IntroductionDigital Design and Computer Architecture: ARM Edition
Harris & Harris, © Elsevier, 2015
[bookmark: _GoBack]

Lab 10: Multicycle ARM Processor (Part 1)

In this lab and the next, you will design and build your own multicycle ARM processor. You will be much more on your own to complete these labs than you have been in the past, but you may reuse any of your hardware (SystemVerilog modules) from previous labs.
Your multicycle processor should match the design from the text, which is reprinted in Figure 1 (at the end of the lab) for your convenience. It should handle the following instructions: ADD, SUB, AND, and ORR (with register and immediate operands, but no shifts), LDR and STR (with positive immediate offset), and B.
The multicycle processor is divided into three units: the controller, datapath, and mem (memory) units. Note that the mem unit contains the shared memory used to hold both data and instructions. Also note that the controller unit comprises both the Decode and Conditional Logic units. We've repeated the control unit diagram in Figure 2 (at the end of the lab) for your convenience.
In this lab you will design and test the controller.
Overall Design
Now you will begin the hardware implementation of your multicycle ARM processor. First, copy the provided arm_multi.sv to your own directory and rename it arm_multi_xx.sv.
The arm module instantiates both the datapath and the control unit (called the controller module). You will design the controller module (and all of its submodules) in this lab. In the next lab, you will design the datapath. The memory is essentially identical to the data memory from Lab 9 and will be provided for you.
Control Unit Design
The control unit (controller) is the most complex part of the multicycle processor. It consists of two modules: Decode (decode) and Conditional Logic (condlogic). decode instantiates the Main FSM (mainfsm) and includes logic for the ALU Decoder, PC Logic, and Instruction Decoder. On reset, the Main FSM should start at State 0 (DECODE). The state transition diagram is given in Figure 3 at the end of this handout.
The controller, decode, condlogic, and mainfsm headers are given in arm_multi.sv showing the inputs and outputs for each module. A portion of the SystemVerilog code for the control units has been given to you. Complete the SystemVerilog code to completely design the hardware of the controller and its submodules. Remember that you can reuse code from the single-cycle processor of Lab 9. Please see Figure 2 at the end of this handout for a change to the Condition Logic module.
Generating Control Signals
Before you begin developing the hardware for your ARM multicycle processor, you’ll need to determine the correct control signals for each state in the multicycle processor’s state transition diagram. This state transition diagram is shown in Figure 7.41 in the book and in Figure 3 in these instructions. Complete the output table of the Main FSM in Table 1 at the end of this handout. Give the FSM control word in hexadecimal for each state. The first two rows are filled in as examples. Be careful with this step. It takes much longer to debug an erroneous circuit than to design it correctly the first time.
Testing
Create a controllertest_xx.sv testbench for the controller module. Test each of the instructions that the processor should support: ADD, SUB, AND, and ORR (with register and immediate operands, but no shifts), LDR and STR (with positive immediate offset), and B. Be sure to test both taken and nontaken branches. From Figure 2, the controller inputs are: CLK, reset, Cond3:0, Op1:0, Funct5:0, Rd3:0, and ALUFlags3:0. The SystemVerilog header for controller lists clk, reset, Instr[31:12], and ALUFlags[3:0] as inputs. Recall from the machine code formats that Instr[31:12] includes the Cond, Op, Funct, and Rd fields (as well as Rn, which is not used).
Your test bench should apply the inputs to controller (clk, reset, Instr[31:12], and ALUFlags[3:0]). Visually inspect the states and outputs to verify that they match your expectations from Table 1. If you find any errors, debug your circuit and correct the errors. Save a copy of your waveforms showing the inputs, state, and control outputs at each state.
What to Turn In
Submit the following elements in the following order. Clearly label each part by number. Poorly organized submissions will lose points.
1. Please indicate how many hours you spent on this lab. This will not affect your grade, but will be helpful for calibrating the workload for next semester’s labs.
2. A completed Main FSM output table (Table 1).
3. Your arm_multi_xx.sv file highlighting your controller, decode, condlogic, and mainfsm modules.
4. 	Your controllertest_xx.sv testbench module.
5. Simulation waveforms of the controller module showing (in the given order): CLK, Reset, Cond, OP, Funct, Rd, ALUFlags, ALUControl, ImmSrc, RegSrc, RegWrite, MemWrite, PCWrite, state, and the entire control word (i.e. the 4-nibble word you entered in Table 1) demonstrating each instruction (including taken and non-taken branches). Display all signals in hexadecimal. Does it match your expectations?

