Chapter 6

Figure 6.1 Opening of the Okinawa Trough and course change of the Kuroshio. (A) Miocene, the Kuroshio flew outside the trough. (B) Pleistocene, the Kuroshio flows through the trough. Modified from Osozawa et al. (2012). 471

Figure 6.2 Sedimentologic response to basin evolution of the SCS recorded at ODP Site 1148. From left to right: Major lithologic units, mass accumulation rates (MAR, in g/cm2/kyr), and seafloor spreading events with the shapes of oceanic-crust basin. Li, Jian, and Su (2005). 473

Figure 6.3 A 33 Ma sediment record from ODP Site 1148, northern slope of the SCS (water depth 3297 m). (A) Main grain size. (B) SiO$_2$%. (C) CaCO$_3$%. (D) Mass accumulation rate of carbonate in g/cm/kyr; D1-D5 denote deep-sea dissolution events. (E) Planktonic foraminifera fragmentation (%). (F) Benthic foraminifera (%). (G) Total organic carbon. Wang (2012) and Fang (2002). 474

Figure 6.6 Downhole variations of (left) high-oxygen group (HOG) of benthic foraminifera and (right) benthic δ^{13}C (black) at ODP Site 1148, as compared to the global ocean average (grey). Dotted lines show development stages of the submarine sill in the Bashi Strait. Redrawn from Wang and Li (2009). 479

Figure 6.8 Major changes in benthic foraminifera during the middle Pleistocene between 1.2 and 0.6 Ma are recorded in (A) epifaunal and (B) infaunal taxa at ODP sites. Wang and Li (2009). 480

Figure 6.9 Paleoceanographic records of the SCS over the last 4 myr. OPD 1143, southern South China Sea (compiled by Wang et al., 2014): (A) benthic δ^{18}O, (B) planktonic δ^{18}O, (C)
difference between benthic and planktonic $\delta^{18}O$, (D) benthic $\delta^{13}C$, (E) planktonic $\delta^{13}C$, (F) difference between benthic and planktonic $\delta^{13}C$ (Tian, Wang, Cheng, & Li, 2002), (G) K/Al ratio of bulk sediment, (H) Ti/Al ratio (Tian, Xie, Ma, Jin, & Wang, 2011), (I) total organic carbon in sediment (Li et al., 2013), (J) U_{37}^{K}-derived SST (Li et al., 2011), (K) Mg/Ca-derived SST of 3.3-2.5 Ma (Tian, Pak, et al., 2006; Tian, Yang, et al., 2006). ODP 1146 (Northern SCS): (L) benthic $\delta^{18}O$, M. biogenic Ba in sediments, (N) Mn in sediments (Clemens, Prell, Sun, Liu, & Chen, 2008), (O) winter SST based on transfer function FP-12E (Huang, 2002). Bars indicate oceanic carbon maximum ($\delta^{13}C_{\text{max}}$, Wang, Tian, & Lourens, 2010).

Figure 6.10 Alkenone-based SST in the South China Sea over the last 4 myr. (A) Zonal SST variations between tropical eastern and western Pacific: $\delta S_{1143-846}$; (B) Meridional SST variations between northern and south SCS sites: $\delta S_{1143-1146}$ (solid fine line) and $\delta S_{1143-1148}$ (dashed smoothing line); (C) SST at Site 1143. Li et al. (2011).

Figure 6.11 Monsoon-driven salinity changes in the period of 2.5-3.3 Ma at ODP Site 1143 when Northern Hemisphere glaciation (NHG) started. (A) Benthic $\delta^{18}O$ over the past 5 myr. (B) Planktonic $\delta^{18}O$ over the past 5 myr. (C) Mg/Ca-derived SST. (D) $\delta \delta^{18}O_{SW-B}$, the difference between seawater $\delta^{18}O$ and benthic $\delta^{18}O$, indicating sea surface salinity changes. (E) total organic carbon mass accumulation rate, with marine isotope stages indicated. From Tian, Pak, et al. (2006) and Tian, Yang, et al. (2006).

Figure 6.13 Changes in the abundances (%) of planktonic foraminiferal deep-dwelling species at ODP Sites 1146 (A) and 1143 (B) show increased south-north thermocline gradient (C, five-point moving average) at ~ 11 Ma and since ~ 3 Ma (horizontal bars) in the SCS. Jian et al. (2006).
Figure 6.14 Weathering rates over the last 23 myr in northern South China Sea records. (A-D) ODP Site 1148. (A) benthic δ¹⁸O; (B) black carbon δ¹³C (Jia et al., 2003); (C) CIA; (D) Al/K (Wei et al., 2006). (E-F) ODP Site 1146. (E) CIA; (F) Al/K (Wan, Clift, Li, Li, & Yin, 2010).

