EXPERT SYSTEMS
The Technology of Knowledge Management and Decision Making for the 21st Century
VOLUME I
CONTENTS

PREFACE xxiii
CONTRIBUTORS xxv

CONTENTS OF VOLUME 1

History and Applications
JOHN DURKIN

I. Introduction 1
II. Philosophy (470–322 BC) 2
III. Mechanics (1800s) 4
IV. Computers and First Glimpse at Artificial Intelligence (1940s) 6
V. Birth and Rise of Artificial Intelligence (1950s and 1960s) 8
VI. Fall and Rebirth of Artificial Intelligence (1970s) 10
VII. Proliferation of Expert Systems (1980s) 12
VIII. State of the Field (1990s) 15
IX. Epilogue 19
 References 22
2 Tools and Applications
JOHN DURKIN

I. Introduction 23
II. Rule-Based Tools 24
III. Frame-Based Tools 28
IV. Fuzzy Logic Tools 31
V. Induction Tools 37
VI. Case-Based Reasoning Tools 41
VII. Neural Network Tools 44
VIII. Summary 49
References 50

3 Development and Applications of Decision Trees
HUSSIN ALMUALLIM, SHIGEO KANEDA, AND YASUHIRO AKIBA

I. Introduction 54
II. Constructing Decision Trees from Examples 55
III. Evaluation of a Learned Decision Tree 60
IV. Overfitting Avoidance 61
V. Extensions to the Basic Procedure 63
VI. Voting over Multiple Decision Trees 70
VII. Incremental Tree Construction 71
VIII. Existing Implementations 72
IX. Practical Applications 72
X. Further Readings 75
References 75

4 Reasoning with Imperfect Information
SIMON PARSONS

I. Introduction 80
II. Numerical Approaches 81
III. Symbolic Approaches 93
IV. Unifying Approaches 102
V. Applications 108
VI. Summary 111
References 112
5 Experimental Design and Decision Support
TAY KIANG MENG

I. Introduction 120
II. New Concept of Experimental Design and Decision Support 122
III. Neural Network Representation of Experimental Design and Decision Support 127
IV. Framework for Designing and Building Parallel Distributed Computational Adaptive Neural Networks 128
V. Future Predictions on Advanced Quality Engineering and Its Methodology 132
VI. Overview of the Prototype 134
VII. Experiment Reference Template 135
VIII. Sample Outputs from the Experiment Reference Template 138
IX. Data Analysis Using Neural Network 140
X. Algorithm for Adaptive GaRBF Neural Network 146
XI. Training and Application 149
XII. Main Areas of Application 155
XIII. Implication of the Adaptive Neural Network Approach for Experimental Design and Decision Support 156
XIV. Conclusion 158
XV. Symbols and Abbreviations 159

Appendix A. Proof of Properties of the Scheme 160
Appendix B. Design of Experiment Software 165
References 167

6 A Model-Based Expert System Based on a Domain Ontology
YOSHINOBU KITAMURA, MITSURU IKEDA, AND RIICHIRO MIZOGUCHI

I. Introduction 171
II. Introduction to Ontology Engineering 173
III. A Causal Time Ontology 175
IV. Design of a Reasoning System 183
V. An Ontology of Fluid Systems 187
VI. Application to a Power Plant 189
VII. Related Work 194
VIII. Summary 194
References 195
7 Intelligent System Control: A Unified Approach and Applications
HUI-MIN HUANG, HARRY SCOTT, ELENA MESSINA, MARIS JUBERTS, AND RICHARD QUINTERO

I. Introduction 198
II. The RCS Reference Model 200
III. RCS Methodology—The Development Process 205
IV. Case Study I, Finite State Machines, Simulator Templates, and Operator Interface Focused Implementation 218
V. Case Study II, Manufacturing Domain, toward Implementation Specification and Online Behavior Generation 243
VI. Case Study III, Intelligent Autonomous Vehicles, Exercising Full Architectural Capability 255
VII. Summary 262
Disclaimer 263
References 263

8 Real-Time Fault-Tolerant Control Systems
WEI LIU

I. Introduction 267
II. Real-Time Expert-System-Based Process Control Systems 269
III. Background on Fault-Tolerant Control Systems 273
IV. Fault-Tolerant Control Strategy Based on the Real-Time Expert System 280
V. Applications to Industrial Process Control 295
VI. Conclusion 302
References 302

CONTENTS OF VOLUME 2

9 Model of Reasoning with Conflicting Information Sources in Knowledge-Based Systems
JINXIN LIN

I. Introduction 305
II. Review of the Logic of Bc and B 308
III. Only Knowing 310
IV. First-Order Consistent Beliefs 315
I. Introduction 327
II. Process Planning 329
III. EPPSU: An Expert Process Planning and Fixturing System for Prismatic Parts 333
References 376

II Intelligent Systems Techniques and Their Application in Manufacturing Systems
TIEN-FU LU AND GRIER C. I. LIN

