
Supplementary 
Web Sections for 

     Elementary
 Linear Algebra 

5th Edition 

Stephen Andrilli 
David Hecker 



Table of Contents 

Lines and Planes and the Cross Product in ℝ3………………… 1 
 Answers to Selected Exercises …………………………. 27 

Change of Variables and the Jacobian …………………….… 29 
Answers to Selected Exercises …………………….…… 41 

Function Spaces ……………………………….…………….. 42 
Answers to Selected Exercises …………….…………… 47 

Max-Min Problems in ℝn and the Hessian Matrix ………….. 49 
Answers to Selected Exercises …………………………. 57 

Jordan Canonical Form ……………………………………… 59 
Answers to Selected Exercises ……………………….… 79 

Solving First-Order Systems of Linear Homogeneous 
 Differential Equations ……………….……… 84 

Answers to Selected Exercises ………………………… 95 

Isometries on Inner Product Spaces………………………..... 97 
Answers to Selected Exercises………………………... 110 

Index ……………………………………………………….. 111 



1

Lines and Planes and the Cross
Product in R3

Prerequisite: Section 1.2: The Dot Product

This section covers material which may already be familiar to you from analytic

geometry. We will discuss analytic representations for lines and planes in R3. We
will also introduce a new operation for vectors in R3, the cross product, and show
its usefulness in geometric and physical calculations.

I Parametric Representation of a Line in R3
We begin by finding equations to describe a given line in R3. A line is determined
uniquely once a point on the line as well as a direction for the line are known.

Consider the following example.

Example 1 We will find equations that represent the line passing through the origin (0 0 0) in
the direction of the vector [1−2 7] (see Figure 1). Notice that a point is on the
line if and only if it is the terminal point of a vector that starts at (0 0 0) and is
parallel to [1−2 7]. Every such vector is, of course, a scalar multiple of [1−2 7],
and hence has the form [1−2 7] = [−2 7], for some real number . Therefore,
the points on the line are all of the form (  ), where  =   = −2 and  = 7.
Taken together, these three equations completely describe the points lying on the

line. ¥
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Figure 1 Line passing through the origin in the direction of [1−2 7]

The equations for the line in Example 1 are called parametric equations. The

variable  in these equations is called the parameter. In general, to find parametric
equations for the line passing through the point (0 0 0) in the direction of v =
[  ], we look for the terminal points of all vectors beginning at (0 0 0) that
are parallel to v (see Figure 2).
Any vector parallel to v is of the form [  ], for some real number , and

since

[0 0 0] + [  ] = [0 +  0 +  0 + ]

the terminal point of such a vector has the form (0+ 0+ 0+). Therefore,
we have proved the following theorem:
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Figure 2 Line passing through (0 0 0) in the direction [  ]

THEOREM 1

Parametric equations for the line  in R3 passing through (0 0 0) in the
direction of [  ] are given by

 = 0 +   = 0 +   = 0 + 

where  represents a real parameter. That is, the points (  ) in R3 which lie
on  are precisely those which satisfy these equations for some real number .

If we think of the parameter  as representing time (e.g., in seconds), and if we
imagine an object starting at (0 0 0) at  = 0, traveling to new positions along
the line  as the value of  changes, then the parametric equations for , , and 
indicate the coordinates of the object at time  as it travels along . Note that 
can be negative (representing “past” time) as well as positive (“future” time).

We illustrate Theorem 1 with several examples.

Example 2 We will find parametric equations for the line passing through (−2 7 1) in the
direction of the vector [4−3 6], and then use these equations to find some other
points on the line. By Theorem 1, the appropriate equations are:

 = −2 + 4  = 7− 3  = 1 + 6

where  ∈ R. Choosing arbitrary values for  in these equations will produce the
coordinates of other points on the line. For example, letting  = 1 yields the
point (2 4 7). This is the terminal point of the vector 1[4−3 6] having initial
point (−2 7 1). Choosing  = −2 produces the point (−10 13−11). This is the
terminal point of the vector −2[4−3 6] having initial point (−2 7 1). ¥
In the next example, we illustrate how to get the equation for a line when

two points on the line are given. This example also shows that the parametric

representation of a line is not unique.

Example 3 We will calculate parametric equations for the line in R3 passing through (7 1 1)
and (−3 0 5). In this case, we are not explicitly given the direction of the line.
To find a vector in this direction, we take one of the points, say, (−3 0 5), as the
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initial point, and the other, (7 1 1) as the terminal point. This yields the direction
vector [7 − (−3) 1 − 0 1 − 5] = [10 1−4]. Then, using this vector together with
the point (7 1 1), we find that the parametric equations for the line are

 = 7 + 10  = 1 +   = 1− 4

where  ∈ R. Alternatively, notice that we could have used (7 1 1) as the initial
point and (−3 0 5) as the terminal point in calculating the parametric equations.
This choice gives us the direction vector [−10−1 4] (why?), and we would then
obtain the alternate parametric equations

 = −3− 10  = −  = 5 + 4

where  ∈ R. We used a different variable for the parameter in these last three
equations to emphasize the fact that equal values of  and  do not correspond to
the same point on the line. For example,  = 0 corresponds to the initial point
(7 1 1), while  = 0 produces (−3 0 5). In order to produce (−3 0 5) from the

first set of parametric equations, we must use  = −1. ¥
In the last example, notice that we also could have used any nonzero scalar

multiple of [10 1−4] as the direction vector. In particular, if we choose a unit
vector in the direction of [10 1−4] as the direction vector, the absolute value of
the parameter  would represent the distance traveled along the line from the initial
point.

In the next example, we consider two intersecting lines, and show how to find the

point of intersection and the angle formed between the lines. Notice that whenever

a pair of distinct lines intersects, there are at most two distinct angles formed, and

these two angles are supplements of each other; that is, their angle measures sum

to 180◦. We define the angle between two intersecting lines as the minimum
of these two angles (i.e., the angle that is ≤ 

2 radians = 90◦). We can find this
angle by taking a vector in the direction of each line, calculating the angle between

these vectors, and then taking the supplementary angle if necessary.

Example 4 Let 1 and 2 be the lines with parametric equations

1:  = 8− 5  = −3 + 2  = −7 + 7 where  ∈ R
and 2:  = 6 + 3  = −2−   = 2 + 2 where  ∈ R

First, let us determine if these lines intersect, and, if so, where. In order for 1
and 2 to intersect, we must find values for  and  such that all of the following
equations are simultaneously satisfied:⎧⎨⎩

8− 5 = 6 + 3

−3 + 2 = −2− 

−7 + 7 = 2 + 2



Solving for  in the first of these yields  = −35 + 2
5 . Substituting this into the

second equation produces −3+2(−35+ 2
5) = −2− which gives  = −1. Therefore,

 = 1 (why?). We check that these values of  and  satisfy the third equation as
well (they yield 0 = 0), and therefore, the lines do intersect, and this occurs when
 = −1 and  = 1. This intersection is at the point (  ) = (3−1 0) in R3
(why?).

Next, we determine the angle between these lines. To do this, we find a direction

vector for each line, and then use the dot product to calculate the cosine of the

angle  between them. A vector in the direction of 1 is [−5 2 7] (because −5, 2,
7 are the coefficients of the parameters in the parametric equations for 1) and a
vector in the direction of 2 is [3−1 2] (because 3, −1, 2 are the coefficients of the
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parameters in the parametric equations for 2). Therefore,

cos  =
[−5 2 7] · [3−1 2]
k[−5 2 7]k k[3−1 2]k =

−3√
78
√
14
≈ −00908

Therefore,  ≈ 952◦. Since this angle is greater than 90◦, the angle between the
lines is the supplement of this, which is ≈ 848◦ (see Figure 3). ¥

Figure 3 Lines 1 and 2 in Example 4

Notice in Example 4 that different parameters ( and ) were used to represent
the lines 1 and 2. If, instead, we had used the same parameter  for both lines,
finding the solution would not have been as straightforward. In particular, the

equations for  would then be  = 8− 5 and  = 6 + 3. Setting 8− 5 = 6 + 3
would lead to 8 = 2, or  = 1

4 , which does not agree with the value for  obtained in
Example 4. This is because the true intersection point (3−1 0) of the lines 1 and
2 occurs at different values of  on each line (at  = 1 for line 1, and at  = −1 for
line 2). That is, different points on each line are produced by the same value of the
parameter  In effect, any value of the parameter  has a different “meaning” for
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each line. The moral here is that whenever we are working with two or more lines

in the same problem, we must generally use a different parameter for each line.1

The next example illustrates a situation where two given lines have no point of

intersection.

Example 5 Consider the lines 3 and 4, whose parametric representations are

3:  = 5− 3  = 4 +   = 3−  where  ∈ R
and 4:  = 2 + 6  = −2  = 3 + 2 where  ∈ R

Notice that 3 is in a direction parallel to [−3 1−1], and 4 is in a direction parallel
to [6−2 2] (see Figure 4). Since [6−2 2] = −2[−3 1−1], these two direction
vectors are parallel. Therefore, 3 and 4 are either distinct parallel lines or different
representations of the same line. To determine whether these lines are the same,

we notice that (5 4 3) lies on 3. If 3 = 4, this point would also be on 4, so there
would be a real number  such that

5 = 2 + 6 4 = −2 and 3 = 3 + 2.

The first of these equations yields  = 1
2 , which satisfies neither of the other equa-

tions. Therefore, (5 4 3) does not lie on 4, so 3 and 4 are distinct, parallel lines.
¥

(-3, 1, -1)

(6, -2, 2)

l4

l3(2, 0, 3)

(5, 4, 3)

x

y

z

Figure 4 The lines 3 and 4 from Example 5, showing that 3 k 4

In Example 5 the distinct lines 3 and 4 did not intersect because they are
parallel. But in R3 (unlike R2) it is also possible for non-parallel lines to have no
intersection at all. Such lines are called skew lines. For example, the lines

5:  = 2  =   = 0

and 6:  =   = 2  = 1

have non-parallel direction vectors [0 1 0] and [1 0 0], respectively (why?), yet 5
and 6 never intersect since the -coordinates of their points always differ.

1There are some applications where we might use the same parameter for both lines. For

example, if the lines represent the paths that two objects are taking, and  represents time, then
we can “synchonize the clocks” by using the same parameter for both lines. But this situation

would be an exception to the general rule.
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I Planes in R3
Unlike a line, a plane in R3 extends in many different directions. But all vectors
perpendicular to a given plane are multiples of each other, a fact we will find useful
when describing the plane. A vector perpendicular to a given plane is called a

normal vector for that plane. In fact, a plane is completely determined once we

know a point that lies in the plane and a normal vector for the plane.

Suppose (0 0 0) is a point lying in the plane P, and suppose the vector
[  ] is a normal vector for P (see Figure 5).

[a, b, c]

(x0, y0, z0)

z

y

x

Figure 5 The plane in R3 perpendicular to [  ] and passing through (0 0 0)

Now, (  ) is a point of P if and only if the vector [−0 −0 −0], with
initial point at (0 0 0), lies entirely in the plane P. Therefore, (  ) lies in
the plane precisely when this vector is perpendicular to the normal vector [  ];
that is, if and only if

[  ]·[− 0  − 0  − 0] = 0 or, (− 0) + ( − 0) + ( − 0) = 0

Hence we have produced an equation for the plane. This result is stated in the

following theorem.

THEOREM 2

Let P be the plane in R3 that passes through the point (0 0 0) having normal
vector [  ]. Then, P is precisely the set of points of the form (  ) which
satisfy the equation

+  +  = 0 + 0 + 0

Example 6 The equation of the plane passing through (0 0 0) = (1−3 1) and perpendicular
to [  ] = [7 1 2] is

7+  + 2 = 7 · 1 + 1 · (−3) + 2 · 1 which is 7+  + 2 = 6

Andrilli/Hecker–Elementary Linear Algebra, 5th ed.
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¥
The next example illustrates how to find a normal vector for a given plane.

Example 7 Let P be the plane satisfying the equation 6− 3+5 = 9. Then, comparing this
with the formula in Theorem 2, we find that [6−3 5] is a normal vector for P. A
unit normal vector for P would be

[6−3 5]
k[6−3 5]k =

"
3
√
70

35

−3√70
70



√
70

14

#
≈ [0717 − 0359 0598]

¥
Notice that if [  ] is a normal vector to a plane, then any nonzero scalar

multiple of [  ] is also a normal vector to that plane as well.
When a pair of different planes intersects, there are at most two distinct angles

formed, and these two angles are supplements of each other. These are, in fact,

the same angles formed between normal vectors (in both directions) for the planes.

Therefore, we define the angle between two intersecting planes as the min-

imum angle (i.e., the angle that is ≤ 90◦ = 
2 radians) between a normal vector

for one plane and a normal vector for the other. Exercise 7 explores this concept

further.

You may recall from high school geometry that three non-collinear points in R3
uniquely determine a plane. Given three non-collinear points in R3, we can use
Theorem 2 to find an equation for the plane that they determine once we calculate

a normal vector for the plane. The next topic, the cross product of vectors, will

furnish us with a method for finding a normal vector for a given plane.

I The Cross Product

The cross product operation for vectors in R3 takes two vectors and produces a
third vector. This differs in two important ways from the dot product of vectors,

which we discussed in Section 1.2. First, the cross product of two vectors will be

another vector, not a scalar, as with the dot product. Second, the cross product
is defined only for vectors in R3, while the dot product is defined in R for any
positive integer .

Definition Let x = [1 2 3] and y = [1 2 3] be two vectors in R3. Then, the cross
product of x and y, written x× y, is the 3-vector

[(23 − 32) (31 − 13) (12 − 21)]

The formula for the cross product is not difficult to remember. Notice that each

coordinate of x× y is of the form  − . The subscripts  and  are chosen
so that in the th coordinate of x× y neither  nor  equals . For example, in the
first coordinate of x× y, only 2 and 3 are used as subscripts. Also, notice that in
the first coordinate of x × y, the 23 term is positive. In the second coordinate,

the 31 term is positive. The subscripts of the positive term are always placed in

the order in which they appear next to each other as the circle in Figure 6(a) is

traversed in a clockwise direction. (When using this circle, be careful to write the
-factor of each term before the -factor.) Another easy way to remember the cross
product formula involves using the determinant of a 3× 3 matrix, which is covered
in Chapter 3. (See Exercise 8 of Section 3.1.)

Example 8 We calculate several cross products:

() [1−3−2]×[2−1 0] = [((−3)·0−(−2)·(−1)) ((−2)·2−1·0) (1·(−1)−(−3)·2)]
= [−2−4 5]

Andrilli/Hecker–Elementary Linear Algebra, 5th ed.
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k j

i

(b)(a)

32

1

Figure 6 (a) Orders for subscripts in the cross product; (b) Orders for i jk in the
cross product

() i× j =[1 0 0]× [0 1 0] = [(0 · 0− 0 · 1) (0 · 0− 1 · 0) (1 · 1− 0 · 0)]
= [0 0 1] = k

() j× k =[0 1 0]× [0 0 1] = [(1 · 1− 0 · 0) (0 · 0− 0 · 1) (0 · 0− 1 · 0)]
= [1 0 0] = i

() k× i =[0 0 1]× [1 0 0] = [(0 · 0− 1 · 0) (1 · 1− 0 · 0) (0 · 0− 0 · 1)]
= [0 1 0] = j

() j× i =[0 1 0]× [1 0 0] = [(1 · 0− 0 · 0) (0 · 1− 0 · 0) (0 · 0− 1 · 1)]
= [0 0−1] = −k ¥

In the last example, we worked out four of the calculations in the following list,

and the others are easily verified.

i× j = +k j× i = −k

j× k = +i k× j = −i

k× i = +j i× k = −j

Notice that three of these cross products have “−” signs attached to the results.
You should check that the result has a “+” sign attached if and only if the vectors
to be crossed are adjacent when the circle in Figure 6(b) is traversed in a clockwise
direction.

The calculations involving i, j, and k above point out that the cross product is
not commutative. In fact, part (1) of the next theorem shows that the cross product
x×y is anti-commutative because x×y = −(y×x). That is, x×y is precisely
the reverse vector of y × x since they have the same length, but x × y has the
opposite direction as y × x. Also note that the cross product is not associative:
that is, in general, (x× y)× z 6= x× (y× z) (See Exercise 11.)

I Basic Properties of the Cross Product

The next theorem lists many of the fundamental properties of the cross product

operation.

Andrilli/Hecker–Elementary Linear Algebra, 5th ed.
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THEOREM 3

(Basic Properties of the Cross Product)

Let xy and z be vectors in R3, and let  be any real number. Then,

(1) x× y = −(y× x) (Anti-Commutative Property)

(2) (x)× y = x× (y) = (x× y) (Scalar Associative Law)
(3) x× 0 = 0× x = 0 (Zero Property)

(4) x× x = 0 (Cancellation Property)

(5) x× (y+ z) = (x× y) + (x× z) (Distributive Law of Cross

Product over Addition)

(6) x · (x× y) = y · (x× y) = 0 (Orthogonality)

(7) (x× y) · z = x · (y× z) (Exchange of Cross

and Dot Products)

Part (6) of Theorem 3 gives us one of the most important properties of the cross

product, since it asserts that if x × y is nonzero, then x × y is perpendicular (or,
orthogonal) to both x and y, since the dot product of x × y with each of x and
y is zero. As we will see below, it is this property which makes the cross product
useful in finding a normal vector for a plane. Part (7) is particularly amazing (and

perhaps unexpected), showing that the roles of the cross product and dot product

can be reversed if the order of the vectors involved does not change!

Before proving Theorem 3, we illustrate how some of the cross product properties

can be used to simplify computations.

Example 9 Notice that

[2 2−4]× [−1−1 2]
= ((−2)[−1−1 2])× [−1−1 2]
= (−2)([−1−1 2]× [−1−1 2]) by part (2) of Theorem 3

= (−2)[0 0 0] by part (4) of Theorem 3

= [0 0 0]

Of course, a brute-force calculation of the cross product yields

[2 2−4]× [−1−1 2] = [(2 ·2−(−4) ·(−1) ((−4) ·(−1)−2 ·2) (2 ·(−1)−2 ·(−1))]

which equals [0 0 0], as expected. ¥

Proof Proof of Theorem 3 (Abridged): The proofs of all parts of Theorem

3 are done by brute force computation. It is enough to simplify each expression in

each equation until there is a single vector or number on both sides of the equation.

At that point, it will be obvious that both sides are equal. We prove part (1) and

half of part (6), and ask you to do the remaining parts in Exercise 9. Throughout

the proof, we assume that x = [1 2 3] and y = [1 2 3] are vectors in R3.

Proof of Part (1): Using the definition of the cross product, we see that

−(y× x) = −([(23 − 32) (31 − 13) (12 − 21)]

= [(−32 + 23) (−13 + 31) (−21 + 12)]

which is clearly equal to x× y, completing the proof of part (1).

Andrilli/Hecker–Elementary Linear Algebra, 5th ed.
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Proof of Part (6): We will compute x · (x× y) and show that the result is zero.

Now, x · (x× y)
= [1 2 3] · ([(23 − 32) (31 − 13) (12 − 21)])

= 1(23 − 32) + 2(31 − 13) + 3(12 − 21)

= 123 − 132 + 231 − 213 + 312 − 321

= 0

because the first and fourth, second and fifth, and third and sixth terms, respec-

tively, cancel each other. QED

I Magnitude and Direction of the Cross Product

Next, we derive a formula for the magnitude of the cross product of two vectors,

and then discuss the direction of the cross product vector in more detail.

THEOREM 4

Let x and y be nonzero vectors in R3. Then,

kx× yk = kxkkyk sin 

where  is the angle between x and y.

We will illustrate Theorem 4 with an example before we present its proof.

Example 10 Consider the vectors x = [1−4−1] and y = [4−1−1], and let  represent the
angle between x and y. Then,

cos  =
x · y
kxkkyk =

9√
18
√
18
= 1

2 

Therefore,  = arccos( 12) =

3 (or 60

◦), and sin  =
√
3
2 . Hence,

kxkkyk sin  =
√
18
√
18

√
3

2
= 9
√
3

However, a brute-force computation of kx× yk gives

kx× yk = k[1−4−1]× [4−1−1]k = k[3−3 15]k =
√
243

which also equals 9
√
3. ¥

Proof Proof of Theorem 4: Let  be the angle between vectors x and y in

R3. Since the angle between vectors is always between 0 and , we have sin  ≥ 0.
Therefore,

kx× yk = kxkkyk sin 
is true if and only if

kx× yk2 = kxk2kyk2 sin2 
holds, since all terms involved are nonnegative. But,

kxk2kyk2 sin2  = kxk2kyk2(1− cos2 )

= kxk2kyk2
Ã
1−

µ
x · y
kxkkyk

¶2!
= kxk2kyk2 − (x · y)2

Andrilli/Hecker–Elementary Linear Algebra, 5th ed.
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Hence, it is enough to show that

kx× yk2 = kxk2kyk2 − (x · y)2

Letting x = [1 2 3], and y = [1 2 3], a lengthy computation shows that both
sides are equal to

21
2
2 + 21

2
3 + 22

2
1 + 22

2
3 + 23

2
1 + 23

2
2 − 21212 − 21313 − 22323

and we are done. QED

The following corollary of Theorem 4 gives an alternate test for parallel vectors

in R3, since it states that two nonzero vectors are parallel if and only if their cross
product is zero. You are asked to prove this result in Exercise 14.

COROLLARY 5

Let x and y be nonzero vectors in R3. Then, x × y = 0 if and only if y = x
for some real number .

Suppose x and y are two nonzero vectors in R3. In Theorem 4 we have a formula
for the magnitude of x×y, and we now turn our attention to the direction of x×y.
If x and y are parallel, Corollary 5 shows us that x× y is the zero vector, and so
it has no direction. If x and y are not parallel, then part (6) of Theorem 3 tells us

that x × y is perpendicular to both x and y. If we use the same initial point for
x and y, then x× y must be perpendicular to the plane which x and y determine.
However, in R3, there are two opposite directions that such a vector might take.
(See Figure 7.)

Figure 7 Two directions perpendicular to both x and y

The Right-Hand Rule indicates the correct choice of direction for the cross

product.

Right-Hand Rule If x and y are non-parallel nonzero vectors in R3
then the vectors x y and x× y (taken in that order) form a

right-handed system.

Andrilli/Hecker–Elementary Linear Algebra, 5th ed.
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An informal definition of a right-handed system can be given as follows: Suppose

x and y are non-parallel nonzero vectors in R3, and z is any vector perpendicular
to both x and y. Then x y and z (taken in that order) form a right-handed

system if curling the fingers of your right hand from the vector x toward the vector
y makes your thumb point in the direction of z (see Figure 8).2 The Right-Hand
Rule therefore states that x×y must point in the direction that makes the vectors
x y and x× y (taken in that order) form a right-handed system.

y

z

x

Figure 8 A right-handed system

We cannot give a proof of the Right-Hand Rule as a formal theorem since we

have only informally defined what it means for a system to be right-handed. Our

definition involves concepts we have not made mathematically precise here, such as

“curling the fingers” from one vector to another (or, in the footnote, “looking down

at the plane” from a particular side), which are beyond the scope of this section.

I Finding Equations for Lines and Planes Using the Cross Product

We now present several ways in which the cross product can be used to discover

additional information about lines and planes.

Plane determined by three noncollinear points. As mentioned earlier,

any three noncollinear points determine a unique plane. To find the equation of

the plane, we first use the cross product to obtain the normal vector for the plane.

We illustrate this method with an example.

Example 11 Let P be the plane in R3 containing the points 1 = (1−3−2), 2 = (3−4−1),
and 3 = (4−1−3). We will find an equation for P. First, note that any vector
which has both its initial and terminal points in P lies entirely in that plane.

2A slightly more formal way to define a right-handed system is as follows: Assume x and y
are non-parallel nonzero vectors in R3 with the same initial point, and that z is perpendicular to
both x and y. Then xy z (taken in that order) forms a right-handed system if, looking down at

the plane formed by x and y from the direction in which z points, the angle from x to y in the
counterclockwise direction has measure between 0 and .

Andrilli/Hecker–Elementary Linear Algebra, 5th ed.
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Therefore, the vectors v = [2−1 1] (initial point 1, terminal point 2) and w =
[3 2−1] (initial point 1, terminal point 3) each lie entirely in P. Hence, the
vector n = v × w = [2−1 1] × [3 2−1] = [−1 5 7] is perpendicular to both v
and w. Using n = [−1 5 7] as a normal vector for P together with either 1, 2,
or 3 in Theorem 2 produces the equation −+ 5 + 7 = −30 for P. (See Figure
9, where the vector n is drawn with 1 as its initial point.) ¥

Figure 9 Normal vector n = v×w for the plane P in Example 11

Plane determined by two distinct, intersecting lines. Two distinct in-

tersecting lines determine a unique plane. If we take the cross product of a vector

in the direction of the first line with a vector in the direction of the other line, we

will obtain a normal vector for that plane.

Example 12 Consider the distinct, intersecting lines 1 and 2 from Example 4 above. We have

1:  = 8− 5  = −3 + 2  = −7 + 7 where  ∈ R
and 2:  = 6 + 3  = −2−   = 2 + 2 where  ∈ R

A vector in the direction of 1 is [−5 2 7] (why?), and a vector in the direction
of 2 is [3−1 2]. Therefore, a vector normal to the plane determined by these
lines is [−5 2 7]× [3−1 2] = [11 31−1]. Now, in Example 4, we found (3−1 0)
to be an intersection point of 1 and 2. Using this point (although any point on
either 1 or 2 could be used instead) together with the normal vector, we obtain
11+ 31 −  = 2 as the equation of the plane (see Figure 10). ¥

Line formed by two distinct, intersecting planes. Two non-parallel planes

in R3 intersect along a line. To find parametric equations for this line, we must first
find a vector in the direction of the line. Now, since the line lies in both planes, this

direction vector will be parallel to both planes, and hence, this direction vector is
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Figure 10 Plane determined by lines 1 and 2 in Examples 4 and 12

perpendicular to normal vectors for each of the planes. Thus, the cross product of

these normal vectors gives a direction vector for the line.

Example 13 Consider the planes P and Q in R3 satisfying the equations 3 − 2 +  = 2 and
4+ − 7 = −12, respectively. Normal vectors for these planes are v1 = [3−2 1]
and v2 = [4 1−7], respectively. Since the normal vectors are not parallel, the
planes themselves will also not be parallel, and so they intersect along a line, . A
direction vector w for  is given by

w = v1 × v2 = [3−2 1]× [4 1−7] = [13 25 11]

Next, we need to find a point on . To do this, we choose an arbitrary value for
, say  = 0, and plug it into the equations for P and Q, yielding½

3 − 2 = 2

4 +  = −12 

Solving the first of these for  produces  = 1
2(3 − 2). We plug this into the

second equation to obtain 4+ 1
2(3−2) = −12, or 112  = −11. This gives  = −2

Substituting −2 for  in  = 1
2(3−2) gives us  = −4. Hence, the point (−2−4 0)

satisfies the equations for both P and Q, giving us a point on .3 Using this point
together with the direction vector w above, we obtain the following parametric

equations for :
 = −2 + 13  = −4 + 25  = 11

¥
3 In this case, the choice  = 0 led to a point on the line . However, choosing a particular value

for one of the variables may sometimes lead to an inconsistent system in the other variables — for

example, if the line  is perpendicular to one of the axes. In such a case, choose a particular value
for a different variable instead.
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I Calculating Shortest Distances using the Cross Product

Shortest distance from a point to a line. Let  be a line passing through
0 = (0 0 0) with direction vector v = [  ], and let 1 = (1 1 1) be a
point not on . Let w = [(1 − 0) (1 − 0) (1 − 0)] be the vector with initial
point 0 and terminal point 1. Our goal is to calculate the shortest distance from
1 to . Using trigonometry (see Figure 11), we find that the desired distance equals
kwk sin , where  is the angle between v and w.4 Now, Theorem 4 tells us that

kwk sin  = kv×wk
kvk , so we have the following result:

0
Shortest distance
from P1 to l

w = [x1-x0, y1-y0, z1-z0]

l
v = [a, b, c]

P1 = (x1, y1, z1)

P0 = (x0, y0, z0)

Figure 11 Shortest distance from a point (1 1 1) to the line through 0 =
(0 0 0) with direction vector v = [  ]

THEOREM 6

Let  be the line through (0 0 0) with direction vector [  ], and let 1 =
(1 1 1) be any point. Then the shortest distance from 1 to  equals

k [  ]× [1 − 0 1 − 0 1 − 0]k√
2 + 2 + 2



Example 14 Let  be the line with parametric equations

 = 3− 3  = 5  = 2

Notice that 1 = (1 1 1) = (1−3 2) is not on . We will calculate the shortest
distance from 1 to . Now, from the parametric equations for , we see that one
point on  is 0 = (0 0 0) = (3 5 0), and a direction vector for  is [−3 0 2].
Since [1 − 0 1 − 0 1 − 0] = [−2−8 2], the shortest distance from 1 to  is
given by

k[−3 0 2]× [−2−8 2]kp
(−3)2 + 02 + 22 =

k[16 2 24]k√
13

=

√
836√
13
≈ 802

¥

Shortest distance from a point to a plane. Let P be a plane with equation
+  +  = , and let 1 = (1 1 1) be any point not in P. We want to find
the shortest distance from 1 to P. To do this, we must find the distance between
1 and the nearest point to 1 on P. We take advantage of the fact that the vector

4The distance is still kwk sin  even if v is pointing in the direction opposite to that shown in
Figure 11, since supplementary angles produce the same value for the sine.
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to 1 from its nearest point in the plane is perpendicular to P, and hence is parallel
to [  ], a normal vector to P.
To begin, we first choose an arbitrary point 0 = (0 0 0) in the plane, and

find the vector v from 0 to 1. Then, the projection vector p of v onto the normal
vector [  ] gives a vector to 1 from its nearest point in the plane (see Figure

12). The length of p then gives the shortest distance between the plane P and 1.
In Exercise 22 you will be asked to show that these steps produce the formula given

in the next theorem. (Note that this formula does not directly require the cross

product assuming that a normal vector for the plane is known.)

