Silicon-Based Materials and Devices
To my brothers,
Jagmer Singh
and
Ranvir Singh Chaudhary
CONTENTS

Preface ... xi
About the Editor ... xiii
List of Contributors ... xv

Chapter 1. OPTICAL, STRUCTURAL, AND ELECTRICAL PROPERTIES OF AMORPHOUS SILICON CARBIDE FILMS

W. K. Choi

1. Introduction ... 2
 1.1. Amorphous Silicon and Its Alloys 2
 1.2. Scope of the Chapter ... 3

2. Preparation of Films ... 4
 2.1. Plasma-Enhanced Chemical Vapor Deposition 5
 2.2. Photoinduced CVD Films 14
 2.3. E.C.R.C.V.D. Films .. 15
 2.4. Sputtering ... 16

3. Optical Properties .. 20
 3.1. Basic Optical Parameters 20
 3.2. PECVD Films .. 21
 3.3. Sputtered Films ... 28
 3.4. Photoluminescence .. 30

4. Structural Properties .. 32
 4.1. Infrared Spectroscopy .. 32
 4.2. Raman Results .. 38
 4.3. Electron Spectroscopy 41

5. Electrical Properties .. 45
 5.1. Direct Current Measurements 45
 5.2. Alternating Current Measurements 49
 5.3. Noise Results ... 51
 5.4. Drift Mobility ... 52

6. Effects of Annealing .. 52
 6.1. Furnace Annealing ... 52
 6.2. Rapid Thermal Annealing 54
 6.3. Laser Annealing ... 55

7. Applications .. 56
 7.1. Introduction ... 56
 7.2. Optoelectronic Devices 56
 7.3. Electronic Applications 61
 7.4. Masking Material ... 63

