
Advanced Encryption Standard Michael Muehlberghuber

VLSI Front-End Design Example

Advanced Encryption Standard
Complementary Material for “Top-Down Digital VLSI Design”

Michael Muehlberghuber

November 17, 2014

Document Purpose. To better explain the process of VLSI front-end
design, the textbook “Top-Down Digital VLSI Design” by Hubert Kaeslin
(Morgan Kaufmann Publishers, 2014) is accompanied by a more substan-
tial circuit example than what can be reproduced in a printed book. The
AES cipher is used to demonstrate all design steps from initial specifica-
tions through to a gate-level netlist. The source materials, including synthe-
sis code in both VHDL and SystemVerilog plus simulation- and synthesis-
specific scripts are available for download from the book’s companion website
http://store.elsevier.com/9780128007303. The present note provides
the necessary documentation.

Major Revisions
Revision Date Author(s) Description

0.1 05/06/2014 mbgh Created initial version
0.2 11/06/2014 mbgh First full draft based on VHDL sources
0.3 21/06/2014 hk Adaptations to textbook
0.4 22/10/2014 mbgh Added SystemVerilog sources and UVM ver-

ification environment
0.5 14/11/2014 hk First draft of the conclusion added
1.0 17/11/2014 mbgh Finalized first release version

1

http://store.elsevier.com/9780128007303

Advanced Encryption Standard Michael Muehlberghuber

Contents

1 Introduction 2

2 Design Flow and Tools 3

3 The Advanced Encryption Standard 4
3.1 Cipher Operations . 4
3.2 Key Expansion . 5

4 Design Requirements 5

5 Architecture Design 6
5.1 Block Diagram . 8

6 Simulation 9
6.1 The Verification Environment . 10

7 Synthesis 12

8 Optimizing the Architecture 12

9 Conclusion 14

10 Source File Archive Structure 15

1 Introduction

Data security is an important field of application for Very Large Scale Integration (VLSI)
circuits. One of the reasons for this is that various security-related products need imple-
menting cryptographic algorithms that target specific requirements which can not be met
with software running on a general purpose microcomputer. Such products range from
low-resource applications such as smart cards or Radio-Frequency Identification (RFID)
systems, to high-speed devices for which throughput is of utmost importance.

The present example deals with a block cipher, called Advanced Encryption Standard
(AES), which accepts a plaintext and a cipherkey as inputs and computes the corre-
sponding ciphertext. All input and output data to and from the algorithm are provided
as a sequence of bits. Those bits may represent any kind of characters, numbers, or sym-
bols in an arbitrary encoding, which is not further discussed here. Once the ciphertext
is obtained from the AES block cipher, it can be transmitted over an insecure channel
(for instance, the Internet) without compromising the confidentiality of the correspond-
ing plaintext. Only a recipient who owns the same cipherkey will be able to decrypt
the ciphertext. Such a setup is called a symmetric encryption system and an example,

2

Advanced Encryption Standard Michael Muehlberghuber

Alice Bob

Insecure
Channel

(e.g., Internet)

Eve

AES
Encrypt/Decrypt

AES
Encrypt/Decrypt

Figure 1: Symmetric encryption system

illustrating the communication between two parties named Alice and Bob, is shown in
Figure 1. The third party, denoted by Eve, represents a potential attacker who has
access to the insecure communication medium, but cannot derive any plaintext-related
information from the transmitted ciphertext.

For simplicity, our example will only cover the encryption part of the block cipher.
Moreover, the target application for our design will be in the high-throughput field.
Detailed information regarding the design requirements can be found in Section 4.

2 Design Flow and Tools

A number of Electronic Design Automation (EDA) tools are required to turn a behavioral
HDL description into a gate-level netlist. Both the tools and the design flow may vary
depending on tool availability and on the requirements of your employer. Still, the overall
development steps are always quite similar. The following list provides a summary of the
tools and key options utilized here.

