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Verifying the Martingale Property for Subsequent Periods 

 In Section 5.2.2.2, we verified that the stock price relative to the bond (the bond as the 

numeraire) satisfies the martingale property from time 0 to 1. Here, we will do the same for the 

stock price from time 1 to 2 and then in subsequent periods. We will also demonstrate that the 

required measure that makes the discounted stock price into a martingale is the risk-neutral 

probability ℚ. This appendix is essentially a continuation of Section 5.2.2.2. 

 Suppose, we are given the stock price S0,1;u at time 1 after an upjump at time 1. Denote 

S0,2:u,u and S0,2:u,d as the stock prices at time 2 given the outcomes u,u (consecutive upjumps at 

time 1 and 2) and u,d, respectively. Denote q1,2;u,u and q1,2;u,d as the risk-neutral probabilities that 

at time 1, the stock will have an upjump or downjump at time 2 given that it had an upjump at 

time 1. Let B1.2 (discount function) be the time 1 value of a bond that pays 1 at time 2. Analogous 

to equation (5.15), the forward prices from time 1 to 2 given the stock price S0,1;u at time 1, must 

satisfy the system of equations: 

(1)                                               
                

  
  

        

        
   

      

    
   

 If we divide the matrix equation by B1,2, and define the risk-neutral probabilities 

q1,2;u,u=ψ1,2;u,u /B1,2 and q1,2;u,d=ψ1,2;u,d /B1,2  as required by equation (5.12) we get: 

(2)                                          
                

  
  

        

        
   

           

 
   

The first row of matrix equation (2) is the equation: 

 (3)                                                                                       
      

    
  

Equation (3) can be expressed in the form: 

(4)                                                ℚ     
      

    
  

      

    
  

We can repeat the calculation given the stock price S0,1;d. Analogous to equations (3) and (4), we 

would obtain: 

(5)                                                                       
      

    
 

and 

(6)                                                   ℚ     
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Equations (4) and (6) together verify the martingale property going from time 1 to 2  that the 

expected value of the stock at time 2 given its value at time 1 (in bond numeraire) is equal to the 

value of the stock at time 1 (in bond numeraire).  

 Next, we study the stock model going from time 0 to 2. Let, q0,2;u,d, q0,2;d,u, and q0,2;d,d 

denote the risk-neutral probabilities at time 0 that the stock price will experience the outcomes 

u,u, u,d, d,u, and d,d, respectively, in going from time 0 to time 2. Let B0.2 be the time 0 value 

of a bond that pays 1 at time 2. Note that this bond value must satisfy the equation B0,2=B0,1B1,2. 

Recall that ψ0,2;u,u is the price of the pure security at time 0 that pays 1 at time 2 after the upjump 

in the price of the stock from time 0 to time 1 and also from time 1 to time 2.  The prices ψ0,2;u,d, 

ψ0,2;d,u, and ψ0,2;d,d are defined analogously.  Similar to previous analysis, we have: 

(7)                              
                

  

                

  
 

 
 
 
 
        

        

        

         
 
 
 

  
  

    
                                  

If we divide both sides of equation (7) by B0,2 and use equation (5.12) to define the risk-neutral 

probabilities, we obtain: 

 (8)                              
                

  

                

  
  

        

        

        

        

   
       

 
      

Notice that the first row of the matrix equation (8) is the equation: 

 (9)                                                                                     
  

    
  

The left side of equation (9) is the expected value with respect to the probability measure ℚ of 

the stock price at time 2 given its value at time 0 in bond numeraire, Thus equation (9) states that 

this expected value equals the value of the stock at time 0 in bond numeraire: 

(10)                                                 ℚ             
  

    
   

 This is the required martingale property for the stock going from time 0 to 2. Now, we 

need to check that this result is consistent with the results going from time 0 to 1 followed by 

going from time 1 to 2. Since q0,2;u,u is the probability that the stock had  upjumps at times 1 and 

2, q1,2;u,u is the conditional probability that the stock had an upjump at time 2 given that it had an 

upjump at time 1, and q0,1;u is the probability that the stock had an upjump at time 1, then by the 

definition of conditional probability, we require q1,2;u,u= q0,2;u,u/ q0,1;u, or equivalently: q0,2;u,u= 

q0,1;u q1,2;u,u. The relationships for the other risk-neutral probabilities are computed in a similar 

way giving us: 



Chapter 5 Additional Readings  

3 
 

 

(11)                                                                                            

                        

Note that equations (11) define the risk-neutral probabilities from time 0 to time 2, and we need 

to check that they are consistent with equation (9). Since the left side of equation (9) is 

 ℚ             and substituting the results of equations (11) into the left side of equation (9) 

gives: 

 ℚ                                                           

                                                                                                               

                                                                                     

Referring to equations (3) and (5), we see that: 

 ℚ             
                         

    
  

Referring to equation (5.17) and using the fact that B0,2=B0,1B1,2, we get:  

(12)                                                     ℚ             
  

    
  

 Equation (10) is identical to equation (12), so the results are consistent. Equation (12) 

states that the expected value with respect to the probability measure ℚ of the stock price at time 

2 given its price at time 0 (in bond numeraire) is equal to the stock price at time 0 (in bond 

numeraire). Thus, we have verified all of the martingale properties up to time 2. The proof to 

show the martingale properties for all subsequent times essentially duplicates the work we have 

done using an induction argument. We omit the details. The induction argument would give the 

result: 

 ℚ     
  

    
 

  

    
   

  

    
  

  

    
 

for all k=0,1,2,…,n-1. 