Acknowledgments .. 65
References .. 65

Chapter 2. SILICON CARBON NITRIDE: A NEW WIDEBAND GAP MATERIAL

1. Introduction .. 74
CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.</td>
<td>Deposition Techniques</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.1. Microwave Plasma-Enhanced Chemical Vapor Deposition</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td>2.2. Electron Cyclotron Resonance Plasma-Enhanced Chemical Vapor Deposition</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td>2.3. Source Gas Considerations</td>
<td>78</td>
</tr>
<tr>
<td></td>
<td>2.4. Magnetron Sputtering</td>
<td>79</td>
</tr>
<tr>
<td></td>
<td>2.5. Ion Beam Sputtering</td>
<td>79</td>
</tr>
<tr>
<td></td>
<td>2.6. Target Material Considerations</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>2.7. Substrate Considerations</td>
<td>80</td>
</tr>
<tr>
<td>3.</td>
<td>Morphology and Microstructure</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td>3.1. Versatile Features of SiC$_3$N$_4$ Grown by MW-CVD</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td>3.2. Nanocrystalline and Amorphous SiC$_3$N$_4$ by ECR-CVD</td>
<td>86</td>
</tr>
<tr>
<td></td>
<td>3.3. Nanocrystalline and Amorphous CN$_x$ and SiC$_2$N$_y$ by Magnetron and Ion Beam Sputtering</td>
<td>87</td>
</tr>
<tr>
<td>4.</td>
<td>Composition and Bonding</td>
<td>88</td>
</tr>
<tr>
<td></td>
<td>4.1. The Substitution Nature of the Silicon and Carbon Atoms in Crystalline SiC$_3$N$_4$</td>
<td>88</td>
</tr>
<tr>
<td></td>
<td>4.2. Nitrogen Retention of Amorphous SiC$_3$N$_4$ Grown by MW-CVD at High Temperature</td>
<td>92</td>
</tr>
<tr>
<td></td>
<td>4.3. The Control of the Composition of Crystalline SiC$_3$N$_4$ Grown by MW-CVD</td>
<td>93</td>
</tr>
<tr>
<td></td>
<td>4.4. Effects of Hydrogen and Carbon-Containing Gas Source on the Composition of SiC$_3$N$_4$</td>
<td>94</td>
</tr>
<tr>
<td></td>
<td>4.5. Composition and Bonding of CN$_x$ and SiC$_2$N$_y$ by Magnetron and Ion Beam Sputtering</td>
<td>95</td>
</tr>
<tr>
<td>5.</td>
<td>Structure</td>
<td>98</td>
</tr>
<tr>
<td></td>
<td>5.1. X-ray Diffraction and Transmission Electron Microscopic Investigation</td>
<td>98</td>
</tr>
<tr>
<td></td>
<td>5.2. Role of Si: PVD versus CVD</td>
<td>99</td>
</tr>
<tr>
<td></td>
<td>5.3. X-ray Absorption Investigation of the Atomic and Electronic Structure of SiC$_3$N$_4$</td>
<td>100</td>
</tr>
<tr>
<td>6.</td>
<td>Vibration Characteristics</td>
<td>103</td>
</tr>
<tr>
<td></td>
<td>6.1. Raman and IR for MW-CVD Grown SiC$_3$N$_4$</td>
<td>103</td>
</tr>
<tr>
<td></td>
<td>6.2. IR for Ion Beam—Sputtered CN$_x$ and SiC$_2$N$_y$</td>
<td>106</td>
</tr>
<tr>
<td>7.</td>
<td>Gas Phase Analyses: Toward Growth Mechanism</td>
<td>106</td>
</tr>
<tr>
<td></td>
<td>7.1. Optical Emission Spectroscopic Investigation in CVD Process</td>
<td>106</td>
</tr>
<tr>
<td>8.</td>
<td>Properties</td>
<td>109</td>
</tr>
<tr>
<td></td>
<td>8.1. Band Gap and Composition of Crystalline SiC$_3$N$_4$ Prepared by CVD</td>
<td>110</td>
</tr>
<tr>
<td></td>
<td>8.2. Broadening Parameters and Temperature Dependence of the Direct Band Transitions</td>
<td>111</td>
</tr>
<tr>
<td></td>
<td>8.3. Optical Features below the Direct Band Transitions of Crystalline SiC$_3$N$_4$ Films</td>
<td>112</td>
</tr>
<tr>
<td></td>
<td>8.4. Refractive Index of CN$_x$ and SiC$_2$N$_y$ Films Studied by Ellipsometry</td>
<td>113</td>
</tr>
<tr>
<td></td>
<td>8.5. Field Emission Properties</td>
<td>116</td>
</tr>
<tr>
<td></td>
<td>8.6. Mechanical Properties</td>
<td>120</td>
</tr>
<tr>
<td>9.</td>
<td>Ab Initio Calculation</td>
<td>122</td>
</tr>
<tr>
<td>10.</td>
<td>Conclusion</td>
<td>122</td>
</tr>
<tr>
<td></td>
<td>Acknowledgments</td>
<td>123</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>123</td>
</tr>
</tbody>
</table>

Chapter 3. AMORPHOUS SILICA

Minoru Tomozawa

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Introduction</td>
<td>127</td>
</tr>
<tr>
<td>2.</td>
<td>Structure</td>
<td>128</td>
</tr>
<tr>
<td>3.</td>
<td>Fictive Temperature</td>
<td>130</td>
</tr>
<tr>
<td>4.</td>
<td>Defects</td>
<td>134</td>
</tr>
<tr>
<td>5.</td>
<td>Impurities</td>
<td>135</td>
</tr>
<tr>
<td></td>
<td>5.1. Water</td>
<td>135</td>
</tr>
<tr>
<td></td>
<td>5.2. Alkali</td>
<td>136</td>
</tr>
<tr>
<td></td>
<td>5.3. Alumina</td>
<td>136</td>
</tr>
<tr>
<td></td>
<td>5.4. Transition Metals</td>
<td>136</td>
</tr>
<tr>
<td></td>
<td>5.5. Halogens</td>
<td>136</td>
</tr>
<tr>
<td></td>
<td>5.6. Hydrogen</td>
<td>136</td>
</tr>
<tr>
<td></td>
<td>5.7. Noble Gases</td>
<td>136</td>
</tr>
</tbody>
</table>
Chapter 4. GAS PHASE AND SURFACE KINETICS OF SILICON CHEMICAL VAPOR DEPOSITION FROM SILANE AND CHLOROSILANES