HDL Language: All design files of the AES block cipher are available as VHDL and
SystemVerilog sources. The testbench used for functional verification is available
in SystemVerilog exclusively.

Simulator: The HDL description of the AES design is verified using Questa Sim 10.3a
by Mentor Graphics. Checking for functional correctness starts with directed ver-
ification where predetermined stimuli get applied to the model under test. The
design is then fed with a large number of random input vectors.

Synthesizer: In order to synthesize the HDL code into a technology-specific gate level
netlist, we utilize the 64 bit version of the Design Compiler Version 2013.12 by Syn-
opsys. The actual synthesis step is accomplished using Tool Command Language
(Tcl) scripts, thereby getting reproducible results.

3

Advanced Encryption Standard Michael Muehlberghuber

A
d
d
R
o
u
n
d
K
ey

S
u
b
B
y
te
s

M
ix
C
o
lu
m
n
s

S
h
if
tR

ow
s

A
d
d
R
o
u
n
d
K
ey

S
u
b
B
y
te
s

S
h
if
tR

ow
s

A
d
d
R
o
u
n
d
K
ey

9 Rounds

O
u
tp
u
t

(C
ip
h
er
te
x
t
B
lo
ck
)

In
iti
al

A
dd
R
ou
nd
K
ey

R
ou
nd
1
–
9

Fi
na
l R
ou
nd

In
p
u
t

(P
la
in
te
x
t
B
lo
ck
)

Key Expansion

In
p
u
t

(C
ip
h
er
ke
y
)

RoundKey 1 – 9
RoundKey 10

Figure 2: Overview of the AES-128 algorithm including key expansion

Target technology: The results presented here are based on synthesis runs for a mature
65 nm CMOS technology by United Microelectronics Corporation (UMC).

3 The Advanced Encryption Standard

AES is a well-established block cipher standardized by the National Institute of Standards
and Technology (NIST) and other institutions [1]. The algorithm operates on data blocks
of 128 bit and is available for three different cipherkey sizes, namely 128 bit, 192 bit,
and 256 bit. Our example solely deals with the 128 bit version, hereafter referred to as
AES-128. More details on the other versions as well as an in-depth explanation of the
algorithm can be obtained from [1], for instance.

3.1 Cipher Operations

In general, AES-128 comprises ten identical rounds, each operating on the 128 bit internal
state S, that can be represented as a 4×4 matrix of bytes. Si,j denotes the byte of row i
and column j with i, j ∈ {0, . . . , 3}. The state matrix gets initialized with the input data
(plaintext block). Each cipher round is made up of four different transformations, called
SubBytes, ShiftRows, MixColumns, and AddRoundKey. The only difference between the
ten rounds are the so-called roundkeys being used for the AddRoundKey transformation,
see Figure 2. Moreover, the MixColumns transformation is omitted in the final round.
Prior to the ten rounds, there exists an initial AddRoundKey transformation. The four
transforms are defined as follows:

SubBytes: SubBytes performs a byte-wise substitution of the state using a substitution
box (S-box). For the actual values of the S-box, we refer the reader to [1].

4

Advanced Encryption Standard Michael Muehlberghuber

ShiftRows: Each byte of a row of the state is cyclically shifted to the left by the index
of the row (zero-based). Therefore, the first row does not change, the bytes of the
second row are rotated one byte to the left, and so on.

MixColumns: This operation can be understood as a column-by-column multiplication
modulo x4 + 1 in the finite field GF(28), looking at the columns of the state as
polynomials of the Galois field. Once again, we refer to the official standard [1] for
a detailed description of this transformation.

AddRoundKey: The AddRoundKey transformation is a bitwise XOR operation of the
state bits and the bits of the current roundkey.

3.2 Key Expansion

Since AES-128 is made up of ten cipher rounds and an initial AddRoundKey transfor-
mation, it requires 10 roundkeys in addition to the original cipherkey provided from
externally. All 128-bit wide roundkeys are derived from the main cipherkey using a Key
Expansion function.