 Since  ℚ[Sn|S0,S1,…,Sk] =Sk   k < n if the stock prices are expressed in the units of the 

bond as the numeraire, it is clear that St is a martingale, despite its having been a submartingale 

when priced relative to currency. 
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Brownian Motion as a Limit of a Discrete Random Walk 

                      Think of the discrete random walk and Brownian motion taking place on the z-axis, 

where we start at the origin (z=0) at time 0. We will then study these two processes as a function 

of time. We can also graph each of these two processes if we wish with position z as the vertical 

axis versus time t as the horizontal axis, analogous to the graph of a stock price (S) versus time 

(t). The graph of the discrete random walk versus time for a specific history will consist of a 

large number of discrete points in the t-z plane, while the graph of Brownian motion versus time 

for a specific history will consist a continuous zig-zag graph in the t-z plane. To create Brownian 

motion from the discrete random walk with p = 1/2, first divide each unit of time on the 

continuous time axis into n equal subintervals, so that the width of each subinterval is Δt = 1/n. 

This results in the discrete times 0, 1/n, 2/n,…,k/n,… on the continuous time axis. Define the 

following discrete random walk as a function of time k (the k
th

 discrete time on the continuous 

time axis at time k/n) by: 

  
   

  
  

  

 
   . 

 Assume that each Zi is a random variable that equals 1 with probability ½ and equals -1 

with probability ½ at time i, and that the Zi’s are pairwise independent of one another. This 

discrete random walk, starting at 0, takes independent small steps of length  
 

  
 at each moment 

of time from (i-1)/n to i/n  as i goes from 1 to k until it arrives at the position   
   

 at time k/n. 

Since the random walk   
   

 takes ever-smaller steps approaching length 0 as n → ∞, it is 

approaching a continuous path as n → ∞ for each specific history. This justification for the 

existence and continuity of the path isn’t rigorous. A rigorous argument is beyond the level of 

this text. 

 We next claim that as n → ∞, the random walk will converge to a process that has a 

normal distribution (which is one the requirements to be Brownian motion).To prove this, pick a 

particular time t on the continuous non-negative real line. Pick the integer k, k ≤ nt, so that it best 

approximates k/n ≈ t. Note that |k/n-t|<1/n so that the approximation improves as n approaches 

∞. Also note that k ≈ nt, so that k → ∞ as n → ∞. Define the sample mean random variable 

   
   

 
   

 
  

 Clearly,   
   

 
 

  
    Since the random variables Zi are independent and identically 

distributed random variables with mean μ = 0 and variance σ
2
 = 1, by the Central Limit Theorem 

from section 2.7, we conclude that      
  

    
 approaches the standard normal random 

distribution Z~ N(0,1) as k → ∞. This implies that  
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as k → ∞. Since             this shows that   
   

 approaches a normal distribution, say Xt, 

with mean 0 and variance t. We have completed the main step to show that our random walk 

converges to a process that has a normal distribution with mean 0 and variance t.  

The rest of the properties are easier to justify. If we choose the integer j so that it j/n best 

approximates a value s, with s < t, on the time axis, then by a proof similar to that we just 

completed, we have    
   

   
   

 approaching a normal distribution Xt – Xs  with mean 0 and 

variance t – s. Consider the values s < t < u < v on the time axis. Choose the integers j < k < l < 

m so that they best approximate j/n ≈ s, k/n ≈ t, l/n ≈ u, and m/n ≈ v. Since 

  
   

   
   

  
  

  

 
      ,   

   
   

   
  

  

  

 
     , 

and j +1 ≤ k ≤ l + 1 ≤ m, then the random variables   
   

   
   

 and   
   

   
   

 are 

independent. This is easily seen by observing that the Zi’s in the first sum are independent of the 

Zi’s in the second sum in this case. But   
   

   
   

 approaches Xt – Xs and   
   

   
   

 

approaches Xu – Xv as n→ ∞. Thus, Xt – Xs and Xu – Xv should be independent of one another. 

Each of the requirements in order that   
   

 will converge to the standard Brownian motion 

process as n → ∞ have been addressed, and we conclude that the convergent process Xt is in fact 

standard Brownian motion.  