I. Introduction 381
II. Manufacturing Problems and Trends 382
III. Intelligent System Techniques 384
IV. Application of Intelligent System Techniques in Manufacturing—Development of an Intelligent Workcell Robot System 392
V. Conclusion 408
References 409

12 Architecture, Engineering, and Construction Design
TOM ANDERSEN

I. Introduction 411
II. Expert System Techniques 412
III. Phases in Knowledge Engineering 413
IV. Expert System Applications in Architecture, Engineering, and Construction Design 433
References 440

13 Neural Networks for Process Control: Application to the Temperature Control of Batch Chemical Reactors
J. L. DIRION, M. CABASSUD, G. CASAMATTA, AND M. V. LE LANN

Introduction 443
I. Applications of Neural Networks in Chemical Engineering 445
14 Intelligent Tools and Their Applications in Geographic Information Systems
ERH-CHUN YEH, ZARKO SUMIĆ, AND S. S. VENKATA

I. Introduction 490
II. Background and Themes 495
III. Secondary System Planning 507
IV. Primary System Planning 520
V. Street Lighting Planning 531
VI. Monte Carlo Simulation Testing of the Fuzzy Set Based Outage Location 540
References 549

15 Microprocessor Systems
S. M. YUEN AND K. P. LAM

I. Introduction 554
II. Approaches in Formal Hardware Verification 555
III. Related Works 557
IV. Problem Domain 558
V. Knowledge-Based System Structure 560
VI. Time Range Approach 565
VII. Fuzzy Time Point Approach 578
VIII. Constraint Compatibility Reasoning 596
IX. Conclusion 610
Appendix 611
References 614

16 Scheduling Systems for Shipbuilding
JAE KYU LEE, JUNG SEUNG LEE, KYOUNG JUN LEE, AND JUNE SEOK HONG

I. Introduction 618
II. Hierarchical Architecture for Shipbuilding Scheduling 618
CONTENTS OF VOLUME 3

17 Genetic Image Interpretation
MILAN SONKA

I. Introduction 639
II. Preliminaries 641
III. Genetic Algorithms in Computer Vision 644
IV. Genetic Algorithm-Based Image Interpretation Method 645
V. Image Interpretation of Artificially Generated Test Examples 649
VI. Genetic Interpretation of Magnetic Resonance Brain Images 651
VII. Advantages of Genetic Algorithm-Based Image Interpretation 655
 References 657

18 Automated Visual Assembly Inspection
KHALID W. KHAWAJA, DANIEL TRETTER, ANTHONY A. MACIEJEWSKI,
AND CHARLES A. BOUMAN

I. Introduction 661
II. The Inspection Algorithm 665
III. Automated Camera and Light Placement 681
IV. Results 695
V. Conclusions 697
 References 697

19 Multiresolution Invariant Image Recognition
STEFANOS D. KOLLIAS AND ANASTASIOS N. DELOPOULOS

I. Image Analysis and New Developments in Multimedia Systems 702
II. Theoretical Aspects of Multiresolution and Cumulant Analysis 708
III. Proposed Invariant Image Representations 714
IV. Multiresolution Neural Network Classifiers of Invariant
 Representations 721
V. Efficient Multiresolution Texture Classification Scheme 731
VI. Conclusions 737
 References 738

20 Image Processing for Automatic Roads Determination
MEIR BARZOHAR AND DAVID B. COOPER

I. Introduction 741
II. Road Generation 742
III. Road Finding as a Map Estimation Problem 746
IV. High-Level Processing Combining Road Candidates 756
V. Experimental Road Results 757
VI. Conclusions 767
 References 769

21 Automated Visual Inspection Systems
I. ANDREADIS

I. Introduction 771
II. Components of an Automated Visual Inspection System 772
III. Image Segmentation 777
IV. Measurements 781
V. Image Transformations 782
VI. Pattern Recognition 784
VII. Three-Dimensional Images 785
VIII. Applications 786
IX. Examples of Automated Visual Inspection Systems 786
X. Conclusions 799
 References 799

22 Visual Programming Technology in Expert
 Systems Development
YOSHIYUKI KOSEKI, MIDORI TANAKA, AND YUICHI KOIKE

I. Introduction 802
II. Visual Knowledge Representation 803
III. Task-Specific Visual Representation 805
IV. Generic Iconic Visual Programming 818
23 CAD-Based Vision Systems in Pattern Matching Process
YVES LUCAS, TANNEGUY REDARCE, AND ALAIN JUTARD

I. Introduction 834
II. Integrated Vision Systems in Manufacturing Processes 835
III. Computer Models 841
IV. CAD-Based Vision System Design 850
V. Intelligent Techniques for CAD-Based Vision Systems 855
VI. Applications 860
VII. Conclusion 871
References 871

