
OPTIMIZING KERNELS
OPENCL 2.0 UNIVERSITY TOOLKIT

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 2

Instructor Notes

 These slides provide a high level overview of the source code optimization process

‒ They cover some of the common optimization steps such coalescing, loop unrolling and vectorization

‒ Students should choose some simple applications and try to apply these optimizations to their kernels.

‒ They should also run their kernels under tools such as AMD CodeXL to understand the affects of their
optimization on kernel performance

 A number of academic papers have covered GPU kernel optimization in detail and should be read
alongside this material, some have been listed below

‒ Optimization principles and application performance evaluation of a multithreaded GPU using CUDA - Shane
Ryoo et.al

‒ Exploiting memory access patterns to improve memory performance in data-parallel architectures - B Jang
et.al

‒ GPU Acceleration of Iterative Digital Breast Tomosynthesis - D Schaa et.al

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 3

Coalescing Memory Accesses

 Imagine a scenario where work-items are accessing elements of a buffer

 Naively, one memory request would be generated per work-item
‒ With thousands of work-items executing per cycles, this would quickly congest the

memory system

 GPU hardware supports coalescing, or combining multiple requests into fewer,
larger requests

work-items

buffer

Non-coalesced

work-items

buffer

Coalesced

Coalescing unit
8x 4B requests

1x 32B request

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 4

Coalescing Memory Accesses

 Recall that for AMD hardware, 64 work-items form a wavefront and must
execute the same instruction in a SIMD manner

 For the AMD R9 290X GPU, memory accesses of 16 consecutive work-items are
evaluated together and can be coalesced to fully utilize the bus

‒ This unit is called a quarter-wavefront and is the important hardware scheduling unit
for memory accesses

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 5

Coalescing Memory Accesses

 Global memory performance for a simple data copying kernel of entirely
coalesced and entirely non-coalesced accesses on an AMD R9 285 GPU

0

100

200

300

1 4 16 32 64 128 256

B
an

d
w

id
th

 (
G

B
/s

)

Data Size (MB)

Coalesced

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 6

Vectorization

 Vectorization allows a single work-item to perform multiple operations at once

 Explicit vectorization is achieved by using vector datatypes (such as float4) in
the source program

‒ When a number is appended to a datatype, the datatype becomes an array of that
length

‒ Operations can be performed on vector datatypes just like regular datatypes

‒ Each ALU will operate on different element of the float4 data

 CPUs and previous generations of AMD GPUs benefit from explicit
vectorization

‒ Current generations of AMD and NVIDIA GPUs execute “scalar” operations on SIMD
lanes, which do not benefit from explicit vectorization

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 7

Vectorization

 On AMD Northern Islands and Evergreen GPUs, each processing element
executes a multi-way VLIW instruction

‒ Northern Islands: 4-way VLIW

‒ 4 scalar operations or

‒ 2 scalar operations + 1 transcendental operation

‒ Evergreen: 5-way VLIW

‒ 5 scalar operations or

‒ 4 scalar operations + 1 transcendental operation

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 8

Vectorization

 Vectorization improves memory performance on AMD Northern Islands and
Evergreen GPUs

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 9

Local Memory

 On GPUs, local memory maps to a high-bandwidth, low-latency memory located on
chip
‒ Useful for sharing data among work-items within a work-group

‒ Accesses to local memory are usually much faster than accesses to global memory (even
cached global memory)

‒ Accesses to local memory usually do not require coalescing

‒ More forgiving than global memory when having non-ideal access patterns

 Additional advantages on some AMD GPUs (e.g., Radeon HD 7970)
‒ Local memory is mapped to LDS, 4x larger than L1 cache

‒ LDS has a lower latency than L1 cache

 The tradeoff is that the use of local memory will limit the number of in-flight work-
groups

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 10

Constant Memory

 Constant memory is a memory space to hold data that is accessed
simultaneously by all work-items
‒ Usually maps to specialized caching hardware that has a fixed size
‒ It should NOT be used for general input data (e.g. an input buffer) that is read-only

 Examples of useful data to place in constant memory
‒ Convolution filters, Kmeans cluster centriods, etc.