Expanding the cipherkey to the roundkeys works in a column-by-column approach, where
the first four columns represent the original cipherkey. Each of the first four columns
contains four bytes of the cipherkey and the remaining columns get calculated as shown
in Figure 3. The RotWord and the SubWord operations of the key expansion are defined
as follows:

RotWord: Takes one column and performs a circular shift (rotation) of the bytes such
that [ki, ki+1, ki+2, ki+3] becomes [ki+1, ki+2, ki+3, ki].

SubWord: All four bytes of a column get substituted using the same S-box as utilized
throughout the cipher rounds.

The round constants used for the key expansion differ from one round to the next. They
can be obtained from [1].

4 Design Requirements

Our aim is to maximize throughput with 5Gbit/s being a minimum target. In addition,
we want to limit our circuit to a maximum of 100 kGE in order to keep die size and
manufacturing costs down.1 To save on overall pin count and package costs, data would
very likely get multiplexed over the available I/O pins in a real product. For simplicity,
we are not going to burden our example with that. Instead, we assume enough I/Os pins

1One GE has the size of a two-input NAND gate. In our 65 nm target technology, 1GE = 1.44µm2.

5

Advanced Encryption Standard Michael Muehlberghuber

k
0

k
1

k
2

k
3

k
4

k
5

k
6

k
7

k
8

k
9

k
10

k
11

k
12

k
13

k
14

k
15

w
0

w
1

w
2

w
3

w
4

w
4

w
5

w
5

w
6

w
6

w
7

w
7

w
8

w
8

w
9

w
9

w
10

w
10

w
11

w
11

w
40

w
40

w
41

w
41

w
42

w
42

w
43

w
43

Rcon

RW

SW

RW

SW

RW

SW

Cipherkey Roundkey 1 Roundkey 2 Final Roundkey

k . . . Cipherkey
ki . . . i-th cipherkey byte

wj . . . 32-bit words
RW . . . RotWord operation

SW . . . SubWord operation
Rcon . . . Round constants

Figure 3: AES-128 key expansion

are available to provide all input data and to retrieve the outputs.2 Table 2 summarizes
the design requirements for our AES-128 architecture.

Table 2: Summary of design requirements

Design Property Requirement

Achievable throughput maximize, 5Gbit/s minimum
Available chip area 100 kGE
Chip package no restrictions on pin count

5 Architecture Design

After sketching, analyzing, and rethinking a number of drafts, we came up with an
architecture for AES-128 that relies on pipelining to boost throughput. We decided to
store all roundkeys and all intermediate states (between any two consecutive rounds) in
registers (denoted by the thick black vertical lines in Figure 4). From the architecture
sketch, it is evident that the longest path gets determined either by a single cipher round

2This implies that a suitable package should provide at least 384 pins for accepting plaintext and
cipherkey and for outputting the ciphertext. Add to that the necessary pins for power/ground,
clocking, initialization, and testing.

6

Advanced Encryption Standard Michael Muehlberghuber

KeyExp

Round

KeyExp

Round

Roundkey 1 Roundkey 2 Roundkey 9

KeyExp

Round

Roundkey 10

Key Expansion

Cipherkey

Cipher

Round

Last

Round

Cipher

Cipher

Round

State 1 State 2

Plaintext Ciphertext

128

128 128

AES-128

State 9 State 10

Figure 4: First sketch of the AES-128 circuit architecture

(Cipher Round) or by one key expansion round (KeyExp Round), whichever is longer. As
mentioned in Section 3, each AES cipher round consists of the transformations SubBytes,
ShiftRows, MixColumns, and AddRoundKey, whereas one key expansion round is solely
made up of the logic required to derive a roundkey from the previous one. Figure 3 reveals
that these are just a few XOR operations, the RotWord operation, and the SubWord
operation. Hence, the cipher round turns out to be more critical.