24 Cellular Automata Architectures for Pattern Recognition
P. TZIONAS AND I. ANDREADIS

I. Introduction 876
II. Cellular Automata and Pattern Classification 876
III. Hybrid Cellular Automaton–Neural Network Classifier 878
IV. Cellular Automaton-Based, Nearest Neighbor Pattern Classifier 889
V. Very Large Scale Integration Implementation of Cellular Automata Architectures 904
VI. Conclusions 906
References 906

25 Machine Intelligent System Techniques for Automatic Harvest Systems
SEIICHI INOUE, TAKAHIRO KOBAYASHI, TAKEO OJIIKA, AND RYUGO KIJIMA

I. Introduction 910
II. Automatic Harvest Systems 911
III. Method of 3D Measuring 917
IV. Visual Device 922
V. Development of the Soft Hand 925
VI. Collision Avoidance Using the Virtual Hand Robot 929
VII. Conclusion 934
References 934
26 Introducing Machine Learning with Knowledge Acquisition
GEOFFREY I. WEBB

I. Introduction 937
II. The Knowledge Representation Scheme 939
III. Machine Learning Techniques 941
IV. Techniques 942
V. Experimental Evaluation 953
VI. Conclusions 956
Appendix 956
References 958

27 Modeling Human Reasoning Processes under Uncertain Conditions
SUMIT SARKAR

I. Introduction 961
II. Probabilistic Models 963
III. Probabilistic Models for Prediction Problems 966
IV. Performing What-If Analysis Using Probability Models 969
V. Strategies for Information Acquisition 971
VI. Obtaining Probability Models with Composite Attributes 974
VII. Ongoing and Future Research Issues 976
References 976

CONTENTS OF VOLUME 4

28 Devising an Expert System for Pediatric Syndrome Diagnosis
ØIVIND BRAATEN

I. Introduction 980
II. What is a Syndrome? 982
III. A Good Clinical Sign 987
IV. Using a Diagnostic Expert System in a New Setting 996
V. The Problem at the Tertiary Care Center: Moving the Probability 996
VI. Problems with Using a Clean Bayes’ Approach 998
VII. Quality of Data 999
VIII. Subordinate Expert Systems 1003
IX. An Aside: A Different “Expert System” 1004
29 Automatic Knowledge Discovery in Larger Scale Knowledge–Data Bases
NING ZHONG AND SETSUO OHSUGA
I. Introduction 1015
II. Background and Goal 1017
III. KOSI 1022
IV. IIBR 1038
V. KDD Process and KDD Agents 1053
VI. Concluding Remarks 1067
References 1068

30 Efficient Legacy Data Utilization
DAVID J. RUSSOMANNO
I. Introduction 1071
II. The Data Migration Problem 1075
III. AM/FM Features 1076
IV. The Object–Inferencing Framework 1079
V. Target Model Data Engineering 1087
VI. Make Feature Process 1098
VII. Testing and Evaluation of the Approach 1102
VIII. Conclusions 1104
References 1105

31 Investment Decision Making
SANJA VRANEŠ, MLADEN STANOJEVIĆ, AND VIOLETA STEVANOVIĆ
I. Introduction 1107
II. Customer Profile and Project Evaluation 1109
III. Unido Methodology 1114
IV. Heuristic Decision Strategy 1115
V. Risk-Bearing Attitude 1122
Contents

 VI. Multicriteria Analysis 1125
 VII. Sensitivity Analysis 1131
 VIII. Conclusion 1132

References 1132

32 Intelligent Systems Control in Manufacturing Cells
YU-LIANG SUN AND YUEHWERN YIH

 I. Introduction 1135
 II. Literature Review 1136
 III. Architecture of Controller 1139
 IV. System Description and Simulation Model 1141
 V. Development of Controller 1144
 VI. Experiments and Results 1148
 VII. Concluding Remarks 1152

References 1153

33 Knowledge-Based Approach for Automating Web Publishing from Databases
ZHANGXI LIN, MATTI HÄMÄLÄINEN, AND ANDREW B. WHINSTON

 I. Introduction 1155
 II. Automating HTML Page Generation 1157
 III. Knowledge Representation Scheme for KHDG 1160
 IV. Implementation of KHDG 1165
 V. A Prototype: Smart Stock Information Agent 1169
 VI. Summary 1172

References 1172

34 Neural Networks for Economic Forecasting Problems
KAZUHIRO KOHARA

 I. Introduction 1175
 II. Univariate Time-Series Forecasting 1175
 III. Multivariate Prediction 1177
 IV. Hybrid Systems 1187
 V. Recurrent Neural Networks 1194
 VI. Summary 1195

References 1195
35 Determination of Principal Components in Data
FERDINAND PEPER, HIDEKI NODA, AND MAHDAD N. SHIRAZI