Figure 6.17 Carbon isotopic records from the South China Sea and global ocean over the past 5 myr. (A-C) ODP Site 1143, South China Sea: (A) benthic δ¹⁸O; (B) benthic δ¹³C; (C) δ¹³C. (D-E) Pacific: (D) planktonic δ¹³C of ODP Site 807; (E) stacked benthic δ¹³C of ODP Sites 846 and 849. (F-G) Atlantic: (F) stacked benthic δ¹³C of ODP Leg 154 (Sites 926-929); (G) benthic δ¹³C of ODP Site 659. (H) Mediterranean: stacked planktonic δ¹³C. Yellow bars indicate δ¹³C maximum; red dotted lines denote major events of ice-sheet development at 2.7, 0.9, and 0.4 Ma. Wang et al. (2014).

Figure 6.18 Paleoceanographic records from ODP Site 1143, southern South China Sea, over the last 2 myr. (A) Benthic δ¹⁸O, (B) planktonic foraminifera Pulleniatina obliquiloculata % (Xu, Wang, Huang, Li, & Jian, 2005), (C) nannoplankton Florisphaera profunda % (Liu et al., 2002; Liu, Wang, Tian, & Cheng), (D) U³⁷K-derived SST (Li et al., 2011), (E) CaCO₃%, (F) fragmentation % (Xu et al., 2005).

Figure 6.19 Late Pleistocene major events recorded at ODP Site 1143, southern South China Sea. (A) Benthic δ¹⁸O. (B) Benthic δ¹³C. (C) Small coccoliths of Gephyrocapsa. (D) U³⁷K-based SST. Red boxes represent two groups of events: (I) δ¹³Cmax-III/MPT and (II) δ¹³Cmax-II/MBE. Yellow bars denote δ¹³Cmax-II events; blue bars denote MPT and MBE, respectively. Wang et al. (2014).

Figure 6.21 Variations of percentage abundance of Pulleniatina obliquiloculata in planktonic foraminiferal assemblage from the Okinawa Trough. (A) Core A7 (27°49′N, 126°59′E, water
depth 1264 m; Xiang et al., 2007). (B) Core 255 (123°07’E, 25°12’N, water depth 1575 m; Jian, Li, Huang, et al., 2000; Jian, Wang, Chen, et al., 2000; Jian, Wang, Saito, et al., 2000). (C) Core MD01-2403 (123.2°E, 25.3°N, water depth 1420 m; Lin et al., 2006) (see Figure 6.22 for core site locations). 497

Figure 6.22 Hypothetical paleoceanographic conditions during glacial periods in the Okinawa Trough, with core site locations (red dots) for Figs. 6.20 and 6.21 (modified from Iryu et al., 2006). Extensive areas of the present East China Sea shelf emerged (light gray), which caused runoff-induced turbid and low-salinity waters (dark blue open arrows) at the modern shelf break. The Kuroshio Current, which currently flows to the west of the Ryukyu Islands (pink pattern), may have changed its streamline to the east (large light blue arrow). These environmental changes should have resulted in a southward migration of the “coral reef front” (the northern limit of coral reef formation). 498

Figure 6.23 Modeled annual mean flow patterns of the Kuroshio in the upper 100 m at (A) modern sea level and (B) sea level at -135 m. Arrows point to the flow direction and colors represent velocity categories. From Kao et al. (2006). 499

Figure 6.24 Bathymetric map on the northernmost Okinawa Trough showing the Goto Submarine Canyon. Oiwane et al. (2011). 501

Figure 6.27 Tidal sand ridges on the East China Sea shelf. (A) Bathymetric map showing distribution of sand ridges. Color denotes sediment types: sand in yellow, silt and clay in green. (B) Linear sand ridges in the outer continental shelf of the East China Sea. Colors show water depth in meter (Wu, Jin, Li, Zheng, & Wang, 2005). C. Scenarios of depositional sequences on the outer continental shelf in the East China Sea. ① Prodeltaic/offshore fine-grained deposits;
Figures 6.31 Location map of sediment cores and boreholes from the continental shelf of the East China Sea studied for paleoenvironments (see Table 6.2). Superimposed are winter circulations: YSWC, Yellow Sea Warm Current; TSWC, Tsushima Current; TWWC, Taiwan Warm Current; KC, Kuroshio Current; SDCC, Shandong Coastal Current; JSCC, Jiangsu Coastal Current; KCC, Korea Coastal Current; ECSCC, East China Sea Coastal Current; CDW, Changjiang Diluted Water; SWCICE, Southwestern Cheju Island Cold Eddy. Light gray color marks mud deposit areas. Circulation after Wang et al. (2011).

Figures 6.32 Holocene succession of benthic foraminifera Ammonia in the Yellow Sea. (A) Core C02 (35°N, 122°E) (Fang et al., 2013). (B) Core CC02 (36°08’, 123°49’) (Kim & Kennett, 1998). (C) Distribution of foraminiferal and ostracod assemblages in the surface sediments of the modern southern Yellow Sea: I. Ammonia beccarii-Sinocytheridea; II. Ammonia compressiuscula-Munseyella; III. Ammonia ketienziensis-Krithe assemblages (Wang, Min, & Bian, 1985).