Figure 12 Shortest distance from the point (1 1 1) to the plane + +  = 

THEOREM 7

Let +  +  =  be the equation of a plane P. Then, the shortest distance
from any point 1 = (1 1 1) to P is given by

|1 + 1 + 1 − |√
2 + 2 + 2



Example 15 The shortest distance from the point (2 1−3) to the plane 3+  −  = 8 is

|3 · 2 + 1 · 1 + (−1) · (−3)− 8|p
32 + 12 + (−1)2 =

2√
11

=
2
√
11

11
≈ 0603

¥
In Exercise 23, the cross product is used to give an analogous formula for the

shortest distance between two (non-intersecting) lines. Exercise 24 discusses the

shortest distance between two parallel planes.

I Applications of the Cross Product in Geometry and Physics

The cross product can also be used to find areas and volumes. A formula to

determine the area of the unique triangle determined by three distinct points in R3
is presented in Exercise 25 using the cross product. (In Section 3.1 of the text we

use other methods in linear algebra to determine various areas and volumes.)

There are many uses of the cross product in physics. For example, angular

momentum, torque, and Lorentz force are all defined in terms of the cross product.

The cross product is also used in Maxwell’s Equations, which are the fundamental

laws governing the behavior of electromagnetic fields. To conclude this section, we

illustrate how the cross product is used to relate velocity and angular velocity.
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Suppose an object travels in a circular path (orbit). Choose a fixed point  on

the axis of rotation of the object, and let r represent the position vector from 
(initial point) to the current location (terminal point) of the object along the orbit.

Suppose v is the (regular) velocity vector of the object. Then v is perpendicular
to r; that is, v is tangent to the circle at that object. Notice that as the object
proceeds along its orbit, for any given period of time, there is a corresponding

central angle of the circle that is swept out. In physics, the angular velocity ω of
the object is represented by a vector whose magnitude is the amount of the central
angle (in radians) of the circle that is traversed per second (or other appropriate

unit of time), and whose direction is perpendicular to the plane of rotation (that
is, parallel to the axis of rotation). Now, there are two opposite possibilities for

the direction of ω, but in accordance with the Right-Hand Rule, we determine the
direction from which the orbital motion of the object appears counterclockwise, and
then always choose positive angular velocity to be in that direction. Notice also that
since v lies in the plane of the circle, v is perpendicular to ω Then, the following
law of physics holds:

v = ω × r
This rule allows us to find the velocity of an object traveling in a circular motion

if we know its angular velocity, as in the next example.

Example 16 A small weight is attached to one end of a steel rod three meters long. The other

end of the rod is secured at the origin of a coordinate system (see Figure 13). The

rod pivots around the -axis in a clockwise direction (as seen from above the -
axis), and makes one revolution every eight seconds. Hence the weight travels in a

clockwise circular path about the -axis. We will find the velocity vector and the
speed of the weight at the point (−1 2−2). We let r represent the vector from the
origin (the rod’s fixed point) to the weight; that is, r = [−1 2−2]
From the discussion above, the vector ω describing the angular velocity for the

rotation of the weight about the rod must point along the -axis in the negative
direction, since the -axis is the axis of rotation, and the rotation is clockwise. (That
is, from “below” the -plane, the rotation will appear to be counterclockwise.)
Since one revolution takes eight seconds, we see that ω = [0 0−

4 ], measured in
radians per second (why?). Thus, the velocity vector of the weight at the point

(−1 2−2) is

v = ω × r =
h
0 0−

4

i
× [−1 2−2] =

h
−
2
−
4
 0
i


The speed of the weight is kvk = 
√
5

4 ≈ 1756 m/sec. ¥

Example 17 The Earth revolves around the Sun in an orbit that is elliptical, but almost circular.

The radius of this “circle” is approximately 92 900 000 miles, and so the length
of the Earth’s orbit is about 584 000 000 miles. Since the Earth completes one
circuit in approximately 36514 days, or 8766 hours,

5 the Earth’s average speed is

about 66 600 miles per hour. For any given position of the Earth along its orbit, we
can find its velocity vector v, which will give us both the magnitude and direction
for the Earth’s movement at that position.

We set up a coordinate system with the Sun at the origin and the Earth’s orbit

in the -plane. The -axis is chosen in the direction perpendicular to the plane
of the orbit so that when we observe the orbital plane “from above,” the Earth

is traveling in a counterclockwise direction around the axis (see Figure 14). This
means the angular velocity vector ω for the revolution of the Earth about the Sun

5Except for the number of hours, we are generally rounding all values to three significant figures

in this example.
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(2, -1, -2)
(2, 1, -2)

(1, 2, -2)(1, -2, -2)

(-1, -2, -2)

(-2, -1, -2)
(-2, 1, -2)

r
(-1, 2, -2)

x

y

z

Figure 13 Path of weight attached to rod and revolving around -axis

points in the direction of the positive -axis. If we measure ω in radians per hour,
then ω = [0 0 2

8766 ] = [0 0


4383 ].
Suppose the current position of the Earth is given approximately by the vector

r = [43600000 82000000 0], whose initial point is assumed to be at the origin.
(Note that krk ≈ 92 900 000) Then the current velocity vector v of the Earth is

v =
h
0 0



4383

i
× [43600000 82000000 0]

=

∙
−82000000

4383

43600000

4383
 0

¸


which is approximately [−58800 31300 0]. Notice that kvk ≈ 66 600 mi/hr, as
expected. ¥

I New Vocabulary

angle between two intersecting lines

angle between two intersecting planes

angular velocity

anti-commutative property for cross product

cancellation property for cross product

cross product of vectors

distributive law of cross product over addition

equation of a plane

exchange property of cross and dot product

normal vector to a plane

orthogonality property for cross product

parameter

parametric equations for a line
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Sun

Earth

z

y

x

Figure 14 Orbit of the Earth

Right-Hand Rule

right-handed system

scalar associative law for cross product

skew lines

symmetric equations for a line (see Exercise 4)

zero property for cross product

I Highlights

• For a line  in R3 passing through (0 0 0) in the direction of [  ], the
points (  ) on  are precisely those which satisfy the parametric equations
 = 0+  = 0+  and  = 0+  where  represents a real parameter.

• If 1 and 2 are two intersecting lines, and v w are vectors in the directions

of 1 and 2, respectively, then the angle  between 1 and 2 is the minimum
angle (i.e., the angle  that is ≤ 90◦ = 

2 radians) between v and w.

• For the plane P in R3 passing through the point (0 0 0) and having normal
vector [  ] the points (  ) on P are precisely those which satisfy the

equation +  +  = 0 + 0 + 0

• If P1 and P2 are two intersecting planes, and n1 n2 are normal vectors for
P1 and P2, respectively, then the angle  between P1 and P2 is the minimum
angle (i.e., the angle  that is ≤ 90◦ = 

2 radians) between n1 and n2.

• The cross product, x×y, of vectors x = [1 2 3] and y = [1 2 3] in R3
is [(23 − 32) (31 − 13) (12 − 21)]

• Basic properties of the cross product for all vectors , ,  in R3 and scalars ,
include the following: anti-commutative: x×y = −(y×x); scalar associative:
(x) × y = x× (y) = (x × y); zero: x × 0 = 0 × x = 0; cancellation:
x× x = 0; distributive: x× (y + z) = (x× y) + (x× z); orthogonal:
x · (x× y) = y · (x× y) = 0; exchange: (x× y) · z = x · (y × z)

• The magnitude of the cross product of two vectors x and y in R3 is given by
kx× yk = kxkkyk sin  where  is the angle between x and y.

• Two nonzero vectors x and y in R3 are parallel if and only if x× y = 0
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• The direction of the cross product of two vectors x and y in R3 is the direction
determined by the Right-Hand Rule; that is, the direction that makes the

vectors x y and x× y (taken in that order) form a right-handed system.

• If P is a plane containing three noncollinear points 1, 2, 3, and v is the
vector from 1 to 2, and w is the vector from 1 to 3, then the cross
product v×w is a normal vector to P

• If 1 and 2 are two distinct, intersecting lines, having direction vectors v and
w, respectively, and P is a plane containing 1 and 2, then the cross product
v×w is a normal vector to P.

• If P1 and P2 are two distinct, intersecting planes, having normal vectors n1
and n2, respectively, and  is the line formed by the intersection of P1 and
P2, then the cross product n1 × n2 is a direction vector for .

• The shortest distance from the point 1 = (1 1 1) to the line  through
(0 0 0) with direction vector [  ] is given by

k [  ]× [1 − 0 1 − 0 1 − 0] k√
2 + 2 + 2



• The shortest distance from the point 1 = (1 1 1) to the plane +  +
 =  is given by

|1 + 1 + 1 − |√
2 + 2 + 2



• The angular velocity ω of an object traveling in a circle is a vector whose

magnitude is the measure of the central angle (in radians) traversed per sec-

ond, and whose direction is parallel to the axis of rotation so that the orbital

motion of the object appears counterclockwise from that direction. If v is
the velocity of the object, and r is the position vector of the object from the

center of the circle, then v = ω × r

I EXERCISES

1. Find parametric equations for the line in R3 having the given properties:

a)F passing through (3−1 0), and in the direction [0 1−4].
b) passing through (−4 2 8), and in the direction [−2−3 0].
c)F passing through (6 2 1) and (4−3 7).
d) passing through (4−2 9) and (3−2 15).
e)F passing through (1−5−7), and parallel to the line with parametric
equations  = 5− 2  = 7 +   = 9.

f) passing through (−2 0−5), and parallel to the line with parametric
equations  = −3+ 4  = 4− 2  = −− 1.

2. Determine whether the two given lines intersect. If they do, find the point(s)

of intersection.

a)F 1:  = −6 + 6  = 3− 2  = 6 + 

2:  = 9 + 3  = 13 + 4  = 1− 2

b)
1:  = 8 + 2  = −5−   = 10− 4
2:  = 7−   = 1 + 6  = 5− 5
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c)F 1:  = 4− 6  = 5 + 9  = 6− 3
2:  = 8− 4  = −1 + 6  = 9− 2

d)
1:  = 5 + 3  = 12− 2  = 5 + 7

2:  = 3− 5  = 11 +   = 6− 

e)F 1:  = 4− 7  = 3+ 2  = − 5
2:  = 8− 19  = 6− 7  = 2− 8

f)
1:  = 3− 2  = + 1  = 2− 7
2:  = 3+ 1  = + 2  = 2− 5

3. Find the angle in each case between the pair of intersecting lines.

a)
1:  = 3− 2  = + 2  = 3− 8
2:  = 4− 7  = 6− 9  = 7− 6

b)F 1:  = 9− 3  = 1  = 4+ 1

2:  = 3− 3  = 5− 4  = 4+ 9

c)
1:  = 1− 7  = 7  = 5− 8
2:  = 5− 4  = 4− 4  = 16− 11

d)
1:  = + 1  = −4+ 5  = −+ 1
2:  = −5+ 1  = 5+ 2  = 2+ 2

5

4. a) Suppose that  is the line given in parametric form as:  = 0 + ,
 = 0 + , and  = 0 + . Show that if , , and  are nonzero, then
 can be expressed in the form

− 0


=
 − 0


=

 − 0




These equations, taken together, are known as the symmetric equa-

tions of the line . (Hint: There are two parts to the proof: First, show
that if a point lies on , then it satisfies the symmetric equations for the
line . Then, show that if a point satisfies the symmetric equations for
, then that point lies on .)

b)F Use part (a) to state the symmetric equations for the line in part (c) of

Exercise 1.

c) Use part (a) to state the symmetric equations for the line in part (f) of

Exercise 1.

5. Find the equation for the given plane in R3.

a)F The plane passing through (1 7−2) having normal vector [6 1 6].
b) The plane passing through (0−1 1) having normal vector [7 3−3].
c) The plane passing through (−3 5 4) having normal vector [9 0−2].
d)F The -plane.

e) The -plane.

6. Find a unit normal vector for each of the following planes.

a)F 2−  + 2 = 7

b) + 4 − 8 = −5
c) 4− 2 −  = −1

7. In each case, calculate the angle between the two given intersecting planes:
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a)F 7− 7 − 8 = 42 and 4+ 5 − 11 = 23.
b) 4− 3 + 5 = 19 and 4− 3 = 48.
c) 3− 6 − 2 = 9 and 8+ 5 − 3 = 72.

8. Calculate each of the following.

a)F [1 2−1]× [3 7 0]
b) [2−1 0]× [1−3−2]
c) ([1 1 0]× [0 1−1])× [1 2 1]
d) [1 1 0]× ([0 1−1]× [1 2 1])
e) [3−4 1]× [−6 8−2] (Think!)
f) [3 1 2]× [3 1 2]
g)F [1 2−3] · ([2 0−1]× [−1 2 0])
h) [2−5−1] · ([2−5−1]× [−3 4 2])
i) i× (j× k)

9. Let x, y, and z be vectors in R3, and let  be any real number. Prove the
following properties of the cross product stated in Theorem 3.

a) (x)× y = x× (y)
b) (x)× y = (x× y)
c) x× 0 = 0

d) x× x = 0

e) x× (y + z) = (x× y) + (x× z)
f) y · (x× y) = 0

g) (x× y) · z = x · (y× z)

10. For vectors x, y, and z in R3, explain why it is possible to calculate x · (y×z),
while the expression (x · y) × z does not make sense.

11. Find vectors x, y, and z in R3 such that

(x× y)× z 6= x× (y× z)
(This shows that there is no associative law for the cross product.)

12. Suppose that x, y, z, and w are vectors in R3. Prove:

a) (x× (y× z)) + (y × (z× x)) + (z× (x× y)) = 0

b) (x× y) · (z×w) = (x · z)(y ·w)− (x ·w)(y · z)
c) kx× yk2 + (x · y)2= kxk2 kyk2

13. Let x = [5−37−8] and y = [−28−25 7].

a) Use the dot product to find the angle  between x and y.

b) Using your answer to part (a), verify that Theorem 4 holds for the given

vectors x and y.

14. The two parts of this exercise taken together prove Corollary 5. Suppose that

x and y are nonzero vectors in R3.

a) Prove that if x× y = 0, then x and y are parallel. (Hint: Use Theorem
4.)
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b) Prove that if x and y are parallel, then x× y = 0.
15. In each case, find the equation of the plane containing the given points.

a)F (1 3 0), (−1 4 1), and (3 2 2)
b) (−2 7 7), (5−2−4), and (−3 4 6)
c) (5 2 2), (3 2−1), and (8 2 9)
d) (−2 5 0), (−3−1 4), and (0−2 6)

16. Explain what would happen if you attempted to use the technique illustrated

in Example 11 to find the equation of a plane passing through three given

points in the case where the three points are collinear. Provide an example

with your explanation.

17. In each of parts (a) through (d) of Exercise 3 above, find the equation of the

plane determined by the two given intersecting lines.

18. In each part, equations are given for a pair of planes in R3. Determine whether
these planes intersect, and if they do, give parametric equations for the line

of intersection.

a) 2−  +  = 9; 8+ 2 +  = 27

b) 3+ 4 −  = 5; 9+ 12 − 3 = 10
c)F +  = 6;  +  = 19

d)  = 16; − 12 = 32
19. Find the shortest distance from the given point P to the line 

a)F  = (3−1 2); :  = 4− 2  = − 1  = 5 + 2
b)  = (0 5 4); :  = 2− 1  = 5− 9  = 6
c)  = (3 1−6); :  = 3− 2  = −  = − 8
d)  = (5−2 2); :  = −9+ 1  = −6− 5  = −2− 3

20. Explain why the formula in Theorem 6 still gives the correct answer if the

given point 1 is actually on the line .

21. Determine the shortest distance from the given point to the given plane.

a)F Point: (5 2 0); plane having equation: 2−  − 2 = 12
b) Point: (3 1 1); plane having equation: 12− 5 = −8
c)F Point: (5 0−3); plane passing through (3 1 5), (1−1 2), and (4 3 5)
d) Point: (2 3−1); plane passing through (3−1−1), (1 1 1), and (5 1−2)

22. Finish the argument in the text needed to prove that the formula for the

shortest distance between a point and a plane in R3 given in Theorem 7 is

correct.

23. (Shortest distance between two non-parallel lines.) If 1 and 2 are
non-parallel lines, with direction vectors [1 1 1] and [2 2 2] respectively,
and passing through (1 1 1) and (2 2 2) respectively, then the shortest
distance from 1 to 2 equals

|(v ·w)|
kvk 

where v = [1 1 1]× [2 2 2], and w = [2−1 2− 1 2− 1]. (Since
1 and 2 are not parallel, v 6= 0 by Exercise 14.) Using this formula, calculate
the shortest distance between the two given lines in each case below.
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a)F 1:  = 5− 2  = 3 + 2  = − 1
2:  = 2  = 5 +   = 4

b)
1:  = 3− 2  = −4 +   = 1 + 3

2:  = −2 +   = 3− 1  = −4+ 3

c)F 1:  = 3− 7  = 1 + 4  = −8
2:  = −1−   = 3− 4  = 1− 3

24. (Shortest distance between parallel planes.) We can derive a formula

for the distance between two parallel planes as follows: Any two parallel planes

have the same normal vector, say, [  ]. Then equations for the planes then
have the form + +  = 1 and + +  = 2. The shortest distance
between the planes is easily found by taking any point on the first plane, say

(1 1 1) and then using Theorem 7 to find the shortest distance from that

point to the second plane. This leads to the formula

|1 + 1 + 1 − 2|√
2 + 2 + 2

=
|1 − 2|√
2 + 2 + 2

for the shortest distance between the planes. Use this formula to find the

shortest distance between the following pairs of parallel planes:

a)F 3−  + 4 = 10; 3−  + 4 = 7

b) − 2 + 5 = −3; − 2 + 5 = 6
c)F 4 + 6 − 8 = 9; 6 + 9 − 12 = −5 (Hint: Use the same form for

both planes.)

d) 10− 25+20 = 4; 8− 20+16 = 11 (Hint: Use the same form for

both planes.)

25. (Area of a triangle.) Let (1 1 1), (2 2 2), and (3 3 3) be three
given points in R3. Then the area of the triangle determined by these points
equals

1
2k [2 − 1 2 − 1 2 − 1]× [3 − 1 3 − 1 3 − 1] k

Using this formula, find the area of the triangle having the given vertices in

each case:

a)F (2−1 0), (3 0 1), and (2 2 7).
b) (1 0 2), (2 3 4), and (0 1 2).

26. Show that all of the points 1 = (2 1−3), 2 = (3 1−4), 3 = (5 2−5),
4 = (5 3−4) and 5 = (4 3−3) are in the same plane. Assuming that the
figure 12345 having these points as vertices is a convex pentagon, find
the area of that figure. (Hint: Break the figure into triangles and use Exercise

25.)

[Note: The five points here, taken in the given order, do, in fact, form a

convex pentagon. This can be checked by examining each of the ten possible

triangles  (with     ) that are formed using any three of these five
vertices. Now, for each such triangle , the cross product of the vector
 and the vector  is certainly normal to the common plane containing
all five points, but there are potentially two possible directions for each cross

product. However, for this pentagonal figure, each of these ten cross products

points in the same direction (they are all positive multiples of [1−1 1]). It
can be shown that in such a case, none of the segments connecting a pair of

vertices falls outside the figure. Thus, the given pentagon is convex.]
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27. Prove that the formula given in Exercise 25 for the area of a triangle is correct.

(Hints: Let 1, 2, and 3 represent the three points, respectively. Consider
the side 12 as the base of the triangle. The height is then the perpendicular
distance from the point 3 to the line containing 12. Use the formula in
Theorem 6 for the shortest distance between a point and a line to get the

height of the triangle.)

28. If the three given points in the formula in Exercise 25 are collinear, show that

the area of the corresponding triangle is zero. (Hint: Notice that the vectors

[2 − 1 2 − 1 2 − 1] and [3 − 1 3 − 1 3 − 1] are scalar multiples
of each other when the given points are collinear.)

29. Suppose a weight is attached to one end of an inflexible spinning rod, whose

other end is fixed at the origin (as in Example 16), so that the motion of the

weight is circular. Find the velocity vector and speed of the weight at the

given point in each case.

a)F Point (6 3−2) (measured in feet), where the rod makes one counter-
clockwise revolution about the -axis every 12 seconds

b) Point (9−12 8) (measured in feet), where the rod makes one counter-
clockwise revolution about the -axis every 2 seconds

30. The planet Mars revolves around the Sun in an orbit that is elliptical, but

almost circular. The radius of this “circle” is approximately 141 600 000
miles. Mars completes one revolution about the Sun in approximately 188
years (assuming 36514 days per year). Consider a coordinate system with the

Sun at the origin and the orbit of Mars in the -plane. Assume the -axis
is chosen perpendicular to the plane of the orbit so that when when observed

“from above,” Mars is traveling in a counterclockwise direction around the
axis. Calculate the angular velocity vector ω for the revolution of Mars about
the Sun, and then use ω to find the velocity vector v and the speed ||v|| in
radians per hour, if the current position of Mars is given (approximately) by

the vector r = [85210000 113100000 0], whose initial point is assumed to be
at the origin. (Note that krk ≈ 141 600 000)

31. Consider a coordinate system with the origin at the center of the Earth and

-axis running (in the positive direction) through the North Pole (see Figure
15). The Earth rotates around the -axis once every 24 hours in the counter-
clockwise direction as viewed from a point above the North Pole. The Earth’s
radius is approximately 6369 km. Let (6369 0 0) represent the point where
the Equator meets the Prime Meridian (which passes through Greenwich,

England). Consider the point (4246 4246 2123) (measured in km) on the
Earth’s surface. (This location is in the South Arabian peninsula.) Calculate

the angular velocity ω at this point, and then use ω to find the velocity vector
v and the speed kvk in km/sec at that point.

32. The latitude of a location on the Earth’s surface is determined by drawing a

line from that location to the center of the Earth and measuring the angle

between that line and the plane of the Equator. It is typically measured in

degrees rather than radians. For example, a point on the Equator is at 0◦

latitude, the North Pole is at 90◦ latitude, and a point halfway between them
would have 45◦ latitude.

a)F Given the latitude, , of a location on the surface of the Earth, use the
coordinate system for the Earth and the information given in Exercise 31

to calculate the magnitude of the velocity at that point due to the Earth’s

rotation. (Hint: Show that the - and -coordinates of any point on the
Earth’s surface at latitude  have the property 2 + 2 = (6369 cos )2)
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b) Find the latitude of Philadelphia, PA (USA), and calculate the magni-

tude of the velocity due to the Earth’s rotation there.

z

y

x

Figure 15 The Earth rotating about the -axis

33.F True or False:

a) There is a unique direction vector for any line in R3.
b) The angle between two distinct non-parallel lines in R3 is always defined.
c) The angle between two distinct non-parallel planes in R3 is always de-
fined.

d) A normal vector to the plane +  +  =  is [−−−].
e) For all vectors x, y, z in R3, (x+ y)× z = (x× z) + (y× z)
f) For all vectors x, y, z in R3, y · (z× x) = (y × z) · x
g) If x and y are parallel vectors in R3, then x× y 6= 0
h) If  is the angle between two nonzero vectors x and y, then

sin  = kx× yk (||x|| ||y||)

i) k× i = i× k
j) The vectors x × y x and y, taken in that order, form a right-handed

system.

k) The shortest distance from a point  to a plane P can be found by

taking any vector v from a point of P to  , and then calculating the
length of the projection of v onto a normal vector for P.

l) If an object travels in a circular path, its angular velocity is equal to the

cross product of its velocity and its position vector from the center of

the circle.
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I Answers to Selected Exercises

(1) (a)  = 3  = −1 +   = −4 ( ∈ R)
(c)  = 6− 2  = 2− 5  = 1 + 6 ( ∈ R).

(Another valid form:  = 4 + 2  = −3 + 5  = 7− 6 ( ∈ R))
(e)  = 1− 2  = −5 +   = −7 ( ∈ R)

(2) (a) The lines intersect at a single point: (0 1 7)

(c) The lines do not intersect.

(e) The lines are identical, so the intersection of the lines is the set of all

points on (either) line; that is, the intersection consists of all points on

the line  = 4− 7  = 3+ 2  = − 5 ( ∈ R).
(3) (b)  = 45◦

(4) (b) −6
−2 =

−2
−5 =

−1
6 (Another valid form: −4

2 = +3
5 = −7

−6 )

(5) (a) 6+  + 6 = 1 (d)  = 0

(6) (a)
£
2
3 −13  23

¤
(7) (a)  = 60◦

(8) (a) [7−3 1] (g) −8

(15) (a) + 2 = 7

(17) (b) 4+ 3 = 39

(18) (c)  = 6−   = 19−   =  ( ∈ R)

(19) (a)
√
74
3 ≈ 2867

(21) (a) 4
3 (c) 31

7 ≈ 4429

(23) (a) 7
√
13

39 ≈ 0647
(c) 0 (The lines intersect at (−4 5−8).)

(24) (a) 3
√
26

26 ≈ 0588 (c) 37
√
29

174 ≈ 1145

(25) (a)
√
74
2 ≈ 4301

(29) (a) velocity = [−
2   0] ft/sec; speed =


√
5

2 ≈ 3512 ft/sec
(32) (a) kvk = 6369

43200 cos  ≈ 04632 cos  km/sec

(33) (a) F

(b) F

(c) T

(d) T

(e) T

(f) T

(g) F

(h) T

(i) F

(j) T

(k) T

(l) F

Andrilli/Hecker–Elementary Linear Algebra, 5th ed.
Copyright c° 2016 Elsevier, Ltd. All Rights Reserved.



28

Andrilli/Hecker–Elementary Linear Algebra, 5th ed.
c° Elsevier 2016 — All Rights Reserved.



29

Change of Variables and the

Jacobian
Prerequisite: Section 3.1, Introduction to Determinants

In this section, we show how the determinant of a matrix is used to perform a

change of variables in a double or triple integral. This technique generalizes to a

change of variables in higher dimensions as well. Although the prerequisite for this

section is listed as Section 3.1, we will also need the fact that |A| = |A | from
Section 3.3.

I Substitution in One Variable

The following example serves to recall the method of integration by substitution

from calculus:

Example 1 To compute
R 5
1

√
3+ 1  we first make the substitution  = 3+ 1 Then  =

3  and soZ 5

1

√
3+ 1  = 1

3

Z 5

1

√
3+ 1 (3 ) = 1

3

Z 16

4

√
 

= 1
3 · 23

3
2

¯̄̄16
4
= 2

9(16
3
2 − 4 32 ) = 2

9 (64− 8) = 112
9 

Note the factor of 3 in  = 3 . This indicates that the variable  covers 3 units
of distance for each single unit of . (It is as if  is measured in feet, while  is
measured in yards.) Note that the length of the -interval is only 4 units (from 1
to 5), while the length of the -interval is 12 units (from 4 to 16). The factor of 3
in the  term compensates for this change. ¥
In Example 1, the substitution variable  is a linear function of , and so the

change in units is constant throughout the given interval. In the next example,

however, the substitution is non-linear.