 Advantages for AMD hardware
‒ If all work-items access the same address, then only one access request will be

generated per wavefront
‒ Constant memory can reduce pressure from L1 cache
‒ Constant memory has lower latency than L1 cache

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 11

Occupancy

 Work-items from a work-group are launched together on a compute unit
‒ In general, GPU hardware threads have a large amount of state

‒ Only the very latest GPUs from AMD support context switching in the traditional sense, though with an
extremely high penalty

‒ In practice, work-group state is persistent on a compute unit, even during long latency operations

 If there are enough resources available, multiple work groups can be mapped to the same
compute unit at the same time
‒ Wavefronts from multiple work-group can be swapped in to hide latency

 Resources are fixed per compute unit (number of registers, local memory size, maximum
number of wavefronts)
‒ Any one of these resource constraints may limit the number of work-groups on a compute unit

 The term occupancy is used to describe how well the resources of the compute unit are
being utilized

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 12

Occupancy: Registers

 The availability of registers is one of the major limiting factor for large kernels

 On current GPUs, the maximum number of registers required by a kernel must
be available for all work-items of a workgroup

‒ Example: Consider a GPU with 16384 registers per compute unit running a kernel that
requires 35 registers per work-item

‒ Each compute unit can execute at most 468 work-items

‒ This affects the choice of workgroup size
‒ A work-group of 512 is not possible

‒ Only 1 work-group of 256 work-items is allowed at a time, even though 212 more work-items could be running

‒ 3 work-groups of 128 work-items are allowed, providing 384 work-items to be scheduled, etc.

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 13

Occupancy: Registers

 Consider another example:

‒ A GPU has 16384 registers per compute unit

‒ The work-group size of a kernel is fixed at 256 work-items

‒ The kernel currently requires 17 registers per work-item

 Given the information, each work group requires 4352 registers

‒ This allows for 3 active work-groups if registers are the only limiting factor

 If the code can be restructured to only use 16 registers, then 4 active work
groups would be possible

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 14

Occupancy: Local Memory

 GPUs have a limited amount of local memory on each compute unit

‒ 64 KB local memory on AMD GPUs

 Local memory limits the number of active work-groups per compute unit

 Depending on the kernel, the data per work-group may be fixed regardless of
number of work-items (e.g., histograms), or may vary based on the number of
work-items (e.g., matrix multiplication, convolution)

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 15

Occupancy: Work-items/work-groups

 GPUs have hardware limitations on the maximum number of work-items per
work-group

‒ OpenCL limits work-groups to 256 work-items

 AMD GPUs have per-SIMD limits on the number of wavefronts

‒ 40 wavefronts (2560 work-items) per compute-unit

‒ For a 44 Compute Unit GPU such as the R9 290X there can be upto 40x44 = 1760
wavefronts active on the device

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 16

Occupancy: Limiting Factors

 The minimum of these three factors is what limits the active number of work-
items (or occupancy) of a compute unit

 The interactions between the factors are complex

‒ The limiting factor may have either work-item or wavefront granularity

‒ Changing work-group size may affect register or local memory usage

‒ Reducing any factor (such as register usage) slightly may have allow another work
group to be active

 AMD CodeXL plots these factors visually allowing the tradeoffs to be visualized

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 17

Thread Mapping

 Thread mapping determines which threads will access which data

‒ Proper mappings can align with hardware and provide large performance benefits

‒ Improper mappings can be disastrous to performance

 The paper Static Memory Access Pattern Analysis on a Massively Parallel GPU
by Jang, et. al focuses on the task of effectively mapping threads to the data
access patterns of an algorithm

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 18

Thread Mapping

 By using different mappings, the same thread can be assigned to access
different data elements

‒ The examples below show three different possible mappings of threads to data
(assuming the thread id is used to access an element)

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Thread IDs

Mapping
int tid =

get_global_id(1) *

get_global_size(0) +

get_global_id(0);

0 4 8 12

1 5 9 13

2 6 10 14

3 7 11 15

int tid =

get_global_id(0) *

get_global_size(1) +

get_global_id(1);