With the proposed architecture, it is possible to process 128 bits of data within 12 clock
cycles in the worst case. This applies when a new cipherkey is provided to the circuit or
when plaintext data is applied for the first time to the inputs of the AES-128 architecture.
In the best case, that is once the pipeline of the cipher is full and no key change is required,
the architecture provides 128 bits of ciphertext per clock cycle. Using this information,
we can determine the longest admissible delay tlp that just satisfies our throughput
requirement of Θ ≥ 5 Gbit/s:

tlp =
128 bit

12 cycle · 5Gbit/s
= 2.13 ns (1)

Thus, our design has to run with a maximum frequency of roughly 500MHz to yield
the desired throughput. Taking the target technology and the operations into account,
which most likely will constitute the critical path, this seems to be feasible. Once the
pipeline of the cipher is filled with data and the cipherkey does not need to be changed,
the maximum achievable throughput (Θ500) with this frequency (500MHz) results in:

Θ500 =
128 bit · 500MHz

1 cycle
= 64Gbit/s (2)

Similar estimates should also be done for the area requirements of a design. Although
it is usually a difficult task to estimate the exact footprint of a final design for a certain
technology, it helps to start by analyzing smaller parts of a design and then extrapolating

7

Advanced Encryption Standard Michael Muehlberghuber

keyExpansion

D Q

Clk

En

D Q

Clk

En

D Q

Clk

En

D Q

Clk

En

s
u
b
M
a
t
r
i
x

S
h
i
f
t
R
o
w
s

D Q

Clk

En

Roundkeys_D(0) Roundkeys_D(1) Roundkeys_D(2) Roundkeys_D(9) Roundkeys_D(10)

Roundkeys_D

Plaintext_D State_D(0) State_D(1) State_D(9) Ciphertext_D

Clk_CI

Reset_RBI

Start_SI

NewCipherkey_SI

Plaintext_DI

KeyExpStart_S

Cipherkey_DI

c
i
p
h
e
r

R
o
u
n
d

c
i
p
h
e
r

R
o
u
n
d

c
i
p
h
e
r

R
o
u
n
d

B
u
s
y
_
S
O

C
i
p
h
e
r
t
e
x
t
_
D
O

1

1

128

128

1408

128

1

State Register
Enable Comp.

128

Figure 5: Top-level block diagram of the AES-128 design

those results to the overall architecture. The numbers you obtain from such estimations
may still diverge by a small factor from your final results, but when done correctly, they
provide a valuable guidance. Thereby, you avoid spending unnecessary development time
for designs which will never meet your initial requirements.

5.1 Block Diagram

Figure 5 shows the top-level block diagram of the final AES-128 design. Its major
building blocks are the cipher rounds, the state registers or pipeline registers that store
the intermediate cipher states, the key expansion block, and a small block responsible
for computing the enable signals for the cipher state registers. This enable mechanism is
basically a simple one-hot encoded shift register. Each time a new plaintext block has to
be encrypted (indicated by the Start_SI signal), a 1 gets shifted into this register and is
passed on “in parallel” with the plaintext being processed through the pipeline registers
of the cipher. A similar approach has been implemented in order to create the enable
signals for the roundkey-storing registers within the keyExpansion entity.

Since we decided to add registers for both the input and the output data of our AES-128
design, the overall processing time for a plaintext block, after a new cipherkey has been
assigned, sums up to 12 cycles. In such a case, the newly derived roundkeys will propagate
through the pipeline registers of the key expansion one after another within each clock
cycle and will be assigned to their corresponding cipher rounds accordingly. Therefore,
during the change of a key, the pipeline of the key expansion contains roundkeys from
two different cipherkeys.

We did not implement a standardized I/O interface (this might be part of a follow-up
exercise), but solely used a single bit (Start_SI) to determine whether the applied data
are valid or not. The pinlist of the architecture is described in Table 3.