	State
(Name)
	NextPC
	Branch
	MemW
	RegW
	IRWrite
	AdrSrc
	ResultSrc1:0
	ALUSrcA1:0
	ALUSrcB1:0
	ALUOp
	FSM Control Word

	0 (Fetch)
	1
	0
	0
	0
	1
	0
	10
	0
	1
	10
	0
	0x114C

	1 (Decode)
	0
	0
	0
	0
	0
	0
	10
	0
	1
	10
	0
	0x004C

	2 (MemAdr)
	
	
	
	
	
	
	
	
	
	
	
	

	3 (MemRead)
	
	
	
	
	
	
	
	
	
	
	
	

	4 (MemWB)
	
	
	
	
	
	
	
	
	
	
	
	

	5 (MemWrite)
	
	
	
	
	
	
	
	
	
	
	
	

	6 (ExecuteR)
	
	
	
	
	
	
	
	
	
	
	
	

	7 (ExecuteI)
	
	
	
	
	
	
	
	
	
	
	
	

	8 (ALUWB)
	
	
	
	
	
	
	
	
	
	
	
	

	9 (Branch)
	
	
	
	
	
	
	
	
	
	
	
	

Table 1. Main FSM output

	1
	© 2014 David Money Harris and Sarah L. Harris

Figure 1. ARM Multicycle Processor

[image:]
Figure 1. ARM Multicycle Control: (a) controller, (b) Decode unit, (c) Conditional Logic unit

 Figure 2. ARM Main FSM state transition diagram
image1.emf
ExtImmCLKARDInstr / DataMemoryPC01PC'InstrSrcBALUResultSrcAALUOutMemWriteALUSrcARegWriteALUFlagsResultSrcCLKCLKALUControlALUWDWECLKAdrDataCLKCLKAWriteData4CLKENENALUSrcBIRWriteAdrSrcPCWriteReadDataA1A3WD3RD2RD1WE3A2CLKRegisterFileR15010101RegSrc19:1615:1223:03:015100100000110000110Result25:2027:26OpFunctCondFlags15:12RdControlUnitImmSrcExtend31:28RA1RA2

Microsoft_Visio_Drawing1.vsdx
ExtImm

CLK
A
RD
Instr / Data
Memory
+
PC

0
1
PC'
Instr
SrcB
ALUResult
SrcA
ALUOut
MemWrite
ALUSrcA
RegWrite
ALUFlags
ResultSrc
CLK

CLK
ALUControl
ALU
WD

WE
CLK
Adr
Data

CLK

CLK
A
WriteData
4

CLK
EN
EN
ALUSrcB
IRWrite
AdrSrc
PCWrite
ReadData
A1
A3
WD3
RD2
RD1
WE3
A2
CLK
Register
File

R15
0
1
0
1
0
1
RegSrc
19:16
15:12
23:0
3:0
15
10
01
00
00
01
10
00
01
10
Result
25:20
27:26
Op
Funct
Cond
Flags
15:12
Rd
Control
Unit
ImmSrc
Extend
31:28
RA1
RA2

image2.emf
ImmSrc1:0MemWResultSrcALUSrcAALUControl1:0DecodeRegWCond3:0Op1:0Funct5:0Rd3:0RegSrc1:0FlagW1:0ALUFlags3:0MemWriteRegWritePCWritePCSNextPCIRWriteALUSrcBAdrSrcConditional LogicMainFSMALUOpALUDecoderOp1:0Funct5:0Rd3:05,0PC LogicPCSFlagW1:0ALUControl1:0ImmSrc1:0ALUSrcARegSrc1:0MemWRegW4:0NextPCIRWriteAdrSrcResultSrcALUSrcBInstrDecoderOp1:0Cond3:0Flags3:2CLKCLKALUFlags3:0Flags1:0[3:2][1:0]PCS[1][0]Condition CheckFlagW1:0PCWriteMemWriteRegWriteCondExMemWRegWNextPCCLKCLKBranch(a) Control UnitDecode(b)(c) Conditional LogicRegisterEnablesMultiplexer SelectsCLKFlagWrite1:0

image3.emf
ImmSrc1:0MemWResultSrcALUSrcAALUControl1:0DecodeRegWCond3:0Op1:0Funct5:0Rd3:0RegSrc1:0FlagW1:0ALUFlags3:0MemWriteRegWritePCWritePCSNextPCIRWriteALUSrcBAdrSrcConditional LogicCLK(a) Control UnitMainFSMALUOpALUDecoderOp1:0Funct5:0Rd3:05,0PC LogicPCSFlagW1:0ALUControl1:0ImmSrc1:0ALUSrcARegSrc1:0MemWRegW4:0NextPCIRWriteAdrSrcResultSrcALUSrcBInstrDecoderOp1:0CLKBranchDecode(b)RegisterEnablesMultiplexer SelectsCond3:0Flags3:2CLKCLKALUFlags3:0Flags1:0[3:2][1:0]PCS[1][0]Condition CheckFlagW1:0PCWriteMemWriteRegWriteCondExMemWRegWNextPC(c) Conditional LogicCLKFlagWrite1:0