Example 2 Consider
R 2
1

2
(2+1)2  Let  = 2 + 1 Then  = 2 The integral is then

calculated as Z 2

1

2

(2 + 1)2
 =

Z 5

2



2
= − 1



¯̄̄̄5
2

= −15 −
¡−12¢ = 3

10 

The factor 2 in  = 2  indicates that the unit conversion from  to  is not
constant. As the -interval [1 2] is stretched into the -interval [2 5], the stretching
is done unevenly. For example, at  = 1, the scaling factor 2 = 2(1) = 2, and so
at this point, the length of a -unit is 2 times smaller than the length of an -unit.
However, at  = 15, the scaling factor 2 = 2(15) = 3, and so at this point, a
-unit is 3 times smaller than an -unit.
In particular, the -interval [15 151] (of length 001) is mapped to the -interval

[325 32801] (having length 00301). That is, the -interval is approximately 3
times as long, because the scaling factor is 3 at  = 15. The error in using 3 as
the scaling factor in this case is 00001, or 033% As the length of the -interval
approaches 0, as it would in computing Riemann sums for integrals, the percent
error in the scaling factor also approaches 0. ¥
In general, since 


is the rate of change of  with respect to , its presence in the

formula  = 


 keeps track of the amount of stretching involved in converting

from -coordinates to -coordinates. Thus, 

is the desired scaling factor for a

change of variable in single-variable integration.
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I Double Integrals

We now consider the analogous situation using two variables.

Example 3 The area of the parallelogram  indicated in Figure 1 is given by the following

double integral:

Area =

ZZ


1 

Converting this double integral into an iterated integral would be tedious. However,

we can compute the area of  using Theorem 3.1. The vectors w1 = [2 1] and
w2 = [−1 1] correspond to the sides of  , and so

area of  = absolute value of

¯̄̄̄
2 1

−1 1
¯̄̄̄
= |2− (−1)| = 3

We now examine the effect of a change of variables on the area. Since the sides

of  are the vectors w1 and w2, we first create new variables  and  to satisfy the
equation

[ ] = w1 + w2 + [1 1] = [2 1] + [−1 1] + [1 1];
that is,  = 2 −  + 1,  =  +  + 1. Then, ( ) vertices correspond to ( )
vertices as follows:

( ) ( )

(1 1) (0 0)

(0 2) (0 1)

(3 2) (1 0)

(2 3) (1 1)

Thus, in converting to the ( ) coordinate system, the parallelogram  is mapped
to the unit square  shown in Figure 2. Therefore, it follows thatZZ



1   = area of  = 1

Since the parallelogram  does not have area 1, we must be missing a scaling factor
of the type seen in the single variable case. Note that the scaling factor must be

constant in this case, as in Example 1, because the change of coordinates involves

only linear functions. Since the area of  = 3(area of ), the scaling factor must
be precisely 3. ¥

Figure 1: The parallelogram in the ( ) system with vertices

(1 1) (0 2) (3 2) (2 3)
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Figure 2: The square in the ( ) system with vertices (0 0) (0 1) (1 0) (1 1)

Note in Example 3 that we can work backwards to compute the vectors w1 and

w2 from the formulas for  and  as w1 =
h


 


i
 and w2 =

h


 


i
 This

will work in general for all change of variable transformations. The idea behind

this is that a unit rectangle in ( ) coordinates is mapped to a region in ( )
coordinates that is approximated by a parallelogram whose sides are w1 and w2
as in Figure 3. The vectors w1 and w2 are tangent to the curved boundary of the
actual image of the rectangle under the transformation. But differentiation, along

with finding the tangent direction, also measures the rate of change, and so the

lengths of w1 and w2 also represent the amount of stretching taking place in each
of these directions. Hence, the scaling factor needed for the change of variable is the

area of this approximating parallelogram, which, by Theorem 3.1, is the absolute

value of

¯̄̄̄
¯












¯̄̄̄
¯ 

Figure 3: Converting a rectangle in ( ) coordinates to an approximate
parallelogram in ( ) coordinates

In Section 3.3, it is proved that for any square matrix A, |A| = |A |. Hence we
could have also found the scaling factor as the absolute value of

¯̄̄̄
¯












¯̄̄̄
¯ instead.

The matrix

J =

"












#
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is called the Jacobian matrix of the change of coordinates function

½
 = ( )

 = ( )


We will refer to |J| as the Jacobian determinant. In general, the correct scaling
factor to change an integral

RR


( )   over a region  into ( ) coordinates

is the absolute value of the Jacobian determinant, that is,
¯̄̄
|J|
¯̄̄
. Therefore, if  is

the region in ( ) coordinates that corresponds to , thenZZ


( )   =

ZZ


(( ) ( ))
¯̄̄
|J|
¯̄̄
 

Just as in the one-variable case, the scaling factor can vary if the change of

coordinates is nonlinear, as we will see shortly.

I Polar Coordinates

The polar coordinate system is frequently used to represent points in 2-dimensional
space. In polar coordinates, each point  = ( ) in the plane is assigned a pair6

of coordinates ( ) where  is the distance from the origin to  , and  is the angle
between the positive -axis and the vector having initial point at the origin and
terminal point  (see Figure 4). In all quadrants, the transformation from polar

coordinates to standard (rectangular) coordinates is given by

½
 =  cos 

 =  sin 
 We

can also convert from rectangular coordinates to polar coordinates using½
2 = 2 + 2

tan  = 


(when  6= 0) 

Figure 4: Relationship between standard coordinates and polar coordinates in

Quadrants I and II

It is useful to express certain double integrals in polar coordinates if the region of

integration (and/or the function involved) has radial or angular symmetry. In these

instances, we need to compute the determinant of the Jacobian matrix in order to

6The assignment of polar coordinates to a given point ( ) is not unique. For example,

( ) =
√

3 1

in rectangular coordinates can be represented as ( ) in polar coordinates as

2 
6




2 13

6


, or

−2 7
6


. In general,

√
3 1

can be expressed in polar coordinates as ( ),

where  = ±

(
√
3)2 + 12 = ±2, and  = 

6
+ , where  is an even integer when  is positive,

and  is an odd integer when  is negative.
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include the proper scaling factor when we change coordinates. This determinant is

|J| =
¯̄̄̄
¯












¯̄̄̄
¯ =

¯̄̄̄
cos  − sin 
sin   cos 

¯̄̄̄
=  cos2  +  sin2  = 

If we are careful to ensure that  ≥ 0, the absolute value of |J| is also  and so this
is our scaling factor. Hence,ZZ



( )   =

ZZ
∗

(( ) ( ))   

where ∗ is the region in the polar coordinate system corresponding to . The
next example illustrates this geometrically.

Example 4 Consider the square  in the ( ) (polar) coordinate system with left bottom cor-

ner at (2 6 ) width ∆ = 01 and height ∆ = 01 The image  of this square

in the ( ) system under the polar coordinate mapping

½
 =  cos 

 =  sin 
is shown in

Figure 5.

Now, the square  has area ∆∆ = (01)(01) = 001 and thus the area of 
is approximately equal to the product of the Jacobian determinant,  = 2, with the
area of . Hence, the area of  ≈ 2(001) = 002
To understand this approximation, recall that the columns of the Jacobian ma-

trix represent vectors tangent at the corner point to the curved edges of . When
these vectors are scaled properly by multiplying by ∆ and ∆, respectively, they
represent the sides of a parallelogram (shown in Figure 6) whose area approximates

the area of . (In this particular case, the dot product of the columns is zero, and
so the parallelogram is a rectangle.)

Finally, we compute the actual area of  for comparison purposes. The actual

area of  is ∆2 (the portion of the circle involved) times the differences of the areas
of the circles of radii 21 and 20. Hence,

area of  =
∆

2
((212)− (22)) =

01

2
((041)) =

0041

2
= 00205

Thus, in this case, the scale factor obtained from the Jacobian induces an error

of only 00005, or, 25%. Of course, in the actual integration, both ∆ → 0 and
∆ → 0 which makes the percent error approach 0 as well (although we do not
prove this here). ¥

Figure 5: Image  of polar coordinate system square  in rectangular coordinates
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Figure 6: The parallelogram formed by the columns of the Jacobian at the point

(2 6 )

Example 5 Consider
RR


p
2 + 2   over the region  given by 0 ≤  ≤ 1 + cos  in polar

coordinates (see Figure 7). Now,
p
2 + 2 =  and soZZ



p
2 + 2   =

ZZ


 ·    =
Z 2

0

Z 1+cos 

0

2  

=

Z 2

0

µ
3

3

¶¯̄̄̄1+cos 
0

 = 1
3

Z 2

0

(1 + cos )3 

= 1
3

Z 2

0

(1 + 3 cos  + 3cos2  + cos3 ) 

= 1
3

Z 2

0

(3 cos  + cos3 )  + 1
3

Z 2

0

(1 + 3 cos2 ) 

An appeal to symmetry considerations (or a tedious computation) shows the first

integral equals 0. Using a double-angle formula on the second integral, we obtain

1
3

Z 2

0

¡
1 + 3

¡
1
2 +

1
2 cos 2

¢¢
 =

¡
5
6 +

1
4 sin 2

¢¯̄2
0
=
5

3


¥
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Figure 7: The region  in polar coordinates given by 0 ≤  ≤ 1 + cos 

I Triple Integrals

The situation for change of variables in three dimensions is similar. When con-

verting an integral in (  ) coordinates to an integral in ( ) coordinates,
any rectangular solid based at the point (  ) and having sides ∆ ∆ and ∆
is mapped to a region approximated by a parallelepiped. The sides of this paral-

lelepiped are the columns of the Jacobian matrix evaluated at (  ) multiplied
by ∆ ∆ and ∆ respectively. Thus, by Theorem 3.1, the absolute value of the

Jacobian determinant

|J| =

¯̄̄̄
¯̄̄̄



























¯̄̄̄
¯̄̄̄

provides the correct scaling factor for converting from -space to -space.

That is,    =
¯̄̄
|J|
¯̄̄
  

I Spherical Coordinates

One coordinate system frequently used in three dimensions is spherical coordinates.

If  = (  ) is a point in the rectangular coordinate system and v is a vector from
the origin to  , then  is assigned coordinates (  ) in spherical coordinates,
where  = ||v||  is the angle between the vector [0 0 1] and v, and  is the angle
between the vector [1 0 0] and the projection of v onto the -plane (see Figure
8). From elementary trigonometry, we find that

 =  sin cos  2 = 2 + 2 + 2

 =  sin sin  tan  = 

 when  6= 0

 =  cos cos = √
2+2+2
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Figure 8: Spherical coordinates for  = (  )

Hence,

|J| =

¯̄̄̄
¯̄̄̄



























¯̄̄̄
¯̄̄̄ =

¯̄̄̄
¯̄ sin cos   cos cos  − sin sin 
sin sin   cos sin   sin cos 

cos − sin 0

¯̄̄̄
¯̄

= cos

¯̄̄̄
 cos cos  − sin sin 
 cos sin   sin cos 

¯̄̄̄
− (− sin)

¯̄̄̄
sin cos  − sin sin 
sin sin   sin cos 

¯̄̄̄
= cos(2 cos sin cos2  + 2 cos sin sin2 )

+  sin( sin2  cos2  +  sin2  sin2 )

= 2 cos2  sin(cos2  + sin2 ) + 2 sin3 (cos2  + sin2 )

= 2 cos2  sin+ 2 sin3 

= 2 sin(cos2 + sin2 )

= 2 sin

Since 0 ≤  ≤  in spherical coordinates, the quantity 2 sin is always nonnega-
tive. Hence, when converting an integral from -coordinates to -coordinates,
we have

   = 2 sin  

Example 6 We find the volume of the region  bounded below by the upper half of the cone

2 = 2 + 2 and bounded above by the sphere 2 + 2 + 2 = 8 (see Figure 9).
Now,

volume of  =

ZZZ


1   

Converting to spherical coordinates, we have

volume of  =

ZZZ


2 sin  

Since the radius of the sphere is
√
8  ranges from 0 to

√
8 The sides of the cone

are at a 45◦ angle from the -axis, and so  ranges from 0 to 
4  Hence, changing
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to an iterated integral, we obtain

volume of  =

Z 2

0

Z 
4

0

Z √8
0

2 sin  

=

Z 2

0

Z 
4

0

µ
3

3
sin

¶¯̄̄̄√8
0



=

Z 2

0

Z 
4

0

8
√
8

3
sin

= −8
√
8

3

Z 2

0

(cos)

¯̄̄̄
4

0



= −8
√
8

3

Z 2

0

Ã√
2

2
− 1
!



= −8
√
8

3

Ã√
2

2
− 1
!
(2)

=
32

3
(
√
2− 1)

¥

Figure 9: Region  bounded below by the upper half of the cone 2 = 2 + 2 and
bounded above by the sphere 2 + 2 + 2 = 8

I Cylindrical Coordinates

Another frequently used three-dimensional coordinate system is cylindrical coordi-

nates, (  ) in which the  and  variables provide a polar coordinate system in

the -plane, and  is unchanged from rectangular coordinates. Thus,

 =  cos 

 =  sin 

 = 



In Exercise 3, you are asked to show that the Jacobian determinant for a transfor-

mation from rectangular to cylindrical coordinates is , and hence

   =    
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I Higher Dimensions

The method we have shown for changing variables in double and triple integrals

also works in general for multiple integrals in R. In particular, to change from
12    -coordinates to 12    -coordinates, we must calculate the absolute
value of the determinant of the Jacobian matrix,

|J| =

¯̄̄̄
¯̄̄̄
¯̄̄
1
1

1
2

· · · 1


2
1

2
2

· · · 2


...
...

. . . · · ·

1


2

· · · 


¯̄̄̄
¯̄̄̄
¯̄̄ 

and then we have

1 2     =
¯̄̄
|J|
¯̄̄
1 2    

I New Vocabulary

cylindrical coordinates

Jacobian determinant

Jacobian matrix

polar coordinates

spherical coordinates

I Highlights

• For the change of coordinates function
½
 = ( )

 = ( )
 the Jacobian matrix is

J =

"












#
 and its determinant, |J| is called the Jacobian determinant

• If  is a function of variables  and ,  is a region in ( ) coordinates, and
 is the corresponding region in ( ) coordinates, thenZZ



( )   =

ZZ


(( ) ( ))
¯̄̄
|J|
¯̄̄
 

That is, the scaling factor involved when converting a double integral from

( ) coordinates to ( ) coordinates is the absolute value of the Jacobian
determinant.

• When converting from ( ) coordinates to ( ) coordinates, we have 

=
¯̄̄
|J|
¯̄̄
  In particular, in polar coordinates, where  =  cos  and  =

 sin  we have   =   

• When converting an integral in (  ) coordinates to an integral in ( )
coordinates, the absolute value of the Jacobian determinant

|J| =

¯̄̄̄
¯̄̄̄



























¯̄̄̄
¯̄̄̄

provides the correct scaling factor for converting from -space to -space.

That is,    =
¯̄̄
|J|
¯̄̄
  

• In spherical coordinates, where  =  sin cos   =  sin sin   =  cos
we have    = 2 sin  
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• In cylindrical coordinates, where  =  cos   =  sin   = , we have
   =    

• When converting from 12    -coordinates to 12    -coordinates, the
Jacobian matrix is

J =

⎡⎢⎢⎢⎢⎢⎣
1
1

1
2

· · · 1


2
1

2
2

· · · 2


...
...

. . . · · ·

1


2

· · · 


⎤⎥⎥⎥⎥⎥⎦ 

and we have 1 2     =
¯̄̄
|J|
¯̄̄
1 2    

I EXERCISES

1. For each change of variable formula, compute   in terms of  .

a)F  = +   = − 

b)  = 2 + 2  = 2 − 2

c)F  = 2 − 2  = 2

d)  = 
2+2   =

−
2+2

e)F  = 2
(+1)2+2   =

1−(2+2)
(+1)2+2

2. For each change of variable formula, compute    in terms of   

a)F  = +   =  +   =  + 

b)  = 3+  +   = 3 +   = 

c)F  = 
2+2+2   =


2+2+2   =


2+2+2

d)  = 

  = ,  =  cos  (for   0)

3. Show that |J| =  for the change of variables from rectangular coordinates to

cylindrical coordinates.

4. Compute each of the following integrals by changing to the indicated coordi-

nate system:

a)F
RR


(+ )  where  is the region in the first quadrant between the

circles 2 + 2 = 1 and 2 + 2 = 9; polar coordinates

b)
RR


1   where  is the region inside the innermost ring of the spiral

 =  in the first quadrant (see Figure 10); polar coordinates

Figure 10: The spiral  = 
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c)F
RRR


    where  is the half of the sphere of radius 1 centered at

the origin which is above the -plane; spherical coordinates

d)
RRR


1
2+2+2    where  is the shell between the spheres of radii

2 and 3 centered at the origin; spherical coordinates

e)F
RRR


(2+ 2+ 2)   where  is the region defined by 2+ 2 ≤ 4
and −3 ≤  ≤ 5; cylindrical coordinates

5.F True or False:

a) A linear change of coordinates for an integration results in a constant

scaling factor with respect to the associated integrals.

b) For the change of variables  = ,  = , we have   = 1  .

c) A rectangle in -coordinates with sides ∆ and ∆ is mapped by a
change of coordinates to a region whose area is approximated by the

area of the parallelogram with sides
h


 


i
∆ and

h


 


i
∆

d) The scaling factor for a change of variables in integrals is always the

determinant of the Jacobian matrix.
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I Answers to Selected Exercises

(1) (a)   = 2  

(c)   = 4(2 + 2)  

(e)   =
³

8||
((+1)2+2)3

´
 

(2) (a)    = 2   

(c)    =
³

1
(2+2+2)3

´
  

(4) (a) 52
3 (c) 

4 (e) 800
3

(5) (a) T (b) T (c) T (d) F
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Function Spaces
Prerequisite: Section 4.7, Coordinatization

In this section, we apply the techniques of Chapter 4 to vector spaces whose elements

are functions. The vector spaces P and P are familiar examples of such spaces.

Other important examples are 0 (R) = {all continuous real-valued functions with
domain R} and 1(R) = {all continuously differentiable real-valued functions with
domain R}.

I Linear Independence in Function Spaces

Proving that a finite subset  of a function space is linearly independent usually
requires a modification of the strategy used in R.

Example 1 Consider the subset  =
n
3 −  −

2

 sin
¡

2
¢o
of 1 (R)  We will show that

 is linearly independent using the definition of linear independence. Let   and
 be real numbers such that


¡
3 − 

¢
+ 

³
−

2
´
+ 

³
sin
³
2

´´
= 0

for every value of . We must show that  =  =  = 0
The above equation must be satisfied for every value of  In particular, it is

true for  = 1  = 2 and  = 3 This yields the following system:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(Letting  = 1 =⇒) (0) + 

µ
1



¶
+  (1) = 0

(Letting  = 2 =⇒) (6) + 

µ
2

4

¶
+  (0) = 0

(Letting  = 3 =⇒) (24) + 

µ
3

9

¶
+  (−1) = 0



Row reducing the matrix

⎡⎢⎢⎢⎣
0

6

24


1


2
4

3
9



1

0

−1

¯̄̄̄
¯̄̄̄
¯
0

0

0

⎤⎥⎥⎥⎦ to

⎡⎣ 10
0



0

1

0



0

0

1

¯̄̄̄
¯̄ 00
0

⎤⎦
shows that the trivial solution  =  =  = 0 is the only solution to this homoge-
neous system. Hence, the set  is linearly independent by the definition of linear
independence. ¥
When proving linear independence using the technique of Example 1, we try

to choose “nice” values of  to make computations easier. Even so, the use of a
calculator or computer is often desirable when working with function spaces.

Other problems may occur because of the choice of -values. Returning to

Example 1, if instead we had plugged in  = −1  = 0 and  = 1 we would have
obtained the system⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

( = −1 =⇒) (0) + 

µ
−1


¶
+  (−1) = 0

( = 0 =⇒) (0) +  (0) +  (0) = 0

( = 1 =⇒) (0) + 

µ
1



¶
+  (1) = 0



which has infinitely many nontrivial solutions. To prove linear independence, we

must examine further values of , generating more equations for the system, until
the new system we obtain has only the trivial solution, as in Example 1.
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Suppose, however, that after substituting many values for  and creating a huge
homogeneous system, we still have nontrivial solutions. We cannot conclude that

the set of functions is linearly dependent, although we may suspect that it is. In

general, to prove that a set of functions {f1     f} is linearly dependent, we must
find real numbers 1      not all zero, such that

1f1() + 2f2() + · · ·+ f() = 0

is a functional identity for every value of  not just those we have tried.

Example 2 Let  = {sin 2 cos 2 sin2  cos2 } a subset of 1(R). Suppose we attempt to
show that  is linearly independent using the definition of linear independence. Let
   and  represent real numbers such that

(sin 2) + (cos 2) + (sin2 ) + (cos2 ) = 0

Since we have four vectors in , we substitute four different values for  into this
equation to obtain the following system:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

( = 0 =⇒ ) (0) +  (1) +  (0) + (1) = 0

( = 
4 =⇒ ) (1) +  (0) + 

¡
1
2

¢
+ 

¡
1
2

¢
= 0

( = 
2 =⇒ ) (0) +  (−1) +  (1) + (0) = 0

( = 3
4 =⇒ ) (−1) +  (0) + 

¡
1
2

¢
+ 

¡
1
2

¢
= 0



Since the coefficient matrix for this homogeneous system row reduces to

   ⎡⎢⎢⎣
1 0 0 0

0 1 0 1

0 0 1 1

0 0 0 0

⎤⎥⎥⎦
there are nontrivial solutions to the system, such as  = 0  = −1  = −1  = 1
At this point, we cannot infer that  is linearly independent because we have

nontrivial solutions. We also cannot conclude that  is linearly dependent because
we have tested only a few values for . We could try more values, such as  = 

6
and  = , but we would still find that  = 0  = −1  = −1  = 1 satisfies each
equation we generate. This situation leads us to believe that the set  is linearly
dependent. To be certain, we must check that the values  = 0  = −1  = −1
and  = 1 yield a functional identity when plugged into the original functional
equation. Substituting these values yields

0(sin 2) + (−1)(cos 2) + (−1)(sin2 ) + (1)(cos2 ) = 0

or cos 2 = cos2  − sin2  a well-known trigonometric identity. Thus, one vector
in  can be expressed as a linear combination of the other vectors in , and  is
linearly dependent. ¥

I New Vocabulary

0 (R) (continuous real-valued functions on R)
1(R) (real-valued functions on R having a continuous derivative)
function spaces

linearly dependent set (in a function space)

linearly independent set (in a function space)
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I Highlights

• Function spaces are vector spaces whose elements are functions, such as P,
P, 0 (R), and 1(R)

• A set of functions {f1     f} (in a function space) is linearly independent if
there are  different values of  so that the resulting  equations of the form
1f1() + 2f2() + · · · + f() = 0 form a system having only the trivial

solution 1 = 2 = · · · =  = 0

• A set of functions {f1     f} (in a function space) is linearly dependent if
there are real numbers 1 2     , not all zero, such that 1f1()+2f2()+
· · ·+ f() = 0 for every value of .

I EXERCISES

1. In each part of this exercise, determine whether the given subset  of 1(R)
is linearly independent. If  is linearly independent, prove that it is. If  is
linearly dependent, solve for a functional identity that expresses one function

in  as a linear combination of the others.

a)F  =
©
 2 3

ª
b)  = {sin sin 2 sin 3 sin 4}

c)F  =

½
5− 1
1 + 2


3+ 1

2 + 2

73 − 32 + 17− 5

4 + 32 + 2

¾
d)  = {sin sin(+ 1) sin(+ 2) sin(+ 3)}

2. Recall that a function f() ∈ 0(R) is even if f() = f(−) for all  ∈ R
and is odd if f() = −f(−) for all  ∈ R. Suppose we want to prove that a
finite subset  of 0(R) is linearly independent by the method of Example 1.

a) Suppose that every element of  is an odd function of  (as in Example 1).
Explain why we would not want to substitute both 1 and −1 for  into
the appropriate functional equation. Also explain why  = 0 would be
a poor choice.

b) Suppose that every element of  is an even function. Would we want to
substitute both 1 and −1 for  into the appropriate functional equation?
Why? How about  = 0?

3. Let  be the subset {cos(+ 1) cos(+ 2) cos(+ 3)} of 1(R)
a) Show that span() has {cos sin} for a basis. (Hint: The identity
cos (+ ) = cos cos − sin sin is useful.)

b) Use part (a) to prove that  is linearly dependent.

4. For each given subset  of 1(R), find a subset  of  that is a basis for V =
span().

a)F  = {sin 2 cos 2 sin2  cos2  sin cos 1}
b)  = { 1 −}
c)F  = {sin(+ 1) cos(+ 1) sin(+ 2) cos(+ 2)}

5. In each part of this exercise, let  represent an ordered basis for a subspace

V of 1(R) and find [v] for the given v ∈ V
a)F  = ( 2 3) v = 5 − 73
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b)  = (sin 2 cos 2 sin2 ) v = 1

c)F  = (sin (+ 1)  sin (+ 2))  v = cos

6.F True or False:

a) A subset {f1 f2} of nonzero functions in 0(R) is linearly dependent if
and only if f1 is a nonzero constant multiple of f2.

b) The set {2 3 4 5} is a linearly independent subset of 1(R).
c) Let f1 f2 f3 ∈ 0(R). If plugging values for  into f1() + f2() +

f3() = 0 leads to  =  =  = 0, then f1, f2, and f3 are linearly
dependent.

d) Let f1 f2 f3 ∈ 0(R). If plugging 3 different values for  into f1() +
f2() + f3() = 0 does not allow us to conclude that  =  =  = 0,
then f1, f2, and f3 are linearly dependent.
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I Answers to Selected Exercises

(1) (a) Linearly independent. To prove that it is, substitute the values  = 0,
 = 1,  = 2, and follow the method of Example 1.

(c) Linearly dependent ( = −2,  = 1,  = 1)
(4) (a)  = {sin(2) cos(2) sin2 }

(c)  = {sin(+ 1) cos(+ 1)}
(5) (a) [v] = [5 0−7]

(c) [v] = [− cos 2sin 1 
cos 1
sin 1 ] ≈ [04945 06421]. (If your answer is more compli-

cated than this, compare numerical approximations.)

(6) (a) T (b) T (c) F (d) F
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Max-Min Problems in R and the Hessian
Matrix

Prerequisite: Section 6.3, Orthogonal Diagonalization

In this section, we study the problem of finding local maxima and minima for real-

valued functions defined on R. The method we describe is the higher-dimensional
analogue to finding critical points and applying the second derivative test to func-

tions defined on R studied in first-semester calculus.

I Taylor’s Theorem in R

Let  ∈ 2(R), where 2(R) is the set of real-valued functions defined on R
having continuous second partial derivatives. The method for solving for local

extreme points of  relies upon Taylor’s Theorem with second degree remainder

terms, which we state here without proof. (In the following theorem, an open

hypersphere centered at x0 is a set of the form {x ∈ R | kx− x0k  } for some
positive real number .)

THEOREM 1

(Taylor’s Theorem in R) Let  be an open hypersphere centered at x0 ∈ R,
let u be a unit vector in R, and let  ∈ R such that x0 + u ∈ . Suppose
 :→ R has continuous second partial derivatives throughout ; that is,
 ∈ 2(). Then there is a  with 0 ≤  ≤  such that

(x0 + u) = (x0) +
X
=1

Ã




¯̄̄̄
x0

!
() +

1
2

X
=1

Ã
2

2

¯̄̄̄
x0+u

!
(22 )

+
X
=1

X
=+1

Ã
2



¯̄̄̄
x0+u

!
(2)

Taylor’s Theorem in R is derived from the familiar Taylor’s Theorem in R
by applying it to the function () = (x0 + u). In R2, the formula in Taylor’s
Theorem is

(x0 + u) = (x0) +

Ã




¯̄̄̄
x0

!
(1) +

Ã




¯̄̄̄
x0

!
(2)

+1
2

Ã
2

2

¯̄̄̄
x0+u

!
(221) +

1
2

Ã
2

2

¯̄̄̄
x0+u

!
(222)

+

Ã
2



¯̄̄̄
x0+u

!
(212)

Recall that the gradient of  is defined by ∇ =
h

1

 
2

     


i
. If we let

v = u, then, in R2, v = [1 2] = [1 2], and so the sumÃ




¯̄̄̄
x0

!
(1) +

Ã




¯̄̄̄
x0

!
(2) simplifies to

µ
∇
¯̄̄
x0

¶
· v
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Also, since  has continuous second partial derivatives, we have 2


= 2



Therefore,

1
2

2

2
(221) +

1
2

2

2
(222) +

2


(212)

= 1
21

µ
2

2
1 +

2


2

¶
+ 1

22

µ
2


1 +

2

2
2

¶

= 1
2v



⎡⎣ 2
2

2


2


2
2

⎤⎦v
where v is considered to be a column vector. The matrix

H =

⎡⎣ 2
2

2


2


2
2

⎤⎦
in this expression is called the Hessian matrix for  . Thus, in the R2 case, with
v = u, the formula in Taylor’s Theorem can be written as

(x0 + v) = (x0) +

µ
∇
¯̄̄
x0

¶
· v+ 1

2v


µ
H
¯̄̄
x0+v

¶
v,

for some  with 0 ≤  ≤ 1 (where  = 

). While we have derived this result in R2,

the same formula holds in R, where the Hessian H is the matrix whose ( ) entry

is 2


.

I Critical Points

If  is a subset of R, then we say that  :→ R has a local maximum at a point

x0 ∈  if and only if there is an open neighborhood U of x0 such that (x0) ≥ (x)
for all x ∈ U . A local minimum for a function  is defined analogously.

THEOREM 2

Let  be an open hypersphere centered at x0 ∈ R, and let  : → R have

continuous first partial derivatives on . If  has a local maximum or a local

minimum at x0, then ∇(x0) = 0.

Proof If x0 is a local maximum, then (x0+e)−(x0) ≤ 0 for small . Then,
lim→0+

(x0+e)−(x0)


≤ 0. Similarly, lim→0−
(x0+e)−(x0)


≥ 0. Hence, for

the limit to exist, we must have 


¯̄̄
x0
= 0. Since this is true for each , ∇

¯̄̄
x0
= 0.

A similar proof works for local minimums. QED

Points x0 at which ∇(x0) = 0 are called critical points.

Example 1 Let  :R2 → R be given by

( ) = 72 + 6 + 2+ 72 − 22 + 23.
Then ∇ = [14+ 6 + 2 6+ 14 − 22]. We find critical points for  by solving
∇ = 0. This is the linear system½

14 + 6 + 2 = 0

6 + 14 − 22 = 0


which has the unique solution x0 = [−1 2]. Hence, by Theorem 2, (−1 2) is the only
possible extreme point for  . (We will see later that (−1 2) is a local minimum.)

¥
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I Sufficient Conditions for Local Extreme Points

If x0 is a critical point for a function  , how can we determine whether x0 is a local
maximum or a local minimum? For functions on R, we have the second derivative
test from calculus, which says that if  00(x0)  0, then x0 is a local maximum, but
if  00(x0)  0, then x0 is a local minimum. We now derive a similar test in R.
Consider the following formula from Taylor’s Theorem:

(x0 + v) = (x0) +∇(x0) · v+ 1
2v



µ
H
¯̄̄
x0+v

¶
v.

At a critical point x0, ∇(x0) = 0, and so

(x0 + v) = (x0)+
1
2v



µ
H
¯̄̄
x0+v

¶
v.

Hence, if v
µ
H
¯̄̄
x0+v

¶
v is positive for all small nonzero vectors v, then  will

have a local minimum at x0. (Similarly, if v


µ
H
¯̄̄
x0+v

¶
v is negative,  will

have a local maximum.) But since we assume that  has continuous second partial

derivatives, v
µ
H
¯̄̄
x0+v

¶
v is continuous in v and , and will be positive for small

v if v
µ
H
¯̄̄
x0

¶
v is positive for all nonzero v. Hence,

THEOREM 3

Given the conditions of Taylor’s Theorem for a set  and for a function

 :→ R,  has a local minimum at a critical point x0 if v


µ
H
¯̄̄
x0

¶
v  0 for

all nonzero vectors v. Similarly,  has a local maximum at a critical point x0 if

v
µ
H
¯̄̄
x0

¶
v  0 for all nonzero vectors v.

I Positive Definite Quadratic Forms

If v is a vector in R, and A is an  ×  matrix, the expression vAv is known
as a quadratic form. (For more details on the general theory of quadratic forms,

see Section 8.10.) A quadratic form such that vAv  0 for all nonzero vectors v
is said to be positive definite. Similarly, a quadratic form such that vAv  0
for all nonzero vectors v is said to be negative definite.

Now, in particular, the expression v
µ
H
¯̄̄
x0

¶
v in Theorem 3 is a quadratic

form. Theorem 3 then says that if v
µ
H
¯̄̄
x0

¶
v is a positive definite quadratic

form at a critical point x0, then  has a local minimum at x0. Theorem 3 also

says that if v
µ
H
¯̄̄
x0

¶
v is a negative definite quadratic form at a critical point

x0, then  has a local maximum at x0. Therefore, we need a method to determine
whether a quadratic form of this type is positive definite or negative definite.

Now, the Hessian matrix

µ
H
¯̄̄
x0

¶
, which we will abbreviate as H, is symmetric

because 2


= 2


(since  ∈ 2()). Hence, by Corollary 6.23, H can be

orthogonally diagonalized. That is, there is an orthogonal matrix P such that

PHP = D, a diagonal matrix, and so, H = PDP. Hence,

vHv = vPDPv = (Pv)

D(Pv)
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Letting w = Pv, we get vHv = wDw. But P is nonsingular, so as v ranges
over all of R, so does w, and vice-versa. Thus, vHv  0 for all nonzero v if and
only if wDw  0 for all nonzero w. Now, D is diagonal, and so

wDw = 11
2
1 + 22

2
2 + · · ·+ 

2


But the ’s are the eigenvalues of H. Thus, it follows that w
Dw  0 for all

nonzero w if and only if all of these eigenvalues are positive. (Set w = e for each 
to prove the “only if” part of this statement.) Similarly, wDw  0 for all nonzero
w if and only if all of these eigenvalues are negative. Hence,

THEOREM 4

A symmetric matrix A defines a positive definite quadratic form vAv if and
only if all of the eigenvalues of A are positive. A symmetric matrix A defines a

negative definite quadratic form vAv if and only if all of the eigenvalues of A
are negative.

Hence, Theorem 3 can be restated as follows:

Given the conditions of Taylor’s Theorem for a set  and a function  :→ R:
(1) if all of the eigenvalues of H are positive at a critical point x0, then  has a
local minimum at x0, and
(2) if all of the eigenvalues of H are negative at a critical point x0, then  has
a local maximum at x0.

Example 2 Consider the function

( ) = 72 + 6 + 2+ 72 − 22 + 23
In Example 1, we found that  has a critical point at x0 = [−1 2]. Now, the Hessian
matrix for  at x0 is

H =

⎡⎣ 2
2

2


2


2
2

⎤⎦¯̄̄̄¯̄
x0

=

∙
14 6

6 14

¸
.

But H() = 2 − 28+ 160, which has roots  = 8 and  = 20. Thus, H has all

eigenvalues positive, and hence, vHv is positive definite. Theorem 4 then tells us

that x0 = [−1 2] is a local minimum for  . ¥

I Local Maxima and Minima in R2
It can be shown (see Exercise 3) that a 2×2 symmetric matrix A defines a positive

definite quadratic form (vAv  0 for all nonzero v) if and only if 11  0 and
|A|  0. Similarly, a 2× 2 symmetric matrix defines a negative definite quadratic
form (vAv  0 for all nonzero v) if and only if 11  0 and |A|  0.

Example 3 Suppose ( ) = 22 − 222 + 22 + 24 − 4 − 4. First, we look for critical
points by solving the system(



= 4− 42 − 43 = 4(1− (2 + 2)) = 0



= −42 + 4 + 24− 43 = −4(2 + 2) + 4 + 24 = 0



Now 

= 0 yields  = 0 or 2+2 = 1. If  = 0, then 


= 0 gives 4+24−43 = 0.

The unique real solution to this equation is  = 2. Thus, [0 2] is a critical point.
If  6= 0, then 2 + 2 = 1. From 


= 0, we have 0 = −4(1) + 4 + 24 = 24,
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a contradiction, so there is no critical point when  6= 0.
Next, we compute the Hessian matrix at the critical point [0 2].

H =

⎡⎣ 2
2

2


2


2
2

⎤⎦¯̄̄̄¯̄
[02]

=

∙
4− 42 − 122 −8

−8 −42 + 4− 122
¸¯̄̄̄
[02]

=

∙ −12 0

0 −44
¸


Since the (1 1) entry is negative and |H|  0,H defines a negative definite quadratic

form and so  has a local maximum at [0 2]. ¥

I An Example in R3

Example 4 Consider the function

(  ) = 52 + 2 + 4 + 10+ 32 − 6 − 6 + 52 + 12 + 21.
We find the critical points by solving the system⎧⎪⎪⎨⎪⎪⎩




= 10 + 2 + 4 + 10 = 0



= 4 − 6 + 10 + 12 = 0




= 2 + 6 − 6 − 6 = 0

.

Using row reduction to solve this linear system yields the unique critical point

[−9 12 16]. The Hessian matrix at [−9 12 16] is

H =

⎡⎢⎢⎢⎢⎣
2
2

2


2


2


2
2

2


2


2


2
2

⎤⎥⎥⎥⎥⎦
¯̄̄̄
¯̄̄̄
¯̄
[−91216]

=

⎡⎣ 10 4 2

4 10 −6
2 −6 6

⎤⎦ .

A lengthy computation produces H() = 3−262+164−8. The roots of H()
are approximately 004916, 106011, and 153497. Since all of these eigenvalues for
H are positive, [−9 12 16] is a local minimum for . ¥

I Failure of the Hessian Matrix Test

In calculus, we discovered that the second derivative test fails when the second

derivative is zero at a critical point. A similar situation is true in R. If the Hessian
matrix at a critical point has 0 as an eigenvalue, and all other eigenvalues have the
same sign, then the function  could have a local maximum, a local minimum, or
neither at this critical point. Of course, if the Hessian matrix at a critical point has

two eigenvalues with opposite signs, the critical point is not a local extreme point

(why?). Exercise 2 illustrates these concepts.

I New Vocabulary

2(R) (functions from R to R having continuous second partial derivatives)
critical point (of a function)

gradient (of a function on R)
Hessian matrix

local maximum (of a function on R)
local minimum (of a function on R)
negative definite quadratic form
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open hypersphere (in R)
positive definite quadratic form

Taylor’s Theorem (in R)

I Highlights

• The gradient of a function  :R → R is defined by ∇ =
h

1

 
2

     


i


• Let  be an open hypersphere about x0, and let  be a function on  with

continuous partial derivatives. If  has a local maximum or minimum at x0,
then ∇(x0) = 0

• For a function  :R → R its corresponding Hessian matrix H is the  × 

matrix whose ( ) entry is 2


 In particular, for a function  :R2 → R

the Hessian matrix H =

⎡⎣ 2
2

2


2


2
2

⎤⎦ 

• Taylor’s Theorem in R: Let  be an open hypersphere in R centered at
x0, let u be a unit vector in R, and let  ∈ R such that x0 + u is in .
Suppose  : → R has continuous second partial derivatives throughout ;
that is,  ∈ 2(). Then there is a  with 0 ≤  ≤  such that

(x0 + u) = (x0) +
X
=1

Ã




¯̄̄̄
x0

!
() +

1
2

X
=1

Ã
2

2

¯̄̄̄
x0+u

!
(22 )

+
X
=1

X
=+1

Ã
2



¯̄̄̄
x0+u

!
(2)

In particular, we have

(x0 + v) = (x0) +

µ
∇
¯̄̄
x0

¶
· v+ 1

2v


µ
H
¯̄̄
x0+v

¶
v

for some  with 0 ≤  ≤ 1.
• Let  be an open hypersphere centered at x0 ∈ R If  :→ R has continu-
ous second partial derivatives throughout , then  has a local minimum at

a critical point x0 if v


µ
H
¯̄̄
x0

¶
v  0 for all nonzero vectors v. Similarly, 

has a local maximum at a critical point x0 if v


µ
H
¯̄̄
x0

¶
v  0 for all nonzero

vectors v.

• A quadratic form is an expression of the form vAv, where v is a vector in
R, and A is an ×  matrix. A positive [negative] definite quadratic form
is one such that vAv 0 [vAv 0] for all nonzero vectors v.

• For a function  :R → R having Hessian matrix H, if v
µ
H
¯̄̄
x0

¶
v is a

positive [negative] definite quadratic form at a critical point x0, then  has a
local minimum [maximum] at x0.

• A symmetric matrix A defines a positive [negative] definite quadratic form

vAv if and only if all of the eigenvalues of A are positive [negative].

• If  :R → R has Hessian matrix H and all eigenvalues of H are positive

[negative] at a critical point x0, then  has a local minimum [maximum] at

x0.
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• A 2× 2 symmetric matrix A has a positive [negative] definite quadratic form

vAv if and only if 11  0 [11  0] and |A| 0.

I EXERCISES

1. In each part, solve for all critical points for the given function. Then, for each

critical point, use the Hessian matrix to determine whether the critical point

is a local maximum, a local minimum, or neither.

a)F ( ) = 3 + 2 + 2 − 3+ 2

b) ( ) = 62 + 4 + 32 + 8− 9
c)F ( ) = 22 + 2 + 2+ 2 − 2 + 5
d) ( ) = 3 + 32 − 2 + 32 + 2 − 3+ 3 − 2 − 3
(Hint: To solve for critical points, first set 


− 


= 0.)

e)F (  ) = 22+2+2+4+43+622−2+43−4+4−2

2. The parts of this exercise illustrate cases in which the Hessian Matrix Test is

inconclusive.

a) Show that ( ) = ( − 2)4 + ( − 3)2 has a local minimum at [2 3],
but its Hessian matrix at [2 3] has 0 as an eigenvalue.

b) Show that ( ) = −(− 2)4+(− 3)2 has a critical point at [2 3], its
Hessian matrix at [2 3] has all nonnegative eigenvalues, but [2 3] is not
a local extreme point for  .

c) Show that ( ) = −(+1)4−(+2)4 has a local maximum at [−1−2],
but its Hessian matrix at [−1−2] isO2 and thus has all of its eigenvalues

equal to zero.

d) Show that (  ) = (− 1)2 − ( − 2)2 + ( − 3)4 does not have any
local extreme points. Then verify that its Hessian matrix has eigenvalues

of opposite sign at the function’s only critical point.

3. The parts of this exercise prove necessary and sufficient conditions for a

symmetric 2 × 2 matrix to represent a positive definite or negative definite
quadratic form.

a) Prove that a symmetric 2 × 2 matrix A =

∙
 

 

¸
defines a positive

definite quadratic form if and only if   0 and |A|  0. (Hint: Compute
A() and show that both roots are positive if and only if   0 and
|A|  0.)

b) Prove that a symmetric 2 × 2 matrix A defines a negative definite

quadratic form if and only if 11  0 and |A|  0.
4.F True or False:

a) If  :R → R has continuous second partial derivatives, then the Hessian
matrix is symmetric.

b) Every symmetric matrixA defines either a positive definite or a negative

definite quadratic form.

c) A Hessian matrix for a function with continuous second partial deriva-

tives evaluated at any point is diagonalizable.

d) v
∙
5 3

3 2

¸
v is a positive definite quadratic form.
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e) v

⎡⎣ 3 0 0

0 −9 0
0 0 4

⎤⎦v is a positive definite quadratic form.
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I Answers to Selected Exercises

(1) (a) Critical points: (1−1), (−1 1); local minimum at (1−1)
(c) Critical point: (−2 3); local minimum at (−2 3)
(e) Critical points: (0 0 0) (12 −12 −12) (−12  12  12); local minimums at

( 12 −12 −12) (− 12  12  12)

(4) (a) T (b) F (c) T (d) T (e) F
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Jordan Canonical Form
Prerequisites: Section 5.6, Diagonalization of Linear Operators; Section 7.2,

Complex Eigenvalues and Complex Eigenvectors

We have seen that not every  ×  matrix is diagonalizable. This can cause diffi-
culties in certain applications. In this section, we define what it means for a matrix

to be in Jordan Canonical Form, and assert that every ×  matrix with complex
entries is similar to a matrix of this type. For a diagonalizable complex matrix, its

Jordan Canonical Form is merely a diagonal matrix to which it is similar. However,

a nondiagonalizable complex matrix A is similar to a matrix in Jordan Canonical

Form which is almost diagonal, but with some nonzero entries directly above the
main diagonal. For many applications, this is helpful, thus easing our difficulty with

nondiagonalizable matrices. We will also show how to put a matrix into Jordan

Canonical Form.

I Defining Jordan Blocks

Before defining Jordan Canonical Form, we must first discuss Jordan blocks, the

basic components from which a matrix in Jordan Canonical Form is constructed.

Definition A  ×  matrix A is a Jordan block associated with an eigenvalue  if and
only if A has

(1) every diagonal entry equal to ,
(2) every entry immediately above the main diagonal equal to 1, and
(3) every other entry equal to zero.

Example 1 The matrices

⎡⎣ 3 1 00 3 1

0 0 3

⎤⎦  ∙ −2 1

0 −2
¸


⎡⎢⎢⎣
0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0

⎤⎥⎥⎦  and [4]

are Jordan blocks, while the matrices

∙
3 0

0 5

¸


⎡⎣ 2 1 00 2 0

0 0 2

⎤⎦  ∙ −1 0

0 −1
¸


⎡⎣ 1 0 50 1 0

0 0 1

⎤⎦  and

∙
3 0

1 3

¸

are not. ¥
Since a × Jordan block A is upper triangular with the value  on each main

diagonal entry, we see that A() = (− ). Thus  is the only eigenvalue of A.
It is easy to show that e1 = [1 0  0] spans the eigenspace for A corresponding to

. (See Exercise 1(a).) It is also easy to see that A is a  ×  Jordan block for 
if and only if both of the following conditions hold: Ae1 = e1, and for 2 ≤  ≤ ,
Ae = e+e−1 (This last condition can also be expressed as (A−I)e = e−1.)
(See Exercise 1(b).) Thus, ifA is a × Jordan block for  (A−I)e1 = 0, and it
follows by induction that (A−I)e = 0 for 1 ≤  ≤ . It is then straightforward
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to show that if A is a × Jordan block for  then (A−I) = O (See Exercise
1(c).)

Example 2 Consider the 3× 3 Jordan block A =

⎡⎣ 4 1 00 4 1

0 0 4

⎤⎦ associated with  = 4 Then,

Ae1 =

⎡⎣ 4 1 00 4 1

0 0 4

⎤⎦⎡⎣ 10
0

⎤⎦ =
⎡⎣ 40
0

⎤⎦ = 4e1,
and so (A− 4I3)e1 = 0 Similarly,

Ae2 =

⎡⎣ 4 1 00 4 1

0 0 4

⎤⎦⎡⎣ 01
0

⎤⎦ =
⎡⎣ 14
0

⎤⎦ = 4e2 + e1
and so (A− 4I3)e2 = e1. Also,

Ae3 =

⎡⎣ 4 1 00 4 1

0 0 4

⎤⎦⎡⎣ 00
1

⎤⎦ =
⎡⎣ 01
4

⎤⎦ = 4e3 + e2
and so (A−4I3)e3 = e2. Thus (A−4I3)2e2 = (A−4I3)(A−4I3)e2 = (A−4I3)e1 =
0 and (A− 4I3)3e3 = (A− 4I3)2(A− 4I3)e3 = (A− 4I3)2e2 = 0 Hence, we have:

(A− 4I3)e1 = 0 (A− 4I3)2e2 = 0 and (A− 4I3)3e3 = 0

¥
Now suppose that B is a × matrix similar to a Jordan block A with diagonal

entry ; that is, B = PAP−1 for some nonsingular matrix P. Let v1    v be
the columns of P. After some thought, you will see that the vectors v1    v
behave with respect to B in the same way that e1     e behave with respect to
A. In particular, Bv1 = v1, and Bv = v + v−1 for 2 ≤  ≤ . (See Exercise
2(a).)

The above process is reversible. That is, suppose B is a given × matrix. If we
can find a linearly independent sequence of vectors v1    v such that Bv1 = v1,
and Bv = v+v−1 for 2 ≤  ≤ , and if P is the matrix whose  column is v,
then P is nonsingular, and A = P−1BP is the  ×  Jordan block associated with
the eigenvalue . (See Exercise 2(b).)

I Generalized Eigenvectors

We have seen that for a  ×  matrix B similar to a Jordan block matrix A with

eigenvalue , there is a nonsingular matrix P such that B = PAP−1. We have
also seen that the columns of P form a sequence of vectors v1    v such that
Bv1 = v1, and Bv = v+v−1 for 2 ≤  ≤ . It is straightforward to show that
(B− I)

 v = 0 for 1 ≤  ≤ . (See Exercise 3(a).) Since P is nonsingular, the

v’s are linearly independent, and so every vector in C is a linear combination of
the v’s. Hence it is easy to show that in this particular case, every vector v in C
has the property that (B− I)


v = 0 for some , where 1 ≤  ≤ . (See Exercise

3(b).)

Unfortunately, not every  ×  matrix is similar to a Jordan block matrix.
However, we can find vectors in C that behave in similar ways to the vectors
associated with Jordan blocks above. We begin with the following definition:
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Definition Let A be a square matrix and let  be an eigenvalue for A. Then a nonzero
vector v is a generalized eigenvector for A corresponding to  if and only if
there is a positive integer  such that (A− I)

 v = 0. The set

{v ∈ C | (A− I)

v = 0 for some positive integer }

(which includes the zero vector) is called the generalized eigenspace for A
corresponding to .

Thus, for a matrix similar to a ×  Jordan block (having eigenvalue ), every
nonzero vector in C is a generalized eigenvector. The generalized eigenspace in
this case is C.
When we studied diagonalization in Sections 3.4 and 5.6, we saw that to diago-

nalize a matrix, computing a complete set of fundamental eigenvectors was a crucial

step. Similarly, we will see that in obtaining a Jordan Canonical Form matrix for

a given matrix B, it is vital to find sequences of special generalized eigenvectors
v1    v such that Bv1 = v1, and Bv = v + v−1 for 2 ≤  ≤ . Hence, we
make the following definition:

Definition Let A be a square matrix and let  be an eigenvalue for A. Then a sequence of
nonzero vectors {v1    v} such that Av1 = v1, and Av = v + v−1 for
2 ≤  ≤  is called a fundamental sequence of generalized eigenvectors
for A of length  corresponding to .

Notice that the v’s in this definition are, in fact, generalized eigenvectors
for  because we saw earlier that the given conditions on the v’s imply that
(A− I)


v = 0, for 1 ≤  ≤ 

For example, the sequence e1 e2 e3 is a fundamental sequence of generalized
eigenvectors of length 3 for the Jordan block matrix A in Example 2 corresponding

to the eigenvalue 4, since we foundAe1 = 4e1, Ae2 = 4e2+e1 andAe3 = 4e3+e2
Such fundamental sequences of generalized eigenvectors are the key to finding a

Jordan Canonical Form for a general square matrix.

I Defining Jordan Canonical Form

Not every × matrix B is similar to a Jordan block, since vectors v1    v with
the desired properties Bv1 = v1, and Bv = v+v−1 for 2 ≤  ≤  (for some )
may not exist. Thus, we must go beyond the concept of a Jordan block to Jordan

Canonical Form.
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Definition A square matrix A is in Jordan Canonical Form if and only if there exist

Jordan blocks A1    A such that

A =

⎡⎢⎢⎢⎣
A1 O · · · O

O A2 · · · O
...

...
. . .

...

O O · · · A

⎤⎥⎥⎥⎦ 
That is, a matrix in Jordan Canonical Form can be divided into blocks such

that every block centered on the main diagonal is a Jordan block, and every

other block is a zero matrix.

Example 3 The following matrices are all in Jordan Canonical Form. The Jordan blocks are

bracketed to make them stand out.⎡⎣ ∙ 2 10 2
¸

0

0

0 0
£
3
¤
⎤⎦ 

⎡⎢⎣
£
4
¤

0 0

0
£
5
¤

0

0 0
£
6− 3 ¤

⎤⎥⎦ 
⎡⎣
£ −1 ¤ 0 0

0

0

∙ −1 1

0 −1
¸ ⎤⎦ 

⎡⎢⎢⎢⎢⎢⎢⎢⎣

⎡⎣ 4 1 00 4 1

0 0 4

⎤⎦ 0 0

0 0

0 0

0

0

0

0 0 0

0 0 0

∙
4 1

0 4

¸
0

0

0 0 0 0 0
£
7
¤

⎤⎥⎥⎥⎥⎥⎥⎥⎦


⎡⎢⎢⎢⎢⎢⎢⎢⎣

∙
 1

0 

¸
0 0

0 0

0 0

0 0

0 0

0 0

∙
3 1

0 3

¸
0 0

0 0

0 0

0 0

0 0

0 0

∙
0 1

0 0

¸

⎤⎥⎥⎥⎥⎥⎥⎥⎦


¥
Because every matrix in Jordan Canonical Form is upper triangular, its char-

acteristic polynomial is easy to compute. In particular, if 1      are the en-
tries along the main diagonal of an ×  Jordan Canonical Form matrix A, then
A() = (− 1) (− 2) · · · (− ).

Example 4 Consider the 3× 3 matrix

A =

⎡⎣ 2 1 00 2 0

0 0 3

⎤⎦
from Example 3. Then, A() = (− 2)2 (− 3). Hence, the eigenvalues of A are

1 = 2 and 2 = 3. BecauseAe1 = 2e1 andAe2 = 2e2+e1, we see that {e1 e2} is a
fundamental sequence of generalized eigenvectors forA of length 2 corresponding to
1 = 2. Similarly, since Ae3 = 3e3, {e3} is a fundamental sequence of generalized
eigenvectors for A of length 1 corresponding to 2 = 3. ¥
We can generalize the principles in Example 4 as follows: Suppose A is a matrix

in Jordan Canonical Form, with A as the 
 Jordan block on the main diagonal

of A. Also suppose that A is a  ×  matrix associated with the eigenvalue 
with its first row appearing on the  row of A. Then it is easy to verify that
Ae = e, and that Ae+ = e+ + e+−1 for 1 ≤  ≤  − 1. Essentially,
A has {e e+1     e+−1} as a fundamental sequence of generalized eigenvectors
for A of length  corresponding to .
Analogously, if B = PAP−1, with A in Jordan Canonical Form, having blocks

A1, ..., A, with sizes 1 through , respectively, then the columns of P form a

collection of fundamental sequences of generalized eigenvectors {v11v12    v11}
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{v21v22    v22}     {v1v2    v} forB of lengths 1     , respectively,
each for its appropriate eigenvalue.

Example 5 Let

A =

⎡⎣ 2 1 00 2 0

0 0 3

⎤⎦ and P =

⎡⎣ 3 −1 1

5 −3 2

−2 1 −1

⎤⎦ 
and let

B = PAP−1 =

⎡⎣ 4 −4 −7
3 −5 −13
−1 3 8

⎤⎦ 
The eigenvalues of A (and B) are clearly 1 = 2 and 2 = 3.
Now, by examining the two Jordan blocks of A, we see that the columns of P

form two fundamental sequences of generalized eigenvectors {v11v12} and {v21},
for 1 and 2 respectively, with v11 = [3 5−2], v12 = [−1−3 1], and v21 =
[1 2−1]. Notice that

Bv11 =

⎡⎣ 4 −4 −7
3 −5 −13
−1 3 8

⎤⎦⎡⎣ 3

5

−2

⎤⎦ =
⎡⎣ 6

10

−4

⎤⎦ = 2
⎡⎣ 3

5

−2

⎤⎦ = 1v11

and that

Bv12 =

⎡⎣ 4 −4 −7
3 −5 −13
−1 3 8

⎤⎦⎡⎣ −1−3
1

⎤⎦ =
⎡⎣ 1

−1
0

⎤⎦
= 2

⎡⎣ −1−3
1

⎤⎦+
⎡⎣ 3

5

−2

⎤⎦ = 1v12 + v11

Also,

Bv21 =

⎡⎣ 4 −4 −7
3 −5 −13
−1 3 8

⎤⎦⎡⎣ 1

2

−1

⎤⎦ =
⎡⎣ 3

6

−3

⎤⎦ = 3
⎡⎣ 1

2

−1

⎤⎦ = 2v21

We leave it for you to verify that (B− 2I3)v11 = 03, (B− 2I3)v12 = v11,
(B− 2I3)2 v12 = 03, and (B− 3I3)v21 = 03 (see Exercise 7(a)). ¥

I Every Complex Matrix is Similar to a Matrix in Jordan Canonical Form

When we were diagonalizing matrices in Section 5.6, our goal for a given matrix C
was to find a basis of fundamental eigenvectors for CWe found that the vectors of
this basis become the columns of a matrix P so that P−1CP is diagonal. Now, to
“Jordanize” a matrix B, we try to find a basis consisting of fundamental sequences
of generalized eigenvectors in order to build a matrix P so that P−1BP is in Jordan
Canonical Form.

The main result in this section is:

THEOREM 1

Let B be an ×  matrix with complex entries. Then there exist ×  matri-
ces P and A with P nonsingular and A in Jordan Canonical Form such that

A = P−1BP (and hence, B = PAP−1). Moreover, the matrix A is unique,

except for the order in which the Jordan blocks appear along the main diagonal.
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Theorem 1 asserts that every complex matrix is similar to a matrix in Jordan

Canonical Form. We will not prove this theorem. However, the idea behind the

proof is to show the existence of a fundamental sequence of generalized eigenvectors

{v1    v} associated with each eigenvalue  of B such that Bv1 = v1 and
Bv = v+v(−1) for 2 ≤  ≤ . The vectors in these sequences constitute the
columns of P. Exercise 20 proves the uniqueness claim in the theorem, assuming

the existence of Jordan Canonical Form (see the comment in Exercise 20(g)).

It is straightforward to show that if two matrices C and D have Jordan Canon-

ical Form matrices with identical blocks (in any order), then C and D are similar.

(See part (d) of Exercise 8, as well as Exercise 15 which extends this result.) It

is also easy to prove the inverse of this statement using the uniqueness assertion

of Theorem 1 together with Exercise 15; that is, two matrices C and D are not

similar if there are Jordan Canonical Form matrices for C andD that have different

Jordan blocks (in any order).

I Finding a Jordan Canonical Form

The general idea behind the method for finding a Jordan Canonical Form for a

matrix is simple, but the details are often complicated to work out in practice. One

useful result, which we state without proof, is that the dimension of the generalized
eigenspace for a given eigenvalue always equals the algebraic multiplicity of that
eigenvalue. We begin with a basic example.

Example 6 Consider the matrix

B =

⎡⎣ −12 13 −40
17 −17 55

9 −9 29

⎤⎦ 
We find a Jordan Canonical Form for B. You can quickly calculate that

B() = 3 − 3− 2 = (+ 1)2(− 2)

Thus, the eigenvalues for B are 1 = −1 and 2 = 2. We must find the sizes of
the Jordan blocks corresponding to these eigenvalues, and a sequence of general-

ized eigenvectors corresponding to each block. Now, the Cayley-Hamilton Theorem

(Theorem 5.29 in Section 5.6) tells us that B(B) = O3. We factor B(B) to obtain

B(B) = (B+ I3)
2
(B− 2I3) = O3

We begin with the eigenvalue 1 = −1 Let

D = (B− 2I3) =
⎡⎣ −14 13 −40

17 −19 55

9 −9 27

⎤⎦
Then (B+ I3)

2D = O3.

Next, we search for the smallest positive integer  such that (B+ I3)
D = O3.

Now,

(B+ I3)D =

⎡⎣ 15 −30 75

−15 30 −75
−9 18 −45

⎤⎦ 6= O3

while, as we have seen, (B+ I3)
2
D = O3. Hence,  = 2.

Notice that, given any vector v, (B+ I3)
2 [(B− 2I3)v] = 0. Hence, if (B− 2I3)v

is nonzero, (B− 2I3)v is a generalized eigenvector corresponding to 1 = −1. Since
(B+ I3) [(B+ I3)D] = O3, each column of (B+ I3)D is in the kernel of (B+ I3),
and is thus a generalized eigenvector for B corresponding to 1 = −1.
We choose a linearly independent subset of columns of (B+ I3)D that contains
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as many vectors as possible, in order to get as many linearly independent general-

ized eigenvectors as we can. Since all of the columns are multiples of the first, the

first column alone suffices. Thus,

v11 = [15−15−9]
A natural inclination here is to simplify v11 by multiplying every entry by

1
3 .

However, we need to be careful when making such adjustments. We can only multi-
ply a generalized eigenvector by a scalar if we multiply every generalized eigenvector
in the same fundamental sequence by the same scalar. We must therefore postpone
such considerations in this case until v12 is determined.
Next, we work backwards through the products of the form (B+ I3)

−
D for

 running from 2 up to , choosing the same column in which we found the gener-
alized eigenvector v11. Because  = 2, the only value we need to consider here is
 = 2. Hence, we let

v12 = [−14 17 9]
the first column of (B+ I3)

(2−2)D = D. Since the entries of v12 are not exactly
divisible by 3, we do not simplify the entries of v11 and v12 here.
Now by construction, (B+ I3)v12 = v11 and (B+ I3)v11 = 0. Hence, v11

and v12 are generalized eigenvectors for 1. From our observation just before this

example, the dimension of the generalized eigenspace for 1 equals the algebraic
multiplicity of 1, which is 2. Thus we can stop our work for 1 here, since v11 and
v12 form a basis for the generalized eigenspace for 1. We therefore have a fun-
damental sequence {v11v12} of generalized eigenvectors corresponding to a 2× 2
Jordan block associated with 1 = −1 in a Jordan Canonical Form for B.
To complete this example, we still must find a generalized eigenvector corre-

sponding to 2 = 2.
Recall that B(B) = (B− 2I3) (B+ I3)2 = O3. Let

D = (B+ I3)
2 =

⎡⎣ −18 9 −45
36 −18 90

18 −9 45

⎤⎦ 
Then (B− 2I3)D = O3.

Next, we search for the smallest positive integer  such that (B− 2I3)D = O3.

However, it is obvious here that  = 1.
Since  − 1 = 0, (B− 2I3)−1D = D Hence, each nonzero column of D =

(B+ I3)
2
is a generalized eigenvector for B corresponding to 2 = 2. In particular,

the first column of (B+ I3)
2
serves nicely as a generalized eigenvector v21 for B

corresponding to 2 = 2. No further work for 2 is needed here because 2 = 2 has
algebraic multiplicity 1, and hence only one generalized eigenvector corresponding
to 2 is sufficient. Since there are no other generalized eigenvectors for 2, we can
simplify v21 by multiplying by

1
18 , yielding

v21 = [−1 2 1]
Thus, {v21} is a sequence of generalized eigenvectors corresponding to the 1 × 1
Jordan block associated with 2 = 2 in a Jordan Canonical Form for B.
Finally, we now have an ordered basis (v11v12v21) of generalized eigenvectors

for B. Letting P be the matrix whose columns are these basis vectors, we find that

P−1BP = 1
9

⎡⎣ −1 5 −11
−3 6 −15
18 −9 45

⎤⎦⎡⎣ −12 13 −40
17 −17 55

9 −9 29

⎤⎦⎡⎣ 15 −14 −1
−15 17 2

−9 9 1

⎤⎦
=

⎡⎣ −1 1 0

0 −1 0
0 0 2

⎤⎦ 
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which gives us a Jordan Canonical Form for B. Note that we could have used
the generalized eigenvectors in the order v21v11v12 instead, which would have
resulted in the other possible Jordan Canonical Form for B,⎡⎣ 2 0 0

0 −1 1

0 0 −1

⎤⎦ 
¥

I Basic Method for Finding a Jordan Canonical Form

We summarize the basic method below. However, we will see that adjustments to

this method must be made if the matrix has two or more Jordan blocks of different

sizes corresponding to the same eigenvalue. Those adjustments are illustrated in

Example 8.

Basic Method for Finding a Jordan Canonical Form for a Given

Square Matrix (JORDAN FORM METHOD)

Suppose B is a square matrix with characteristic polynomial B() =
(− 1)

1 · · · (− )
 , where 1      are the distinct eigenvalues of B.

Step A: For each eigenvalue  in turn, perform the following:

Step A1: Let D be the matrix

(B− 1I)
1 · · · (B− −1I)

−1 (B− +1I)
+1 · · · (B− I)

 

That is, D is the product of the factors of B(B) with the factor (B− I)


missing.

Step A2: Find the smallest positive integer  such that (B− I)

D = O.

(The Cayley-Hamilton Theorem states that B(B) = (B− I)
D = O,

and so  ≤ .)

Step A3: Choose a set v11    v1 consisting of as many linearly indepen-

dent columns of (B− I)
−1D as possible (that is, so that no larger set of

columns is linearly independent).

Step A4: For 1 ≤  ≤ , and for each  in turn from 2 up to , let v be the

column of (B− I)
−

D corresponding to the column in which v1 appeared

in (B− I)
−1D.

Step A5: Assemble the  separate fundamental sequences of generalized
eigenvectors, each of length , consisting of {v1    v}.
Step A6: If the total number of generalized eigenvectors in all fundamental

sequences corresponding to  equals  (the algebraic multiplicity of ), then
the process for this eigenvalue is finished. Otherwise, perform the adjustment

process for  described later in this section.

Step B: Form the matrix P whose columns consist of all the fundamen-

tal sequences of generalized eigenvectors found in Step A (keeping the vectors in

each sequence together and in order). Then A = P−1BP is a Jordan Canonical
Form matrix similar to B with Jordan blocks along its main diagonal. Each

block corresponds to a fundamental sequence of generalized eigenvectors for a

particular eigenvalue.

Andrilli/Hecker–Elementary Linear Algebra, 5th ed.
c° Elsevier 2016 — All Rights Reserved.



67

The next example illustrates the method with a matrix having two Jordan blocks

of the same size corresponding to the same eigenvalue.

Example 7 Consider the 4× 4 matrix

B =

⎡⎢⎢⎣
−7 −2 6 12

2 −2 −3 −6
4 3 −8 −10
−3 −2 4 5

⎤⎥⎥⎦ 
We will follow the Jordan Form Method to find a Jordan Canonical Form matrix

similar to B.
Now,

B() = 4 + 123 + 542 + 108+ 81 = (+ 3)4

Therefore, B has only one eigenvalue,  = −3, having algebraic multiplicity 4.
Thus, we must find 4 generalized eigenvectors for . Note that by the Cayley-
Hamilton Theorem, B(B) = (B+ 3I4)

4 = (B+ 3I4)
4I4 = O4.

Step A1: Let D = I4.
Step A2: We search for the smallest positive integer  such that (B+3I4)

D =
O4. Computing successive powers of (B+ 3I4), and multiplying by D yields

(B+ 3I4)D = (B+ 3I4)I4 =

⎡⎢⎢⎣
−4 −2 6 12

2 1 −3 −6
4 3 −5 −10
−3 −2 4 8

⎤⎥⎥⎦ 
and (B+ 3I4)

2D = O4. Thus,  = 2.
Step A3: Each column of (B + 3I4)D is a generalized eigenvector for B cor-

responding to  = −3. We choose a linearly independent subset of columns from
(B + 3I4)D that is as large as possible, in order to get as many linearly indepen-

dent generalized eigenvectors as we can. Let v11 = 1
 column of (B+3I4)D. The

second column of (B+ 3I4)D is not a scalar multiple of the first, so we let v21 =
2 column of (B+ 3I4)D. However,

3 column of (B+ 3I4)D = −2v11 + v21

4 column of (B+ 3I4)D = −4v11 + 2v21

and so {v11v21} is a set containing as many linearly independent columns as
possible. Thus, so far, we have found two generalized eigenvectors:

v11 = [−4 2 4−3] and v21 = [−2 1 3−2]

Step A4: Because  = 2, we only need consider  = 2. Now (B+ 3I4)
(2−2)D =

D. Choose v12 and v22 as the first two columns of D, respectively; that is, let

v12 = [1 0 0 0] and v22 = [0 1 0 0]

Thus, (B+ 3I4)v12 = v11 and (B+ 3I4)v22 = v21.
Step A5: This gives us two fundamental sequences of generalized eigenvectors;

{v11v12} and {v21v22}, each corresponding to a 2× 2 Jordan block for  = −3
in a Jordan Canonical Form for B.
Step A6: Since  = −3 has algebraic multiplicity 4, and we have 4 generalized

eigenvectors, we are finished.

Step B: We now have (v11v12v21v22), an ordered basis of generalized eigen-
vectors for B. Letting P be the matrix whose columns are these basis vectors, we
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find that

P−1BP =

⎡⎢⎢⎣
0 0 −2 −3
1 0 −2 −4
0 0 3 4

0 1 1 2

⎤⎥⎥⎦
⎡⎢⎢⎣
−7 −2 6 12

2 −2 −3 −6
4 3 −8 −10
−3 −2 4 5

⎤⎥⎥⎦
⎡⎢⎢⎣
−4 1 −2 0
2 0 1 1

4 0 3 0

−3 0 −2 0

⎤⎥⎥⎦

=

⎡⎢⎢⎣
−3 1 0 0

0 −3 0 0

0 0 −3 1

0 0 0 −3

⎤⎥⎥⎦ 
which is a Jordan Canonical Form for B. ¥
Example 8 below illustrates an “adjustment” process that must be used to find

a Jordan Canonical Form when there are two (or more) Jordan blocks of different

sizes for the same eigenvalue. The problem here is that when dealing with such

an eigenvalue, the fundamental sequences corresponding to smaller Jordan blocks

are hidden during the computation of longer fundamental sequences. Hence, after

finding the longer sequences, an adjustment must be made to the given matrix to

allow the shorter sequences to be found. The formal method for this adjustment

process can be found directly after the example.

Example 8 Let

B =

⎡⎢⎢⎢⎢⎢⎣
−9 −2 4 8 −18
−38 −1 20 28 −78
−58 −9 25 56 −131
−89 −12 38 89 −210
−43 −6 18 44 −103

⎤⎥⎥⎥⎥⎥⎦ 
A lengthy calculation yields

B() = 5 − 4 − 63 + 142 − 11+ 3 = (− 1)4 (+ 3) 
Therefore, the eigenvalues for B are 1 = 1 and 2 = −3.
Step A: We begin by finding generalized eigenvectors for 1.
Step A1: B(B) = (B− I5)4 (B+ 3I5) = O5. We let D = B+ 3I5.
Step A2: We calculate as follows:

D =

⎡⎢⎢⎢⎢⎢⎣
−6 −2 4 8 −18
−38 2 20 28 −78
−58 −9 28 56 −131
−89 −12 38 92 −210
−43 −6 18 44 −100

⎤⎥⎥⎥⎥⎥⎦ 

(B− I5)D =

⎡⎢⎢⎢⎢⎢⎣
−34 −8 12 32 −68
6 24 28 −96 140

−53 −4 30 16 −58
−16 16 32 −64 80

−2 8 12 −32 44

⎤⎥⎥⎥⎥⎥⎦ 

(B− I5)2D =

⎡⎢⎢⎢⎢⎢⎣
24 0 −16 0 16

−72 0 48 0 −48
12 0 −8 0 8

−48 0 32 0 −32
−24 0 16 0 −16

⎤⎥⎥⎥⎥⎥⎦ 

and (B− I5)3D = O5. Hence  = 3.

Step A3: Each nonzero column of (B− I5)2D is a generalized eigenvector for
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B corresponding to 1 = 1. We let

v11 = [24−72 12−48−24]

the first column of (B− I5)2D. (We do not divide by 12 here since not all of the
entries of the vectors v12 and v13 calculated in the next step are divisible by 12.)

Notice that the other columns of (B− I5)2D are scalar multiples of v11, so we have
found as many linearly independent eigenvectors as possible at this stage.

Step A4: We let

v12 = [−34 6−53−16−2] and v13 = [−6−38−58−89−43]

the first columns of (B− I5)D, and D, respectively. Hence, (B− I5)v12 = v11,

and (B− I5)2 v13 = v11 Thus we have our first fundamental sequence of general-
ized eigenvectors, {v11v12v13}  corresponding to a 3×3 Jordan block for 1 = 1.
Steps A5 and A6: We have one fundamental sequence of generalized eigen-

vectors consisting of a total of 3 vectors. But, since the algebraic multiplicity of 1
is 4, we must still find another generalized eigenvector. We do this by making an
adjustment to the matrix D.
Recall that each column of (B− I5)2D is a scalar multiple of v11. In fact,

1 column of (B− I5)2D = 1v11 = 1v11

2 column of (B− I5)2D = 0v11 = 2v11

3 column of (B− I5)2D = −23v11 = 3v11

4 column of (B− I5)2D = 0v11 = 4v11

5 column of (B− I5)2D = 2
3v11 = 5v11

where the ’s represent the respective coefficients of v11. We create a new matrix F
whose  column is v13. Then, since v13 is the first column of D, (B− I5)2v13 =
v11. Thus, for each , (B − I5)2v13 = v11, and so (B− I5)2 F = (B− I5)2D.
LetD1 = D−F. Clearly, (B− I5)2D1 = O5. We now revisit Steps A2 through A6

using the matrix D1 instead of D. The purpose of this adjustment to the matrix
D is to attempt to eliminate the effects of the fundamental sequence of length 3,
thus unmasking shorter fundamental sequences.

Step A2: We have

D1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 −2 0 8 −14
0 2 −163 28 −1583
0 −9 −323 56 −2773
0 −12 −643 92 −4523
0 −6 −323 44 −2143

⎤⎥⎥⎥⎥⎥⎥⎥⎦


(B− I5)D1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 −8 −323 32 −1363
0 24 32 −96 136

0 −4 −163 16 −683
0 16 64

3 −64 272
3

0 8 32
3 −32 136

3

⎤⎥⎥⎥⎥⎥⎥⎥⎦


and (B− I5)2D1 = O5. Hence  = 2.
Step A3: We look for new generalized eigenvectors among the columns of

(B− I5)D1. We must choose columns of (B− I5)D1 that are not only linearly

independent of each other, but also of our previously computed generalized eigen-

vectors. However, each column of (B− I5)D1 is a scalar multiple of v11. In
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particular,

1 column of (B− I5)D1 = 0v11 = 1v11

2 column of (B− I5)D1 = −13v11 = 2v11

3 column of (B− I5)D1 = −49v11 = 3v11

4 column of (B− I5)D1 =
4
3v11 = 4v11

5 column of (B− I5)D1 = −179 v11 = 5v11

where the ’s represent the respective coefficients of v11.
Thus, D1 produced no new generalized eigenvectors for 1. Actually, this was

to be expected, since we only needed one more generalized eigenvector, and if we

found one at this stage, it would be part of a sequence of length  = 2. However, we
still use D1 for our next adjustment. We create a new matrix G whose  column
is v12. Then, since (B− I5)v12 = v11, we see that (B− I5)G = (B− I5)D1,

implying that (B− I5) (D1 −G) = O5. Let D2 = D1 −G. We now revisit Steps
A2 through A6 using the matrix D2.

Step A2:

D2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 −403 −1369 160
3 −7049

0 4 −83 20 −1243
0 −803 −3089 380

3 −17329
0 −523 −2569 340

3 −16289
0 −203 −1049 140

3 −6769

⎤⎥⎥⎥⎥⎥⎥⎥⎦
and (B− I5)D2 = O5. Hence  = 1.
Step A3: Notice that the 2 column ofD2 is not a scalar multiple of v11. Thus,

we let v21 = −34
¡
2 column of D2

¢
, where we have multiplied by −34 to simplify

the form of the vector. That is,

v21 = [10−3 20 13 5]

Step A4: Because  = 1, the generalized eigenvector v21 for 1 corresponds to
a 1× 1 Jordan block. We do not need to find more vectors in this sequence.
Step A5: We now have the following two fundamental sequences of generalized

eigenvectors: {v11v12v13}, and {v21}.
Step A6: Thus, we have now found 4 generalized eigenvectors for B correspond-

ing to 1 = 1. Since the algebraic multiplicity of 1 is 4, we are finished with this
eigenvalue. Note, by the way, that the remaining columns of D2 do not produce

any more generalized eigenvectors independent of v11 and v21 since

3 column of D2 = 1
9v11 − 16

9 v21

4 column of D2 = −59v11 + 20
3 v21

5 column of D2 = v11 − 92
9 v21

Finally, we need to find one generalized eigenvector for B corresponding to 2 =
−3. We start Step A for this eigenvalue.
Step A1: Since B(B) = (B+ 3I5) (B− I5)4 = O5, each nonzero column of

(B− I5)4 is an eigenvector for B corresponding to 2 = −3. Let D = (B− I5)4.
Step A2: Now,

D = (B− I5)4 =

⎡⎢⎢⎢⎢⎢⎣
0 0 0 0 0

2816 512 −1024 −3328 7424

2816 512 −1024 −3328 7424

5632 1024 −2048 −6656 14848
2816 512 −1024 −3328 7424

⎤⎥⎥⎥⎥⎥⎦
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and (B+ 3I5)D = O5. Thus,  = 1.
Step A3: All columns of D are scalar multiples of the first column. Hence, we

let v31 =
1

2816 (1
 column of D); that is,

v31 = [0 1 1 2 1]

Steps A4, A5, and A6: Since the algebraic multiplicity of 2 is 1, and we have
found one generalized eigenvector, namely v31, we have finished Step A for 2. The
fundamental sequence of generalized eigenvectors is {v31}, corresponding to a 1×1
Jordan block for 2 = −3.
Step B: We now have the ordered basis (v11v12v13v21v31) for C5 consisting

of 3 sequences of generalized eigenvectors for B. If we let P be the matrix whose

columns are the vectors in this ordered basis, then we obtain the following Jordan

Canonical Form for B:

A = P−1BP =

⎡⎢⎢⎢⎢⎢⎣
1 1 0 0 0

0 1 1 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 −3

⎤⎥⎥⎥⎥⎥⎦ 

¥
Here is a formal step to be added to the Method if Step A6 does not produce

enough generalized eigenvectors:

Adjustment Process (if necessary) for Step A6 of the Method

Suppose we have already found the fundamental sequences

{v11v12   }      {v1v2   } of generalized eigenvectors for B corre-

sponding to . Also suppose D is the most recent matrix used in Step A1, and

that  is the smallest positive integer such that (B− I)

D = O.

For each , express the  column of (B− I)
(−1)

D as a linear combi-

nation of v11    v1; that is, solve for 1      such that the 
 column of

(B− I)
(−1)

D equals 1v11 + · · ·+ v1.
Let F be the matrix whose  column equals 1v1 + · · ·+ v.

Let D1 = D−F. By construction, we will have (B− I)
(−1)

D1 = O.

Then follow Steps A2 through A6 of the Method using the new matrix D1

in place of D.

I Conclusion

The Jordan Canonical Form for a matrix is important because every square matrix

with complex entries has such a form. There are no “nonJordanizable” matrices.

One application of the Jordan Canonical Form is to extend the method for solving

homogeneous systems of linear differential equations discussed in Section 8.8 of the

textbook so that the complete solution set can be found for every such system. The

details of this appear in a section entitled “Solving First Order Systems of Linear

Homogeneous Differential Equations,” that is part of these additional companion

“websections” for the textbook.

I New Vocabulary

fundamental sequence of generalized eigenvectors

generalized eigenspace

generalized eigenvector

Jordan block

Jordan Canonical Form
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I Highlights

• A Jordan block for an eigenvalue  is a square matrix with every main diagonal
entry equal to , every entry immediately above the main diagonal equal to
1, and every other entry equal to 0.

• A square matrix is in Jordan Canonical Form if and only if it can be broken

into blocks (submatrices) in such a way that the blocks along the main di-

agonal are Jordan blocks, and all other blocks are zero matrices. That is, a

matrix A is in Jordan Canonical Form if

A =

⎡⎢⎢⎢⎣
A1 O · · · O

O A2 · · · O
...

...
. . .

...

O O · · · A

⎤⎥⎥⎥⎦ 
where each A is a Jordan block.

• If  is an eigenvalue for a square matrix B, then a nonzero vector v in C
is a generalized eigenvector for B corresponding to  if and only if there is a
positive integer  such that (B− I)


v = 0.

• If  is an eigenvalue for a square matrix B, the generalized eigenspace for B
corresponding to  is the set of all generalized eigenvectors for B correspond-
ing to  along with the zero vector.

• If  is an eigenvalue for a square matrix B, a sequence of nonzero vectors
v1    v for B such that Bv1 = v1, and Bv = v + v−1 for 2 ≤  ≤ 
is called a fundamental sequence of generalized eigenvectors for B of length

 corresponding to .

• Every square matrix with complex entries is similar to a matrix in Jordan
Canonical Form.

• The Jordan Canonical Form for a given square matrix is unique except for

the order in which the Jordan blocks appear on the main diagonal.

• A formal Method, together with examples in the text, illustrates how to

use the Cayley-Hamilton Theorem (Theorem 5.29 in Section 5.6) to find

fundamental sequences of generalized eigenvectors for a square matrix B
corresponding to an eigenvalue  of the form {v1v2    v} such that
(B− I) v = 0 for 1 ≤  ≤ . Each such fundamental sequence is associ-
ated with a × Jordan block corresponding to  in a Jordan Canonical Form
matrix for B. The total number of vectors in all such fundamental sequences
for  equals the algebraic multiplicity of .

• If  is an eigenvalue for a square matrix B, and if the Jordan Canonical Form
for B has two or more Jordan blocks of different sizes for , an “adjustment”
process must be used (as summarized after Example 8) in order to find a

complete set of fundamental sequences of generalized eigenvectors for .
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I EXERCISES

1. Verify the following claims from the paragraph following Example 1:

a) Show that if A is a  ×  Jordan block associated with eigenvalue ,
then e1 = [1 0  0] spans the eigenspace for A corresponding to .

b) Show that A is a ×  Jordan block associated with eigenvalue  if and
only if the following two conditions hold: Ae1 = e1, and for 2 ≤  ≤ ,
Ae = e + e−1

c)F Show that if A is a × Jordan block associated with eigenvalue , then

(A− I)

= O

2. Verify the following claims from the paragraphs after Example 2:

a) Suppose that A is a  ×  Jordan block matrix with diagonal entry
 and B = PAP−1 for some nonsingular matrix P. Let v1    v be
the columns of P. Show that Bv1 = v1, and Bv = v + v−1 for
2 ≤  ≤ .

b) Suppose B is a given ×  matrix, and v1    v is a linearly indepen-
dent sequence of vectors such that Bv1 = v1, and Bv = v + v−1
for 2 ≤  ≤ . If P is the (nonsingular) matrix whose  column is v,
show that A = P−1BP is the  ×  Jordan block associated with the
eigenvalue .

3. SupposeB is a given × matrix, and that v1    v is a linearly independent
sequence of vectors such that Bv1 = v1, and Bv = v+v−1 for 2 ≤  ≤ .

a) Show that (B− I)

v = 0 for 1 ≤  ≤ .

b) Show that every vector v in C has the property (B− I)
 v = 0 for

some , where 1 ≤  ≤ .

4. In each part, list all possible matrices in Jordan Canonical Form having the

given polynomial as its characteristic polynomial. Place brackets around each

Jordan block in each matrix. Also, indicate which of the matrices in your list

are similar to each other.

a)F (− 2)2 (+ 1)
b) 2 + − 6
c)F 2 + 6+ 10

d)F 4 + 43 + 42

e) 4

f)F 4 − 32 − 4

5. If you have a calculator or software package available to perform matrix com-

putations, use it to trace through all of the computations in Example 8 in
this section. Conclude these computations by verifying that P−1BP = A for

the given 5×5 matrix B and the computed matrices P and A. (This exercise
is too tedious without a calculator or appropriate software.)

6. In each part, find a matrix A in Jordan Canonical Form similar to the given

matrix B. Also, specify a matrix P such that P−1BP = A.

a)F B =

⎡⎣ −9 5 8−4 3 4
−8 4 7

⎤⎦
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b) B =

⎡⎣ 6 −2 −3
−14 14 13

23 −19 −19

⎤⎦
(Hint: B() = 3 − 2 − 8+ 12 = (− 2)2 (+ 3))

c) B =

⎡⎣ 5 −3 −6
7 −5 −14
−2 2 6

⎤⎦
d)F B =

⎡⎣ 8 5 0

−5 −3 −1
10 7 0

⎤⎦
e) B =

⎡⎣ −4 + 5 2− 2 1− 2−8 + 6 4− 2 2− 3
4 −2 −

⎤⎦ (Hint: B() = 3 − 22 − )

f) B =

⎡⎢⎢⎣
−12 5 −11 −10
−7 3 −7 −8
15 −6 14 12

−4 1 −4 −3

⎤⎥⎥⎦
(Hint: B() = 4 − 23 − 32 + 4+ 4 = (− 2)2 (+ 1)2)

g)F B =

⎡⎢⎢⎢⎢⎢⎣
−3 −2 −1 5 3

−8 2 7 −2 1
0 −3 −4 6 3

−4 1 3 −1 1
0 −2 −2 4 1

⎤⎥⎥⎥⎥⎥⎦
(Hint: B() = 5 + 54 + 103 + 102 + 5+ 1 = (+ 1)5)

7. Let A, B, P, v11, v12, and v21 be the matrices and vectors given in Example
5.

a) Verify by direct computation that (B− 2I3)v11 = 03, (B− 2I3)v12 =
v11, (B− 2I3)2 v12 = 03, and (B− 3I3)v21 = 03.

b)F Use the technique illustrated in the examples to find a Jordan Canoni-

cal Form for B, along with vectors u11, u12, and u21 that the method
produces. (Note that u11, u12, and u21 could be different than v11, v12,
and v21.) If Q is the matrix having columns u11, u12, and u21, verify
that B = QAQ−1.

c) Verify that (B− 2I3)u11 = 03 and (B− 2I3)u12 = u11
d) Note that u11 = −v11. Explain why the second equations in parts (a)
and (c) together imply that the sum of u12 and v12 is either the zero
vector or an eigenvector for B for 1 = 2. Verify this.

e) Verify that u21 differs from v21 by an eigenvector for B for 2 = 3.

8. This exercise proves the similarity of Jordan Canonical Form matrices having

identical blocks.

a) Suppose  is a Type (III) row operation, and that E = (I). Prove
that E = E−1 = E . (Hint: Use Theorem 2.1 and Theorem 6.7.)

b) Let  and E be as given in part (a), and let A be an × matrix. Prove
that (A) = EA.

c) Let , E, and A be as given in part (b). If  swaps rows  and  of A,
show that AE−1 is the matrix obtained from A after swapping columns

 and .
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d) Show that if two Jordan Canonical Form ×  matrices C and D have

identical blocks, but in a different order, thenC andD are similar. (Hint:
We need to reorder both the rows and columns of one of the matrices,

say, C, to match those of the other. Consider a sequence 1 2     

of Type (III) row operations that reorders the rows (only) of the Jordan

blocks of C in such a way so that the rows of (· · · (2(1(C))) · · · )
are re-positioned to match the corresponding rows of D For 1 ≤  ≤ ,
let E = (I). Use the results of parts (a), (b), and (c) to show that

(E · · ·E2E1)C (E · · ·E2E1)−1 = D.)

9. Show that if A is an × matrix with A() = (− )

, then every nonzero

vector in C is a generalized eigenvector for A corresponding to .

10. (The results in this exercise are needed as lemmas for several of the exercises

below.) Let A be an ×  matrix.

a)F If  and  are scalars, prove that (A+ I) and (A+ I) commute.

b) If  and  are scalars, and  and  are positive integers, prove that
(A+ I)

 and (A+ I)
 commute.

11.F Suppose that A is an ×  matrix and that  is an eigenvalue for A having

algebraic multiplicity . Suppose that B is a matrix in Jordan Canonical

Form that is similar to A. Finally, suppose that J is a Jordan block in B
corresponding to . Prove that J has size  × , for some  ≤ . (The
result in this exercise is needed as a lemma in Exercise 19(b) below.)

12. Let A be an  ×  matrix and let 1 and 2 be distinct eigenvalues for
A. Show that a nonzero vector v cannot be a generalized eigenvector for A
corresponding to both 1 and 2. (Hint: Use the results proven in Exercise
10. Compare this result to Exercise 15 in Section 5.6.)

13. Let A be an  ×  matrix and let v1    v be generalized eigenvectors for
A corresponding, respectively, to distinct eigenvalues 1      of A. Prove
that the set {v1    v} is linearly independent. (Hint: First note that

Exercise 12 implies that the vectors v1    v are distinct. Compare this
result with Theorem 5.23 in Section 5.6.)

14. Let A be a × Jordan block associated with eigenvalue , and suppose that
 6= . Prove that (A− I)

 is nonsingular for every positive integer .

15. Prove that two square matrices A and B are similar if and only if they are

both similar to the same matrix C in Jordan Canonical Form. (Hint: Use

Exercises 13(d) and 13(e) in Section 3.3.)

16.F (The result in this exercise is needed for Exercise 20 below.) LetA be an ×
matrix, let P be a nonsingular  ×  matrix, and let () be a polynomial
in . Prove that if B = P−1AP, then (B) = P−1(A)P. (Note that this
statement not only claims that (B) and (A) are similar, but also that the
same matrix P can be used to exhibit the similarity.)

17. (The note at the end of part (b) of this exercise is needed in the solutions for

Exercises 19 and 20.)

a)F Suppose A =

∙
A11 A12

A21 A22

¸
, where A11 is a ×  matrix, A12 is a ×

matrix, A21 is an  ×  matrix, and A22 is an  × matrix. Prove

that A2 =

∙
A2
11 +A12A21 A11A12 +A12A22

A21A11 +A22A21 A21A12 +A
2
22

¸
.
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b) Suppose the matrix A in part (a) has the form A =

∙
J1 O

O J2

¸
, where

J1 and J2 are Jordan blocks. Use the result in part (a) to show that

A2=

∙
J21 O

O J22

¸
. (Note: We state the following useful generalization of

part (b) here without proof: If A =

⎡⎢⎢⎢⎣
J1 O · · · O

O J2 · · · O
...

...
. . .

...

O O · · · J

⎤⎥⎥⎥⎦ is a matrix in
Jordan Canonical Form, where J1    J are Jordan blocks, and () is

a polynomial, then (A) =

⎡⎢⎢⎢⎣
(J1) O · · · O

O (J2) · · · O
...

...
. . .

...

O O · · · (J)

⎤⎥⎥⎥⎦.)
18. Let A be an  ×  matrix, and let  be an eigenvalue for A.

a) Prove that the generalized eigenspace for A corresponding to  is the
kernel of (A− I)

  for all  ≥ , for some positive integer . (Hint:
First choose a basis {v1    v} for the generalized eigenspace. Find a
 such that (A− I)

 v = 0 for all  ≥  and for 1 ≤  ≤ . This will
prove that the generalized eigenspace is contained in the desired kernel.)

b) Use part (a) to show that the dimension of the generalized eigenspace

for A corresponding to  is −rank
³
(A− I)


´
for all values of  ≥ .

(Hint: Use part (2) of Theorem 5.9.)

19. Suppose A is an × matrix having eigenvalue  with algebraic multiplicity
. Let () = A() (− )


= (− 1)

1 · · · (− )
 , where 1     

are the remaining distinct eigenvalues of A, having respective algebraic mul-
tiplicities 1     .

a) Show that if J is a Jordan block of A corresponding to the eigenvalue 
then (J) is nonsingular, and hence for each such (J) its columns are
linearly independent. (Hint: Use Exercise 14 in this section and part (c)

of Exercise 15 in Section 4.5.)

b) Show that if J is a Jordan block of A corresponding to an eigenvalue

 6=  then (J) = O (Hint: Use Exercises 11, 1(c), and 10.)

c) If A is in Jordan Canonical Form, having  Jordan blocks, where the

first  Jordan blocks J1 through J correspond to  and the remaining
Jordan blocks J+1 through J correspond to eigenvalues not equal to

 show that

(A) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(J1) O · · · O O · · · O
O (J2) · · · O O · · · O
...

...
. . .

...
... · · · ...

O O · · · (J) O · · · O
O O · · · O O · · · O
...

...
...

...
...
. . .

...

O O · · · O O · · · O

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦


(Hint: Use the generalization of Exercise 17(b) stated at the conclusion

of that exercise.)
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20. As in Exercise 19, supposeA is an × matrix having eigenvalue  with alge-
braic multiplicity . Let () = A() (− ) = (− 1)

1 · · · (− )
 ,

where 1      are the remaining distinct eigenvalues ofA, having respective
algebraic multiplicities 1     . For each integer  ≥ 0, define

(A) = rank
³
(A− I)

  (A)
´


a) SupposeB is similar toA. Then A() = B() (by Exercise 6 in Section
3.4), so A and B have the same eigenvalues with the same multiplicities.
Therefore, computing (), as above, results in the same polynomial if
we use the matrix B instead of the matrix A. Thus,

(B) = rank
³
(B− I)

  (B)
´

for each integer  ≥ 0, using the same polynomial () as was used forA.
Show that (B) = (A). (Hint: Consider the polynomial (−)()
together with Exercise 16 above. Then use Exercise 16 in the Chapter

Review Exercises for Chapter 2 of the textbook.)

b) If A is in Jordan Canonical Form, show that 0(A) equals the dimension
of the generalized eigenspace forA corresponding to . (Hint: Show that
both values equal . Use part (c) of Exercise 19 as well as Exercise 18.)

c) Use parts (a) and (b) to show that for the general (not necessarily Jor-

dan Canonical Form) matrix A (as given before part (a) above), the

value of 0(A) equals the dimension of the generalized eigenspace for A
corresponding to .

d) If A is in Jordan Canonical Form, prove that 0(A) − 1(A) gives the
total number of Jordan blocks of A corresponding to . (Substantial
hints are given in the Answers to Selected Exercises.) [The result in

part (d) is also true for a general (not necessarily Jordan Canonical

Form) matrix A. This generalization can be proven in a manner similar
to the solution of part (c).]

e) If A is in Jordan Canonical Form, prove that 0(A)− 1(A) equals the
dimension of , the eigenspace for A corresponding to . (Substantial
hints are given in the Answers to Selected Exercises.) [The result in part

(e) is also true for a general (not necessarily Jordan Canonical Form)

matrix A. This generalization can be proven in a manner similar to the
solution of part (c).]

f) If A is in Jordan Canonical Form, prove that −1(A)− (A) gives the
total number of Jordan blocks of A corresponding to  having size at
least  × . (Substantial hints are given in the Answers to Selected Ex-
ercises.) [The result in part (f) is also true for a general (not necessarily

Jordan Canonical Form) matrix A. This generalization can be proven
in a manner similar to the solution of part (c).]

g)F For the general matrix A (as given before part (a) above), prove that

the number of  ×  Jordan blocks corresponding to  in any Jordan
Canonical Form forA is given by −1(A)−2(A)++1(A). [Note that
this exercise can be used to prove the uniqueness assertion in Theorem 1,

because it gives us a method of computing the number of Jordan blocks

of a given size for each eigenvalue. However, the proofs in this exercise

assume the existence of a Jordan Canonical Form matrix similar to a

given matrix, and so this exercise can not be used to prove the existence

claim in Theorem 1.]

h) Using a calculator or appropriate software to perform row reduction,

verify the formula in part (g) for the 5× 5 matrix in Example 8 for each
of its eigenvalues, and for each appropriate value of .
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21.F True or False:

a) Every square complex matrix is similar to a Jordan block matrix.

b) The dimension of the generalized eigenspace corresponding to an eigen-

value  for a square matrix A equals the algebraic multiplicity of .

c) The dimension of the generalized eigenspace corresponding to an eigen-

value  for a square matrix A equals the geometric multiplicity of .

d) If a Jordan Canonical Form for a matrix A has at least two Jordan

blocks, then A has at least two different Jordan Canonical Forms.

e) If A is a square matrix, P and Q are nonsingular matrices, and J is in
Jordan Canonical Form such that P−1AP = J = Q−1AQ, then P = Q.

f) If A is an ×  matrix, then every vector in C can be expressed as a
linear combination of generalized eigenvectors for A.
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I Answers to Selected Exercises

(1) (c) By parts (a) and (b), (A− I) e1 = 0, and (A− I) e = e−1
for 2 ≤  ≤ . We use induction to prove that (A− I)


e = 0

for all , 1 ≤  ≤ . The Base Step holds since we have already

noted that (A− I) e1 = 0. For the Inductive Step, we assume that

(A− I)
−1

e−1 = 0 and show that (A− I)

e = 0. But

(A− I)

e = (A− I)

−1
(A− I) e = (A− I)

−1
e−1 = 0

completing the induction proof.

Using (A− I)
 e = 0, we see that

(A− I)

e = (A− I)

−
(A− I)


e = (A− I)

−
0= 0

for all , 1 ≤  ≤  Now, for 1 ≤  ≤ , the  column of (A− I)


equals (A− I)

e. Therefore, we have shown that every column of

(A− I)

is zero, and so (A− I)

 = O.

(4) Note for all the parts below that two matrices in Jordan Canonical Form

are similar to each other if and only if they contain the same Jordan blocks,

rearranged in any order.

(a)

⎡⎣ [2] 0 0

0 [2] 0

0 0 [−1]

⎤⎦,
⎡⎣ [2] 0 0

0 [−1] 0

0 0 [2]

⎤⎦,
⎡⎣ [−1] 0 0

0 [2] 0

0 0 [2]

⎤⎦
⎡⎣ ∙ 2 10 2

¸
0

0

0 0 [−1]

⎤⎦,
⎡⎣ [−1] 0 0

0

0

∙
2 1

0 2

¸ ⎤⎦
The three matrices on the first line are all similar to each other. The two

matrices on the second line are similar to each other, but not to those

on the first line.

(c) Using the quadratic formula, 2 + 6+ 10 has roots −3 +  and −3− ,
each having multiplicity 1;∙
[−3 + ] 0

0 [−3− ]

¸
and

∙
[−3− ] 0

0 [−3 + ]

¸
,

which are similar to each other

(d) 4 + 43 + 42 = 2(+ 2)2;⎡⎢⎢⎣
∙
0 1

0 0

¸
0 0

0 0

0 0

0 0

∙ −2 1

0 −2
¸
⎤⎥⎥⎦,
⎡⎢⎢⎣
∙ −2 1

0 −2
¸

0 0

0 0

0 0

0 0

∙
0 1

0 0

¸
⎤⎥⎥⎦,

which are similar to each other but to none of the others;⎡⎢⎢⎢⎣
[0] 0 0 0

0 [0] 0 0

0

0

0

0

∙ −2 1

0 −2
¸
⎤⎥⎥⎥⎦,
⎡⎢⎢⎢⎣
[0] 0 0 0

0

0

∙ −2 1

0 −2
¸
0

0

0 0 0 [0]

⎤⎥⎥⎥⎦,
⎡⎢⎢⎢⎣
∙ −2 1

0 −2
¸
0

0

0

0

0 0 [0] 0

0 0 0 [0]

⎤⎥⎥⎥⎦,
which are similar to each other but to none of the others;⎡⎢⎢⎢⎣
∙
0 1

0 0

¸
0

0

0

0

0 0 [−2] 0

0 0 0 [−2]

⎤⎥⎥⎥⎦,
⎡⎢⎢⎢⎣
[−2] 0 0 0

0

0

∙
0 1

0 0

¸
0

0

0 0 0 [−2]

⎤⎥⎥⎥⎦,
⎡⎢⎢⎢⎣
[−2] 0 0 0

0 [−2] 0 0

0

0

0

0

∙
0 1

0 0

¸
⎤⎥⎥⎥⎦,
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which are similar to each other but to none of the others;⎡⎢⎢⎣
[−2] 0 0 0

0 [−2] 0 0

0 0 [0] 0

0 0 0 [0]

⎤⎥⎥⎦,
⎡⎢⎢⎣
[−2] 0 0 0

0 [0] 0 0

0 0 [−2] 0

0 0 0 [0]

⎤⎥⎥⎦,
⎡⎢⎢⎣
[−2] 0 0 0

0 [0] 0 0

0 0 [0] 0

0 0 0 [−2]

⎤⎥⎥⎦,
⎡⎢⎢⎣
[0] 0 0 0

0 [−2] 0 0

0 0 [−2] 0

0 0 0 [0]

⎤⎥⎥⎦,
⎡⎢⎢⎣
[0] 0 0 0

0 [−2] 0 0

0 0 [0] 0

0 0 0 [−2]

⎤⎥⎥⎦,
⎡⎢⎢⎣
[0] 0 0 0

0 [0] 0 0

0 0 [−2] 0

0 0 0 [−2]

⎤⎥⎥⎦,
which are similar to each other but to none of the others

(f) 4 − 32 − 4 = ¡2 − 4¢ ¡2 + 1¢ = (− 2) (+ 2) (− ) (+ );
There are 24 possible Jordan Canonical Forms, all of which are similar
to each other. Because each eigenvalue has algebraic multiplicity 1, all
of the Jordan blocks have size 1×1. Hence, any Jordan Canonical Form
matrix with these blocks is diagonal with the 4 eigenvalues 2, −2, , and
− on the main diagonal. The 24 possibilities result from all the possible
orders in which these 4 eigenvalues can appear on the diagonal.

(6) One possible answer is given in each case.

(a) A =

⎡⎣ ∙ 1 10 1
¸

0

0

0 0 [−1]

⎤⎦; P =
⎡⎣ 1 2 12 1 0

0 2 1

⎤⎦.
(d) A =

⎡⎣ [3] 0 0

0 [1− ] 0

0 0 [1 + ]

⎤⎦; P =
⎡⎣ 1 2−  2 + 

−1 −3 +  −3− 

1 1− 2 1 + 2

⎤⎦.

(g) A =

⎡⎢⎢⎢⎢⎢⎣
∙ −1 1

0 −1
¸

0 0

0 0

0

0

0 0

0 0

∙ −1 1

0 −1
¸

0

0

0 0 0 0 [−1]

⎤⎥⎥⎥⎥⎥⎦; P =
⎡⎢⎢⎢⎢⎢⎣
−2 1 −2 0 1

−8 0 3 1 −2
0 0 −3 0 2

−4 0 1 0 0

0 0 −2 0 0

⎤⎥⎥⎥⎥⎥⎦.

(7) (b) A =

⎡⎣ 2 1 00 2 0

0 0 3

⎤⎦; P =
⎡⎣ −3 1 −1
−5 3 −2
2 −1 1

⎤⎦. Hence, u11 = [−3−5 2], u12 =
[1 3−1], and u21 = [−1−2 1].

(10) (a) Now,

(A+ I)(A+ I) = (A+ I)A+(A+ I) (I)

= A2 + IA+A (I) + (I) (I)

= A2 + A+A+ I

= A2 + A+A+ I

= A2 + IA+A (I) + (I) (I)

= (A+ I)A+(A+ I) (I)

= (A+ I)(A+ I)

(11) Use the fact that B() = A() (Exercise 6 in Section 3.4) and that B is

upper triangular with  of its main diagonal entries being main diagonal

entries of J. Further details can be found in the Student Solutions Manual
for this section.
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(16) Let  be the degree of the polynomial (). Use induction on . Note that
() = +1

+1+
+· · ·+1+0 =

¡
+1

 + 
−1 + · · ·+ 1

¢
+0.

The details of the proof can be found in the Student Solutions Manual for

this section.

(17) (a) Compute the ( ) entry of A2 in four separate cases:  ≤ ,  ≤ ;
  ,  ≤ ;  ≤ ,   ;   ,   . For further details, see the
Student Solutions Manual for this section.

(20) (d) Hints: Assume each Jordan block J has size  ×  First consider the
case where the first  Jordan blocks (that is, J1 J) of A represent all

of the Jordan blocks corresponding to  Note that (J) = O, for   
by Exercise 19. Consequently, by the block structure of (A− I) (A),
we have

rank ((A− I) (A)) =
X

=1

rank ((J − I) (J)) 

Also note that for  ≤ ,

rank((J − I) (J)) = rank((J − I))

by Exercise 16 in the Review Exercises of Chapter 2 since (J) is non-
singular in that case. Show that for  ≤ 

rank ((J − I) (J)) =  − 1
Conclude that

1(A) =
X

=1

rank ((J − I) (J)) = − 

(e) Hints: Assume each Jordan block J has size  ×  First consider the
case where the first  Jordan blocks (that is, J1 J) of A represent

all of the Jordan blocks corresponding to  Note that when   ,
J−I is nonsingular by Exercise 14, and so dim(ker (J − I)) = 0
Consequently, by the block structure of A− I,

dim(ker (A− I)) =
X

=1

dim(ker (J − I))

For  ≤ , show that rank(J − I) =  − 1. Use part (2) of Theorem
5.9 to conclude

X
=1

dim(ker (J − I)) = 

and use part (d).

(f) Hints: Assume each Jordan block J has size  ×  First consider the
case where the first  Jordan blocks (that is, J1 J) of A represent

all of the Jordan blocks corresponding to  Note that for  ≤  (J)
is nonsingular (with rank ) by Exercise 19(a). Also note that, for 1 ≤
 ≤ ,

rank((J − I)
 (J)) = rank((J − I)

)

by Exercise 16 in the Review Exercises of Chapter 2. Consider the nature

of the rows and columns of J − I , and use a proof by induction to
conclude that, for 1 ≤   ,

rank((J − I)

) =  − 

Andrilli/Hecker–Elementary Linear Algebra, 5th ed.
Copyright c° 2016 Elsevier, Ltd. All Rights Reserved.



82

Also note that for  ≥ , (J − I)

is the zero matrix. In addition,

for    (J − I)
 (J) = O for all  by Exercise 19(b). Also,

(A) = rank ((A− I)

(A)) =

X
=1

rank ((J − I)

(J))

by the block structure of (A− I)
 (A), which reduces to

X
=1

rank ((J − I)
) 

Thus,

−1(A)− (A) =
X

=1

³
rank

³
(J − I)

−1´− rank³(J − I)

´´



Finally, show that if  ≥  and 1 ≤  ≤ , then

rank
³
(J − I)

−1´− rank³(J − I)

´
= 1

but if   , then

rank
³
(J − I)

−1´− rank³(J − I)

´
= 0

Conclude that −1(A)−(A) equals the total number of Jordan blocks
of A corresponding to  having size at least  × 

(g) The number of Jordan blocks having size exactly  ×  is the number
having size at least  ×  minus the number of size at least ( + 1) ×
( + 1). By part (f), −1(A)− (A) gives the total number of Jordan
blocks having size at least × corresponding to . Similarly, the number
of Jordan blocks having size at least ( + 1)×( + 1) is (A)−+1(A).
Hence the number of Jordan blocks having size exactly  ×  equals

(−1(A)−(A))− ((A)− +1(A)) = −1(A)−2(A)++1(A)

(21) (a) F (b) T (c) F (d) F (e) F (f) T
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Solving First Order Systems

of Linear Homogeneous Dif-

ferential Equations
Prerequisites: Web Section on Jordan Canonical Form; Section 8.8, Differential

Equations

In Section 8.8 of the textbook, Theorem 8.9 gives the complete set of continuously

differentiable solutions for the linear first order system of differential equations

F0() = AF() when the matrix A is diagonalizable. However, if the matrix A is

not diagonalizable, then the technique described there fails to provide all of the

solutions to the system. However, since every matrix A can be placed in Jordan

Canonical Form, we now describe a technique that uses this form to completely

solve the first-order system.

The concept behind the technique is based upon Lemma 8.8 in Section 8.8,

which states that all continuously differentiable solutions to  0() = () are of
the form () =  for some constant . Thus, we might expect solutions of the
system F0() = AF() to be of the form F() = Ac, for some constant vector c,
assuming that we can define the expression A appropriately.

I Defining A

Suppose A is an × matrix, and let  be an eigenvalue for A (possibly complex)

with corresponding generalized eigenvector v. Then there is a positive integer 
such that (A− I)


v = O.

Next, recall that  can be expressed as the power series

 =
∞X
=0

 

!
= 1 + +

1

2
2 +

1

6
3 + · · · 

Assuming an analogous formula for A would lead to

Av = (I+A−I)v
= I(A−I)v

= 

⎛⎝ ∞X
=0

((A− I) )


!

⎞⎠v
= 

∞X
=0

 

!

³
(A− I)

 v
´


But, (A− I)
 v = 0 for  ≥ , and so this would imply that

Av = 
−1X
=0

 

!
(A− I)

 v

This formula is useful because it only involves a finite sum of vectors rather

than an infinite series, and therefore motivates the following definition.

Andrilli/Hecker–Elementary Linear Algebra, 5th ed.
c° Elsevier 2016 — All Rights Reserved.



85

Definition LetA be an × matrix with eigenvalue  and corresponding generalized eigen-
vector v. Suppose  is the smallest positive integer such that (A− I)

 v = 0.
Then we define Av by the formula

Av = 
−1X
=0

 

!
(A− I)

 v

Example 1 Consider the matrix

A =

⎡⎣ 5 6 −11
−3 −6 20

−1 −3 10

⎤⎦ 
In Exercise 1, you will be asked to show that A() = (− 3)3, and that v = [1 0 0]
is a generalized eigenvector for A corresponding to  = 3, with (A− 3I3)3 v = 0.
Then

Av = 3
2X

=0

 

!
(A− 3I3) v

= 3
µ
I3v+  (A− 3I3)v+ 2

2
(A− 3I3)2 v

¶

= 3

⎛⎝⎡⎣ 10
0

⎤⎦+ 

⎡⎣ 2 6 −11
−3 −9 20

−1 −3 7

⎤⎦⎡⎣ 10
0

⎤⎦+ 2

2

⎡⎣ −3 −9 21

1 3 −7
0 0 0

⎤⎦⎡⎣ 10
0

⎤⎦⎞⎠
= 3

⎛⎝⎡⎣ 10
0

⎤⎦+ 

⎡⎣ 2

−3
−1

⎤⎦+ 2

2

⎡⎣ −31
0

⎤⎦⎞⎠
=

⎡⎣ 1 + 2− 3
2 
2

−3+ 1
2 
2

−

⎤⎦ 3
¥

I Solving a Linear First-Order Homogeneous System

Returning to our discussion of the first-order system F0() = AF(), we expect the
solution set to be all vector-valued functions of the form F() = Ac. Since we
have now defined Av in the case in which v is a generalized eigenvector for A, our
strategy will be to find an ordered basis (v1    v) for C consisting of generalized
eigenvectors for A, and express the constant vector c as a linear combination of the
vectors in this basis; that is, c = 1v1 + · · ·+ v. Then,

F() = 1
Av1 + · · ·+ 

Av

where Av is as defined above. The following theorem states that the set of all

functions of this form gives the complete solution set of the first-order system.
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THEOREM 1

Let A be an  ×  matrix, and let (v1    v) be an ordered basis for C
consisting of generalized eigenvectors for A. Then the complete set of contin-
uously differentiable solutions for the first-order linear homogeneous system of

differential equations given by F0() = AF() is the set of all functions of the
form

F() = 1
Av1 + 2

Av2 + · · ·+ 
Av

for 1      ∈ C.

In practice, the basis (v1    v) in Theorem 1 is usually chosen so that if P
is the matrix whose columns are v1    v, then P

−1AP is in Jordan Canonical

Form. This is done for two reasons: first, because we have a process for finding

such a basis of generalized eigenvectors (the Jordan Form Method7), and second,

because the sequencing of the vectors makes it easier to compute (A− I)
 v as

part of the calculation of Av. This is demonstrated in Example 2 below.
In Exercise 8 you will be asked to show that every function of the form given in

Theorem 1 is indeed a solution to the first-order system. We omit the proof that

these are indeed all of the continuously differentiable solutions.

Example 2 Consider the first-order system

F0() =

⎡⎢⎢⎢⎢⎢⎣
 01 ()
 02 ()
 03 ()
 04 ()
 05 ()

⎤⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎣
−6 8 17 −6 28

−5 0 10 −5 20

7 −2 −14 8 −28
−6 −3 11 −4 24

−7 2 15 −7 29

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
1()

2()

3()

4()

5()

⎤⎥⎥⎥⎥⎥⎦ = AF()

To solve this system, we begin by putting the coefficient matrix A into Jordan

Canonical Form using the Jordan Form Method.8

First, a lengthy calculation produces

A() = 5 − 54 + 143 − 222 + 17− 5
= (− 1)3 ¡2 − 2+ 5¢
= (− 1)3 (− (1 + 2)) (− (1− 2)) 

Let 1 = 1, 2 = 1 + 2, and 3 = 1 − 2. Next, we follow Step A of the Jordan
Form Method for each eigenvalue in turn to find generalized eigenvectors associated

with these eigenvalues.

We begin with 1 = 1. We need to find three generalized eigenvectors for 1
since this is the algebraic multiplicity of 1.
Step A1: Since A(A) = (A− I5)3

¡
A2 − 2A+ 5I5

¢
, we let D1 = A

2 − 2A+
5I5. A short computation then yields

D1 =

⎡⎢⎢⎢⎢⎢⎣
−28 −24 60 −28 128

0 0 0 0 0

4 8 −4 4 −16
−4 −4 8 0 16

−10 −11 19 −9 44

⎤⎥⎥⎥⎥⎥⎦ 
7 See the web section on Jordan Canonical Form.
8Note that the Jordan Form Method calls the matrix “B,” while we have named it “A.”
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Step A2: We search for the smallest value of  such that (A− I5)D1 = O5.

A few short computations yield

(A− I5)D1 =

⎡⎢⎢⎢⎢⎢⎣
8 20 −4 12 −32
0 0 0 0 0

−8 −12 12 −4 32

−8 −12 12 −4 32

4 8 −4 4 −16

⎤⎥⎥⎥⎥⎥⎦ 

(A− I5)2D1 =

⎡⎢⎢⎢⎢⎢⎣
−32 −48 48 −16 128
0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

−8 −12 12 −4 32

⎤⎥⎥⎥⎥⎥⎦ 
and

(A− I5)3D1 = O5

Thus,  = 3.
Step A3: All columns of (A− I5)2D1 are multiples of the first column. Hence,

we choose the first column of (A− I5)2D1 to be v11; that is, v11 = [−32 0 0 0−8].
Step A4: Let v12 be the first column of (A− I5)D1, and let v13 be the first

column of D1. To simplify matters, we divide all entries of these vectors by 4 to
obtain

v11 = [−8 0 0 0−2]
v12 = [2 0−2−2 1]

and v13 =
£−7 0 1−1−52¤ 

Step A5: We have the single sequence {v11v12v13} of generalized eigenvectors
corresponding to 1 = 1. The following useful facts about v11, v12, and v13 will
come in handy later:

(A− I5)v12 = v11 (A− I5)v13 = v12 and (A− I5)2 v13 = v11
Step A6: Because we have 3 generalized eigenvectors for 1 = 1 and the alge-

braic multiplicity of 1 is 3, we do not need to find any more generalized eigenvectors
corresponding to 1.

Next, we find the generalized eigenvectors for 2 = 1 + 2. Since the algebraic
multiplicity of 2 is 1, we only need one generalized eigenvector for 2. This will
be an actual eigenvector.

Step A1: We let D2 = (A− (1− 2) I5) (A− I5)3. A long but straightforward
calculation yields

D2 =

⎡⎢⎢⎢⎢⎢⎣
96 + 72 48− 24 −192− 144 96 + 72 −384− 288
40 16 + 8 −80 40 −160

−16− 72 −32− 8 32 + 144 −16− 72 64 + 288

16 + 32 16 −32− 64 16 + 32 −64− 128
32 + 64 32 −64− 128 32 + 64 −128− 256

⎤⎥⎥⎥⎥⎥⎦ 

Step A2: Now (A − (1 + 2)I5)D2 = A(A) = O5 by the Cayley-Hamilton

Theorem. Hence,  = 1.
Step A3: Because  = 1, finding an eigenvector for 2 amounts to choosing a

nonzero column of D2. Since the second column of D2 has the simplest form, we

choose that one. (Note that all of the other columns of D2 are scalar multiples of

the second column.) We further simplify this choice by dividing each entry by 8 to
get

v21 = [6− 3 2 +  − 4−  2 4]
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Steps A4 — A6: These steps are unnecessary, since we have the only eigenvector

we need for 2.

Finally, we must find an eigenvector for 3 = 1 − 2. This computation is

completely analogous to the one performed for 2. In Exercise 6 you are asked to
verify that this process produces the vector

v31 = [6 + 3 2−  −4 +  2 4] 

We now have an ordered basis  = (v11v12v13v21v31) of generalized eigen-
vectors for A. By Theorem 1, every continuously differentiable solution of the

system F0() = AF() has the form

F() = 1
Av11 + 2

Av12 + 3
Av13 + 4

Av21 + 5
Av31

We need to work out each of the expressions in this sum. While the “Av” portion
of each expression has the form


−1X
=0

 

!
(A− I5)


v

(where v represents each of v11 v12 v13 v21 v31 in turn), these differ depending
on the values of , , and the particular v involved.
First, for 1

Av11 we have  = 1 and  = 1 (since (A− I5)1 v11 = 0). Thus,

1
Av11 = 1



−1X
=0

 

!
(A− 1I5) v11

= 1


µ
0

0!
(A− 1I5)0 v11

¶
= 1

 (v11) 

Next, for 2
Av12 we have  = 1 and  = 2 (since (A− I5)2 v12 = 0 but

(A− I5)1 v12 6= 0). Thus,

2
Av12 = 2



−1X
=0

 

!
(A− 1I5) v12

= 2


µ
 0

0!
(A− 1I5)0 v12 +  1

1!
(A− 1I5)1 v12

¶
= 2

 (v12 +  (A− 1I5)v12)
= 2

 (v12 + v11) since (A− 1I5)v12 = v11

Next, for 3
Av13 we have  = 1 and  = 3 (since (A− I5)3 v13 = 0 but

(A− I5)2 v13 6= 0). Thus,

3
Av13 = 3



−1X
=0

 

!
(A− 1I5) v13

= 3


µ
 0

0!
(A− 1I5)0 v13 +  1

1!
(A− 1I5)1 v13 + 2

2!
(A− 1I5)2 v13

¶
= 3



µ
v13 +  (A− 1I5)v13 + 2

2
(A− 1I5)2 v13

¶
= 3



µ
v13 + v12 +

2

2
v11

¶
since (A− 1I5)v13 = v12 and (A− 1I5)2 v13 = v11
Next, for 4

Av21 we have  = 1 + 2 and  = 1 (since (A− (1 + 2)I5)1 v21

Andrilli/Hecker–Elementary Linear Algebra, 5th ed.
c° Elsevier 2016 — All Rights Reserved.



89

= 0). Thus,

4
Av21 = 4

(1+2)
−1X
=0

 

!
(A− (1 + 2)I5) v21

= 4
(1+2)

µ
0

0!
(A− (1 + 2)I5)0 v21

¶
= 4

(1+2) (v21) 

Finally, for 5
Av31 we have  = 1− 2 and  = 1 (since (A− (1− 2)I5)1 v31

= 0). Thus,

5
Av31 = 5

(1−2)
−1X
=0

 

!
(A− (1 + 2)I5) v31

= 5
(1−2)

µ
0

0!
(A− (1− 2)I5)0 v31

¶
= 5

(1−2) (v31) 

Notice by the way, that the values of “” corresponding to each of these generalized
eigenvectors is 1 for v11 v21, and v31, 2 for v12, and 3 for v13. (That is, if you have
created and labelled the generalized eigenvectors as described in the Jordan Form

Method, the value of  for a given generalized eigenvector is the second number in
the subscript for that generalized eigenvector.)

Now, combining all of these expressions, we have:

F() = 1
v11 + 2

 (v12 + v11) + 3


µ
v13 + v12 +

2

2
v11

¶
+ 4

(1+2)v21 + 5
(1−2)v31

Substituting in the values for the vectors v11, v12, v13, v21 and v31 produces the
general solution for this system, as follows:

F() = 1


⎡⎢⎢⎢⎢⎢⎣
−8
0

0

0

−2

⎤⎥⎥⎥⎥⎥⎦+ 2


⎛⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎣
2

0

−2
−2
1

⎤⎥⎥⎥⎥⎥⎦+ 

⎡⎢⎢⎢⎢⎢⎣
−8
0

0

0

−2

⎤⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎠

+ 3


⎛⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎣
−7
0

1

−1
−52

⎤⎥⎥⎥⎥⎥⎦+ 

⎡⎢⎢⎢⎢⎢⎣
2

0

−2
−2
1

⎤⎥⎥⎥⎥⎥⎦+
2

2

⎡⎢⎢⎢⎢⎢⎣
−8
0

0

0

−2

⎤⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎠

+ 4
(1+2)

⎡⎢⎢⎢⎢⎢⎣
6− 3
2 + 

−4− 

2

4

⎤⎥⎥⎥⎥⎥⎦+ 5
(1−2)

⎡⎢⎢⎢⎢⎢⎣
6 + 3

2− 

−4 + 

2

4

⎤⎥⎥⎥⎥⎥⎦
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This simplifies to⎛⎜⎜⎜⎜⎜⎝1

⎡⎢⎢⎢⎢⎢⎣
−8
0

0

0

−2

⎤⎥⎥⎥⎥⎥⎦+ 2

⎡⎢⎢⎢⎢⎢⎣
2− 8
0

−2
−2
1− 2

⎤⎥⎥⎥⎥⎥⎦+ 3

⎡⎢⎢⎢⎢⎢⎣
−7 + 2− 42

0

1− 2
−1− 2
−52 + − 2

⎤⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎠ 

+ 4

⎡⎢⎢⎢⎢⎢⎣
6− 3
2 + 

−4− 

2

4

⎤⎥⎥⎥⎥⎥⎦ (1+2) + 5

⎡⎢⎢⎢⎢⎢⎣
6 + 3

2− 

−4 + 

2

4

⎤⎥⎥⎥⎥⎥⎦ (1−2)
or,⎡⎢⎢⎢⎢⎢⎣
(−81 + (2− 8)2 + (−7 + 2− 42)3) + (6− 3)4(1+2) + (6 + 3)5(1−2)

(2 + )4
(1+2) + (2− )5

(1−2)

(−22 + (1− 2)3) + (−4− )4
(1+2) + (−4 + )5

(1−2)

(−22 + (−1− 2)3) + 24(1+2) + 25(1−2)
(−21 + (1− 2)2 + (−52 + − 2)3)

 + 44
(1+2) + 45

(1−2)

⎤⎥⎥⎥⎥⎥⎦ 

and so the solution set of the given first-order system consists of all vectors of this

general form. ¥
In Example 2, we began with a first-order system of differential equations involv-

ing only real numbers, and so you might be interested in finding only the real-valued
solutions to the system. This is done in the following example.

Example 3 We use the general complex solution obtained for the system in Example 2 to isolate

its real-valued solutions.
Since 1 = 1 is real, we can replace the complex coefficients 1, 2, 3 with real

coefficients 1, 2, 3, to obtain all of the real-valued terms in the solution related to
1. Thus, we only need to consider the terms related to 2 = 1+2 and 3 = 1−2
(those involving 4 and 5), which are

4
(1+2)v21 + 5

(1−2)v31 = 4
2v21 + 5

−2v31

You are asked in Exercise 7 to use the facts that 2 and 3 are complex conjugates
of each other, as are their corresponding generalized eigenvectors v21 and v31, along
with the formulas

 = cos  +  sin  and − = cos  −  sin 

to show that the sum 4
2v21 + 5

−2v31 can be expressed in the form

 (4 cos(2) + 5 sin(2))u+  (−4 sin(2) + 5 cos(2))w

where

u = real part of v21 =
v21 + v31

2
= [6 2 −4 2 4]  and

w = imaginary part of v21 =
v21 − v31

2
= [−3 1 −1 0 0] 

Because all of the functions now involved (, cos(2), and sin(2)) are real-valued
for real values of , we restrict the coefficients 4 and 5 to being real so that we
only get real-valued solutions.
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Therefore, we have determined that all real-valued solutions to the given first-
order system are of the form

F() = 1
v11 + 2

 (v12 + v11) + 3


µ
v13 + v12 +

2

2
v11

¶
+  (4 cos(2) + 5 sin(2))u+  (−4 sin(2) + 5 cos(2))w

where 1 2 3 4 5 ∈ R, and with u and w as described above. ¥

I New Vocabulary

Av

I Highlights

• If A is a square matrix,  is an eigenvalue for A with corresponding gen-

eralized eigenvector v, and if  is the smallest positive integer such that

(A− I)v = 0, then Av =
P−1

=0
 

! (A− I)
 v

• If A is an ×  matrix, then the complete set of continuously differentiable
solutions for the system of differential equations given by F0() = AF() is the
set of all functions of the form F() = 1

Av1+2
Av2+· · ·+Av where

(v1    v) is an ordered basis for C consisting of generalized eigenvectors
for A and 1      ∈ C.

• An ordered basis for C consisting of generalized eigenvectors for a square
matrix A can be computed using the Jordan Form Method found in the web

section on Jordan Canonical Form.

• If a matrix A has all real entries, but has complex eigenvalues, the set of real

continuously differentiable solutions for F0() = AF() involves isolating the
real part of the general complex solution, using the formulas  = cos + sin 
and − = cos  −  sin 

I EXERCISES

1. Let A be the 3× 3 matrix from Example 1.

a) Verify that A() = (− 3)3.
b) Verify that v11 = [−3 1 0], v12 = [2−3−1], v13 = [1 0 0] is a sequence
of generalized eigenvectors of A for  = 3 such that (A− 3I3)v13 = v12
(A− 3I3)v12 = v11, and (A− 3I3)v11 = 0.

2. In each part, you are given an ×  matrix A, an eigenvalue  of A, and a
generalized eigenvector v for A corresponding to . Calculate Av.

a)F A =

⎡⎣ −1 0 0

−5 3 −1
1 1 1

⎤⎦,  = 2, v = [0 1 0]

b) A =

⎡⎢⎢⎣
1 −1 2 −1
−2 6 −11 6

0 3 −5 3

0 1 −2 2

⎤⎥⎥⎦,  = 1, v = [−1 1 0−1]

c)F A =

⎡⎢⎢⎣
3 1 −4 0

0 3 0 −4
2 0 −3 1

0 2 0 −3

⎤⎥⎥⎦,  = , v = [0 2 0 1]
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3. In each part, find the general solution for the first-order linear homogeneous

system F0() = AF() for the given matrix A. (Note: Parts (a) through (g)
of this exercise use the same matrices that appear in Exercise 6 in the web

section on Jordan Canonical Form. If you have already done that exercise,

you can use the answers you computed to help you solve this exercise.)

a)F A =

⎡⎣ −9 5 8−4 3 4
−8 4 7

⎤⎦
b) A =

⎡⎣ 6 −2 −3
−14 14 13

23 −19 −19

⎤⎦
(Hint: A() = 3 − 2 − 8+ 12 = (− 2)2 (+ 3))

c) A =

⎡⎣ 5 −3 −6
7 −5 −14
−2 2 6

⎤⎦
d)F A =

⎡⎣ 8 5 0

−5 −3 −1
10 7 0

⎤⎦ (Note: Exercise 7(c) below asks for only the real-
valued solutions for this system.)

e) A =

⎡⎣ −4 + 5 2− 2 1− 2−8 + 6 4− 2 2− 3
4 −2 −

⎤⎦ (Hint: A() = 3 − 22 − )

f) A =

⎡⎢⎢⎣
−12 5 −11 −10
−7 3 −7 −8
15 −6 14 12

−4 1 −4 −3

⎤⎥⎥⎦
(Hint: A() = 4 − 23 − 32 + 4+ 4 = (− 2)2 (+ 1)2)

g)F A =

⎡⎢⎢⎢⎢⎢⎣
−3 −2 −1 5 3

−8 2 7 −2 1
0 −3 −4 6 3

−4 1 3 −1 1
0 −2 −2 4 1

⎤⎥⎥⎥⎥⎥⎦
(Hint: A() = 5 + 54 + 103 + 102 + 5+ 1 = (+ 1)5)

h)F A =

⎡⎣ 0 1 00 0 1

0 0 0

⎤⎦
4. Show that it is consistent with the definition of Av to define O to be I.
(Consider both cases:  = 0 and A = O. You can adopt here the standard

convention in the context of infinite series that 00 = 1)

5. Let A be an × matrix having eigenvalue  with corresponding generalized
eigenvector v. Let B = A for some  ∈ C. Suppose that F() = Av. Show
that v is a generalized eigenvector for B corresponding to the eigenvalue ,
and that G() = Bv = F().

6. Let F0() = AF() be the first-order system given in Example 2. Verify that

v31 = [6 + 3 2−  − 4 +  2 4]

is an eigenvector for A corresponding to the eigenvalue 3 = 1− 2.
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7. This exercise will substantiate the claim made in Example 3.

a) Use the formulas

 = cos  +  sin  and − = cos  −  sin 

to show that if  = + , then

 + − =  ( cos  +  sin ) +  (− sin  +  cos ) 

where    ∈ C,  is the complex conjugate of ,  =  + , and
 = (− ).

b) Use part (a) to show that if  ∈ R and

v21 = [6 + 3 2−  − 4 +  2 4]

and v31 = [6 + 3 2−  −4 +  2 4]

then the real-valued solutions corresponding to

4
(1+2)v21 + 5

(1−2)v31

in Example 3 can be expressed in the form

 (4 cos(2) + 5 sin(2))u+  (−4 sin(2) + 5 cos(2))w

where 4 5 ∈ R, u is the real part of v21 and w is the imaginary part

of v21.

c)F For the matrix A =

⎡⎣ 8 5 0

−5 −3 −1
10 7 0

⎤⎦ from part (d) of Exercise 3, find all

the real-valued solutions for the first-order linear homogeneous system
F0() = AF() by following a technique similar to that shown in Example
3, making use of the formula in part (a) above.

8.I Let A be an ×  matrix.

a) Let  be an eigenvalue for A and let v be a corresponding general-
ized eigenvector. Show that Av is a solution to the first-order system
F0() = AF().

b) Show that any finite linear combination of solutions to the first-order

system F0() = AF() is also a solution for the system. (This, together
with part (a), shows that all of the functions given in Theorem 1 are

indeed solutions for the system F0() = AF().)

9.F True or False:

a) To compute Aw for a square matrix A and a vector w, one must first
express w as a linear combination of generalized eigenvectors for A.

b) If a square matrix A is diagonalizable, then the techniques in Section

8.8 of the textbook are sufficient to completely solve the system F0() =
AF(), so the techniques introduced in this section are not necessary in
that case.

c) If A is an  ×  matrix, then the complete set of continuously dif-

ferentiable solutions for the system of differential equations given by

F0() = AF() is the set of all functions of the form F() = Av where
v is a generalized eigenvector for A and  ∈ C.
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d) If A is a square matrix whose only eigenvalue is 0, the the complete
set of continuously differentiable solutions for the system of differential

equations given by F0() = AF() consists only of polynomials.

e) The complete set of real-valued continuously differentiable solutions for

the system

F0() =
∙
0 −1
1 0

¸
F()

is the set of all functions of the form

F() = 

∙
cos 

sin 

¸
+ 

∙ − sin 
cos 

¸


for   ∈ R.
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I Answers to Selected Exercises

(2) (a)

⎡⎣ 0

1 + 



⎤⎦ 2
(c)

⎡⎢⎢⎣
2

2



1

⎤⎥⎥⎦ 

(3) (a)

⎛⎝1

⎡⎣ 12
0

⎤⎦+ 2

⎡⎣ 2 + 

1 + 2

2

⎤⎦⎞⎠  + 3

⎡⎣ 10
1

⎤⎦ −
=

⎡⎣ (1 + 2 (2 + ))  + 3
−

(21 + 2 (1 + 2)) 


22
 + 3

−

⎤⎦
(d) 1

⎡⎣ 1

−1
1

⎤⎦ 3 + 2

⎡⎣ 2− 

−3 + 

1− 2

⎤⎦ (1−) + 3

⎡⎣ 2 + 

−3− 

1 + 2

⎤⎦ (1+)
=

⎡⎣ 1
3 + 2(2− )(1−) + 3(2 + )(1+)

−13 + 2(−3 + )(1−) + 3(−3− )(1+)

1
3 + 2(1− 2)(1−) + 3(1 + 2)

(1+)

⎤⎦

(g)

⎛⎜⎜⎜⎜⎜⎝1

⎡⎢⎢⎢⎢⎢⎣
−2
−8
0

−4
0

⎤⎥⎥⎥⎥⎥⎦+ 2

⎡⎢⎢⎢⎢⎢⎣
1− 2
−8
0

−4
0

⎤⎥⎥⎥⎥⎥⎦+ 3

⎡⎢⎢⎢⎢⎢⎣
−2
3

−3
1

−2

⎤⎥⎥⎥⎥⎥⎦+ 4

⎡⎢⎢⎢⎢⎢⎣
−2
1 + 3

−3


−2

⎤⎥⎥⎥⎥⎥⎦+ 5

⎡⎢⎢⎢⎢⎢⎣
1

−2
2

0

0

⎤⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎠ −

=

⎡⎢⎢⎢⎢⎢⎣
(−21 + 2 − 23 + 5) + (−22 − 24) 
(−81 + 33 + 4 − 25) + (−82 + 34) 

(−33 + 25)− 34
(−41 + 3) + (−42 + 4) 

−23 − 24

⎤⎥⎥⎥⎥⎥⎦ −

(h) 1

⎡⎣ 10
0

⎤⎦+ 2

⎡⎣ 

1

0

⎤⎦+ 3

⎡⎣ 1
2 
2



1

⎤⎦ =
⎡⎣ 1 + 2+

3
2 
2

2 + 3

3

⎤⎦

(7) (c) 1

⎡⎣ 1

−1
1

⎤⎦ 3 +
⎛⎝5

⎡⎣ 2

−3
1

⎤⎦+ 4

⎡⎣ −11
−2

⎤⎦⎞⎠  sin 

+

⎛⎝4

⎡⎣ 2

−3
1

⎤⎦+ 5

⎡⎣ 1

−1
2

⎤⎦⎞⎠  cos 

=

⎡⎣ 1
3 + (25 − 4) 

 sin + (24 + 5) 
 cos 

−13 + (−35 + 4) 
 sin − (34 + 5) 

 cos 

1
3 + (5 − 24)  sin + (4 + 25)  cos 

⎤⎦ 
where 1 4 5 ∈ R

(9) (a) T (b) T (c) F (d) T (e) T
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Isometries on Inner Product

Spaces
Prerequisites: Section 5.5, Isomorphism; Section 6.3, Orthogonal Diagonaliza-

tion; Section 7.4, Orthogonality in C; Section 7.5, Inner Product Spaces
In this section, we investigate functions between inner product spaces that preserve

the distances between vectors. We will pay special attention to such functions that

are also linear transformations.

I Definition of an Isometry

As we will see in the formal definition below, a function on an inner product space

that preserves the distances between vectors is called an isometry.

Example 1 The translation function  : R2 → R2 defined by ([ ]) = [ ] + [2−5] is an
isometry from R2 to R2. The function  merely moves every vector in the plane 2
units in the positive -direction and 5 units in the negative -direction. In effect,
 is a mapping taking the entire plane to itself in which the distance between any
pair of vectors remains unchanged. Such a mapping is often referred to as a rigid

motion of the plane, in which the plane is imagined as an infinite, unbreakable,

unbendable sheet of glass that is merely shifted to a new position. Along with

translations, rigid motions of the plane also include rotations about a fixed point

and reflections about a fixed line, as well as compositions of these mappings. (In

fact, it can be shown that all isometries of the plane are actually rigid motions.)

The conjugation function : C→ C given by () =  for every  ∈ C is also an
isometry, since, if 1 2 ∈ C, then

|1 − 2| = |1 − 2| by Theorem C.1 in Appendix C

= |1 − 2|

because a complex number and its conjugate have the same absolute value. Hence,

the distance from 1 to 2 equals the distance from 1 to 2. ¥
Although both of the functions in Example 1 are isometries, the first one is not

a (real) linear transformation, while the second is not a complex linear transforma-

tion.

In particular, the translation function on R2 in Example 1 is not a linear trans-
formation because it does not fix the origin; that is, (0) 6= 0. Because of this,
while  preserves the distance between vectors, it does not preserve the lengths of
vectors; that is, in general, k(v)k 6= kvk. (This is because the length of a vector
equals its distance from the zero vector. We will see this in more detail in the proof
of Theorem 1, below.)

In this section, we are mostly interested in those isometries that are linear
transformations. We will see in Theorem 1, below, that such isometries preserve

both distances and lengths.

Example 2 Consider the linear operator : R3 → R3 which rotates every vector (having its
initial point at the origin) counterclockwise 45◦ about the -axis. From a geometric
point of view,  is a rigid motion of 3-space, in which 3-dimensional space is
imagined as an infinite unbreakable, unbendable solid that is merely rotated to a

new position, while keeping the -axis fixed. Thus,  is a obviously an isometry
since it does not change the distance between any two vectors. This operator can
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be expressed as



⎛⎝⎡⎣ 





⎤⎦⎞⎠ =

⎡⎢⎢⎣
√
2
2 −

√
2
2 0

√
2
2

√
2
2 0

0 0 1

⎤⎥⎥⎦
⎡⎣ 





⎤⎦ =
⎡⎢⎢⎣
√
2
2 −

√
2
2 

√
2
2 +

√
2
2 



⎤⎥⎥⎦ 
¥

In what follows, we will study the notion of isometry in more general inner

product spaces, not just in R and C. Therefore, we will often distinguish the
particular inner product involved by using a subscript to indicate its corresponding

inner product space. For example, in an inner product space V, we would express
the inner product of v1 and v2 as hv1v2iV . Similarly, we express the norm of

v in V as kvkV . Throughout this section, when working with R or C, unless
stated otherwise, we assume that we are using the standard dot product as the

inner product.

Definition Let V and W be real [complex] inner product spaces (either both real or

both complex). Then a function  : V →W is an isometry if and only if

k(v1)− (v2)kW = kv1 − v2kV for all v1v2 ∈ V.

Notice that kv1 − v2kV is computed using the norm on V, while k(v1)− (v2)kW
is computed with the norm of W.

Example 3 Consider the inner product space P with inner product defined as follows: if
p1 = 

 + · · ·+ 1+ 0 and p2 = 
 + · · ·+ 1+ 0, then

hp1p2i =  + · · ·+ 11 + 00

Also consider the inner product space R+1 with the usual inner (dot) product.
Suppose : P → R+1 is the linear transformation given by

(
 + · · ·+ 1+ 0) = [     1 0].

Now  is obviously an isometry since

k( + · · ·+ 1+ 0)− ( + · · ·+ 1+ 0)kP
= k( − )

 + · · ·+ (1 − 1)+ (0 − 0)kP
=
p
h( − ) + · · ·+ (0 − 0) ( − ) + · · ·+ (0 − 0)i

=
p
( − )2 + · · ·+ (0 − 0)2

while

k( + · · ·+ 1+ 0)− (
 + · · ·+ 1+ 0)kR+1

= k[     1 0]− [     1 0]kR+1
= k[( − )     (1 − 1) (0 − 0)]kR+1
=
p
[( − )     (0 − 0)] · [( − )     (0 − 0)]

=
p
( − )2 + · · ·+ (0 − 0)2

¥

I Properties of Isometries

While linear transformations that are isometries preserve (by definition) the dis-

tances between vectors, the next theorem shows that these types of isometries also

preserve the norms of vectors, as well as inner products and orthonormal sets.
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THEOREM 1

Let : V →W be a linear transformation between inner product spaces. Then

the following are equivalent:

(1)  is an isometry.
(2) kvkV = k(v)kW for every v ∈ V.
(3) hv1v2iV = h(v1) (v2)iW for every v1v2 ∈ V.
(4) The image under  of every orthonormal set in V is an orthonormal set

in W.

Proof Assume  is a linear transformation between inner product spaces V and
W. We prove Theorem 1 by showing that (1) ⇐⇒ (2), (1) =⇒ (3), (3) =⇒ (4),
and (4) =⇒ (2).
(1) =⇒ (2): Let v ∈ V. Then,

kvkV = kv− 0VkV = k(v)− (0V)kW because  is an isometry

= k(v)− 0WkW by Theorem 5.1

= k(v)kW .

(2) =⇒ (1): Suppose kvkV = k(v)kW for all v ∈ V. But then, for all v1v2 ∈ V,
kv1 − v2kV = k(v1 − v2)kW = k(v1)− (v2)kW , because  is a linear transfor-
mation. Hence,  is an isometry.
This concludes the proof of (1)⇐⇒ (2), and so (1) and (2) are equivalent.
(1) =⇒ (3): We present a proof for real inner product spaces using the Polar-

ization Identity from part (a) of Exercise 8 in Section 7.5. A completely analogous

proof holds for complex inner product spaces using the complex Polarization Iden-

tity in part (b) of that exercise.

Suppose kv1 − v2kV = k(v1)− (v2)kW for every v1v2 ∈ V. Then,

hv1v2iV = 1
4

³
kv1 + v2k2V − kv1 − v2k2V

´
using the Polarization Identity in V

= 1
4

³
kv1 − (−v2)k2V − kv1 − v2k2V

´
= 1

4

³
k(v1)− (−v2)k2W − k(v1)− (v2)k2W

´
= 1

4

³
k(v1) + (v2)k2W − k(v1)− (v2)k2W

´
since  is a linear transformation

= h(v1) (v2)iW using the Polarization Identity in W.

(3) =⇒ (4): Suppose hv1v2iV = h(v1) (v2)iW for every v1v2 ∈ V. Let 
be an orthonormal set in V. Then kukV = 1 for all u ∈ , and huuiV = 0 for
all distinct uu ∈ . But then

h(u) (u)iW = huuiV = 0

for all distinct uu ∈ , and

k(u)kW =
q
h(u) (u)iW =

q
huuiV = kukV = 1
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for all u ∈ . Also note that, for all distinct uu ∈ , (u) and (u) are
distinct because

k(u)− (u)kW =
q
h(u)− (u) (u)− (u)iW

=
q
h(u − u) (u − u)iW

=
q
h(u − u) (u − u)iV

=
q
huuiV − huuiV − hu uiV + hu uiV

=
√
1− 0− 0 + 1 =

√
2 6= 0.

Hence, () is an orthonormal set.
(4) =⇒ (2): Suppose the image of every orthonormal set in V is an orthonormal

set in W. We must show that k(v)kW = kvkV for all v ∈ V.
First, if v = 0V , then (v) = (0V) = 0W , and so

k(v)kW = k0WkW = 0 = k0VkV = kvkV .

Next, suppose that v 6= 0V . Now u = v
kvkV is a unit vector, and so {u} is an

orthonormal set in V. Hence, {(u)} is an orthonormal set in W. Therefore, (u)
is a unit vector. Thus,

1 = k(u)kW =

°°°°µ v

kvkV

¶°°°°
W

=

°°°°µ 1

kvkV

¶
(v)

°°°°
W

because  is a linear transformation

=
1

kvkV
k(v)kW by Theorem 7.13.

But then kvkV = k(v)kW . QED

Example 4 Consider again the linear operator  on R3 from Example 2, involving a counter-

clockwise rotation about the -axis through an angle of 45◦, along with an inner
product on R3 given by the standard dot product. All of the properties of isome-
tries given in Theorem 1 are satisfied for this linear transformation.

In particular, because the rotation  involves a rigid motion of space that fixes
the origin,  preserves the lengths of vectors, which verifies that property (2) is

satisfied.

Next, if  is any orthonormal set of vectors in R3, then the vectors in  are

unit vectors, and because  preserves lengths, the vectors in () are also unit
vectors. Moreover, since any two vectors in  are orthogonal to each other, their

images in () after rotation must also be orthogonal to each other. Thus, ()
is also an orthonormal set, verifying that property (4) is satisfied.

However, verifying property (3), preservation of the inner product, requires some
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algebraic computation:

([1 1 1]) · ([2 2 2]) =

⎡⎢⎢⎣
√
2
2 1 −

√
2
2 1√

2
2 1 +

√
2
2 1

1

⎤⎥⎥⎦ ·
⎡⎢⎢⎣
√
2
2 2 −

√
2
2 2√

2
2 2 +

√
2
2 2

2

⎤⎥⎥⎦
=
³√

2
2 1 −

√
2
2 1

´³√
2
2 2 −

√
2
2 2

´
+
³√

2
2 1 +

√
2
2 1

´³√
2
2 2 +

√
2
2 2

´
+ 12

= 1
212 − 1

212 − 1
221 +

1
212

+ 1
212 +

1
212 +

1
221 +

1
212 + 12

= 12 + 12 + 12

= [1 1 1] · [2 2 2]

¥
The proof of the following corollary is easy, and is left for you to do in Exercise

7.

COROLLARY 2

Let : V → W is an isometry between real inner product spaces. Then the
measure of the angle between any two nonzero vectors v1 and v2 in V is equal
to the measure of the angle between (v1) and (v2) in W.

Corollary 2 shows that isometries preserve the geometry of real inner product

spaces by leaving the angle between corresponding nonzero vectors unchanged. For

example, we have already seen that the isometry in Example 4 preserves angles,

illustrating this corollary.

Note that Corollary 2 only applies to real inner product spaces, not to complex
inner product spaces. This is because the angle between two vectors v1 and v2
in a complex inner product space is not defined, since, in a complex vector space,
hv1v2i
kv1kkv2k might be a complex number.

9

An important property of isometries for both real and complex inner product

spaces is given in the next theorem.

THEOREM 3

Suppose the linear transformation : V → W is an isometry between inner

product spaces. Then  is one-to-one. Furthermore, if V and W are finite

dimensional with dim(V) = dim(W), then  is an isomorphism.

Proof Let  be an isometry between V and W, and let v ∈ ker(). Then

(v) = 0W =⇒ k(v)kW = 0

=⇒ kvkV = 0 by part (2) of Theorem 1

=⇒ v = 0V .

Therefore,  is one-to-one by part (1) of Theorem 5.12 (or its complex analog).

If V and W are finite dimensional with dim(V) = dim(W), then the fact that 
is one-to-one together with Corollary 5.13 (or its complex analog) implies that 
must be an isomorphism. QED

9Even though angles between vectors are not defined in a complex inner product space, recall

that orthogonality is defined in both real and complex inner product spaces, since, in both cases,
we can check whether hv1v2i = 0. Hence, part (4) of Theorem 1 does make sense in a complex
inner product space.
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For instance, we have already seen that the coordinatization transformation

from P to R+1 in Example 3 is an isometry. Because the dimensions of P and
R+1 agree, this isometry is an isomorphism by Theorem 3. (In fact, it was shown

in general in the proof of Theorem 5.19 that any coordinatization transformation

on a finite dimensional vector space is an isomorphism.)

I All -Dimensional Inner Product Spaces are Isometric

Definition Two inner product spaces V, W are isometric if and only if there is an isomor-

phism : V →W that is also an isometry.

The next theorem generalizes Example 3, showing that every -dimensional real
[complex] inner product space is isometric to R [C]. You are asked to prove this
in Exercise 11.

THEOREM 4

Let V be a real [complex] -dimensional inner product space, and let  be an

ordered orthonormal basis for V. Then the isomorphism : V → R[C] given
by (v) = [v] for all v ∈ V is an isometry. That is, V and R [C] are
isometric.

This theorem shows that R [C] is the “model” -dimensional real [complex]
inner product space because there is a distance-preserving isomorphism between

any real [complex] inner product space and R [C]. Thus, any -dimensional
real [complex] inner product space essentially “behaves” like R [C] not only with
respect to its addition and scalar multiplication, but also as far as its inner product

operation is concerned!

The next corollary follows easily from Theorem 4. You are asked to prove it in

Exercise 13. (The proof is similar to the proof of Corollary 5.20.)

COROLLARY 5

Let V andW be real [complex] -dimensional inner product spaces. Then there
is an isomorphism from V to W that is an isometry. That is, V and W are

isometric.

The fact from part (3) of Theorem 1 that isometries preserve the inner product is

especially interesting. We know from Section 5.5 that isomorphic vector spaces are

essentially equivalent, with properties in one mirroring the corresponding properties

in the other. But an isomorphism that is an isometry also preserves the inner

product, so all of the properties depending upon the inner product are preserved as

well. Thus, up to isomorphism, all -dimensional inner product spaces essentially
behave the same, just as all -dimensional vector spaces behave the same! We saw
this in Example 3, in which the “behavior” of P and R+1 as real inner product
spaces is identical. In the next example, we consider P3 with, seemingly, a different
inner product. However, we know from Theorem 4 that this inner product space is

actually isometric to R4 with the standard dot product.

Example 5 Consider P3 as a subspace of the inner product space of all continuous real-valued
function on the interval [−1 1], where

hf gi =
Z 1

−1
()() 
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(See Example 11 in Section 7.5.)10 In that example, we found the mutually or-

thogonal polynomials v1 = 1, v2 = , v3 = 2 − 1
3 , and v4 = 3 − 3

5 . (These are
multiples of the first four Legendre polynomials.) In part (a) of Exercise 12, you

are asked to verify that normalizing these vectors produces u1 =
1√
2
, u2 =

³q
3
2

´
,

u3 =
q

45
8

¡
2 − 1

3

¢
, and u4 =

q
175
8

¡
3 − 3

5 
¢
. Hence,  = (u1u2u3u4) is an or-

dered orthonormal basis for P3. Thus, by Theorem 4, the isomorphism : P3 → R4
given by (p) = [p] is an isometry, implying that P3 with this inner product is
isometric to R4. You are asked to verify that this isomorphism is an isometry in a

particular case in part (b) of Exercise 12. ¥

I The Matrix of an Isometry

The next theorem gives an easy way to determine whether a given linear transfor-

mation is an isometry.

THEOREM 6

Let : V → W be a linear transformation between two -dimensional real
[complex] inner product spaces. Let  and  be ordered orthonormal bases for

V and W, respectively. Then  is an isometry if and only if the matrix A

for  is an orthogonal [unitary] matrix.

This theorem shows that multiplication by an orthogonal or unitary matrix

essentially leaves the geometry (length, distance) of vectors unchanged. This is

why the orthogonal [unitary] diagonalization process of Section 6.3 [Section 7.4]

has advantages over ordinary diagonalization.

Proof Let , V,W,   and A be as given in the statement of the theorem.

Suppose, first, that  is an isometry. We want to show that A is orthogonal

[unitary]. Let  = (u1    u). By assumption,  is orthonormal in V. Then
() = ((u1)     (u)) is an orthonormal set in W, by part (4) of Theorem 1.

But then () is a linearly independent set by Theorem 7.15, and therefore is an

orthonormal basis for W (since W is -dimensional). By Theorem 4, the mapping

fromW to R [C] that takes w to [w] is an isometry. Hence, by part (4) of The-
orem 1, ([(u1)]      [(u)]) is an orthonormal basis for R [C]. But the th
column of A is equal to [(u)] , for 1 ≤  ≤ . Thus, by part (2) of Theorem
6.7 [part (2) of Theorem 7.7], A is an orthogonal [unitary] matrix.

Conversely, suppose that the matrix A for  is orthogonal. (An identical ar-
gument works for the unitary case using the conjugate transpose everywhere below

in place of the transpose.) Now, for all v ∈ V, we have k(v)k2W = h(v) (v)iW .
By Theorem 4, the mapping w → [w] is an isometry from W to R, and so
h(v) (v)iW = [(v)] · [(v)] (in R) = A [v] ·A [v]. Rewriting this
vector dot product as a matrix multiplication, we have

k(v)k2W = (A [v])
A [v]

= [v]A

A [v]

= [v]I[v] since A is orthogonal

= [v][v] = [v] · [v] = k[v]k2R .

But the mapping v→ [v] from V to R is an isometry, and so, part (2) of Theorem
1 implies that

k[v]k2R = kvk2V .
Hence, k(v)kW = kvkV , which, by Theorem 1, makes  an isometry. QED

10Even though this is the same vector space P as in Example 3, it is a different inner product
space. The inner products used are distinct, although they are equivalent through isomorphism.
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Example 6 We can show that the matrix (using the standard basis) for a linear operator on R2
that is an isometry has one of two forms. Since the columns of the corresponding

matrix for the operator are unit vectors (by Theorem 6), the first column has the

form

∙
cos 

sin 

¸
, for some angle  (why?). A little thought will convince you that the

second column must be either

∙ − sin 
cos 

¸
or

∙
sin 

− cos 
¸
in order for it to be a unit

vector orthogonal to the first column. Hence, the two possible types of matrices

corresponding to an isometry of R2 are

A =

∙
cos  − sin 
sin  cos 

¸
and B =

∙
cos  sin 

sin  − cos 
¸


We have already seen thatA is the matrix for a counterclockwise rotation of vectors
in the plane through the angle . The matrix B represents a reflection through the
line through the origin determined by the vector

£
cos 2  sin


2

¤
. (This is left for

you to show in Exercise 3.) Notice that |A| = 1, while |B| = −1. Thus, we can
characterize all linear operators on R2 that are isometries: those whose matrix has
determinant 1 are rotations, while those that have determinant −1 are reflections.

¥

I Isometries That Are Not Linear Transformations

We saw in Example 1 that there are isometries between inner product spaces that

are not linear transformations. For example, a translation function on R preserves
distances between vectors, but is not a linear transformation. Also, for complex

inner product spaces, the fact that the conjugation operation preserves distances in

C but is not a linear operator on C provides the framework for many other examples
of isometries that are not linear transformations. However, in the case of real inner

product spaces, the final theorem of this section essentially shows that all isometries

between real inner product spaces consist of a linear transformation followed by a

translation. Exercise 14 provides an outline for the proof of this theorem.

THEOREM 7

Let V and W be real inner product spaces and let  : V → W be an isometry.

Then the function : V → W given by (v) = (v)− (0V) for all v ∈ V is a
linear transformation. Furthermore,  is an isometry.

Example 7 The function  : R2 → R2 given by



µ∙




¸¶
= 1

5

∙
3− 4 + 8
4+ 3 − 5

¸
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is an isometry because°°°° µ∙ 
¸¶
− 

µ∙




¸¶°°°° =

°°°°15 ∙ 3− 4+ 84+ 3− 5
¸
− 1

5

∙
3− 4+ 8
4+ 3− 5

¸°°°°
= 1

5

°°°° 3(− )− 4(− )

4(− ) + 3(− )

°°°°
= 1

5

q
(3(− )− 4(− ))

2
+ (4(− ) + 3(− ))

2

= 1
5

p
25(− )2 + 25(− )2

=

°°°°∙ − 

− 

¸°°°° = °°°°∙ 
¸
−
∙




¸°°°° 
Now (0) = 1

5

∙
8

−5
¸
, and so if we define : R2 → R2 by (v) = (v) − (0V),

then



µ∙




¸¶
= 1

5

∙
3− 4 + 8
4+ 3 − 5

¸
− 1

5

∙
8

−5
¸

= 1
5

∙
3− 4
4+ 3

¸
=

"
3
5 −45
4
5

3
5

# ∙




¸


a linear transformation. Because the matrix for  is orthogonal, we see that  is
indeed an isometry by Theorem 6. ¥

I New Vocabulary

isometric inner product spaces

isometry between inner product spaces

rigid motion of the plane

rigid motion of 3-space

I Highlights

• A linear transformation : V →W is an isometry between inner product

spaces V and W if and only if kv1 − v2kV = k(v1)− (v2)kW for every

v1v2 ∈ V.
• A linear transformation : V →W is an isometry between inner product

spaces V and W
⇐⇒ k(v)kW = kvkV for all v ∈ V
⇐⇒ hv1v2iV = h(v1) (v2)iW for every v1v2 ∈ V
⇐⇒ the image under  of every orthonormal set in V is an orthonormal

set in W.
• If a linear transformation : V →W is an isometry between real inner prod-
uct spaces, then the angle between two nonzero vectors v1 and v2 in V equals
the angle between (v1) and (v2) in W.

• If a linear transformation : V →W is an isometry between inner product

spaces, then  is one-to-one.

• If a linear transformation : V →W is an isometry between two -dimensional
inner product spaces, then  is an isomorphism.

• Inner product spaces V and W are isometric if and only if there is an isomor-

phism : V →W that is also an isometry.
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• If V is an -dimensional real [complex] inner product space, and  is an

ordered orthonormal basis for V, then the isomorphism v → [v] from V to
R [C] is an isometry.

• If V and W are two -dimensional real [complex] inner product spaces, then
V and W are isometric.

• Isometric inner product spaces are not only equivalent as isomorphic vector
spaces, but also possess equivalent inner products.

• If : V →W is a linear transformation between two -dimensional real [com-
plex] inner product spaces having orthonormal bases  and , respectively,
then  is an isometry if and only if the matrix A for  is orthogonal

[unitary].

• Every linear operator on R2 that is an isometry is either a rotation about the
origin or a reflection about a line through the origin.

• Every isometry  : V → V on a real inner product space represents a linear
transformation  on V followed by a translation of the vectors in V. Further-
more, the linear transformation  is an isometry.

I EXERCISES

1. Which of the following linear operators are isometries?

a)F : R2 → R2 given by 
µ∙





¸¶
=

" √
2
2 −

√
2
2 

√
2
2 +

√
2
2 

#


b)F : R3 → R3 given by 

⎛⎝⎡⎣ 





⎤⎦⎞⎠ =

⎡⎣ 2 + 13

3− 2 − 4
2+ 3 + 6

⎤⎦ 
c) : R3 → R3 given by 

⎛⎝⎡⎣ 





⎤⎦⎞⎠ = 1
17

⎡⎣ + 12 + 12

12+ 8 − 9
12− 9 + 8

⎤⎦ 
d) : R2 → R3 given by 

µ∙




¸¶
= 1

7

⎡⎣ 3+ 6

−2+ 3
−6+ 2

⎤⎦ 
e)F : R3 → R2 given by 

⎛⎝⎡⎣ 





⎤⎦⎞⎠ = 1
15

∙
2+ 14 + 5

11+ 2 − 10
¸


2. Let A =

⎡⎢⎢⎣
√
3

1√
3

1√
3

2√
6

√
6

√
6

0 1√
2
− 1√

2

⎤⎥⎥⎦.
a) Show that A is a unitary matrix.

b) By Theorem 6, the mapping : C3 → C3 given by



⎛⎝⎡⎣ 1
2
3

⎤⎦⎞⎠ = A

⎡⎣ 1
2
3

⎤⎦
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is an isometry. Verify directly that  preserves the norm of the vector

[1−  −2 3] by showing that°°°°°°
⎛⎝⎡⎣ 1− 

−2
3

⎤⎦⎞⎠°°°°°° =
°°°°°°
⎡⎣ 1− 

−2
3

⎤⎦°°°°°° .
3.F Verify the claim made in Example 5 that multiplying

∙
cos  sin 

sin  − cos 
¸
times∙





¸
gives the reflection of

∙




¸
about the line through the origin making

an angle of 2 with the positive -axis. (Hint: Use Exercise 21 in Section 1.2.)

4. Each of the following matrices is orthogonal, and so its associated linear

operator is an isometry of R2. In each case, determine whether the isometry
represents a rotation (about the origin through an angle ) or a reflection
(about a line through the origin). Then give either the angle  of rotation, or
a vector in the direction of the line of reflection. (See Example 6.)

a)F
" √

2
2 −

√
2
2√

2
2

√
2
2

#

b)

∙
0 −1
−1 0

¸
c)

∙
0 1

−1 0
¸

d)

"
−12 −

√
3
2√

3
2 −12

# e)F
"
− 12

√
3
2√

3
2

1
2

#

5. If 1: V → V and 2: V → V are both isometries, prove that 2 ◦ 1 is also
an isometry.

6. If V is a finite dimensional inner product space and the linear operator
: V → V is an isometry, show that −1 exists and that −1 is an isometry.

7.I Prove Corollary 2.

8. This exercise shows that the converse of Corollary 2 fails to hold.

a) Show that the linear operator : R → R given by (v) = v, where
|| 6= 1 is not an isometry.

b) Show that the operator  in part (a) preserves angles; that is, the angle
between v1 and v2 equals the angle between (v1) and (v2) for all
v1v2 ∈ R.

9. Show that if a linear operator  on a real inner product space V is angle

preserving and fixes at least one nonzero vector, then  is an isometry. (By
“ fixes at least one nonzero vector” we mean that there is a nonzero vector
v0 such that (v0) = v0.) (Hint: First prove that if v1 is perpendicular to v0,
then k(v1) + v0kV = kv1 + v0kV by using the fact that the angle between
v0 and (v1 + v0) is preserved. Square both sides of this expression, then

expand using the inner product to show that k(v1)k2 = kv1k2. Finally, for
any vector v ∈ V, use the Projection Theorem to decompose v into the sum of
a vector parallel to v0 and a vector orthogonal to v0. Use this decomposition
to compute k(v)k2, and show that it equals kvk2.)

10. Let (x1    x) and (y1    y) be ordered orthonormal bases for R. Show
that the linear operator  on R determined by (x) = y for 1 ≤  ≤ , is
an isometry.

11.I Prove Theorem 4.
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12. This exercise asks you to verify specific claims made in Example 5.

a) Prove that  = (u1u2u3u4) given in Example 5 is an ordered ortho-
normal basis for P3.

b) For the isomorphism : P3 → R4 in Example 5, verify that

kpkP3 = k(p)kR4 =
q

34
15

for the vector p = 22 + . (This verifies that  is an isometry in one
particular case.)

13.I Prove Corollary 5. (Hint: Use Theorem 4 to create appropriate isomorphisms

: V → R [C] and  : W → R [C]. Show that −1 exists and is an
isometry. Consider −1 ◦ .)

14.I The purpose of this exercise is to prove Theorem 7. Suppose V andW are real

inner product spaces and  : V → W is an isometry; that is, kv1 − v2kV =
k(v1)− (v2)kW for every v1v2 ∈ V. Let : V → W be given by (v) =
(v) − (0V) for all v ∈ V. Our goal is to prove that  is both a linear

transformation and an isometry.

a) Show that (0V) = 0W .

b) Show that  is an isometry; that is, prove that, for every v1v2 ∈ V,
kv1 − v2kV = k(v1)− (v2)kW .

c) Prove that  preserves lengths; that is, prove that kvkV = k(v)kW for

every v ∈ V. (Hint: Use parts (a) and (b). Note that Theorem 1 cannot

be used here since we do not yet know that  is a linear transformation.)

d) Show that k(v1 − v2)kW = k(v1)− (v2)kW for every v1v2 ∈ V.
(Hint: Use parts (b) and (c).)

e) Prove that k(v)kW = || k(v)kW for every v ∈ V and every  ∈ R.
(Hint: Use part (c).)

f) Show that both k(v)− (−v)kW and (k(v)kW + k(−v)kW) equal
2 k(v)kW for all v ∈ V. (Hint: Use parts (d) and (e).)

g) Use part (f) to show that the angle between (−(v)) and (−v) is zero,
and, hence, these two vectors are in the same direction. (Hint: Start

with k(v)− (−v)kW = (k(v)kW + k(−v)kW). Square both sides
of the equation, then simplify, using the inner product in W to further

expand the left side. The idea here is analogous to Exercise 4 in Section

1.3; that is, that the Triangle Inequality is an equality if and only if the

two vectors are in the same direction.)

h) Prove that (−v) = −(v) for every v ∈ V. (Hint: Use part (e) to show
that the two vectors have the same length, and part (g) to show that

they are in the same direction.)

i) Prove that hv1v2iV = h(v1) (v2)iW , for every v1v2 ∈ V. (Hint:
Follow the proof of (1) =⇒ (3) in the proof of Theorem 1, using the

Polarization Identity. In the step that requires  to be a linear transfor-
mation, substitute the result in part (h) as the reason that the step is

valid.)

j) Prove that (v) = (v) for every v ∈ V and every  ∈ R. (Hint: Show
that k(v)− (v)kW = 0, implying the desired result. Do this by

computing k(v)− (v)k2W by expanding this expression using the

inner product in W. Then, after some simplification, use part (i) to
convert inner products in W to inner products in V.)
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k) Prove that (v1+v2) = (v1) +(v2), for every v1v2 ∈ V. Note that
this result together with part (j) concludes the proof that  is a linear
transformation. (Hint: Show that k(v1 + v2)− ((v1) + (v2))kW =
0, using a strategy analogous to that used in part (j).)

15. Prove that if  : V → W is an isometry between two inner product spaces,

then  is one-to-one. (Do not assume that  is a linear transformation.)

16.F True or False:

a) If V and W are isometric finite dimensional inner product spaces, then

dim(V) = dim(W).
b) If : V → W is a linear transformation between two finite dimensional

real inner product spaces that preserves lengths of vectors, and if  and

 are ordered orthonormal bases for V and W, respectively, then the
matrix for  with respect to  and  is an orthogonal matrix.

c) If a linear operator  on C preserves norms of vectors, then it is an
isometry.

d) If a linear operator  on R is an isometry, then it is orthogonally diag-
onalizable.

e) Every linear operator  on R2 that is an isometry is either a rotation
about the origin or a reflection about a line through the origin.

f) If V is an -dimensional real inner product space and  is an ordered

basis for V, then the linear transformation V → R given by v → [v]
for every v ∈ V is an isometry.

g) If V and W are finite dimensional inner product spaces, and a linear

transformation : V →W exists that is also an isometry, then dim(V) ≤
dim(W)

Andrilli/Hecker–Elementary Linear Algebra, 5th ed.
Copyright c° 2016 Elsevier, Ltd. All Rights Reserved.



110

I Answers to Selected Exercises

(1) Part (a) is an isometry; parts (b) and (e) are not isometries.

(3) Use the fact that the vector r = [cos 2  sin

2 ] makes an angle of


2 with the

positive -axis. Let x = [ ]. We compute 2(projrx) − x for the desired
reflection of x, as suggested in Exercise 21 in Section 1.2:

2(projrx)− x = 2

ÃÃ
x · r
krk2

!
r

!
− x

= 2

Ã
 cos 2 +  sin 

2

1

!£
cos
¡

2

¢
 sin

¡

2

¢¤− [ ]
=
£
2 cos2

¡

2

¢
+ 2 cos

¡

2

¢
sin
¡

2

¢− 

2 cos
¡

2

¢
sin
¡

2

¢
+ 2 sin2

¡

2

¢− 
¤

Now use the trigonometric identities

2 cos
¡

2

¢
sin
¡

2

¢
= sin  2 cos2

¡

2

¢− 1 = cos  and 2 sin2
¡

2

¢− 1 = − cos 
to simplify the above to

[ cos  +  sin   sin  −  cos ] 

which is the same result obtained from the matrix product∙
cos  sin 

sin  − cos 
¸ ∙





¸


(4) (a) Counterclockwise rotation about the origin through an angle of 45◦.

(e) Reflection about the line through the origin in the direction of
h
1
2 
√
3
2

i
.

(16) (a) T

(b) F

(c) T

(d) F

(e) T

(f) F

(g) T
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cross product formula, 24

Cancellation property of cross product,

9
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38

Continuously differentiable, 43

Coordinatization transformation
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Critical point, 50—53

Cross product

angular velocity, 17

anti-commutativity of, 8, 9

area of a triangle formula, 16, 24

basic properties of, 9

cancellation property, 9
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direction of, 11

distributive law over addition, 9

exchange property with dot prod-

uct, 9

formula for, 7

magnitude formula, 10

non-commutativity of, 8

orthogonality property, 9

parallel vectors, 11

Right-Hand Rule for direction, 11

scalar associative law, 9

subscript order, 7

uses in physics, 16, 17

zero property, 9

Cylindrical coordinates, 37

Determinant

Jacobian, 32, 33, 35—38

Differential equations, 84—91

complete solution set for first-order

linear homogeneous system, 86

real-valued solutions, 90, 93

Direction of cross product, 11

Distance-preserving function, 97, 98

Distributive law of cross product over

addition, 9

Dot product

exchange property with cross prod-

uct, 9

Double integrals, 30, 32—34

Earth

angular velocity due to revolution

about the Sun, 17

angular velocity due to rotation about

its axis, 25

latitude, 25

revolution about the Sun, 17

rotation about its axis, 25

velocity due to revolution about

the Sun, 18

velocity due to rotation about its

axis, 25

Av, 85
Eigenvalue, 52—53

O , 92

Equation for a plane, 6

Equations for a line

parametric, 1, 2
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symmetric, 21

Even function, 45

Exchange property of cross product and

dot product, 9

Function

critical point, 50—53

even, 45

local maximum, 50—53

local minimum, 50—53

odd, 45

Function space, 43—44

Fundamental sequence of generalized eigen-

vectors, 61

Generalized eigenspace, 60

Generalized eigenvector, 60

fundamental sequence of, 61

Gradient, 49

Hessian matrix, 50—53

Hypersphere, open, 49

Integration

change of variables, 29—38

cylindrical coordinates, 37

double integrals, 30, 32—34

multiple integrals, 38

polar coordinates, 32

spherical coordinates, 35

substitution of variables, 29—38

triple integrals, 35, 36

Intersecting lines

angle between, 3

plane determined by, 13

point of intersection, 3

Intersecting planes

angle between, 7

line of intersection, 13

Isometric inner product spaces, 102—

103

Isometry, 97—105

angle preserving, 101

between inner product spaces, 98

coordinatization transformation, 102

equivalent conditions for, 98

matrix for, 103

on R2, 97, 104
on R3, 97
on R or C, 97
one-to-one, 101

Jacobian determinant, 32, 33, 35—38

Jacobian matrix, 32

determinant, 32, 33, 35—38

Jordan block, 59

Jordan Canonical Form, 59—71

definition of, 61

existence of, 63

method for finding, 66

adjustment to Method, 71

uniqueness of, 63, 77

Jordan Form Method, 66, 86

Latitude

relation to angular velocity, 25

Line of intersection of two planes, 13

Line(s)

formed by two distinct intersect-

ing planes, 13

intersecting, 3

non-intersecting, 5

non-parallel

shortest distance between, 23

parallel, 5

parametric equations for, 1, 2

non-uniqueness of, 2

skew, 5

symmetric equations for, 21

Linear independence

in a function space, 43—44

Local maximum, 50—53

Local minimum, 50—53

Lorentz force, 16

Magnitude of cross product, 10

Mars

angular velocity due to revolution

about the Sun, 25

revolution about the Sun, 25

velocity due to revolution about

the Sun, 25

Matrix

for isometry of inner product spaces,

103

Hessian, 50—53

Jacobian, 32, 38

Maxwell’s Equations, 16

Method

Jordan Form Method, 66, 71, 86

Multiple integrals, 38

Negative definite quadratic form, 51

Non-intersecting lines, 5

Non-parallel lines

shortest distance between, 23

Normal vector for a plane, 6

Odd function, 45

Open hypersphere, 49

Orthogonality property of cross prod-

uct, 9

Parallel lines, 5
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Parallel planes

shortest distance between, 24

Parallel vectors

cross product, 11

Parameter, 1, 5

Parametric equations for a line, 1, 2

non-uniqueness of, 2

Plane(s)

angle between intersecting planes,

7

determined by three non-collinear

points, 12

determined by two distinct inter-

secting lines, 13

equation for, 6

intersecting, 13

normal vector, 6

parallel

shortest distance between, 24

uniquely determined by three non-

collinear points, 7

Point of intersection of two lines, 3

Polar coordinates, 32

Polarization Identity, 99, 108

Position vector, 17

Positive definite quadratic form, 51

Properties of cross product, 9

Quadratic form, 51

Hessian matrix as, 51

negative definite, 51

positive definite, 51

Revolution

of Earth about the Sun, 17

of Mars about the Sun, 25

Right-Hand Rule, 11

Right-handed system, 12

Rigid motion of 3-space, 97

Rigid motion of the plane, 97

Rotation of the Earth, 25

Scalar associative law for cross prod-

uct, 9

Shortest distance

between parallel planes, 24

between two non-parallel lines, 23

from a point to a line, 15

from a point to a plane, 15

Skew lines, 5

Solving first-order linear systems of dif-

ferential equations, 84—91

complete solution set, 86

real-valued solutions, 90, 93

Spherical coordinates, 35

Substitution of variables in integrals,

29—38

Taylor’s Theorem, 49

Torque, 16

Triangle Inequality, 108

Triple integrals, 35, 36

Vector(s)

cross product, 7

gradient, 49

normal vector to a plane, 6

parallel vectors, 11

Velocity, 17

cross product formula, 17

of Earth due to revolution about

the Sun, 18

of Earth due to rotation about its

axis, 25

of Mars due to revolution about

the Sun, 25

Zero property of cross product, 9
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