
EVENTS, PROFILING, AND DEBUGGING
OPENCL 2.0 UNIVERSITY TOOLKIT

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 2

Events

 Events are used to synchronize between individual commands

‒ i.e., create a dependency graph of commands

 Explicit synchronization is required for

‒ Out-of-order command queues

‒ Multiple command queues

 Events are also used for storing timing information returned by the device

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 3

Events

 In addition to specifying dependencies, events are used for basic profiling of
commands

 Profiling using events has to be enabled explicitly when creating a command
queue

‒ CL_QUEUE_PROFILING_ENABLE flag must be set

‒ Requiring the runtime to generate timestamps for events may slow down execution

 A handle to store event information can be passed for all clEnqueue*
commands

‒ When commands such as clEnqueueNDRangeKernel and clEnqueueReadBuffer
are invoked timing information is recorded in the provided event

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 4

Uses of Events

 Using events we can:

‒ Time execution of clEnqueue* calls like kernel execution or explicit data transfers

‒ Use the events from schedule asynchronous data transfers between host and device

‒ Profile an application to understand an execution flow

‒ Observe overhead and time consumed by a kernel in the command queue versus
actually executing

 Event timestamps are consistent for both CPUs and GPUs

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 5

Profiling with Events

 clGetEventProfilingInfo allows us to query cl_event to get desired counter values

 Timing information returned as cl_ulong data types

‒ Returns timestamp on a nanosecond granularity

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 6

Profiling with Events

 Table shows event types described using cl_profiling_info enumerated type

Event Type Description

CL_PROFILING_COMMAND_QUEUED
Command is enqueued in a command queue
by the host.

CL_PROFILING_COMMAND_SUBMIT
Command is submitted by the host to the
device associated with the command queue.

CL_PROFILING_COMMAND_START Command starts execution on device.

CL_PROFILING_COMMAND_END Command has finished execution on device.

CL_PROFILING_COMMAND_COMPLETE
Command and all of its child commands have
finished execution on the device

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 7

Profiling with Events

 OpenCL events can easily be used for timing durations of kernels.

 This method is reliable for performance optimizations since it uses counters from
the device

 By taking differences of the start and end timestamps we are discounting
overheads like time spent in the command queue

clGetEventProfilingInfo(event_time, CL_PROFILING_COMMAND_END,

sizeof(cl_ulong), &starttime, NULL);

clGetEventProfilingInfo(event_time, CL_PROFILING_COMMAND_START,

sizeof(cl_ulong), &starttime, NULL);

unsigned long elapsed = (unsigned long)(endtime - starttime);

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 8

Profiling with Events

 Before getting timing information, we must make sure that the events we are
interested in have completed

 There are different ways of waiting for events:

‒ clWaitForEvents(numEvents, eventList)

‒ clFinish(commandQueue)

 Timer resolution can be obtained from the flag
CL_DEVICE_PROFILING_TIMER_RESOLUTION when calling clGetDeviceInfo

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 9

Capturing Event Information

 clGetEventInfo can be used to return information about the event object

 It can return details about the command queue, context, type of command
associated with events, execution status

 This command can be used by along with timing provided by
clGetEventProfilingInfo as part of a high level profiling framework to keep
track of commands

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 10

User Events

 OpenCL 1.1 and above defines a user event object. Unlike clEnqueue*
commands, user events can be set by the user

 When we create a user event, status is set to CL_SUBMITTED

 clSetUserEventStatus is used to set the execution status of a user event object.

