
INTRODUCTION TO PARALLEL
COMPUTING

OPENCL 2.0 UNIVERSITY TOOLKIT

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 2

Instructor Notes

 These slides provide an introduction to parallel computing

 Decomposition is relevant to GPU computing since we split up tasks into
kernels and decompose kernels into threads

 The topics then shift to parallel computing hardware and software models that
progress into how these models combine on the GPU

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 3

Topics

 Introduction to types of parallelism

 Task and data decomposition

 Parallel computing

‒ Software models

‒ Hardware architectures

 Challenges using parallelism

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 4

Parallelism

 Parallelism describes the potential to complete multiple parts of a problem at
the same time

 In order to exploit parallelism, we have to have the physical resources (i.e.
hardware) to work on more than one thing at a time

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 5

Parallelism

 Amdahl’s law tells us: The maximum theoretical
speedup we can achieve from exploiting inherent
parallelism in a problem is proportional to the ratio of
serial to parallel portions, and the number of
processors we have

S = speedup

B = serial fraction of the algorithm

n = number of processors

 If an algorithm is 95% parallel (B = .05), then with a
large enough n, we can approach a 20X speedup

𝑆 =
1

𝐵 +
1
𝑛

1 − 𝐵

serial

serial

parallel

(can speedup)

B

time

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 6

Parallelism

 For traditional CPU architectures, we often think about Instruction-level
Parallelism (ILP)

‒ High-performance CPUs often have a large amount logic dedicated to superscalar and
out-of-order hardware to exploit ILP

 For GPU computing with OpenCL, we often focus on other types of parallelism:

‒ Task parallelism – the ability to execute different tasks within a problem at the same
time

‒ Data parallelism – the ability to execute parts of the same task (i.e. different data) at
the same time

 In OpenCL, we’ll see that tasks can often correspond to different kernels, and
data parallelism is exploited by multiple software threads within the kernels

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 7

Decomposition

 For non-trivial problems, it helps to have more formal concepts for
determining parallelism

 When we think about how to parallelize a program we use the concepts of
decomposition:

‒ Task decomposition: dividing the algorithm into individual tasks (don’t focus on data)

‒ Data decomposition: dividing a data set into discrete chunks that can be operated on
in parallel

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 8

Task Decomposition

 Task decomposition reduces an algorithm to functionally independent parts

 Tasks may have dependencies on other tasks

‒ If the input of task B is dependent on the output of task A, then task B is dependent
on task A

‒ Tasks that don’t have dependencies (or whose dependencies are completed) can be
executed at any time to achieve parallelism

‒ Task dependency graphs are used to describe the relationship between tasks

A

B

A

C

B

B is dependent on A

A and B are independent

of each other

C is dependent on A and B

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 9

Task Dependency Graphs

 We can create a simple task dependency graph for baking cookies

‒ Any tasks that are not connected via the graph can be executed in parallel
(such as preheating the oven and shopping for groceries)

Preheat the
oven

Shop for
groceries

Combine the
ingredients

Bake

Eat

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 10

Data Decomposition

 Data decomposition is a technique for breaking work into multiple
independent tasks, but where each task has the same responsibility

‒ Each task can be thought of as processing a different piece of data

 Using data decomposition allows us to exploit data parallelism

 Using OpenCL, data decomposition allows us to easily map data parallel
problems onto data parallel hardware

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 11

Output Data Decomposition

 For most scientific and engineering applications, data is decomposed based on
the output data

 Examples of output decomposition

‒ Each output pixel of an image convolution is obtained by applying a filter to a region
of input pixels

‒ Each output element of a matrix multiplication is obtained by multiplying a row by a
column of the input matrices

 This technique is valid any time the algorithm is based on one-to-one or many-
to-one functions

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 12

Input Data Decomposition

 Input data decomposition is similar, except that it makes sense when the
algorithm is a one-to-many function

 Examples of input decomposition

‒ A histogram is created by placing each input datum into one of a fixed number of bins

‒ A search function may take a string as input and look for the occurrence of various
substrings

 For these types of applications, each thread creates a “partial count” of the
output, and synchronization, atomic operations, or another task are required
to compute the final result

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 13

Parallel Computing

 The choice of how to decompose a problem is based solely on the algorithm

 However, when actually implementing a parallel algorithm, both hardware and
software considerations must be taken into account

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 14

Parallel Computing

 There are hardware and software approaches to parallelism

 Much of the 1990s was spent on getting CPUs to automatically take advantage
of Instruction Level Parallelism (ILP)

‒ Multiple instructions (without dependencies) are issued and executed in parallel

‒ Automatic hardware parallelization will not be considered for the remainder of the
lecture

 Higher-level parallelism (e.g. threading) cannot be done automatically, so
software constructs inserted by programmers or compilers tell the hardware
where parallelism exists

‒ In parallel programming, the programmer must choose a programming model and
parallel hardware that are suited for the problem

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 15

Parallel Hardware

 Hardware is generally better suited for some types of parallelism more than
others

 Currently, GPUs are comprised of many independent “processors” that have
SIMD processing elements

