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Lab 10: Multicycle ARM Processor (Part 1) 


In this lab and the next, you will design and build your own multicycle ARM processor. You will be much more on your own to complete these labs than you have been in the past, but you may reuse any of your hardware (SystemVerilog modules) from previous labs.
Your multicycle processor should match the design from the text, which is reprinted in Figure 1 (at the end of the lab) for your convenience. It should handle the following instructions: ADD, SUB, AND, and ORR (with register and immediate operands, but no shifts), LDR and STR (with positive immediate offset), and B. 
The multicycle processor is divided into three units: the controller, datapath, and mem (memory) units. Note that the mem unit contains the shared memory used to hold both data and instructions. Also note that the controller unit comprises both the Decode and Conditional Logic units. We've repeated the control unit diagram in Figure 2 (at the end of the lab) for your convenience.
In this lab you will design and test the controller.
Overall Design
Now you will begin the hardware implementation of your multicycle ARM processor.  First, copy the provided arm_multi.sv to your own directory and rename it arm_multi_xx.sv.  
The arm module instantiates both the datapath and the control unit (called the controller module). You will design the controller module (and all of its submodules) in this lab. In the next lab, you will design the datapath. The memory is essentially identical to the data memory from Lab 9 and will be provided for you.
Control Unit Design
The control unit (controller) is the most complex part of the multicycle processor. It consists of two modules: Decode (decode) and Conditional Logic (condlogic).  decode instantiates the Main FSM (mainfsm) and includes logic for the ALU Decoder, PC Logic, and Instruction Decoder. On reset, the Main FSM should start at State 0 (DECODE). The state transition diagram is given in Figure 3 at the end of this handout.  
The controller, decode, condlogic, and mainfsm headers are given in arm_multi.sv showing the inputs and outputs for each module. A portion of the SystemVerilog code for the control units has been given to you. Complete the SystemVerilog code to completely design the hardware of the controller and its submodules.  Remember that you can reuse code from the single-cycle processor of Lab 9. Please see Figure 2 at the end of this handout for a change to the Condition Logic module.
Generating Control Signals
Before you begin developing the hardware for your ARM multicycle processor, you’ll need to determine the correct control signals for each state in the multicycle processor’s state transition diagram. This state transition diagram is shown in Figure 7.41 in the book and in Figure 3 in these instructions. Complete the output table of the Main FSM in Table 1 at the end of this handout. Give the FSM control word in hexadecimal for each state. The first two rows are filled in as examples. Be careful with this step. It takes much longer to debug an erroneous circuit than to design it correctly the first time.
Testing
Create a controllertest_xx.sv testbench for the controller module.  Test each of the instructions that the processor should support: ADD, SUB, AND, and ORR (with register and immediate operands, but no shifts), LDR and STR (with positive immediate offset), and B. Be sure to test both taken and nontaken branches. From Figure 2, the controller inputs are: CLK, reset, Cond3:0, Op1:0, Funct5:0, Rd3:0, and ALUFlags3:0. The SystemVerilog header for controller lists clk, reset, Instr[31:12], and ALUFlags[3:0] as inputs. Recall from the machine code formats that Instr[31:12] includes the Cond, Op, Funct, and Rd fields (as well as Rn, which is not used).
Your test bench should apply the inputs to controller (clk, reset, Instr[31:12], and ALUFlags[3:0]). Visually inspect the states and outputs to verify that they match your expectations from Table 1. If you find any errors, debug your circuit and correct the errors. Save a copy of your waveforms showing the inputs, state, and control outputs at each state.
What to Turn In
Submit the following elements in the following order.  Clearly label each part by number.  Poorly organized submissions will lose points.
1.     Please indicate how many hours you spent on this lab.  This will not affect your grade, but will be helpful for calibrating the workload for next semester’s labs.
2.     A completed Main FSM output table (Table 1).
3.     Your arm_multi_xx.sv file highlighting your controller, decode, condlogic, and mainfsm modules.
4. 	Your controllertest_xx.sv testbench module.
5.   Simulation waveforms of the controller module showing (in the given order): CLK, Reset, Cond, OP, Funct, Rd, ALUFlags, ALUControl, ImmSrc, RegSrc, RegWrite, MemWrite, PCWrite, state, and the entire control word (i.e. the 4-nibble word you entered in Table 1) demonstrating each instruction (including taken and non-taken branches).  Display all signals in hexadecimal. Does it match your expectations?
 


	State
(Name)
	NextPC
	Branch
	MemW
	RegW
	IRWrite
	AdrSrc
	ResultSrc1:0
	ALUSrcA1:0
	ALUSrcB1:0
	ALUOp
	FSM Control Word

	0 (Fetch)
	1
	0
	0
	0
	1
	0
	10
	0
	1
	10
	0
	0x114C

	1 (Decode)
	0
	0
	0
	0
	0
	0
	10
	0
	1
	10
	0
	0x004C

	2 (MemAdr)
	
	
	
	
	
	
	
	
	
	
	
	

	3 (MemRead)
	
	
	
	
	
	
	
	
	
	
	
	

	4 (MemWB)
	
	
	
	
	
	
	
	
	
	
	
	

	5 (MemWrite)
	
	
	
	
	
	
	
	
	
	
	
	

	6 (ExecuteR)
	
	
	
	
	
	
	
	
	
	
	
	

	7 (ExecuteI)
	
	
	
	
	
	
	
	
	
	
	
	

	8 (ALUWB)
	
	
	
	
	
	
	
	
	
	
	
	

	9 (Branch)
	
	
	
	
	
	
	
	
	
	
	
	


Table 1. Main FSM output
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Figure 1.  ARM Multicycle Processor
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Figure 1.  ARM Multicycle Control: (a) controller, (b) Decode unit, (c) Conditional Logic unit



                                    Figure 2.  ARM Main FSM state transition diagram
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