I. What is Principal Component Analysis? 1200
II. Principal Component Analysis Neural Networks 1210
III. Biological Background of Principal Component Analysis Neural Networks 1230
IV. Techniques 1232
V. Speeding up Learning of Principal Component Analysis Neural Networks 1236
VI. Minor Component Analysis Neural Networks 1243
VII. Nonlinear Principal Component Analysis Neural Networks 1246
References 1255

36 Time-Series Prediction
HISASHI SHIMODAIRA

I. Introduction 1260
II. Time-Series Prediction Using Multilayer Perceptrons 1262
III. Time-Series Prediction Using Finite Impulse Response Multilayer Perceptrons 1284
IV. Time-Series Prediction Using Recurrent Neural Networks 1295
V. Discussions 1311
References 1312

CONTENTS OF VOLUME 5

37 Hybrid Expert Systems: An Approach to Combining Neural Computation and Rule-Based Reasoning
ERNesto BURATTINI, MASSIMO DE GREGORIO, AND GUGLIELMO TAMbURRINI

I. Introduction 1316
II. Hybrid Visual Data Acquisition System 1317
III. Pictorial Form of Explanation 1328
IV. Neural Forward Chaining 1334
V. Neural Forward Chaining and FPGAs 1343
VI. Discussion 1348
References 1352
38 POPFNNS: Fuzzy Neural Techniques for Rule-Based Identification in Expert Systems
C. QUEK AND R. W. ZHOU

I. Literature Survey 1356
II. POPFNN Models 1369
III. Learning Algorithms for the Introduced Fuzzy Neural Networks 1383
IV. Applications of Fuzzy Neural Networks 1393
V. Conclusions 1406
References 1406

39 Preventive Quality Management
GERHARD PETER, ANITA KRÄMER, CHRISTIAN RUPPRECHT, AND BERND BERTHOLD

I. Introduction 1414
II. IPQM 1418
III. Method 1420
IV. Realization 1438
V. Related Work 1447
VI. Discussion 1450
References 1453

40 Distributed Logic Processors in Process Identification
E. IKONEN, U. KORTELA, AND K. NAJIM

I. Introduction 1457
II. Distributed Logic Processors 1459
III. Gradient-Based Learning 1467
IV. Learning Automata-Based Learning 1472
V. Modeling of Flue Gas Emissions 1481
VI. Conclusions and Discussion 1493
References 1494

41 Knowledge Representation By Means of Multilayer Perceptrons
ELENAPÉREZ MIÑANA

I. Introduction 1497
II. KRFs Considered 1499
III. Issues in Combining SP and NNs 1503
IV. Applications 1517
V. Conclusions 1522
 References 1523

42 A Guide to Research in Assumption-Based Truth
Maintenance System Constraint Satisfaction
J. Tay, C. Quek, and S. Huang

I. Introduction 1525
II. Background to Reason Maintenance 1533
III. Improving the Performance of Assumption-Based Truth Maintenance
 System Problem Solvers 1540
IV. Global Perspective 1554
V. Conclusions 1555
 References 1556

43 Method for Utilization of Previous Experience in Design
Expert Systems
Takashi Ishikawa and Takao Terano

I. Introduction 1559
II. Framework of Inductive Prediction by Analogy 1560
III. Analogy Using Taxonomic Information 1561
IV. Algorithm of Inductive Prediction by Analogy 1563
V. Applications in Logic Programming 1564
VI. Classification Problem in Molecular Biology 1568
VII. Discussion and Related Work 1573
VIII. Conclusion 1574
 References 1574

44 Model-Based Process Fault Diagnosis
Hisashi Shimodaira

I. Introduction 1577
II. Process Fault Diagnosis Techniques Based on Qualitative Models 1581
III. Process Fault Diagnosis Techniques Based on Fuzzy Models 1605
IV. Process Fault Diagnosis Techniques Based on Approximate
 Quantitative Models 1626
V. Discussions 1637
 References 1638
CONTENTS OF VOLUME 6

45 Automation of Concept Development
RYUJI KUDO AND TAKAO TERANO

I. Introduction 1642
II. Motivation 1643
III. Related Work and Problems for Concept Development 1644
IV. Knowledge Representation 1645
V. Concept Development Mechanism 1647
VI. Discussion of the Classification of Decision Support Systems 1656
VII. Conclusion 1657
Appendix 1660
References 1664

46 Methodology for Building Case-Based Reasoning Systems in Ill-Structured Optimization Domains
KAZUO MIYASHITA

I. Introduction 1667
II. Scheduling Problem 1670
III. Modeling the Optimization Task 1672
IV. Cabins: Case-Based Optimization Approach 1675
V. Experiments 1686
VI. Conclusions 1695
References 1695

47 The Trainer System: Applying QR Techniques to Intelligent Tutoring Systems
C. QUEK, W. C. SIM, AND C. K. LOOI

I. Introduction 1701
II. System Categorizations Framework 1705
III. Instructional Systems Based on Qualitative Analysis 1712
IV. Diagnostic Systems Based on Qualitative Analysis 1720
V. Observations and Discussions 1724
VI. Design of the Trainer System 1730
VII. Formative Evaluation 1751
VIII. Conclusion 1767
References 1768
CONTENTS