8

Advanced Encryption Standard Michael Muehlberghuber

Table 3: Pinlist of the top-level block diagram

Port Name Type Size Description

Clk_CI Input 1 Input clock.
Reset_RBI Input 1 Asynchronous, active-low reset.
Start_SI Input 1 Indicates that the assigned inputs are valid and

starts the encryption process.
NewCipherkey_SI Input 1 Indicates that the cipherkey assigned at the input

is a new one. Therefore, the roundkeys have to be
derived when starting the encryption.

Plaintext_DI Input 128 The plaintext block, which should be encrypted.
Cipherkey_DI Input 128 The cipherkey, which should be used for encryption.
Busy_SO Output 1 Indicates whether the design is currently processing

data or not.
Ciphertext_DO Output 128 The resulting ciphertext block, i.e., the encrypted

plaintext block.

6 Simulation

To ensure functional correctness of our AES-128 design, we first developed a software
model in C++ that was used for debugging purposes of the HDL design and to create
test vectors for the architecture. We provide two different sets of test vectors which
are located in the ./sim/tv/ directory of the source code archive and are described in
Table 4.

Table 4: Description of the provided test vectors

File Description

aes128_fips197.tv A test vector file containing the stimuli and expected responses as
provided in appendix C.1 of the NIST standard [1].

aes128_random.tv Different test vector sets, each containing a random plaintext
block, a random cipherkey, and the corresponding ciphertext.

All lines within the test vector files that start with a % are comments and will be
ignored by our testbench environment. Each remaining line contains a full test vector set
for a single AES-128 run, including plaintext/cipherkey stimuli and the corresponding
expected ciphertext responses. All values are provided in hexadecimal format. Figure 6
shows a description of a sample test vector.

Once the test vector files have been generated, they are read by a SystemVerilog testbench
environment, which is briefly described in the following.

9

Advanced Encryption Standard Michael Muehlberghuber

1 00112233...ccddeeff 00010203...0c0d0e0f 69c4e0d8...70b4c55a % FIPS PUB197 ...

128-bit plaintext

block (hex)

128-bit cipherkey (hex) 128-bit ciphertext

block (hex)

Comment

Bit, indicating if a new cipherkey is provided.

Figure 6: Test vector example (including stimuli and expected responses)

6.1 The Verification Environment

We provide a testbench (verification) environment, which has been developed using Sys-
temVerilog. More specifically, we used the Universal Verification Methodology (UVM) to
realize the test environment. UVM represents a “standardized” methodology on how to
implement verification environments using SystemVerilog. Figure 7 provides an overview
of the verification environment used to test the functional correctness of the AES-128
design. The environment follows a typical UVM setup3 and works as follows:

• In order to make both the VHDL and the SystemVerilog version of our AES-
128 design accessible by the SystemVerilog verification environment, we created
a wrapper module which uses a SystemVerilog interface to connect to the Design
Under Verification (DUV). Thereby both the VHDL and the SystemVerilog design
can be handled equivalently by the test environment.

• Communication between the DUV and the verification environment is established
using the SystemVerilog interface duv_ifc.

• Only a single test has been developed, which initiates a sequence that reads the
stimuli vectors from the provided file, translates them into UVM transactions, and
passes the transactions on to the driver. The driver then converts the transactions
into actual “pin wiggles” and applies them to the DUV.

• The monitor on the other hand is responsible for observing the data running to
and coming from the DUV. Note that it is only a passive unit and never applies any
data to the DUV. Once the monitor observes data transfer to or from the AES-128
design, it provides this information to the predictor and the comparator.

• Once the predictor receives data from the monitor that has been observed when
sending it to the DUV by the driver, it calculates the expected responses for the
respective input data. Since in our design the expected responses are available in
the test vector file, it solely reads it from the file and passes it on to the comparator.

3Readers not familiar with the UVM design paradigm may require to do some further research in order
to fully understand the provided environment, which is out of scope of this documentation.