‒ One task is run at a time on the GPU*

‒ Loop strip mining (next slide) is used to split a data parallel task between independent
processors

‒ Every instruction must be data parallel to take full advantage of the GPU’s SIMD hardware
‒ SIMD hardware is discussed later in the lecture

Hardware type Examples Parallelism

Multi-core superscalar processors Phenom II CPU Task

Vector or SIMD processors SSE units (x86 CPUs) Data

Multi-core SIMD processors Radeon R9 290X GPU Data

*if multiple tasks are run concurrently, no inter-task communication is possible

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 16

Extracting Parallelism: Loop Strip Mining

 Loop strip mining is a loop-transformation technique that partitions the
iterations of a loop so that multiple iterations can be:

‒ executed at the same time (vector/SIMD units),

‒ split between different processing units (multi-core CPUs),

‒ or both (GPUs)

 An example with loop strip mining is shown in the following slides

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 17

Parallel Software – SPMD

 GPU programs are called kernels, and are written using the Single Program
Multiple Data (SPMD) programming model

‒ SPMD executes multiple instances of the same program independently, where each
program works on a different portion of the data

 For data-parallel scientific and engineering applications, combining SPMD with
loop strip mining is a very common parallel programming technique
‒ Message Passing Interface (MPI) is used to run SPMD on a distributed cluster

‒ POSIX threads (pthreads) are used to run SPMD on a shared-memory system

‒ Kernels run SPMD within a GPU

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 18

Parallel Software – SPMD

 Consider the following vector addition example

 Combining SPMD with loop strip mining allows multiple copies of the same
program execute on different data in parallel

A

B

C

||

+

 for(i = 0:11) {

 C[i] = A[i] + B[i]

 } Serial program:
one program completes
the entire task

 for(i = 0:3) {

 C[i] = A[i] + B[i]

 }

 for(i = 4:7) {

 C[i] = A[i] + B[i]

 }

 for(i = 8:11) {

 C[i] = A[i] + B[i]

 }

A

B

C

||

+

SPMD program:
multiple copies of the
same program run on
different chunks of the
data

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 19

Parallel Software – SPMD

 In the vector addition example, each chunk of data could be executed as an
independent thread

 On modern CPUs, the overhead of creating threads is so high that the chunks
need to be large

‒ In practice, usually a few threads (about as many as the number of CPU cores) and
each is given a large amount of work to do

 For GPU programming, there is low overhead for thread creation, so we can
create one thread per loop iteration

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 20

Parallel Software – SPMD

Single-threaded (CPU)
// there are N elements

for(i = 0; i < N; i++)

 C[i] = A[i] + B[i]

Multi-threaded (CPU)
// tid is the thread id

// P is the number of cores

for(i = tid*(N/P); i < (tid+1)*N/P; i++)

 C[i] = A[i] + B[i]

Massively Multi-threaded (GPU)
// tid is the thread id

C[tid] = A[tid] + B[tid]

0 1 2 3 4 5 6 7 8 9 15 10

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0

1

2

3

15

= loop iteration

Time
T0

T0
T1
T2
T3

T0
T1
T2
T3

T15

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 21

Parallel Hardware – SIMD

 Each processing element of a Single Instruction Multiple Data (SIMD) processor
executes the same instruction with different data at the same time

‒ A single instruction is issued to be executed simultaneously on many ALU units

‒ We say that the number of ALU units is the width of the SIMD unit

 SIMD processors are efficient for data parallel algorithms

‒ They reduce the amount of control flow and instruction hardware in favor of ALU
hardware

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 22

Parallel Hardware – SIMD

 A SIMD hardware unit

Control

PE

Data

(Memory,

Registers,

Immediates,

Etc.)

Instr

Data

Data

Data

Data PE

PE

PE

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 23

Parallel Hardware – SIMD

 In the vector addition example, a SIMD unit with a width of four could execute
four iterations of the loop at once

 All current GPUs are based on SIMD hardware

‒ The GPU hardware implicitly maps each SPMD thread to a SIMD “core”

‒ The programmer does not need to consider the SIMD hardware for correctness, just for
performance

‒ This model of running threads on SIMD hardware is often referred to as Single
Instruction Multiple Threads (SIMT)

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 24

Challenges of Parallelization

 On CPUs, hardware-supported atomic operations enable concurrency

‒ Atomic operations allow data to be read and written without intervention
from another thread

 GPUs support some system-wide atomic operations, but with a large
performance trade-off

‒ Usually code that requires global synchronization is not well suited for GPUs
(or should be restructured)

‒ Any problem that is decomposed using input data partitioning (i.e., requires
results to be combined at the end) will likely need to be restructured to
execute well on a GPU

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 25

Summary

 Choosing appropriate parallel hardware and software models is highly
dependent on the problem we are trying to solve

‒ Problems that fit the output data decomposition model are usually mapped fairly
easily to data-parallel hardware

 Naively, OpenCL’s parallel programming model is easy because it is simplified
SPMD programming

‒ We can often map iterations of a for-loop directly to OpenCL work-items

‒ However, we will see that obtaining high performance requires thorough
understanding of hardware (incorporating hardware parallelism + memory
subsystem), and complicates the programming model