Maurizio Masi, Carlo Cavallotti, and Sergio Carrà

1. General Overview on Kinetic Issues in Chemical Vapor Deposition .. 156
 1.1. Fundamental Physical and Chemical Aspects of a CVD Process .. 157
 1.2. Model Parameter Evaluation in CVD Processes ... 158
 1.3. Development of a Detailed Chemical Mechanism ... 159
 1.4. Fundamental Aspects of Reaction Kinetics ... 159
 1.5. Thermochemistry ... 162
2. Experimental Methods for Kinetic Studies .. 163
3. Quantum Chemistry Calculations .. 166
4. Silane Chemistry .. 167
5. Chlorosilane Chemistry .. 169
 5.1. Structures and Thermochemical Parameters of Gas Phase and Surface Species 170
 5.2. Kinetics of Gas Phase Reactions ... 173
 5.3. Kinetics of Surface Reactions .. 176
 5.4. Gas Phase Precursors to Deposition .. 179
 5.5. Overall Kinetic Scheme .. 181
6. Conclusions ... 183
References .. 184

Chapter 5. GROWTH, CHARACTERIZATION, AND PHYSICAL PROPERTIES OF NON-CRYSTALLINE AND NANOSTRUCTURED SILICON-BASED ALLOYS

F. Giorgis and C. F. Pirri

1. Amorphous Silicon-Based Alloys ... 187
 1.1. Introduction ... 187
 1.2. Growth Techniques ... 187
 1.3. Chemical Composition and Structure .. 192
 1.4. Optical Characterizations and Properties ... 207
 1.5. Defects and Localized States .. 213
 1.6. Radiative Recombination Properties ... 220
 1.7. Amorphous Silicon-Based Multilayered Structures .. 224
2. Nanostructured Silicon-Based Alloys ... 226
 2.1. Introduction ... 226
 2.2. Methods for Obtaining Si/SiO2 Nanostructures ... 226
 2.3. Luminescence Properties ... 228

Contents

6. Water Diffusion ... 136
7. Chemical Properties .. 139
 7.1. Dissolution in Water ... 139
 7.2. Reaction with Alkali .. 139
 7.3. Reaction with HF ... 141
 7.4. Reaction with molten Si .. 142
8. Mechanical Properties .. 142
 8.1. Elastic Constant .. 142
 8.2. Strength .. 142
9. Optical Properties ... 144
10. Electrical Properties .. 147
 10.1. Direct Current Conduction ... 147
 10.2. Dielectric Properties ... 149
 10.3. Dielectric Breakdown ... 151
Acknowledgments ... 152
References ... 152
PREFACE

Silicon-Based Materials and Devices is a follow-up to our recently published 10-volume set, Handbook of Advanced Electronic and Photonic Materials and Devices. It presents highly coherent coverage of silicon-based materials, namely, those that have been extensively used for applications in electronic and photonic technologies. This extensive reference provides broad coverage of silicon-based materials including different kinds of silicon-related materials, their processing, spectroscopic characterization, physical properties, and device applications. Fourteen chapters review state-of-the-art research on silicon-based materials and their applications to devices.

The details of amorphous silica are summarized by M. Tomozawa, whereas the structures and properties of amorphous silicon dioxide, which are related to the issues of reliability and novel applications, are discussed by H. Nishikawa. F. Giorgis and C. F. Pirri describe the growth, characterization, and physical properties of noncrystalline and nanostructured silicon-based alloys. Silicon carbide is very useful for tribological and structural applications because of its hardness, wide-temperature-range operation, and corrosion resistance. The structural, optical, and electrical properties of amorphous silicon carbide films are discussed by W. K. Choi, and in “Silicon Carbon Nitrides: A New Wideband Gap Material,” L. C. Chen and coworkers focus on silicon carbide–related materials. M. Masi, C. Cavallotti, and S. Carra discuss the gas phase and surface kinetics of silicon chemical vapor deposition from silane and chlorosilane.