10

Advanced Encryption Standard Michael Muehlberghuber

aes128_top

aes128_test

aes128_env

sequencer
d
u
v
_
i
f
c

driver
d
u
v
_
i
f
c

monitor

drv2mon_fifo

uvm_tlm_fifo

drv_put_port

mon_get_port

se
q
_
it
em

_
ex
p
o
rt

se
q
_
it
em

_
p
o
rt

aes128_data
aes128_data
txn_request

aes128_data
aes128_data
Transactions

mon_req_ap

agnt_mon_req_ap

mon_rsp_ap

agnt_mon_rsp_ap

aes128_agent

Stimuli

comparator

aes128_comparator

act_rsp_fifo

predictor

aes128_predictor

aes128_driver

aes128_monitor

pred2comp_fifo

uvm_tlm_fifo

p
re
2
co
m
b
_
p
p

p
re
d
2
co
m
b
_
g
p

req_fifo

Expected

Responses

d
u
v
_
i
f
c

D
U
V

ae
s1
2
8
_
w
ra
p
p
er

Figure 7: Testbench structure for functional verification

• As soon as the comparator receives the actual responses, observed by the monitor,
it compares them against the expected ones and prints some status reports.

Since our verification environment follows common UVM design principles, it can easily
be adapted or extended (e.g., add some further tests, change the interface to the DUV).

In order to run the simulation, we use two different shell scripts to first compile all of
the required HDL source files (depending on whether you want to simulate the VHDL
or the SystemVerilog version of the AES-128 design):

> ./sim/scripts/rtl-vhdl-cmp.sh or > ./sim/scripts/rtl-sv-cmp.sh

Once the design has been compiled successfully, the GUI-bases simulation can be initiated
using another provided shell script:

> ./sim/scripts/rtl-sim_ui.sh

11

Advanced Encryption Standard Michael Muehlberghuber

7 Synthesis4

As soon as the functional verification has been completed successfully, the Design Under
Test (DUT) can be synthesized for a certain target technology and standard cell library.
We used the script located at ./syn/scripts/aes128-synth.tcl in order to synthesize
our architecture. The provided script has been written in Tcl5 and can be executed
within the Synopsys Design Compiler as follows:

dc_shell> source ./scripts/aes128-synth.tcl

Besides constraining the AES-128 design to a clock period of 2 ns and actually synthe-
sizing the architecture for the target technology, it writes a couple of reports. These
reports provide information about the required area (area.rpt) as well as some timing
information (timingxx.rpt). Since the only constraint we have set for our synthesis run
is the clock period, the timingss.rpt is of interest for us. In that file, you should find a
line similar to the following:

--
slack (MET) 0.5348

The positive slack indicates that the timing constraint for the clock period (2 ns) of our
circuit was met by the synthesis tool. Investigating the area report (area.rpt) of the syn-
thesis run reveals that the current AES-128 architecture requires approximately 153 kGE,
which exceeds our initial area budget of 100 kGE significantly. Therefore, appropriate
measures must be taken to meet our goals.

8 Optimizing the Architecture 6

To reduce circuit complexity to below the acceptable bound of 100 kGE, a couple of
potential solutions come into mind:

Relaxing constraints: An easy approach is to relax overly strict timing requirements,
thereby allowing the synthesizer to use weaker output drivers for the standard cells
being used and hence, reducing the area of the resulting architecture. As we have
seen in Section 7, a slack of about 0.5 ns exists in the critical path of our design.
Hence, relaxing the clock constraint will definitely not save a lot of area (if any at
all). Actually the opposite is the case, which means that a somewhat stricter clock
constraint will most likely not increase the overall area significantly.

4Note that the results presented in this section are based on the VHDL sources of the AES-128 design.
Nevertheless, we verified that using the SystemVerilog sources, we obtain roughly the same results.

5Tcl is a programming language, which represents a de-facto standard in many EDA tools.
6We do not provide the respective simulation and synthesis scripts for this section. Those should be
created by interested readers themselves as part of an exercise.

