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Instructor Notes 

 These slides provide a high level overview of the source code optimization process 

‒ They cover some of the common optimization steps such coalescing, loop unrolling and vectorization 

‒ Students should choose some simple applications and try to apply these optimizations to their kernels. 

‒ They should  also run their kernels under tools such as  AMD CodeXL to understand the affects of their 
optimization on kernel performance 

 A number of academic papers have covered GPU kernel optimization in detail and should be read 
alongside this material, some have been listed below 

‒ Optimization principles and application performance evaluation of a multithreaded GPU using CUDA - Shane 
Ryoo et.al 

‒ Exploiting memory access patterns to improve memory performance in data-parallel architectures - B Jang 
et.al 

‒  GPU Acceleration of Iterative Digital Breast Tomosynthesis - D Schaa et.al 
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Coalescing Memory Accesses 

 Imagine a scenario where work-items are accessing elements of a buffer 

 Naively, one memory request would be generated per work-item 
‒ With thousands of work-items executing per cycles, this would quickly congest the 

memory system 

 GPU hardware supports coalescing, or combining multiple requests into fewer, 
larger requests  

work-items 

buffer 

Non-coalesced 

work-items 

buffer 

Coalesced 

Coalescing unit 
8x 4B requests 

1x 32B request 
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Coalescing Memory Accesses 

 Recall that for AMD hardware, 64 work-items form a wavefront and must 
execute the same instruction in a SIMD manner 

 

 For the AMD R9 290X GPU, memory accesses of 16 consecutive work-items are 
evaluated together and can be coalesced to fully utilize the bus 

‒ This unit is called a quarter-wavefront and is the important hardware scheduling unit 
for memory accesses 
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Coalescing Memory Accesses 

 Global memory performance for a simple data copying kernel of entirely 
coalesced and entirely non-coalesced accesses on an AMD R9 285 GPU 
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Vectorization 

 Vectorization allows a single work-item to perform multiple operations at once 

 Explicit vectorization is achieved by using vector datatypes (such as float4) in 
the source program 

‒ When a number is appended to a datatype, the datatype becomes an array of that 
length 

‒ Operations can be performed on vector datatypes just like regular datatypes  

‒ Each ALU will operate on different element of the float4 data 

 CPUs and previous generations of AMD GPUs benefit from explicit 
vectorization  

‒ Current generations of AMD and NVIDIA GPUs execute “scalar” operations on SIMD 
lanes, which do not benefit from explicit vectorization  
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Vectorization 

 On AMD Northern Islands and Evergreen GPUs, each processing element 
executes a multi-way VLIW instruction 

‒ Northern Islands: 4-way VLIW 

‒ 4 scalar operations or 

‒ 2 scalar operations + 1 transcendental operation 

‒ Evergreen: 5-way VLIW 

‒ 5 scalar operations or 

‒ 4 scalar operations + 1 transcendental operation 
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Vectorization 

 Vectorization improves memory performance on AMD Northern Islands and 
Evergreen GPUs 
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Local Memory 

 On GPUs, local memory maps to a high-bandwidth, low-latency memory located on 
chip 
‒ Useful for sharing data among work-items within a work-group 

‒ Accesses to local memory are usually much faster than accesses to global memory (even 
cached global memory) 

‒ Accesses to local memory usually do not require coalescing 

‒ More forgiving than global memory when having non-ideal access patterns 

 Additional advantages on some AMD GPUs (e.g., Radeon HD 7970) 
‒ Local memory is mapped to LDS, 4x larger than L1 cache 

‒ LDS has a lower latency than L1 cache 

 The tradeoff is that the use of local memory will limit the number of in-flight work-
groups 
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Constant Memory 

 Constant memory is a memory space to hold data that is accessed 
simultaneously by all work-items 
‒ Usually maps to specialized caching hardware that has a fixed size 
‒ It should NOT be used for general input data (e.g. an input buffer) that is read-only 

 Examples of useful data to place in constant memory 
‒ Convolution filters, Kmeans cluster centriods, etc. 

