
IMAGES AND PIPES
OPENCL 2.0 UNIVERSITY TOOLKIT

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 2

INSTRUCTOR NOTES

 We cover the remaining memory objects introduced in the OpenCL 2.0
specification

‒ Images

‒ Pipes

 These are special purpose memory objects and differ from the C-like buffers

‒ Images abstract memory layout to provide simplicity and optimizations

‒ Pipes are used to send data between kernel instances in a first-in-first-out manner

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 3

IMAGES

 C/C++ arrays and OpenCL buffers (cl_mem)
objects provide 1D locality

 Due to graphics workloads, GPUs contain
hardware support for:
‒ Caching and reading multidimensional data

(textures)
‒ Drawing interpolated texture vertices

 Hardware support for these features is
exposed to programmers via OpenCL images
‒ OpenCL images are memory objects optimized for

2D locality

 Adjacent elements not guaranteed to be
contiguous in memory
‒ Z curve layout of textures in memory provides 2D

locality of data

Z Curve - 2D locality in layout

Z Curve image from Wikipedia

C/C++ 1D locality (row major)layout

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 4

IMAGES

 Images are specifically designed to manage graphics data objects

 To allow for hardware abstraction in the physical memory layout, images elements
cannot be accessed directly from within the kernel

 Images differ from data buffers in three ways:
‒ Opaque data type which cannot be directly viewed using through the device code
‒ Multidimensional structures
‒ Limited to a range of data types relevant to graphics

 Special hardware provides different operations such as data transforms and
filtering

 In OpenCL kernels, the read_image{type} function call is used instead of simply
indexing using ‘[]’
‒ Usage of read_image and write_image discussed later

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 5

BENEFITS OF IMAGES

 Interpolation

‒ Images are accessed using floating point coordinates

‒ Either closest pixel can be returned or a linear interpolation

‒ Specified in cl_sampler object

‒ CL_FILTER_NEAREST (no interpolation)

‒ CL_FILTER_LINEAR (linear interpolation)

 Normalized data types

‒ Reduces amount of memory used since these data types store floats as a 16- or 8-bit
integer in the texture

‒ Use floats in a normalized range [0.0-1.0] (unsigned types), [-1.0-1.0] (signed types)

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 6

BENEFITS OF IMAGES

 Out-of-bounds handling

‒ Behavior of out-of-bounds accesses are handled in hardware

‒ Flags specified when creating cl_sampler

‒ Examples

‒ CLK_ADDRESS_CLAMP – return 0

‒ CLK_ADDRESS_CLAMP_TO_EDGE – return color of pixel closest to out-of-bounds location

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 7

BENEFITS OF IMAGES

 Channels in OpenCL images refer to the primary colors that make up an image

‒ Each pixel in a texture can contain 1 to 4 channels (R to RGBA)

‒ RGBA: red, green, blue, alpha

‒ The color information is stored as float / integer data

 Packing several values (channels) in a pixel this can improve memory
bandwidth utilization.

 The number of channels is defined at the creation of the image

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 8

CREATING AN IMAGE

 Image declarations consist of descriptors and formats

 Using images in kernels requires the declaration of an image sampler object

cl_mem clCreateImage (

 cl_context context, // OpenCL Context

 cl_mem_flags flags, // Memory Flags

 const cl_image_format *image_format, // Image format

 const cl_image_desc *image_desc, // Image descriptor

 void *host_ptr, // Host Pointer

 cl_int *errcode_ret) // Error code

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 9

IMAGE DESCRIPTORS AND FORMATS

 Image properties specified in cl_image_desc struct, including

‒ Image Type – 1D, 2D or 3D Image

‒ Image Size – width, height and depth

‒ Row and slice pitch

 Image format described in cl_image_format struct specifies channel
properties and the datatype of each element in the channel

‒ Channel properties: The number of channels and the memory layout in which
channels are stored in the image

 More detailed syntax can be found in the specification

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 10

IMAGE SAMPLERS

 Image sampler describes how to access an image object

 Samplers specify:
‒ The type of coordinate system to access image
‒ Options to handle out-of-bounds accesses
‒ Interpolation options if an access lies between multiple indices

 A sampler is passed to the kernel just like regular kernel arguments, or can be
declared within the kernel

 Creating a sampler on the host uses the call clCreateSampler

cl_sampler clCreateSampler (

 cl_context context, // OpenCL context

 cl_bool normalized_coords, // Use normalized coords?

 cl_addressing_mode addressing_mode, // Out-of-bounds access behavior

 cl_filter_mode filter_mode, // Interpolation behavior

 cl_int *errcode_ret) // Error code

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 11

IMAGES IN A KERNEL

 Images formats are not same as the basic OpenCL types (int, float, char etc.)

