}{a}-\frac{\sinh \Gamma x}{(\Gamma a) \cosh \Gamma a}\right) d x \\
& =\frac{\Gamma a}{\cosh \Gamma a}\left[\frac{1}{a}\left(\frac{2 a}{\Gamma} \cosh \Gamma a-\frac{2}{\Gamma^{2}} \sinh \Gamma a\right)-\frac{1}{(\Gamma a) \cosh \Gamma a}\left(\frac{1}{2 \Gamma} \sinh 2 \Gamma a-a\right)\right] \\
& =\left[2 a-\frac{2 a}{\Gamma a} \frac{\sinh \Gamma a}{\cosh \Gamma a}-\frac{2 \sinh \Gamma a \cosh \Gamma a}{2 \Gamma(\cosh \Gamma a)^{\not 2}}+\frac{a}{(\cosh \Gamma a)^{2}}\right] \tag{9}\\
& =\left[2 a-\frac{2 a}{\Gamma a} \frac{\sinh \Gamma a}{\cosh \Gamma a}-\frac{2 a}{2 \Gamma a} \frac{\sinh \Gamma a}{\cosh \Gamma a}+\frac{2 a}{2(\cosh \Gamma a)^{2}}\right]=2 a\left[1-\frac{1}{\Gamma a} \frac{3}{2} \frac{\sinh \Gamma a}{\cosh \Gamma a}+\frac{1}{2(\cosh \Gamma a)^{2}}\right]
\end{align*}
$$

Since $2 a=l_{a}$, Eq. (9) becomes

$$
\begin{equation*}
\int_{-a}^{a}\left(\Gamma a \frac{\sinh \Gamma x}{\cosh \Gamma a}\right)\left(\frac{x}{a}-\frac{\sinh \Gamma x}{(\Gamma a) \cosh \Gamma a}\right) d x=l_{a}\left(1-\frac{3}{2} \frac{1}{\Gamma a} \frac{\sinh \Gamma a}{\cosh \Gamma a}+\frac{1}{2} \frac{1}{(\cosh \Gamma a)^{2}}\right)=l_{a} I(\Gamma a) \tag{10}
\end{equation*}
$$

QED