 Advantages for AMD hardware 
‒ If all work-items access the same address, then only one access request will be 

generated per wavefront  
‒ Constant memory can reduce pressure from L1 cache 
‒ Constant memory has lower latency than L1 cache 
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Occupancy 

 Work-items from a work-group are launched together on a compute unit 
‒ In general, GPU hardware threads have a large amount of state 

‒ Only the very latest GPUs from AMD support context switching in the traditional sense, though with an 
extremely high penalty 

‒ In practice, work-group state is persistent on a compute unit, even during long latency operations 

 If there are enough resources available, multiple work groups can be mapped to the same 
compute unit at the same time  
‒ Wavefronts from multiple work-group can be swapped in to hide latency 

 Resources are fixed per compute unit (number of registers, local memory size, maximum 
number of wavefronts) 
‒ Any one of these resource constraints may limit the number of work-groups on a compute unit 

 The term occupancy is used to describe how well the resources of the compute unit are 
being utilized 
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Occupancy: Registers 

 The availability of registers is one of the major limiting factor for large kernels 

 On current GPUs, the maximum number of registers required by a kernel must 
be available for all work-items of a workgroup 

‒ Example: Consider a GPU with 16384 registers per compute unit running a kernel that 
requires 35 registers per work-item 

‒ Each compute unit can execute at most 468 work-items 

‒ This affects the choice of workgroup size 
‒ A work-group of 512 is not possible 

‒ Only 1 work-group of 256 work-items is allowed at a time, even though 212 more work-items could be running 

‒ 3 work-groups of 128 work-items are allowed, providing 384 work-items to be scheduled, etc. 
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Occupancy: Registers 

 Consider another example:  

‒ A GPU has 16384 registers per compute unit 

‒ The work-group size of a kernel is fixed at 256 work-items 

‒ The kernel currently requires 17 registers per work-item 

 Given the information, each work group requires 4352 registers 

‒ This allows for 3 active work-groups if registers are the only limiting factor 

 If the code can be restructured to only use 16 registers, then 4 active work 
groups would be possible 
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Occupancy: Local Memory 

 GPUs have a limited amount of local memory on each compute unit 

‒ 64 KB local memory on AMD GPUs 

 Local memory limits the number of active work-groups per compute unit 

 Depending on the kernel, the data per work-group may be fixed regardless of 
number of work-items (e.g., histograms), or may vary based on the number of 
work-items (e.g., matrix multiplication, convolution) 
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Occupancy: Work-items/work-groups 

 GPUs have hardware limitations on the maximum number of work-items per 
work-group 

‒ OpenCL limits work-groups to 256 work-items  

 AMD GPUs have per-SIMD limits on the number of wavefronts 

‒ 40 wavefronts (2560 work-items) per compute-unit 

‒ For a 44 Compute Unit GPU such as the R9 290X there can be upto 40x44 = 1760 
wavefronts active on the device 
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Occupancy: Limiting Factors 

 The minimum of these three factors is what limits the active number of work-
items (or occupancy) of a compute unit  

 The interactions between the factors are complex 

‒ The limiting factor may have either work-item or wavefront granularity 

‒ Changing work-group size may affect register or local memory usage 

‒ Reducing any factor (such as register usage) slightly may have allow another work 
group to be active 

 AMD CodeXL plots these factors visually allowing the tradeoffs to be visualized 
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Thread Mapping 

 Thread mapping determines which threads will access which data 

‒ Proper mappings can align with hardware and provide large performance benefits 

‒ Improper mappings can be disastrous to performance 

 The paper Static Memory Access Pattern Analysis on a Massively Parallel GPU 
by Jang, et. al focuses on the task of effectively mapping threads to the data 
access patterns of an algorithm 
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Thread Mapping 

 By using different mappings, the same thread can be assigned to access 
different data elements 

‒ The examples below show three different possible mappings of threads to data 
(assuming the thread id is used to access an element) 

0 1 2 3 

4 5 6 7 

8 9 10 11 

12 13 14 15 

Thread IDs 

Mapping 
int tid =  

get_global_id(1) *  

get_global_size(0) +  

get_global_id(0); 

0 4 8 12 

1 5 9 13 

2 6 10 14 

3 7 11 15 

int tid =  

get_global_id(0) *  

get_global_size(1) +  

get_global_id(1); 

0 1 4 5 

2 3 6 7 

8 9 12 13 

10 11 14 15 

int group_size =  

get_local_size(0) * 

get_local_size(1); 

 

int tid =  

get_group_id(1) * 

get_num_groups(0) * 

group_size + 

get_group_id(0) * 

group_size +  

get_local_id(1) * 

get_local_size(0) +   

get_local_id(0) 

*assuming 2x2 groups 
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Thread Mapping 

 Consider a serial matrix multiplication algorithm 

 

 

 This algorithm is suited for output data decomposition 

‒ We will create NM threads  

‒ Effectively removing the outer two loops 

‒ Each thread will perform P calculations 

‒ The inner loop will remain as part of the kernel 

 Should the index space be MxN or NxM? 
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Thread Mapping 

 Thread mapping 1: with an MxN index space, the kernel would be: 

 

 

 Thread mapping 2: with an NxM index space, the kernel would be: 

 

 

 Both mappings produce functionally equivalent versions of the program 
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Thread Mapping 

 This figure shows the execution of the two thread mappings on NVIDIA 
GeForce 285 and 8800 GPUs 

 

 

 

 

 

 Notice that mapping 2 is far superior in performance for both GPUs 
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Thread Mapping 

 The discrepancy in execution times between the mappings is due to data 
accesses on the global memory bus 

‒ Assuming row-major data, data in a row (i.e., elements in adjacent columns) 
are stored sequentially in memory 

‒ To ensure coalesced accesses, consecutive threads in the same wavefront 
should be mapped to columns (the second dimension) of the matrices 

‒ This will give coalesced accesses in Matrices B and C 

‒ For Matrix A, the iterator i3 determines the access pattern for row-major data, so 
thread mapping does not affect it 
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Thread Mapping 

 In mapping 1, consecutive threads (tx) are mapped to different rows of 
Matrix C, and non-consecutive threads (ty) are mapped to columns of 
Matrix B 

‒ The mapping causes inefficient memory accesses 
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Thread Mapping 

 In mapping 2, consecutive threads (tx) are mapped to consecutive 
elements in Matrices B and C 

‒ Accesses to both of these matrices will be coalesced  

‒ Degree of coalescence depends on the workgroup and data sizes 
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Thread Mapping 

 In general, threads can be created and mapped to any data element by 
manipulating the values returned by the thread identifier functions 

 The following matrix transpose example will show how thread IDs can be 
modified to achieve efficient memory accesses 
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Matrix Transpose 

 A matrix transpose is a straightforward technique 
‒ Out(x,y) = In(y,x) 

 No matter which thread mapping is chosen, one operation (read/write) will produce 
coalesced accesses while the other (write/read) produces uncoalesced accesses 
‒ Note that data must be read to a temporary location (such as a register) before being written 

to a new location 

 

In Out In Out 

0 1 2 3 

coalesced uncoalesced 

0 1 2 3 

uncoalesced coalesced 

Threads 
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0 1 2 3 

4 5 6 7 

8 9 10 11 

12 13 14 15 

Matrix Transpose 

 If local memory is used to buffer the data between reading and writing, we can 
rearrange the thread mapping to provide coalesced accesses in both directions 

‒ Note that the work group must be square 

In Out 

coalesced 

0 1 2 3 

coalesced 

0 1 2 3 

0 1 2 3 

Threads 
global mem index 
local mem index 

0 1 2 3 

0 1 2 3 

0 4 8 12 

Local memory 
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Matrix Transpose 

 The following figure shows a performance comparison of the two transpose 
kernels for matrices of size NxM on an AMD 5870 GPU 

‒ “Optimized” uses local memory and thread remapping 
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Summary 

 Although writing a simple OpenCL program is relatively easy, optimizing code can 
be more difficult 
‒ Coalescing memory access 

‒ Vectorization  

‒ Local memory 

‒ Constant memory 

 When creating work groups, hardware limitations (number of registers, size of local 
memory, etc.) need to be considered 
‒ Work-groups must be sized appropriately to maximize the number of active work-items 

and properly hide latencies 

 Thread mapping, and its effect on accessing memory, is critical for OpenCL kernel 
performance 


