AMDA

EVENTS, PROFILING, AND DEBUGGING
OPENCL 2.0 UNIVERSITY TOOLKIT

Northeastern University Computer Architecture Research Lab -
with

Zhongliang Chen and Yash Ukidave,
Perhaad Mistry and Dana Schaa, AMD
© 2015

Events AMDZ

4 Events are used to synchronize between individual commands
— i.e., create a dependency graph of commands

A Explicit synchronization is required for
— Out-of-order command queues
— Multiple command queues

4 Events are also used for storing timing information returned by the device

2 | OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015

Events AMDZ

4 |n addition to specifying dependencies, events are used for basic profiling of
commands

A Profiling using events has to be enabled explicitly when creating a command

queue
— CL_QUEUE_PROFILING_ENABLE flag must be set
— Requiring the runtime to generate timestamps for events may slow down execution

4 A handle to store event information can be passed for all clEnqueue*
commands

— When commands such as clEnqueueNDRangeKernel and clEnqueueReadBuffer
are invoked timing information is recorded in the provided event

3 | OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015

Uses of Events AMDZ

4 Using events we can:

— Time execution of clEnqueue™ calls like kernel execution or explicit data transfers
— Use the events from schedule asynchronous data transfers between host and device
— Profile an application to understand an execution flow

— Observe overhead and time consumed by a kernel in the command queue versus
actually executing

4 Event timestamps are consistent for both CPUs and GPUs

4 | OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015

Profiling with Events AMDZ1

cl _int clGetEventProfilingInfo (cl_event event,
cl_profiling_info param name,
size_t param_value_size,
void *param value,
size t *param value size ret)

A clGetEventProfilinginfo allows us to query cl_event to get desired counter values

A Timing information returned as cl_ulong data types
— Returns timestamp on a nanosecond granularity

5 | OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015

Profiling with Events AMDZ1

4 Table shows event types described using cl_profiling_info enumerated type

Event Type Description

Command is enqueued in a command queue

CL_PROFILING_COMMAND_QUEUED by the host.

Command is submitted by the host to the

CL_PROFILING_COMMAND_SUBMIT device associated with the command queue.

CL_PROFILING_COMMAND_START Command starts execution on device.

CL_PROFILING_COMMAND_END Command has finished execution on device.

Command and all of its child commands have

CL PROFILING COMMAND COMPLETE . . i
- - - finished execution on the device

6 | OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015

Profiling with Events AMDZ1

4 OpenCL events can easily be used for timing durations of kernels.

clGetEventProfilingInfo(event_time, CL_PROFILING_COMMAND_START,
sizeof(cl_ulong), &starttime, NULL);

4 This method is reliable for performance optimizations since it uses counters from
the device

clGetEventProfilingInfo(event_time, CL_PROFILING_ COMMAND_END,
sizeof(cl_ulong), &starttime, NULL);

4 By taking differences of the start and end timestamps we are discounting
overheads like time spent in the command queue

unsigned long elapsed = (unsigned long)(endtime - starttime);

7 | OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015

Profiling with Events AMDZ1

A Before getting timing information, we must make sure that the events we are
interested in have completed

A There are different ways of waiting for events:
— clWaitForEvents(numEvents, eventList)
— clFinish(commandQueue)

A Timer resolution can be obtained from the flag
CL_DEVICE_PROFILING_TIMER_RESOLUTION when calling clGetDevicelnfo

8 | OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015

Capturing Event Information AMDZ1

cl int clGetEventInfo (cl event event,
cl event info param name,
size t param value size,
void *param_ value,
size t *param value size ret)

A

clGetEventinfo can be used to return information about the event object

h

It can return details about the command queue, context, type of command
associated with events, execution status

A This command can be used by along with timing provided by
clGetEventProfilinginfo as part of a high level profiling framework to keep
track of commands

9 | OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015

User Events AMDZ

4 OpenCL 1.1 and above defines a user event object. Unlike clEnqueue*®
commands, user events can be set by the user

cl_event clCreateUserEvent (cl_context context, cl_int *errcode_ret)

4 When we create a user event, status is set to CL_SUBMITTED
4 clSetUserEventStatus is used to set the execution status of a user event object.