12

Advanced Encryption Standard Michael Muehlberghuber

 50

 100

 150

 200

 250

 0.5 1 1.5 2 2.5

A
re

a
[k

G
E]

Clock Period [ns]

AT Plot of Various AES-128 Synthesis Runs

Lut-based S-box
Canright-based S-box

Area of Interest

Figure 8: AT plot of the AES-128 design using different S-boxes (synthesis results)

Architecture redesign: A more promising idea to minimize area occupation is to re-
evaluate the overall architecture of the AES-128 core. Instead of providing a sep-
arate circuit block for each cipher round, iterative decomposition could be applied
to cut down on overall circuit size. Such a choice implies major design changes and
could significantly delay tapeout, however. Before backing up this far in the design
cycle, let us find out how costly the various circuit functions are in terms of logic
gates and area occupation.

Detailed analysis of the synthesis results reveals that between 70% and 80% of the over-
all area is required by the S-boxes alone, that make up the SubBytes transformation
described in Section 3. This is not surprising as our architecture requires 160 instances
of the S-box (16 for each cipher round in order to substitute the 128 bit state) just for
the cipher part of the AES-128 design. 40 more instances of the S-box are needed in the
key expansion as part of the SubWord operations (cf. Figure 3). This sums up to 200
S-boxes in the overall design that together occupy roughly 115 kGE (= 75% of 153 kGE)
in our architecture. From this background, we can much better direct our efforts.

Devising a more economic S-box: It is now utterly clear that more efficient S-boxes
are highly beneficial. We can argue that the overall design should fit into the
100 kGE envelope if we were able to cut the area requirement of an S-box to between
one third and one half of its present value. This appears reasonable as the original
implementation of the S-box, which can be found in the file ./src/vhdl/sbox.vhd,
is fairly unsophisticated in that it just defined an array of constants. The task of
coming up with an efficient circuit was simply passed over to logic synthesis, with
no clues from the specific context.

13

Advanced Encryption Standard Michael Muehlberghuber

A more sophisticated and highly area-saving approach is due to D. Canright [2].
The key idea is to implement the GF (28) inversion present in the S-box by recurring
to smaller subfields7. An implementation of the S-box based on this approach can
be found in ./src/vhdl/sboxCan.vhd. Figure 8 provides an AT plot of the AES-
128 design once using the original, constants-based S-box approach and once using
the Canright S-box implementation. As we can see from the plot, for maximum
frequencies of 625MHz and below, the AES-128 design should fit into the 100 kGE
area requirement when using the Canright S-box.

Although the Canright-based S-box suffers from a significant size inflation for clock pe-
riods below 1.25 ns or so, meeting our initial goal of 2 ns is easily feasible. Thus, we
got a fully functional design that meets our initial goals without redesigning the overall
architecture. Adaptations to just one circuit block afforded crucial improvements of the
overall architecture, which was only possible since we knew where most of the area was
spent. For an actual tape-out of the design, we would most-likely build upon one of the
synthesis results lying in the Area of Interest shown in Figure 8.

9 Conclusion

Over the past decade, VLSI synthesis and verification technology have evolved to a point
where it takes quite substantial examples to explain all their facets. This worked-out
example expands upon the materials in the textbook by illustrating various concepts
and techniques presented there in a realistic context and on a more substantial circuit.
More specifically, we demonstrate:

• Functionally identical RTL synthesis models in both VHDL and SystemVerilog

• Architectural tradeoffs and a small selection of optimization techniques

• Timing constraints and their impact on the synthesis outcome (AT -plot)

• A self-checking testbench that applies directed and random test suites

• Organizing a verification environment into re-usable modules using UVM

• Co-simulating a VHDL model with a SystemVerilog testbench

• Shell and Tcl scripts for governing simulation and synthesis runs

The authors believe that this document and the code files that come with it, along with
the background information from the textbook will greatly help newcomers get started
with real projects. Best wishes for success!

7A more detailed discussion is beyond the scope of this exercise. We refer the interested reader to [2–5]
for more information on this topic.