Microsoft_Visio_Drawing2.vsdx
ImmSrc1:0
MemW
ResultSrc
ALUSrcA
ALUControl1:0

Decode

RegW

Cond3:0
Op1:0
Funct5:0
Rd3:0
RegSrc1:0
FlagW1:0

ALUFlags3:0
MemWrite
RegWrite

PCWrite

PCS
NextPC

IRWrite
ALUSrcB
AdrSrc

Conditional Logic
CLK
(a) Control Unit
Main
FSM

ALUOp
ALU
Decoder

Op1:0
Funct5:0
Rd3:0

5,0
PC Logic

PCS
FlagW1:0
ALUControl1:0

ImmSrc1:0
ALUSrcA
RegSrc1:0
MemW
RegW

4:0
NextPC
IRWrite
AdrSrc
ResultSrc
ALUSrcB

Instr
Decoder
Op1:0
CLK

Branch
Decode
(b)
Register
Enables
Multiplexer Selects
Cond3:0
Flags3:2

CLK

CLK
ALUFlags3:0

Flags1:0
[3:2]
[1:0]
PCS
[1]
[0]
Condition Check
FlagW1:0

PCWrite
MemWrite
RegWrite

CondEx

MemW
RegW
NextPC

(c) Conditional Logic

CLK
FlagWrite1:0

image4.emf
S0: FetchAdrSrc = 0AluSrcA = 01ALUSrcB = 10ALUOp = 0ResultSrc = 10IRWriteNextPCS1: DecodeALUSrcA = 01ALUSrcB = 10ALUOp = 0ResultSrc = 10S2: MemAdrALUSrcA = 00ALUSrcB = 01ALUOp = 0S3: MemReadResultSrc = 00AdrSrc = 1S8: ALUWBResultSrc = 00RegWS5: MemWriteResultSrc = 00AdrSrc = 1MemWS7: ExecuteIALUSrcA = 00ALUSrcB = 01ALUOp = 1S9: BranchALUSrcA = 10ALUSrcB = 01ALUOp = 0ResultSrc = 10BranchResetMemory Op = 01Data RegOp = 00Funct5 = 0Branch Op = 10LDR STR S4: MemWBResultSrc = 01RegWStateDatapath mOpFetchInstr ←Mem[PC]; PC ← PC+4DecodeALUOut ← PC+4MemAdrALUOut ← Rn + ImmMemReadData ← Mem[ALUOut]MemWBRd ← DataMemWriteMem[ALUOut] ← RdExecuteRALUOut ← Rn op RmExecuteIALUOut ← Rn op ImmALUWBRd ← ALUOutBranchPC ← ALUOut + offsetS6: ExecuteRALUSrcA = 00ALUSrcB = 00ALUOp = 1Data ImmOp = 00Funct5 = 1Funct0 = 1Funct0 = 0

Microsoft_Visio_Drawing3.vsdx
S0: Fetch
AdrSrc = 0
AluSrcA = 01
ALUSrcB = 10
ALUOp = 0
ResultSrc = 10
IRWrite
NextPC
S1: Decode
ALUSrcA = 01
ALUSrcB = 10
ALUOp = 0
ResultSrc = 10
S2: MemAdr
ALUSrcA = 00
ALUSrcB = 01
ALUOp = 0
S3: MemRead
ResultSrc = 00
AdrSrc = 1
S8: ALUWB
ResultSrc = 00
RegW
S5: MemWrite
ResultSrc = 00
AdrSrc = 1
MemW
S7: ExecuteI
ALUSrcA = 00
ALUSrcB = 01
ALUOp = 1
S9: Branch
ALUSrcA = 10
ALUSrcB = 01
ALUOp = 0
ResultSrc = 10
Branch
Reset
Memory
Op = 01
Data Reg
Op = 00
Funct5 = 0
Branch
Op = 10
LDR
STR
S4: MemWB
ResultSrc = 01
RegW
State	Datapath mOp
Fetch	Instr ←Mem[PC]; PC ← PC+4
Decode	ALUOut ← PC+4
MemAdr	ALUOut ← Rn + Imm
MemRead	Data ← Mem[ALUOut]
MemWB	Rd ← Data
MemWrite	Mem[ALUOut] ← Rd
ExecuteR	ALUOut ← Rn op Rm
ExecuteI	ALUOut ← Rn op Imm
ALUWB	Rd ← ALUOut
Branch	PC ← ALUOut + offset
S6: ExecuteR
ALUSrcA = 00
ALUSrcB = 00
ALUOp = 1
Data Imm
Op = 00
Funct5 = 1
Funct0 = 1
Funct0 = 0

