
EVENTS, PROFILING, AND DEBUGGING
OPENCL 2.0 UNIVERSITY TOOLKIT

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 2

Events

 Events are used to synchronize between individual commands

‒ i.e., create a dependency graph of commands

 Explicit synchronization is required for

‒ Out-of-order command queues

‒ Multiple command queues

 Events are also used for storing timing information returned by the device

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 3

Events

 In addition to specifying dependencies, events are used for basic profiling of
commands

 Profiling using events has to be enabled explicitly when creating a command
queue

‒ CL_QUEUE_PROFILING_ENABLE flag must be set

‒ Requiring the runtime to generate timestamps for events may slow down execution

 A handle to store event information can be passed for all clEnqueue*
commands

‒ When commands such as clEnqueueNDRangeKernel and clEnqueueReadBuffer
are invoked timing information is recorded in the provided event

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 4

Uses of Events

 Using events we can:

‒ Time execution of clEnqueue* calls like kernel execution or explicit data transfers

‒ Use the events from schedule asynchronous data transfers between host and device

‒ Profile an application to understand an execution flow

‒ Observe overhead and time consumed by a kernel in the command queue versus
actually executing

 Event timestamps are consistent for both CPUs and GPUs

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 5

Profiling with Events

 clGetEventProfilingInfo allows us to query cl_event to get desired counter values

 Timing information returned as cl_ulong data types

‒ Returns timestamp on a nanosecond granularity

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 6

Profiling with Events

 Table shows event types described using cl_profiling_info enumerated type

Event Type Description

CL_PROFILING_COMMAND_QUEUED
Command is enqueued in a command queue
by the host.

CL_PROFILING_COMMAND_SUBMIT
Command is submitted by the host to the
device associated with the command queue.

CL_PROFILING_COMMAND_START Command starts execution on device.

CL_PROFILING_COMMAND_END Command has finished execution on device.

CL_PROFILING_COMMAND_COMPLETE
Command and all of its child commands have
finished execution on the device

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 7

Profiling with Events

 OpenCL events can easily be used for timing durations of kernels.

 This method is reliable for performance optimizations since it uses counters from
the device

 By taking differences of the start and end timestamps we are discounting
overheads like time spent in the command queue

clGetEventProfilingInfo(event_time, CL_PROFILING_COMMAND_END,

sizeof(cl_ulong), &starttime, NULL);

clGetEventProfilingInfo(event_time, CL_PROFILING_COMMAND_START,

sizeof(cl_ulong), &starttime, NULL);

unsigned long elapsed = (unsigned long)(endtime - starttime);

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 8

Profiling with Events

 Before getting timing information, we must make sure that the events we are
interested in have completed

 There are different ways of waiting for events:

‒ clWaitForEvents(numEvents, eventList)

‒ clFinish(commandQueue)

 Timer resolution can be obtained from the flag
CL_DEVICE_PROFILING_TIMER_RESOLUTION when calling clGetDeviceInfo

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 9

Capturing Event Information

 clGetEventInfo can be used to return information about the event object

 It can return details about the command queue, context, type of command
associated with events, execution status

 This command can be used by along with timing provided by
clGetEventProfilingInfo as part of a high level profiling framework to keep
track of commands

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 10

User Events

 OpenCL 1.1 and above defines a user event object. Unlike clEnqueue*
commands, user events can be set by the user

 When we create a user event, status is set to CL_SUBMITTED

 clSetUserEventStatus is used to set the execution status of a user event object.