48 Structuring Expert Control Using the Integrated Process Supervision Architecture
C. QUEK, M. PASQUIER, AND P. W. NG

Introduction 1773
I. Intelligent Control and Supervision 1774
II. Integrated Process Supervision 1779
III. Realization of the IPS 1785
IV. Rule-Based Process Supervision 1797
V. Real-Time Integrated Process Supervision 1807
VI. Present and Future Developments 1821
Conclusion 1825
References 1827

49 Tap: An Inquiry Teaching Shell Using Both Rule-Based and State-Space Approaches
C. QUEK, L. H. WONG, AND C. K. LOOI

I. Introduction 1832
II. Instructional Planning and Inquiry Teaching 1836
III. TAP: An ITS Architecture to Plan Inquiry Dialogue 1845
IV. Planning in TAP-2 1850
V. Domain Case Study I: PADI-2 1861
VI. Domain Case Study II: FT-TAP 1882
VII. Conclusion and Future Directions 1890
References 1893

50 Self Teaching and Exploratory Task-Learning Methods in Unknown Environments and Applications in Robotic Skills
RUI ARAÚJO, URBANO NUNES, J. LUÍS CRUZ, AND ANÍBAL T. DE ALMEIDA

I. Introduction 1898
II. Neural Network-Based Learning Architecture 1900
III. Force Control Skill 1909
IV. Learning to Navigate a Mobile Robot 1915
V. Neural Network-Based Local Mapping 1917
VI. Conclusions 1921
References 1922

INDEX 1925
Artificial Intelligence (AI) has expert systems as one of the areas in its domain. AI almost defines itself as the replication, to some degree of human intelligence by the utilization of computers, sensor systems, and other technologies, in the performance of useful or interesting tasks. While application of AI to areas such as natural language translation, original composition of music or prose, vision, and other diverse tasks which are more in keeping with human facilities is problematic, restriction of AI to some of its generally regarded subset areas may provide useful solutions. In particular, delimiting artificial intelligence to the area of expert systems has proven to offer many significant capabilities and applications. As in other cases, there are no doubt many possible definitions of expert systems. One such effective definition of expert systems is that an expert system is a knowledge-based computer system which emulates the decision making ability of a human expert.

It seems the primary role of expert systems is to perform their functions, where it is appropriate to do so, under the supervision or monitoring of the human that is being supported. That is, the primary role of expert systems would appear to be supporting the human or humans who are using them. A classic example of where this relationship failed and resulted in near catastrophic economic consequences, was computerized stock trading (a flawed expert system at the time). On Monday, October 19, 1987, a malfunctioning expert system resulted in the worst stock market crash in history. Indeed, it was noted at the time that stock traders watched in helpless shock as the “bottom dropped out of the stock market” because proper monitoring measures were not put in place, to say nothing of the fact that the system itself had design flaws. Of course, these flaws have since been corrected, and research continues to produce improvements so that this catastrophe
will not be repeated. Incidentally, stock trading is an example of “forward chaining”
expert systems, i.e., a cause (various economic indicators) produces a certain effect
(stock trading).

The “flip side” of the 1987 collapse of the stock market due to computerized
trading is the Chernobyl disaster which occurred April 26, 1986. In this instance,
it has been observed that this disaster which occurred at 1:15 AM was probably,
if not indeed, due to operator fatigue. These operators were not supported by an
expert system, which very likely would have avoided this disaster. This would be an
example of a “backward chaining” expert system, i.e., effects (reactor performance
indications) resulting in correction of causes by making proper control changes.

In the case of the stock market collapse, the situation was an expert system
which was neither properly designed nor had adequate provision for human inter-
vention. In the case of the Chernobyl disaster, the system operators did not have
the support of an expert system, which very likely could have averted this major
disaster. In both cases, the wrong thing was done at times which just aggravated
the respective situations. At the bottom, it is most important to be aware of this
still relatively new and growing technology of expert systems, which can perme-
ate virtually every area of human endeavor, so that it can be appropriately and
necessarily utilized. Indeed, one more noteworthy example involves the two chess
matches that world class champion Garry Kasparov played against IBM’s expert
system known as “Big Blue.” The first match was a tie and Kasparov lost the sec-
ond match! In any event, this is a particularly appropriate time to treat the issue of
expert systems techniques and applications.

This set consists of six well-integrated volumes on the broad subject of expert
systems techniques and applications. It is appropriate to mention that each of the
six volumes can be utilized individually. The great potential pervasiveness of this
broad field of major significance certainly suggests the clear requirement for an
adequately comprehensive treatment. All of the contributors to this work are to be
highly commended for their splendid contributions that will provide a significant
and unique reference for students, research workers, practitioners, computer scien-
tists, and others on the international scene for years to come.