14

Advanced Encryption Standard Michael Muehlberghuber

10 Source File Archive Structure

In the following we provide a brief description of the provided archive containing all the
resources for the presented AES-128 design. All scripts have been created for the design
flow described in Section 2 and therefore, may have to be adapted when the tools being
used differ from the ones utilized herein.

/
sim ...Simulation-specific files

scripts ..Simulation scripts
rtl-sim_ui.shShell script to start Questa Sim
rtl-sv-cmp.shShell script to compile SystemVerilog sources
rtl-vhdl-cmp.shShell script to compile VHDL sources
rtl_run.tclTcl script to run the simulation

tv ...Test vectors files
aes128_fips197.tvSingle test vector
aes128_random.tv1000 random test vectors

waves ..Wave files for simulation
wave-rtl.doSimple wave file to show I/Os

src ...HDL source files
svSystemVerilog source code files for the AES-128 design
tb SystemVerilog source code files for the verification environment
vhdlVHDL source code for the AES-128 design

syn ..Synthesis-specific files
scripts ... Synthesis scripts

aes128-synth.tclTcl script to run synthesis in Synopsys

List of Acronyms

AESAdvanced Encryption Standard

CMOSComplementary Metal Oxide Semiconductor

DUTDesign Under Test

DUVDesign Under Verification

EDAElectronic Design Automation

FSMFinite State Machine

NISTNational Institute of Standards and Technology

15

Advanced Encryption Standard Michael Muehlberghuber

RFIDRadio-Frequency Identification

TclTool Command Language

UMCUnited Microelectronics Corporation

UVMUniversal Verification Methodology

VLSIVery Large Scale Integration

References

[1] NIST, Advanced Encryption Standard (AES) (FIPS PUB 197), National Institute of
Standards and Technology, Nov. 2001.

[2] D. Canright, “A Very Compact S-Box for AES,” in Cryptographic Hardware and
Embedded Systems – CHES 2005, ser. Lecture Notes in Computer Science, J. Rao
and B. Sunar, Eds. Springer Berlin Heidelberg, 2005, vol. 3659, pp. 441–455.
[Online]. Available: http://dx.doi.org/10.1007/11545262_32

[3] V. Rijmen, “Efficient Implementation of the Rijndael S-box,” Katholieke
Universiteit Leuven, Dept. ESAT. Belgium, 2000. [Online]. Available: http:
//dm.ing.unibs.it/~giuzzi/corsi/Support/papers-cryptography/rijndael-sbox.pdf

[4] A. Satoh, S. Morioka, K. Takano, and S. Munetoh, “A Compact Rijndael
Hardware Architecture with S-Box Optimization,” in Advances in Cryptology
– ASIACRYPT 2001, ser. Lecture Notes in Computer Science, C. Boyd, Ed.
Springer Berlin Heidelberg, 2001, vol. 2248, pp. 239–254. [Online]. Available:
http://dx.doi.org/10.1007/3-540-45682-1_15

[5] J. Wolkerstorfer, E. Oswald, and M. Lamberger, “An ASIC Implementation of the
AES SBoxes,” in Topics in Cryptology – CT-RSA 2002, ser. Lecture Notes in
Computer Science, B. Preneel, Ed. Springer Berlin Heidelberg, 2002, vol. 2271, pp.
67–78. [Online]. Available: http://dx.doi.org/10.1007/3-540-45760-7_6

16

http://dx.doi.org/10.1007/11545262_32
http://dm.ing.unibs.it/~giuzzi/corsi/Support/papers-cryptography/rijndael-sbox.pdf
http://dm.ing.unibs.it/~giuzzi/corsi/Support/papers-cryptography/rijndael-sbox.pdf
http://dx.doi.org/10.1007/3-540-45682-1_15
http://dx.doi.org/10.1007/3-540-45760-7_6

	Introduction
	Design Flow and Tools
	The aes
	Cipher Operations
	Key Expansion

	Design Requirements
	Architecture Design
	Block Diagram

	Simulation
	The Verification Environment

	Synthesis
	Optimizing the Architecture
	Conclusion
	Source File Archive Structure