 A user event can only be set to CL_COMPLETE once

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 11

User Events

 A simple example of user events being triggered and used in a command
queue

 // Create user event which will start the write of buf1
user_event = clCreateUserEvent(ctx, NULL);
clEnqueueWriteBuffer(cq, buf1, CL_FALSE, ..., 1, &user_event , NULL);
// The write of buf1 is now enqueued and waiting on user_event

X = foo(); // Lots of complicated host processing code

clSetUserEventStatus(user_event, CL_COMPLETE);

// The clEnqueueWriteBuffer to buf1 can now proceed

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 12

Wait Lists

 Wait lists are arrays of cl_event type

 All clEnqueue* methods also accept event wait lists

 OpenCL defines waitlists to provide precedence rules

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 13

Wait Lists

 Enqueue a list of events to wait for such that all events need to complete
before this particular command can be executed

 Enqueue a command to mark this location in the queue with a unique event
object that can be used for synchronization

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 14

Event Callbacks

 OpenCL 1.1 or above allows registration of a user callback function for a
specific command execution status

‒ Event callbacks can be used to enqueue new commands based on event state
changes in a non-blocking manner

‒ Using blocking versions of clEnqueue* OpenCL functions in callback leads to
undefined behavior

 The callback takes an cl_event, status and a pointer to user data as its
parameters

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 15

Command Queue Synchronization

 Command queue synchronization methods work on a per-queue basis

 Flush:

‒ Sends all commands in the queue to the compute device

‒ No guarantee that they will be complete when clFlush returns

 Finish:

‒ Blocks host by waiting for all commands in the command queue to complete

 Barrier:

‒ Enqueues a synchronization point: ensures all prior commands in a queue have
completed before any further commands execute

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 16

Debugging using printf

 Starting in OpenCL 1.2, OpenCL C supports printing during execution using
printf

 printf closely matches the definition found in the C99 standard

 printf can be used to print information about threads or help track down bugs

 printf works by buffering output until the end of execution and transferring the
output back to the host

‒ It is important that a kernel completes in order to retrieve printed information

‒ Commenting out code following printf is a good technique if the kernel is crashing

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 17

Debugging using printf

 The following example prints information about threads trying to perform an
improper memory access

 int myIdxX = ... // column index for addressing a matrix
int myIdxY = ... // row index for addressing a matrix
if(myIdxX < 0 || myIdxX >= cols ||
 myIdxY < 0 || myIdx >= rows)
 {
 printf(“Work item %d,%d: bad index (%d, %d)\n”,
 get_global_id(1), get_global_id(0),
 myIdxX, myIdxY));
 }

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 18

CodeXL

 Integrated profiler, kernel analyzer, and debugger tool developed by AMD

 Profile mode

‒ Gathers performance data from the OpenCL runtime and AMD GPUs during
execution

 Analysis mode

‒ Statically compiles, analyzes, and disassembles OpenCL kernels for AMD GPUs

 Debug mode

‒ Debugs an application by stepping through OpenCL API calls and kernel source code

‒ Views function parameters and reduces memory consumption

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 19

Debugging Using CodeXL

 CodeXL intercepts the OpenCL API calls
between the application and the OpenCL ICD

 CodeXL can debug at the API-level

‒ Record the OpenCL API call history

‒ Program and kernel information

‒ Image and buffer data

‒ Memory checking

‒ API usage statistics

‒ Kernel function breakpoints

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 20

Profiling Using CodeXL

 Profiling modes

‒ GPU application timeline traces

‒ GPU performance counters during kernel execution

‒ Collecting CPU performance information

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 21

Application Timeline View

 Provides a visual representation of the execution of the application

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 22

Host API Trace View

 Lists all the OpenCL API calls made by each host thread in the application

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 23

Collecting GPU Kernel Performance Counters

 The GPU kernel performance counters can be used to find possible bottlenecks
in the kernel execution

| OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015 24

Summary

 Debugging

‒ printf can be a light-weight debugging method

‒ CodeXL debugging mode is a comprehensive debugger

 Profiling: OpenCL events allow us to use the execution model and
synchronization to benefit application performance

‒ Command queue synchronization constructs for coarse grained control

‒ Use events for fine grained control over an application

‒ OpenCL 1.1 or above allows more complicated event handling and adds callbacks and
also provides for events that can be triggered by the user

‒ CodeXL profiling mode can generate timing information without changing source
code