Cornelius T. Leondes
CONTRIBUTORS

Numbers in parentheses indicate the pages on which the authors’ contributions begin.

Yasuhiro Akiba (53) ATR Spoken Language Translation Laboratories, 2-2-2 Hikaridai, Seika-cho, Souraku-gun, Kyoto, 619-0288, Japan

Hussein Almuallim (53) Information and Computer Science Department, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia

Tom Andersen (411) Department of Civil Engineering, Technical University of Denmark, DK-2800 Denmark

I. Andreadis (771, 875) Department of Electrical and Computer Engineering, Democritus University of Thrace, Xanthi, 67100, Greece

Rui Araújo (1897) Electrical Engineering Department, Institute for Systems and Robotics (ISR), University of Coimbra, Polo II, Pinhal de Marrocos, Coimbra, 3030, Portugal

Meir Barzohar (741) Computer Vision Group, RAFAEL, Haifa, Israel

Bernd Berthold (1413) Daimler-Chrysler AG, Ulm, 89013, Germany

Charles A. Bouman (661) Computer and Electrical Engineering Department, Purdue University, West Lafayette, Indiana 47907

Olivind Braaten (979) Department of Medical Genetics, Ullevål University Hospital, Blindern, Oslo, 0315, Norway

Ernesto Burattini (1315) Istituto di Cibernetica, CNR, Via Toiano, 6, Arco Felice (NA), I-80072, Italy
M. Cabassud (443) Laboratoire de Genie Chimique, Ecole Nationale Superieure d’Ingenieurs de Genie Chimique, UMR CNRS 5503, 31078, Toulouse Cedex, France

G. Casamatta (443) Laboratoire de Genie Chimique, Ecole Nationale Superieure d’Ingenieurs de Genie Chimique, UMR CNRS 5503, 31078, Toulouse Cedex, France

David B. Cooper (741) Division of Engineering, Brown University, Providence, Rhode Island 02912

J. Luís Cruz (1897) Electrical Engineering Department, Institute for Systems and Robotics (ISR), University of Coimbra, Polo II, Pinhal de Marrocos, Coimbra, 3030, Portugal

Aníbal T. De Almeida (1897) Electrical Engineering Department, Institute for Systems and Robotics (ISR), University of Coimbra, Polo II, Pinhal de Marrocos, Coimbra, 3030, Portugal

Massimo De Gregorio (1315) Instituto di Cibernetica, CNR, Via Toiano, 6, Arco Felice (NA), I-80072, Italy

Anastasios N. Delopoulos (701) Electrical Engineering Department, Computer Science Division, National Technical University of Athens, Zografiou, 15773, Greece

J. L. Dirion (443) Centre Energetique—Environnement Ecole des Mines d’Albi-Carmaux, Campus Jarlard, Route de Teillet, Albi Cedex 09, 81013, France

John Durkin (1, 23) Dept. of Electrical Engineering, College of Engineering, University of Akron, Akron, Ohio, 44325-3904

Mahmut Gülesin (327) Mechanical Education Department, Gazi University Technical Education Faculty, Beşevler, Ankara 06500, Turkey

Matti Hämäläinen (1155) The Center for Research in Electronic Commerce, Graduate School of Business, The University of Texas at Austin, Austin, Texas 78712-1175

June Seok Hong (617) Department of Business Administration, Inje University, Korea

Hui-Min Huang (197) Intelligent Systems Division, National Institute of Standards and Technology, Gaithersburg, Maryland, 20899

S. Huang (1525) Intelligent Systems Laboratory, School of Applied Science, Nanyang Technological University, 639798, Singapore

Mitsuru Ikeda (171) The Institute of Scientific and Industrial Research, Osaka University, Osaka, 567-0047, Japan

E. Ikonen (1457) Department of Process and Environmental Engineering, Systems Engineering Laboratory, University of Oulu, Oulu, FIN-90014, Finland

Seiichi Inoue (909) Fukui National College of Technology, Geshi, Sabae, Fukui, 916-8507, Japan

Takashi Ishikawa (1559) Kisarazu College of Science and Technology, Department of Information and Computer Engineering, 2-11-1 Kiyomidai Higashi, Kisarazu, Chiba, 292, Japan
Maris Juberts (197) Intelligent Systems Division, National Institute of Standards and Technology, Gaithersburg, Maryland, 20899

Alain Jutard (833) Laboratoire d’Automatique Industrielle, Institut National de Sciences Appliquées, Villeurbanne Cedex, 69621, France

Shigeo Kaneda (53) Graduate School of Policy and Management, Doshisha University, Imadegawa-Karasuma-Higashiiru, Kamigyou-ku, Kyoto, 602-8580, Japan

Khalid W. Khawaja (661) Structural Dynamics Research Corporation, Milford, Ohio 45150