A A user event can only be set to CL_COMPLETE once

cl int cISetUserEventStatus (cl event event, cl int execution status)

10 | OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015

User Events AMDZ

A A simple example of user events being triggered and used in a command
queue

// Create user event which will start the write of bufl

user_event = clCreateUserEvent(ctx, NULL);
clEnqueueWriteBuffer(cq, bufl, CL_FALSE, ..., 1, &user_event , NULL);
// The write of bufl is now enqueued and waiting on user_event

X =foo(); // Lots of complicated host processing code

clSetUserEventStatus(user_event, CL_COMPLETE);

// The clEnqueueWriteBuffer to bufl can now proceed

11 | OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015

Wait Lists AMD1

4 \Wait lists are arrays of ¢cl_event type
4 All clEnqueue* methods also accept event wait lists

A OpenCL defines waitlists to provide precedence rules

cl int clWaitForEvents (cl uint num events, const cl event *event list)

12 | OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015

Wait Lists AMD1
cl_int clEnqueueBarrierWithWaitList (c|_command_queue command queue,

cl_uint num events in wait list,
const cl_event *event wait list,
cl_event *event)

4 Enqueue a list of events to wait for such that all events need to complete

before this particular command can be executed
cl_int clEnqueueMarkerWithWaitList (¢l command queue command queue,

cl uint num events in wait list,
const cl_event *event wait list,
cl_event *event)

A4 Enqueue a command to mark this location in the queue with a unique event

object that can be used for synchronization

13 | OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015

Event Callbacks AMD1

cl_int clSetEventCallback (cl_event event,
cl_int command exec callback type,
void (CL_CALLBACK *pfn_event notify)(cl event event,
cl_int event_command exec_status,
void *user data),
void *user data)

4 OpenCL 1.1 or above allows registration of a user callback function for a
specific command execution status

— Event callbacks can be used to enqueue new commands based on event state
changes in a non-blocking manner

— Using blocking versions of clEnqueue* OpenCL functions in callback leads to
undefined behavior

4 The callback takes an cl_event, status and a pointer to user data as its
parameters

14 | OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015

Command Queue Synchronization AMDZ1

h

Command queue synchronization methods work on a per-queue basis

A

Flush: cl int clFlush (¢l command queue command queue)

— Sends all commands in the queue to the compute device
— No guarantee that they will be complete when clFlush returns

A Finish: |clint clFinish (cl command queue command queue)

— Blocks host by waiting for all commands in the command queue to complete

4 Barrier: cl_int clEnqueueBarrierWithWaitList (cl command queue command_queue,
cl uint num_events in_wait _list,
const cl_event *event wait list,

cl event *event)

— Enqueues a synchronization point: ensures all prior commands in a queue have
completed before any further commands execute

15 | OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015

Debugging using printf AMDZU

A Starting in OpenCL 1.2, OpenCL C supports printing during execution using
printf

A

printf closely matches the definition found in the C99 standard

A

printf can be used to print information about threads or help track down bugs

h

printf works by buffering output until the end of execution and transferring the
output back to the host

— It is important that a kernel completes in order to retrieve printed information
— Commenting out code following printf is a good technique if the kernel is crashing

16 | OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015

Debugging using printf AMDZU

4 The following example prints information about threads trying to perform an
improper memory access

int myldxX = ... // column index for addressing a matrix
int myldxY = ... // row index for addressing a matrix
if(myldxX < 0 | | myldxX >= cols | |
myldxY < 0 | | myldx >= rows)
{
printf(“Work item %d,%d: bad index (%d, %d)\n”,
get_global _id(1), get_global id(0),
myldxX, myldxY));

17 | OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015

CodeXL AMD1

h

Integrated profiler, kernel analyzer, and debugger tool developed by AMD

A

Profile mode

— Gathers performance data from the OpenCL runtime and AMD GPUs during
execution

A Analysis mode

— Statically compiles, analyzes, and disassembles OpenCL kernels for AMD GPUs

A4 Debug mode

— Debugs an application by stepping through OpenCL API calls and kernel source code
— Views function parameters and reduces memory consumption

18 | OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015

Debugging Using CodeXL

A CodeXL intercepts the OpenCL API calls
between the application and the OpenCL ICD

A CodeXL can debug at the API-level
— Record the OpenCL API call history
— Program and kernel information
— Image and buffer data
— Memory checking
— APl usage statistics
— Kernel function breakpoints

19 | OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015

AMDZ1

CodeXL

Application

__

OpenCL ICD

CPU

v

AMD OpenCL Runtime

AMD GPU Driver

GPU

Compute Unit
Compute Unit
P P P P
E E E E

Profiling Using CodeXL AMDZ1

A Profiling modes
— GPU application timeline traces
— GPU performance counters during kernel execution
— Collecting CPU performance information

20 | OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015

Application Timeline View AMDZ1

4 Provides a visual representation of the execution of the application

Application Timeline Trace ‘

Miliseconds 398,391 ‘
398.352 399.294 400.236 401.178 402.120 403.061 404.003 404.945 405.887 406.829 407.77C

[ElHost
[=Host Thread 13700
OpenCL dEnqueueMapBuffer dEnqueueMapBuffer dEnqueusMapBuffer
=] OpenCL

[=] Context 1 (0x00000000003BFFS0)

[=1Queue O - Pitcairn (0x0000000004F3DF50)

Data Transfer a Ml n

21 | OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015

Host APl Trace View AMD1

A Lists all the OpenCL API calls made by each host thread in the application

Host Thread 12328 | Summary |

CallIndex Interface Parameters Result Device Block Kernel Occupancy CPU Time Device Time
102 clSetKernelirg 00000000004 58F620,6:8; [0:468 AD00] CL_SUCCESS 0.0003
103 clEnqueueMDRangeKernel 0:0000000000514170;0:0000000004 58 F620:1; NULL;[32768];[128]:0: NULL;MULL CL_SUCCESS nbody sim 50% 01530 59,6324
104 clFlush 0:40000000000514170 CL_SUCCESS 0.0021
105 clEnqueueMapBuffer 0:0000000000514170.0:000000000468 AB90; CL_TRUE; CL_MAP_READ;0,524288:0: MULL; NULL... 0x0000000007A77... 512.0 KB MAP BU.. 64,2462 1.2806
106 clSetkernelirg 0:4000000000458F520,0.8; [0:468 AB90] CL_SUCCESS 0.0017
107 clSetKernelirg 00000000004 58F620,1:8; [0:468 ADOO] CL_SUCCESS 0.0003
108 clSetKernelrg 0:000000000458F620,5:8; [0x:468 ABB0] CL_SUCCESS
109 clSetkernelirg 0000000000458 F620,6:8; [0x468 AA20] CL_SUCCESS 0.0003
110 clEnqueueMDRangekernel 0:0000000000514170,0:0000000004 58 F620,1; NULL;[22768];[128]:0; NULL;MULL CL_SUCCESS nbedy sim 50% 0.0626 54,8519
111 clFlush 0:0000000000514170 CL_SUCCESS 0.0048
112 clEnqueueUnmapMemObject 0x0000000000514170,0x000000000468 AB30;0:0000000007 A77000;0; NULL;NULL CL_SUCCESS 0.0205
113 clFlush 0:0000000000514170 CL_SUCCESS 0.0068
114 clEnqueueMapBuffer 0:0000000000514170;0:000000000468 A2B0; CL_TRUE; CL_MAP_READ;0;524288;0: MULL;MULL... 0x00000000078B2... 512.0 KB MAP BU... 2.9424 16532
115 clSetkernelirg 0:000000000458F520,0:8; [0:468 ABBO] CL_SUCCESS 0.0017
116 clSetkerneldrg 0:000000000458F620,1:8; [0:468 AA20] CL_SUCCESS 0.0003
117 clSetkernelirg 0:000000000458F520,5:8; [0:468 AB90] CL_SUCCESS
118 clSetKernelirg 00000000004 58F620,6:8; [0:468 AD00] CL_SUCCESS
119 clEnqueueMDRangeKernel 0:0000000000514170,0:0000000004 58 F620:1; NULL;[32768];[128]:0: NULL;MULL CL_SUCCESS nbody sim 50% 0.0623 464723

120 clFlush 0:40000000000514170 CL_SUCCESS 0.0024

22 | OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015

Collecting GPU Kernel Performance Counters AMDQ1

4 The GPU kernel performance counters can be used to find possible bottlenecks
in the kernel execution

M&hod tion ThreadID Time VGPRs SGPRs FCStacks lernelOccupanc Wavefronts WVALUInsts SALUInsts WFetchlnsts SFetchlnsts VWritelnsts WALUUtilization (%) WVALUBusy (%) SALUBusy (%)
1 pbodysim k.. 1 12616 61.77452 46 48 NA 50 512 620723 53279 2 32781 2 100 59.79 6.55

23 | OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015

Summary AMDZ1

4 Debugging
— printf can be a light-weight debugging method
— CodeXL debugging mode is a comprehensive debugger

A Profiling: OpenCL events allow us to use the execution model and
synchronization to benefit application performance
— Command queue synchronization constructs for coarse grained control
— Use events for fine grained control over an application

— OpenCL 1.1 or above allows more complicated event handling and adds callbacks and
also provides for events that can be triggered by the user

— CodeXL profiling mode can generate timing information without changing source
code

24 | OPENCL UNIVERSITY TOOLKIT V2.0 | OCTOBER 5, 2015