 A user event can only be set to CL_COMPLETE once

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 11

User Events

 A simple example of user events being triggered and used in a command
queue

 // Create user event which will start the write of buf1
user_event = clCreateUserEvent(ctx, NULL);
clEnqueueWriteBuffer(cq, buf1, CL_FALSE, ..., 1, &user_event , NULL);
// The write of buf1 is now enqueued and waiting on user_event

X = foo(); // Lots of complicated host processing code

clSetUserEventStatus(user_event, CL_COMPLETE);

// The clEnqueueWriteBuffer to buf1 can now proceed

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 12

Wait Lists

 Wait lists are arrays of cl_event type

 All clEnqueue* methods also accept event wait lists

 OpenCL defines waitlists to provide precedence rules

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 13

Wait Lists

 Enqueue a list of events to wait for such that all events need to complete
before this particular command can be executed

 Enqueue a command to mark this location in the queue with a unique event
object that can be used for synchronization

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 14

Event Callbacks

 OpenCL 1.1 or above allows registration of a user callback function for a
specific command execution status

‒ Event callbacks can be used to enqueue new commands based on event state
changes in a non-blocking manner

‒ Using blocking versions of clEnqueue* OpenCL functions in callback leads to
undefined behavior

 The callback takes an cl_event, status and a pointer to user data as its
parameters

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 15

Command Queue Synchronization

 Command queue synchronization methods work on a per-queue basis

 Flush:

‒ Sends all commands in the queue to the compute device

‒ No guarantee that they will be complete when clFlush returns

 Finish:

‒ Blocks host by waiting for all commands in the command queue to complete

 Barrier:

‒ Enqueues a synchronization point: ensures all prior commands in a queue have
completed before any further commands execute

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 16

Debugging using printf

 Starting in OpenCL 1.2, OpenCL C supports printing during execution using
printf

 printf closely matches the definition found in the C99 standard

 printf can be used to print information about threads or help track down bugs

 printf works by buffering output until the end of execution and transferring the
output back to the host

‒ It is important that a kernel completes in order to retrieve printed information

‒ Commenting out code following printf is a good technique if the kernel is crashing

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 17

Debugging using printf

 The following example prints information about threads trying to perform an
improper memory access

 int myIdxX = ... // column index for addressing a matrix
int myIdxY = ... // row index for addressing a matrix
if(myIdxX < 0 || myIdxX >= cols ||
 myIdxY < 0 || myIdx >= rows)
 {
 printf(“Work item %d,%d: bad index (%d, %d)\n”,
 get_global_id(1), get_global_id(0),
 myIdxX, myIdxY));
 }

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 18

CodeXL

 Integrated profiler, kernel analyzer, and debugger tool developed by AMD

 Profile mode

‒ Gathers performance data from the OpenCL runtime and AMD GPUs during
execution

 Analysis mode

‒ Statically compiles, analyzes, and disassembles OpenCL kernels for AMD GPUs

 Debug mode

‒ Debugs an application by stepping through OpenCL API calls and kernel source code

‒ Views function parameters and reduces memory consumption

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 19

Debugging Using CodeXL

 CodeXL intercepts the OpenCL API calls
between the application and the OpenCL ICD

 CodeXL can debug at the API-level

‒ Record the OpenCL API call history

‒ Program and kernel information

‒ Image and buffer data

‒ Memory checking

‒ API usage statistics

‒ Kernel function breakpoints

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 20

Profiling Using CodeXL

 Profiling modes

‒ GPU application timeline traces

‒ GPU performance counters during kernel execution

‒ Collecting CPU performance information

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 21

Application Timeline View

 Provides a visual representation of the execution of the application

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 22

Host API Trace View

 Lists all the OpenCL API calls made by each host thread in the application

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 23

Collecting GPU Kernel Performance Counters

 The GPU kernel performance counters can be used to find possible bottlenecks
in the kernel execution

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 24

Summary

 Debugging

‒ printf can be a light-weight debugging method

‒ CodeXL debugging mode is a comprehensive debugger

 Profiling: OpenCL events allow us to use the execution model and
synchronization to benefit application performance

‒ Command queue synchronization constructs for coarse grained control

‒ Use events for fine grained control over an application

‒ OpenCL 1.1 or above allows more complicated event handling and adds callbacks and
also provides for events that can be triggered by the user

‒ CodeXL profiling mode can generate timing information without changing source
code