 Type qualifiers used for images are image1d_t, image2d_t, and
image3d_t

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 12

IMAGES IN A KERNEL

__kernel

void rotation(

 __read_only image2d_t inputImage, __write_only image2d_t outputImage,

 int imageWidth, int imageHeight, float theta)

 {

 // Declaring sampler

 __constant sampler_t sampler =

 CLK_NORMALIZED_COORDS_FALSE | CLK_FILTER_LINEAR | CLK_ADDRESS_CLAMP;

 /* Read the input image */

 float value;

 value = read_imagef(inputImage, sampler, readCoord).x;

 /* Write the output image */

 write_imagef(outputImage, (int2)(x, y), (float4)(value, 0.f, 0.f, 0.f));

}

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 13

PIPES

 New memory object introduced in OpenCL 2.0 specification

 Data is organized as packets in a FIFO structure

 Pipes have one kernel instance that is a writer and another kernel instance that is a
reader
‒ The same kernel cannot write and read a pipe
‒ Memory consistency is enforced at synchronization points

writing
kernel

reading
kernel pipe

write_pipe(pipe, &data) read_pipe(pipe, &data)

data packets

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 14

PIPES

 Data in pipe is organized as packets
‒ Packet can have a type supported by OpenCL C
‒ Depth of pipe is defined as the number of packets supported by the pipe

 The pipe can be accessed through the kernel code on the device

 Host creates the pipe object using clCreatePipe()
‒ Passed as normal kernel argument
‒ Host is not allowed to read or write data to the pipe object

clCreatePipe(

 cl_context context, // Context

 cl_mem_flags flags, // Flags same as buffer

 cl_uint pipe_packet_size, // Packet size

 cl_uint pipe_max_packets, // Pipe depth

 const cl_pipe_properties *properties, // Pipe properties

 cl_int *errcode_ret) // Error code

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 15

PIPES

 In a kernel, pipes must be declared using the keyword pipe, an access
qualifier (read_only or write_only), and the data type of the packets

 An example kernel signature that reads a pipe of type int and writes to a pipe
of type float4:

kernel

void foo(read_only pipe int input_pipe,

 write_only pipe float4 output_pipe)

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 16

PIPES

 Similar to images, pipes are opaque objects

 Accessing a pipe in a kernel is done using OpenCL C built-in functions

 There are multiple ways to access a pipe; the most basic is using the functions
‒ int write_pipe(pipe p, gentype *ptr)

‒ int read_pipe(pipe p, gentype *ptr)

 Both calls take the pipe object and a pointer as parameters
‒ Either the data that should be written into the pipe (write_pipe()) or the

location where the data should be stored after reading (read_pipe())

 Both calls return 0 on success

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 17

PIPES – RESERVATION IDENTIFIERS

 OpenCL C functions exist to reserve space in the pipe ahead of time

‒ Accesses are guaranteed to succeed

‒ These functions return reservation identifiers (reserve_id_t) which specify
locations within the pipe

 Multiple packets can be reserved to the same reservation identifier using the
num_packets parameter

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 18

PIPES – RESERVATION IDENTIFIERS

 Reservation identifiers are passed to overloaded versions of read_pipe() and
write_pipe()

‒ An index must also be provided specifying the packet location within the reserved space

 When reservation identifiers are used, an additional blocking call
(commit_read_pipe() or commit_write_pipe()) is required to ensure
that the operation has successfully completed

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 19

PIPES

 Additional versions of pipe reservation and commit calls exist on a work-group
granularity
‒ work_group_reserve_read_pipe() and
work_group_reserve_read_pipe()

‒ work_group_commit_read_pipe() and
work_group_commit_read_pipe()

 OpenCL C calls also exist to determine the number of packets in the pipe
(get_pipe_num_packet()) and the size of the pipe
(get_pipe_max_packets())

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 20

SUMMARY

 An image is a data type that enables optimizations by hiding the memory
layout from the programmer

‒ Interpolation

‒ Normalization

‒ Bounds-handling

 Pipes make it easier to pass data between kernel instances for certain classes
of algorithms

 Both images and pipes are opaque types, accessible only by intrinsic OpenCL C
functions