Three chapters focus on processing and physical properties of silicon; they include “Photonic and Magnetic Properties of Spark-Processed Silicon” by R. E. Hummel; “Wet-Chemical Conditioning of Silicon: Electronic Properties Correlated with the Surface Morphology” by H. Angermann, W. Henrion, and A. Röseler; and “Optical Absorption, Luminescence, and ESR Spectral Properties of Point Defects in Silica” by M. Leone, S. Agnello, R. Boscaino, M. Cannas, and F. M. Gelardi. The effect of pressure, temperature, and wavelength of the incident light on the refractive index of silica glasses is extensively discussed by C. Z. Tan and J. Arndt.

Besides many other applications, silicon is a key component of today’s integrated circuit technology. For example, silicon dioxide has been used extensively as an interlayer dielectric material for microelectronic packaging devices, light-emitting diodes, transistors, optical fiber, endoscopy, and so forth. Four chapters focus on the applications of silicon and its related materials in electronic and photonic devices: “Porous Silicon Microcavities” by C. Vinegoni, M. Cazzanelli, and L. Pavesi; “Polycrystalline Silicon-based Thin Film Transistors for Integrated Active-Matrix Liquid-Crystal Displays” by C. A. Dimitriadis; “Light Emission in Silicon” by D. J. Lockwood; and “Erbium in Silicon and Silicon-Germanium” by A. R. Peaker and J. H. Evans-Freeman.

This book covers a broad spectrum of the silicon-based materials and their device applications. Many industries around the world are engaged in silicon-based technology for the new millennium. The applications of silicon and silicon-based materials in present microelectronics and communication technology have been extensively discussed. This reference should be a valuable resource to scientists, graduate and upper level graduate students working in solid state physics, materials science, chemistry, electrical and electronic engineering, optical engineering, microelectronics, data storage, information technology, and semiconductor industries.

Both the editor and the publisher are very grateful to the authors of this project for their outstanding contributions.

Hari Singh Nalwa
Los Angeles
ABOUT THE EDITOR

LIST OF CONTRIBUTORS

Numbers in parenthesis indicate the pages on which the author’s contribution begins.

H. ANGERMANN (267)
Hahn-Meitner-Institut, Abt. Silizium Photovoltaik, Berlin, Germany

D. M. BHUSARI (73)
Department of Chemistry, Emory University, Atlanta, Georgia

CARLO CAVALLOTTI (155)
Dipartimento di Chimica Fisica Applicata–Politecnico di Milano, Piazza Leonardo da Vinci, Milano, Italy

K. H. CHEN (73)
Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan

L. C. CHEN (73)
Center for Condensed Matter Sciences, National Taiwan University, Taipei, Taiwan

W. K. CHOI (1)
Microelectronics Laboratory, Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576

F. GIORGIS (187)
Istituto Nazionale per la Fisica della Materia e Dipartimento di Fisica del Politecnico, 10129 Torino, Italy

W. HENRION (267)
Hahn-Meitner-Institut, Abt. Silizium Photovoltaik, Berlin, Germany

R. E. HUMMEL (237)
Department of Materials Science and Engineering, University of Florida, Gainesville, Florida USA

M. C. LIN (73)
Department of Chemistry, Emory University, Atlanta, Georgia

MAURIZIO MASI (155)
Dipartimento di Chimica Fisica Applicata–Politecnico di Milano, Piazza Leonardo da Vinci, Milano, Italy

MINORU TOMOZAWA (127)
Materials Science and Engineering Department, Rensselaer Polytechnic Institute, Troy, New York, USA

C. F. PIRRI (187)
Istituto Nazionale per la Fisica della Materia e Dipartimento di Fisica del Politecnico, 10129 Torino, Italy

A. RÖSELER (267)
Institut für Spektrochemie und Angewandte Spektroskopie Berlin, Germany

SERGIO CARRÀ (155)
Dipartimento di Chimica Fisica Applicata–Politecnico di Milano, Piazza Leonardo da Vinci, Milano, Italy

J.-J. WU (73)
Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan