
IMAGES AND PIPES
OPENCL 2.0 UNIVERSITY TOOLKIT

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 2

INSTRUCTOR NOTES

 We cover the remaining memory objects introduced in the OpenCL 2.0
specification

‒ Images

‒ Pipes

 These are special purpose memory objects and differ from the C-like buffers

‒ Images abstract memory layout to provide simplicity and optimizations

‒ Pipes are used to send data between kernel instances in a first-in-first-out manner

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 3

IMAGES

 C/C++ arrays and OpenCL buffers (cl_mem)
objects provide 1D locality

 Due to graphics workloads, GPUs contain
hardware support for:
‒ Caching and reading multidimensional data

(textures)
‒ Drawing interpolated texture vertices

 Hardware support for these features is
exposed to programmers via OpenCL images
‒ OpenCL images are memory objects optimized for

2D locality

 Adjacent elements not guaranteed to be
contiguous in memory
‒ Z curve layout of textures in memory provides 2D

locality of data

Z Curve - 2D locality in layout

Z Curve image from Wikipedia

C/C++ 1D locality (row major)layout

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 4

IMAGES

 Images are specifically designed to manage graphics data objects

 To allow for hardware abstraction in the physical memory layout, images elements
cannot be accessed directly from within the kernel

 Images differ from data buffers in three ways:
‒ Opaque data type which cannot be directly viewed using through the device code
‒ Multidimensional structures
‒ Limited to a range of data types relevant to graphics

 Special hardware provides different operations such as data transforms and
filtering

 In OpenCL kernels, the read_image{type} function call is used instead of simply
indexing using ‘[]’
‒ Usage of read_image and write_image discussed later

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 5

BENEFITS OF IMAGES

 Interpolation

‒ Images are accessed using floating point coordinates

‒ Either closest pixel can be returned or a linear interpolation

‒ Specified in cl_sampler object

‒ CL_FILTER_NEAREST (no interpolation)

‒ CL_FILTER_LINEAR (linear interpolation)

 Normalized data types

‒ Reduces amount of memory used since these data types store floats as a 16- or 8-bit
integer in the texture

‒ Use floats in a normalized range [0.0-1.0] (unsigned types), [-1.0-1.0] (signed types)

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 6

BENEFITS OF IMAGES

 Out-of-bounds handling

‒ Behavior of out-of-bounds accesses are handled in hardware

‒ Flags specified when creating cl_sampler

‒ Examples

‒ CLK_ADDRESS_CLAMP – return 0

‒ CLK_ADDRESS_CLAMP_TO_EDGE – return color of pixel closest to out-of-bounds location

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 7

BENEFITS OF IMAGES

 Channels in OpenCL images refer to the primary colors that make up an image

‒ Each pixel in a texture can contain 1 to 4 channels (R to RGBA)

‒ RGBA: red, green, blue, alpha

‒ The color information is stored as float / integer data

 Packing several values (channels) in a pixel this can improve memory
bandwidth utilization.

 The number of channels is defined at the creation of the image

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 8

CREATING AN IMAGE

 Image declarations consist of descriptors and formats

 Using images in kernels requires the declaration of an image sampler object

cl_mem clCreateImage (

 cl_context context, // OpenCL Context

 cl_mem_flags flags, // Memory Flags

 const cl_image_format *image_format, // Image format

 const cl_image_desc *image_desc, // Image descriptor

 void *host_ptr, // Host Pointer

 cl_int *errcode_ret) // Error code

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 9

IMAGE DESCRIPTORS AND FORMATS

 Image properties specified in cl_image_desc struct, including

‒ Image Type – 1D, 2D or 3D Image

‒ Image Size – width, height and depth

‒ Row and slice pitch

 Image format described in cl_image_format struct specifies channel
properties and the datatype of each element in the channel

‒ Channel properties: The number of channels and the memory layout in which
channels are stored in the image

 More detailed syntax can be found in the specification

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 10

IMAGE SAMPLERS

 Image sampler describes how to access an image object

 Samplers specify:
‒ The type of coordinate system to access image
‒ Options to handle out-of-bounds accesses
‒ Interpolation options if an access lies between multiple indices

 A sampler is passed to the kernel just like regular kernel arguments, or can be
declared within the kernel

 Creating a sampler on the host uses the call clCreateSampler

cl_sampler clCreateSampler (

 cl_context context, // OpenCL context

 cl_bool normalized_coords, // Use normalized coords?

 cl_addressing_mode addressing_mode, // Out-of-bounds access behavior

 cl_filter_mode filter_mode, // Interpolation behavior

 cl_int *errcode_ret) // Error code

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 11

IMAGES IN A KERNEL

 Images formats are not same as the basic OpenCL types (int, float, char etc.)

 Type qualifiers used for images are image1d_t, image2d_t, and
image3d_t

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 12

IMAGES IN A KERNEL

__kernel

void rotation(

 __read_only image2d_t inputImage, __write_only image2d_t outputImage,

 int imageWidth, int imageHeight, float theta)

 {

 // Declaring sampler

 __constant sampler_t sampler =

 CLK_NORMALIZED_COORDS_FALSE | CLK_FILTER_LINEAR | CLK_ADDRESS_CLAMP;

 /* Read the input image */

 float value;

 value = read_imagef(inputImage, sampler, readCoord).x;

 /* Write the output image */

 write_imagef(outputImage, (int2)(x, y), (float4)(value, 0.f, 0.f, 0.f));

}

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 13

PIPES

 New memory object introduced in OpenCL 2.0 specification

 Data is organized as packets in a FIFO structure

 Pipes have one kernel instance that is a writer and another kernel instance that is a
reader
‒ The same kernel cannot write and read a pipe
‒ Memory consistency is enforced at synchronization points

writing
kernel

reading
kernel pipe

write_pipe(pipe, &data) read_pipe(pipe, &data)

data packets

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 14

PIPES

 Data in pipe is organized as packets
‒ Packet can have a type supported by OpenCL C
‒ Depth of pipe is defined as the number of packets supported by the pipe

 The pipe can be accessed through the kernel code on the device

 Host creates the pipe object using clCreatePipe()
‒ Passed as normal kernel argument
‒ Host is not allowed to read or write data to the pipe object

clCreatePipe(

 cl_context context, // Context

 cl_mem_flags flags, // Flags same as buffer

 cl_uint pipe_packet_size, // Packet size

 cl_uint pipe_max_packets, // Pipe depth

 const cl_pipe_properties *properties, // Pipe properties

 cl_int *errcode_ret) // Error code

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 15

PIPES

 In a kernel, pipes must be declared using the keyword pipe, an access
qualifier (read_only or write_only), and the data type of the packets

 An example kernel signature that reads a pipe of type int and writes to a pipe
of type float4:

kernel

void foo(read_only pipe int input_pipe,

 write_only pipe float4 output_pipe)

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 16

PIPES

 Similar to images, pipes are opaque objects

 Accessing a pipe in a kernel is done using OpenCL C built-in functions

 There are multiple ways to access a pipe; the most basic is using the functions
‒ int write_pipe(pipe p, gentype *ptr)

‒ int read_pipe(pipe p, gentype *ptr)

 Both calls take the pipe object and a pointer as parameters
‒ Either the data that should be written into the pipe (write_pipe()) or the

location where the data should be stored after reading (read_pipe())

 Both calls return 0 on success

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 17

PIPES – RESERVATION IDENTIFIERS

 OpenCL C functions exist to reserve space in the pipe ahead of time

‒ Accesses are guaranteed to succeed

‒ These functions return reservation identifiers (reserve_id_t) which specify
locations within the pipe

 Multiple packets can be reserved to the same reservation identifier using the
num_packets parameter

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 18

PIPES – RESERVATION IDENTIFIERS

 Reservation identifiers are passed to overloaded versions of read_pipe() and
write_pipe()

‒ An index must also be provided specifying the packet location within the reserved space

 When reservation identifiers are used, an additional blocking call
(commit_read_pipe() or commit_write_pipe()) is required to ensure
that the operation has successfully completed

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 19

PIPES

 Additional versions of pipe reservation and commit calls exist on a work-group
granularity
‒ work_group_reserve_read_pipe() and
work_group_reserve_read_pipe()

‒ work_group_commit_read_pipe() and
work_group_commit_read_pipe()

 OpenCL C calls also exist to determine the number of packets in the pipe
(get_pipe_num_packet()) and the size of the pipe
(get_pipe_max_packets())

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 20

SUMMARY

 An image is a data type that enables optimizations by hiding the memory
layout from the programmer

‒ Interpolation

‒ Normalization

‒ Bounds-handling

 Pipes make it easier to pass data between kernel instances for certain classes
of algorithms

 Both images and pipes are opaque types, accessible only by intrinsic OpenCL C
functions