Figures 6.33 Holocene temperature changes in the northeastern East China Sea. (A) Core FJ04 (31°41’N, 125°49’E), \(U_{37}^K \)-based SST over the last 3600 years (Li, Sun, et al., 2009); (B) Core F10B (31°44’N, 126°07’); \(U_{37}^K \)-based SST and TEX\(_{86}\)-based temperature of the Holocene. \(U_{37}^K \)-based SST\(_g\) denotes values calculated using the global core-top equation; \(U_{37}^K \)-based SST\(_{YS}\) denotes those using the Yellow Sea core-top equation. Xing et al. (2013).
Figure 6.34 Locations of coring and drilling sites for paleoceanographic studies up to 2012 on topographic map of the South China Sea. Black dots—coring sites; white stars—ocean drilling sites (Wang et al., 2014). For information of individual sites, see also Table A1-2 in Wang and Li (2009). 517

Figure 6.37 Millennial-scale variations of SST over the last 150 kyr in the SCS. (A) Greenland ice-core δ¹⁸O (NGRIP members, 2004). (B) Speleothem δ¹⁸O from Sanbo/Hulu caves, South China (Wang et al., 2008). (C) Mg/Ca-based SST from ODP 1145, northern SCS. (D) Planktonic δ¹⁸O from ODP 1145 (Oppo & Sun, 2005). (E) K'³⁷U-derived SST from MD97-2151, southern SCS. (F) Benthic δ¹⁸O from MD97-2151 (Zhao et al., 2006). Numbers denote D/O events; H numbers denote Heinrich events. From Wang et al. (2014). 523

Figure 6.38 Satellite and modeled chlorophyll distribution in the SCS. Upper panel, August; lower panel, December. From Liu, Cheng, Zhu, Tian, and Xia (2002) and Liu, Chen, et al. (2007). 527

Figure 6.39 (A) Alkenone content in core SO50-31KL from the northern SCS (Huang, Liew, et al., 1997). (B) Alkenone content and (C) benthic δ¹⁸O records for Core MD97-2151 from the southwestern SCS (Zhao et al., 2006). 529

Figure 6.41 Productivity proxy records are compared with the planktonic δ¹⁸O curve for Core MD97-2142 from the southeastern SCS. Shiau et al. (2008). 530

Figure 6.44 Millennial-scale events recorded in Core 17940 from the northern SCS. Grain size, clay content, and planktonic δ¹⁸O sequences show Dansgaard-Oeschger (D-O in numbers) and Heinrich events (H1-H4). OD = Oldest Dryas; B/A = Bølling-Allerød; YD = Younger Dryas; EHPB = early Holocene/Preboreal. Modified from Wang, Sarenthein, Grootes, and Erlenkeuser (1999). 534
Figure 6.45 Downcore variations of planktonic foraminifer *Pulleniatina obliquiloculata* over the last 450 kyr. Southern SCS: (A) benthic $\delta^{18}O$ at ODP 1143, (B) *P. obliquiloculata* % at ODP 1143, (C) MD01-2392, (D) 17957-2; northern SCS: (E) *P. obliquiloculata* % at ODP 1146. Modified from Li et al. (2010).

Figure 6.47 Paleoclimatological records from ODP Site 1144, northern SCS, over the past 1 myr. (A) Planktonic $\delta^{18}O$ (Bühring et al., 2004). (B) Pollen influx. (C) Herb/*Pinus* ratio in pollen assemblages (Sun, Luo, Huang, Tian, & Wang, 2003). (D) Winter SST based on transfer function FP-12E for 1.0-0.5 Ma (Zheng et al., 2005). From Jian et al. (2009).

Figure 6.51 A comparison of smoothed pollen records with marine $\delta^{18}O$ from Core MD05-2904, northern South China Sea. Chang, Luo, and Sun (2013).

Figure 6.52 Sunda Shelf and paleo-Sunda River system in the last glaciation. Tjia (2001).

Figure 6.53 Distribution of sediment thickness on the slope and deepwater SCS at (A) MIS 1 and (B) MIS 2. Huang and Wang (2007).

Figure 6.54 Postglacial sea-level changes in the SCS. (A) Sunda Shelf (Hanebuth et al., 2011). (B) Red River Delta (Hori & Saito, 2007; Tanabe et al., 2003).

Figure 6.55 Reconstructions of paleocoastlines based on present-day bathymetric depth contours. (A) LGM, 21 kyr BP. (B) After MWP 1B, 9.5 kyr BP. Hanebuth et al. (2011), adapted from Sathiamurthy and Voris (2006).

Figure 6.56 LGM coastline migration indicated by mangrove pollen along the North Sunda River valley (Wang, Cheng, et al., 2008; Wang et al., 2009). Gray color in the left panel denotes the LGM level with minimum abundance of mangrove pollen in the three cores. Dotted lines in the right panel denote paleocoastlines, with arrow showing direction of regression.

Figure 6.57 The old and new Baram Delta. Left: 5.4 kyr BP. Right: Modern. From Caline and Huong (1992).
Figure 6.58 The Mekong Delta. (A) Location map. (B) Geomorphology and bathymetry, beach ridges (black), and core locations. (C) Cross sections along shore-perpendicular transects X-X’ (with progradation times marked red). Figures denote optically stimulated luminescence (OSL) and radiocarbon ages in kyr. Tamura et al. (2012). 550