0 1 4 5

2 3 6 7

8 9 12 13

10 11 14 15

int group_size =

get_local_size(0) *

get_local_size(1);

int tid =

get_group_id(1) *

get_num_groups(0) *

group_size +

get_group_id(0) *

group_size +

get_local_id(1) *

get_local_size(0) +

get_local_id(0)

*assuming 2x2 groups

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 19

Thread Mapping

 Consider a serial matrix multiplication algorithm

 This algorithm is suited for output data decomposition

‒ We will create NM threads

‒ Effectively removing the outer two loops

‒ Each thread will perform P calculations

‒ The inner loop will remain as part of the kernel

 Should the index space be MxN or NxM?

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 20

Thread Mapping

 Thread mapping 1: with an MxN index space, the kernel would be:

 Thread mapping 2: with an NxM index space, the kernel would be:

 Both mappings produce functionally equivalent versions of the program

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 21

Thread Mapping

 This figure shows the execution of the two thread mappings on NVIDIA
GeForce 285 and 8800 GPUs

 Notice that mapping 2 is far superior in performance for both GPUs

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 22

Thread Mapping

 The discrepancy in execution times between the mappings is due to data
accesses on the global memory bus

‒ Assuming row-major data, data in a row (i.e., elements in adjacent columns)
are stored sequentially in memory

‒ To ensure coalesced accesses, consecutive threads in the same wavefront
should be mapped to columns (the second dimension) of the matrices

‒ This will give coalesced accesses in Matrices B and C

‒ For Matrix A, the iterator i3 determines the access pattern for row-major data, so
thread mapping does not affect it

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 23

Thread Mapping

 In mapping 1, consecutive threads (tx) are mapped to different rows of
Matrix C, and non-consecutive threads (ty) are mapped to columns of
Matrix B

‒ The mapping causes inefficient memory accesses

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 24

Thread Mapping

 In mapping 2, consecutive threads (tx) are mapped to consecutive
elements in Matrices B and C

‒ Accesses to both of these matrices will be coalesced

‒ Degree of coalescence depends on the workgroup and data sizes

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 25

Thread Mapping

 In general, threads can be created and mapped to any data element by
manipulating the values returned by the thread identifier functions

 The following matrix transpose example will show how thread IDs can be
modified to achieve efficient memory accesses

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 26

Matrix Transpose

 A matrix transpose is a straightforward technique
‒ Out(x,y) = In(y,x)

 No matter which thread mapping is chosen, one operation (read/write) will produce
coalesced accesses while the other (write/read) produces uncoalesced accesses
‒ Note that data must be read to a temporary location (such as a register) before being written

to a new location

In Out In Out

0 1 2 3

coalesced uncoalesced

0 1 2 3

uncoalesced coalesced

Threads

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 27

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Matrix Transpose

 If local memory is used to buffer the data between reading and writing, we can
rearrange the thread mapping to provide coalesced accesses in both directions

‒ Note that the work group must be square

In Out

coalesced

0 1 2 3

coalesced

0 1 2 3

0 1 2 3

Threads
global mem index
local mem index

0 1 2 3

0 1 2 3

0 4 8 12

Local memory

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 28

Matrix Transpose

 The following figure shows a performance comparison of the two transpose
kernels for matrices of size NxM on an AMD 5870 GPU

‒ “Optimized” uses local memory and thread remapping

0

0.01

0.02

0.03

0.04

1024 2048 3072 4096

Ti
m

e
 (

s)

Matrix Order

Naive

Optimized

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 29

Summary

 Although writing a simple OpenCL program is relatively easy, optimizing code can
be more difficult
‒ Coalescing memory access

‒ Vectorization

‒ Local memory

‒ Constant memory

 When creating work groups, hardware limitations (number of registers, size of local
memory, etc.) need to be considered
‒ Work-groups must be sized appropriately to maximize the number of active work-items

and properly hide latencies

 Thread mapping, and its effect on accessing memory, is critical for OpenCL kernel
performance