Ryugo Kijima (909) Faculty of Engineering, Gifu University, Yanagido, Gifu, 501-1112, Japan

Yoshinobu Kitamura (171) The Institute of Scientific and Industrial Research, Osaka University, Osaka, 567-0047, Japan

Takahiro Kobayashi (909) International Academy of Media Arts and Sciences, Ryoake, Ogaki, Gifu, 503-0014, Japan

Kazuhiko Kohara (1175) NTT Cyber Solutions Laboratories, 3-9-11 Midori-cho, Musashino-shi, Tokyo, 180-8585, Japan

Yuichi Koike (801) C&C Media Research Laboratories, NEC Corporation, 4-1-1 Miyazaki, Miyamae-ku, Kawasaki, 216-8555, Japan

Stefanos D. Kollias (701) Electrical Engineering Department, Computer Science Division, National Technical University of Athens, Zografou, 15773, Greece

U. Kortela (1457) Infotech Oulu and Department of Process Engineering, Systems Engineering Laboratory, University of Oulu, Oulu, FIN-90014, Finland

Yoshiyuki Koseki (801) C&C Media Research Laboratories, NEC Corporation, 4-1-1 Miyazaki, Miyamae-ku, Kawasaki, 216-8555, Japan

Anita Krämer (1413) Research Institute for Applied Knowledge Processing (FAW), University of Ulm, Ulm, 89019, Germany

Ryuji Kudo (1641) Interdisciplinary Course on Advanced Science and Technology, Graduate School of Engineering, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan

K. P. Lam (553) Department of Systems Engineering and Engineering Management, The Chinese University of Hong Kong, Hong Kong, China

M. V. Le Lann (443) Laboratoire d’Analyse et d’Architecture des Systemes, Institut National des Sciences Appliquées de Toulouse, 31077 Toulouse Cedex 4, France

Jae Kyu Lee (617) Graduate School of Management, Korea Advanced Institute of Science and Technology, Seoul, 130-012, Korea

Kyoung Jun Lee (617) School of Business, Korea University, Seoul, 136-701, Korea

Jung Seung Lee (617) Graduate School of Management, Korea Advanced Institute of Science and Technology, Seoul, 130-012, Korea

Jinxin Lin (305) Softouch Intelligence, Toronto, Ontario, M4Y 1R5, Canada
Grier C. I. Lin (381) Centre for Advanced Manufacturing Research, University of South Australia, Mawson Lakes, South Australia 5095, Australia

Zhangxi Lin (1155) The Center for Research in Electronic Commerce, Graduate School of Business, University of Texas at Austin, Austin, Texas 78712-1175

Wei Liu (267) Department of Automation Engineering, Hebei Institute of Technology, 1831 Tangsham, Hebei 063009, People’s Republic of China

C. K. Looi (1831) Intelligent Systems Laboratory, Nanyang Technological University, 637989, Singapore

Tien-Fu Lu (381) Department of Mechanical Engineering, University of Adelaide, South Australia 5005, Australia

Yves Lucas (833) Laboratoire Vision & Robotique, Institut Universitaire de Technologie, Bourges Cedex, 18020, France

Anthony A. Maciejewski (661) Computer and Electrical Engineering Department, Purdue University, West Lafayette, Indiana 47907

Tay Kiang Meng (199) Systems Technology Division, Gintic Institute of Manufacturing Technology, Singapore 638075, Republic of Singapore

Elena Messina (197) Intelligent Systems Division, National Institute of Standards and Technology, Gaithersburg, Maryland, 20899

Kazuo Miyashita (1667) National Institute of Advanced Industrial Science and Technology, 1-1-4 Umezono, Tsukuba, Ibaraki, 305-8568, Japan

Riichiro Mizoguchi (171) The Institute of Scientific and Industrial Research, Osaka University, Osaka, 567-0047, Japan

K. Najim (1457) Process Control Laboratory, Ecole Nationale Superieure d’Ingenieurs de Genie Chimique, Toulouse Cedex, 31078, France

P. W. Ng (1773) Intelligent Systems Laboratory, Nanyang Technological University, 637989, Singapore

Hideki Noda (1199) Department of Electrical, Electronic, and Computer Engineering, Kyushu Institute of Technology, 1-1 Sensio-cho, Tobata-ku, Kita-Kyushu, 804-8550, Japan

Urbano Nunes (1897) Electrical Engineering Department, Institute for Systems and Robotics (ISR), University of Coimbra, Polo II, Pinhal de Marrocos, Coimbra, 3030, Portugal

Setsuo Ohsuga (1015) Department of Information and Computer Science, School of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-Ku, Tokyo, 169, Japan

Takeo Ojika (909) Faculty of Engineering, Gifu University, Yanagido, Gifu, 501-1112, Japan

Simon Parsons (79) Department of Computer Science, University of Liverpool, Liverpool, L69 7ZF, United Kingdom