 
Geometric Brownian Motion as a Limit of a Discrete Stochastic Process 

     

        In the same way that we derived Brownian motion as a limit of a discrete stochastic process, 

we divide each unit of time into n equal subintervals, so that the width of each subinterval is Δt = 

1/n. This results in the discrete times 0, 1/n, 2/n,…,k/n,… on the continuous time axis. Define the 

price of a stock   
   

 as a discrete stochastic process as a function of time k (the k
th

 discrete time 

on the continuous time axis at time k/n) so that: 

  
   

     
   

    
   

 
 

 
 

   

  
  

 Assume that each Zk is a random variable that equals 1 with probability ½ and equals -1 

with probability ½ at time i, and that the Zi’s are pairwise independent of one another. Observe 

that μ is the return per unit time per unit value of the stock and σ is the degree of volatility of the 

stock. Solving for   
   

 gives: 
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Substituting k with k -1 in this equation and replacing the result for     
   

 in terms of      
   

 on the 

right side of the equation above, and continuing this process all the way back to time 0 results in: 

  
   

      
 

 
 

   

  
    

 

 
 

   

  
     

 

 
 

   

  
   

 Taking logarithms, we have: 

    
   

            
 

 
 

   

  
 

 

   

  

From calculus, we know that the Taylor series for ln(1+x) centered at zero is 

          
 

 
   

 

 
     

For a particular history  of the stock, each Zi() will take on the definite value of either 1 or  -1. 

Applying the Taylor series above to  

  
 

 
 

      

  
 

for each i results in: 

    
   

           
 

 
 

      

  
 

 

 
 
 

 
 

      

  
 

 

 
 

 
 
 

 
 

      

  
 

 

   

 

   

 

       
 

 
   

     

  

 

   

 
  

  
        

 
            

 

   

  

 Since Zi() is always 1 or -1, then (Zi())
2
 = 1. So, we have: 

    
               

  

 
 
 

 
   

     

  
             

 

   

 

 Similar to the derivation of Brownian motion from the discrete model, pick a particular 

time t on the continuous time axis. Choose the integer k so that k/n ≤ t and k/n best approximates 

t. As before, |k/n – t| ≤ 1/n, and so k/n → t as n → ∞. It is also not hard to show that the error 

terms are bounded by              where C(t,μ,σ) is a value independent of n. Thus, the error 
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terms approach 0 as n → ∞. We showed in the derivation of Brownian motion from the discrete 

model that  
     

  

 
    converges to Zt () where Zt is standard Brownian motion. These 

observations show     
       converges to  

        
  

 
          

as n → ∞. Exponentiating, we have   
       converges to  

   
   

  

 
         

  

Let’s label this resulting continuous stochastic process as St(). Since this result holds for all 

possible histories  in the sample space, then 

      
   

  

 
        

Verification of the Tower Property 

First, we state the Tower Property: Suppose Xt is a stochastic process with an adapted filtration 

{ t}. If s≤ t, then for any T ≥ t, we have 

                          

 To verify this property for the case that the filtrations are finite, consider the following 

more general theorem. Suppose   and   are σ–algebras with    , and X is a random variable 

with  respect to the σ – algebra with  . Then, the following expectation result holds: 

                    

 Observe that the tower property follows from this result by choosing      and        

We are going to prove this more general statement for the case that the σ-algebras are finite. 

To interpret the expectation equation immediately above, notice that the σ – algebra   is a 

“finer” σ – algebra than  , since it contains all of the measurable sets that are in  . Although a 

proof is provided below, this result is understandable intuitively. Roughly speaking, the equation 

states that if one averages a random variable conditioned on the finer subdivision   and then 

averages these averages conditioned on the coarser subdivision  , one gets the same average as 

conditioning on the coarser subdivision   alone. 

 Verification of the theorem:  Since we are assuming the σ–algebra   is finite, then   

consists of a finite number of disjoint sets G1, G2,…, Gn and all of the possible unions of these 
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sets. Since      and   is finite, then we can further decompose each set Gi into disjoint sets Fij 

for j = 1, …, ni so that  

       

  

   

 

and   consists of the sets Fij and all of the possible unions of these sets. To find        means to 

calculate E[X|Gi] for each i. Suppose p(x) denotes the probability that the random variable X = x. 

Then, by definition, 

        
          

         

  

To find        means to calculate E[X|Fij] for each i and j. By definition, 

         
           

          

  

To find              means to calculate               for each i.        is a random variable 

that takes on the values E[X|Fij] with probability           
  Thus: 

             
                    

 
  
   

         

 

 

  
           

          

            
 

  
   

         

 
            

  
   

         

 

Since the sets Fij are disjoint from one another and     
  
        then  

       

     

  

   

       

    

  

We conclude that 

             
          

         

         

as we wished to prove. 

 