M. Pasquier (1773) Intelligent Systems Laboratory, Nanyang Technological University, 637989, Singapore

Ferdinand Peper (1199) Communications Research Laboratory, Kansai Advanced Research Center, 588-2 Iwaoka, Iwaoka-cho, Nishi-ku, Kobe, 651-2492, Japan
Elena Pérez Miñana (1497) Philips Research Laboratories, Cross Oak Lane, Redhill, Surrey, RH1 5HA, England

Gerhard Peter (1413) Research Institute for Applied Knowledge Processing (FAW), University of Ulm, Ulm 89019, Germany

C. Quek (1355, 1699, 1773, 1831) Intelligent Systems Laboratory, School of Applied Science, Nanyang Technological University, 639798, Singapore

Richard Quintero (197) Intelligent Systems Division, National Institute of Standards and Technology, Gaithersburg, Maryland, 20899

Tanneguy Redarce (833) Laboratoire d’Automatique Industrielle, Institut National de Sciences Appliquées, Villeurbanne Cedex, 69621, France

Christian Rupprecht (1413) Research Institute for Applied Knowledge Processing (FAW), University of Ulm, Ulm, 89019, Germany

David J. Russomanno (1071) Department of Electrical Engineering, University of Memphis, Memphis, Tennessee, 38152

Sumit Sarkar (961) School of Management, University of Texas at Dallas, Management Science and Information Systems, Richard, Texas, 75080

Harry Scott (197) Intelligent Systems Division, National Institute of Standards and Technology, Gaithersburg, Maryland, 20899

Hisashi Shimodaira (1259, 1577) Faculty of Information and Communication, Bunkyo University, 2-2-16 Katsuradai, Aoba-Ku, Yokohama-city, Kanagawa 227-0034, Japan

Mahdad N. Shirazi (1199) Communications Research Laboratory, Kansai Advanced Research Center, 2-2-2 Hikaridai Seika-cho, Kyoto 619-0289, Japan

W. C. Sim (1699) Intelligent Systems Laboratory, Nanyang Technological University, 637989, Singapore

Milan Sonka (639) Department of Electrical and Computer Engineering, University of Iowa, Iowa City, Iowa 52242

Mladen Stanojević (1107) Computer Systems Department, Mihailo Pupin Institute, Volgina 15, Belgrade, 11060, Yugoslavia

Violeta Stevanović (1107) Computer Systems Department, Mihailo Pupin Institute, Volgina 15, Belgrade, 11060, Yugoslavia

Zarko Sumić (489) Connex T, 1301 5th Avenue, Ste. 1900, Seattle, Washington, 98101

Yu-Liang Sun (1135) iz Technologies, Inc., Dallas, Texas 75234

Guglielmo Tamburrini (1315) Instituto di Cibernetica, CNR, Via Toiano, 6, Arco Felice (NA), I-80072, Italy

Midori Tanaka (801) C&C Media Research Laboratories, NEC Corporation, 4-1-1 Miyazaki, Miyamae-ku, Kawasaki, 216-8555, Japan

J. Tay (1525) Intelligent Systems Laboratory, School of Applied Science, Nanyang Technological University, 639798, Singapore

Takao Terano (1559, 1641) Graduate School of Systems Management, University of Tsukuba, 3-29-1 Otsuka, Bunkyo-ku, Tokyo, 112-0012, Japan

Daniel Tretter (661) Hewlett-Packard Co., Palo Alto, California, 94304-1126
P. Tzionas (875) Department of Automation, Technological Educational Institute of Thessaloniki, Thessaloniki, 54101, Greece

S. S. Venkata (489) Department of ECE, Iowa State University, 2001 Coover Hall, Ames, Iowa, 50011-3060

Sanja Vraneš (1107) Computer Systems Department, Mihailo Pupin Institute, Vojgina 15, Belgrade, 11060, Yugoslavia

Geoffrey I. Webb (937) School of Computing and Mathematics, Deakin University, Geelong, Victoria 3217, Australia

Andrew B. Whinston (1155) The Center for Research in Electronic Commerce, Graduate School of Business, University of Texas at Austin, Austin, Texas 78712-1175

L. H. Wong (1831) Intelligent Systems Laboratory, Nanyang Technological University, 637989, Singapore

Erh-Chun Yeh (489) Cegelec ESCA, 11120 NE 33rd Place, Bellevue, Washington 98006

Yuehwern Yih (1135) School of Industrial Engineering, Purdue University, West Lafayette, Indiana 47907-1287

S. M. Yuen (553) Department of Systems Engineering and Engineering Management, The Chinese University of Hong Kong, Hong Kong, China

Ning Zhong (1015) Department of Information Engineering, Maebashi Institute of Technology, 460-1 Kamisadori-cho, Maebashi City 371-8616, Japan

R. W. Zhou (1355) Intelligent Systems Laboratory, Nanyang Technological University, 637989, Singapore