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Introduction 

· Coal fires occur in all 
coal-bearing parts of the 
world, emitting 
greenhouse gases (CO2, 
CH4) and toxic 
substances (Hg, CO, 
organics, etc.)  

· Coal fires can persist for 
decades or longer in 
underground coal mines, 
coal waste piles, and un-
mined coal beds. 

· The contribution of coal 
fires to the global pools 
of atmospheric CO2 and 
Hg is poorly 
constrained.  
 

Photo of Glenn and Janet Stracher 
collecting mineral samples at the 
Mulga, Alabama, gob pile fire. Taken 
by James Hower. 



· Vent Emissions- Gas emitted through vents that 
exhaust from the fire (Hower et al., 2009; O’Keefe et al., 
2010). 

· Diffuse Emissions- Gas diffused through the soil above 
an underground fire (Carras et al., 2009). 

Types of Emissions 

Cartoon showing a 
conceptual model of a coal 
fire including depictions of 
diffuse and vent emissions. 



· The purpose of this presentation is to 
demonstrate methods to quantify diffuse 
CO2 emissions from unevenly distributed 
flux data, using the Mulga gob pile fire in 
northern Alabama, U.S., as an example. 
 

· To provide clarity about our methods. 
· To explain fundamental principles behind both 

the field methodology and the data analysis 
portions of this research. 

Purpose 

Focus 



The Mulga Gob Fire 
· Fire started ~1990 
· Reignited in 2006 as a 

result of spontaneous 
combustion (Stracher et 
al., 2009) 

· Site being remediated 
· Data collection = Dec, 

2008  
· Fire Size = 9.1 hectare 
· Max. Surface 

Temperatures >325 °C 

Photo of smoke generated by the 
Mulga gob pile fire.  Taken by James 
Hower. 
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ρ = gas density 
V = flux system volume 
A = footprint of the flux chamber  
∂C/∂t = rate of accumulation of CO2  

Instrumentation - Soil Fluxes: 
• Li-Cor Li-820 non-dispersive infrared (NDIR) 

gas analyzer 
• 3-liter WestSystems  accumulation chamber 
• Handheld personal digital assistant (PDA) 

 
 

Accumulation (Static) 
Chamber Method 

Soil CO2 

Accumulation Chamber 

From CO2 
Analyzer 

To CO2 
Analyzer 

For more details see Bergfeld et al (2006). 

Field Instrumentation 

Measuring in situ CO2 Fluxes 



Additional Method Details 
Ancillary Data 
· Co-collected at every 

sampling point 
· Surface temp. 
· Soil temp. at 10 cm 

depth 
· GPS location 
· Notes regarding 

mineralization/alteration 
and location relative to 
vents 

QA/QC Criteria 
· Calibrate NDIR CO2 

analyzer daily using 
zero and span 
calibration gases 

· Collect at least 10% of 
the fluxes in triplicate 
· %RSD ranged from 26-

37% 
· Ensure concentration 

data fall within range of 
calibration gases 



In An “Ideal” Situation: 
1. Select sampling points 

along a grid around the 
area of obvious fire 
activity (green) 

2. Measure at points of 
interest such as near 
vents (orange) 

3. Add “control” points 
near areas of high flux 
(cyan) 

4. Measure fluxes at 
background points 
away from the fire 
(magenta) 

Example of distribution of CO2 flux 
sampling points at the Ruth Mullins 
fire, eastern Kentucky, U.S. Image 
from USGS. 

 



Basic Concepts Of Geostatistical 
Interpolation Methods 

· Geostatistical methods 
focus on spatial 
correlation within the 
data 
· i.e., are points closer 

together better 
correlated than 
those further apart? 

· Quantify spatial 
correlation using a 
semivariogram 

γ(
h)

 

Distance between points (m) 

In this semivariogram plot, when 
points are closer together, the 
semivariance (γ(h)) is smaller (i.e., 
they are more similar) than when 
they are further apart. The black 
line shows the fitted model used to 
describe this spatial continuity in 
the data. 



For the Geostatistically Savvy -  
Interpolation For Ideal Data: Sequential 
Gaussian Simulation (SGS) 

1. Convert CO2 flux data to normal 
scores (mean=0, variance=1) 

2. Develop semivariogram model to 
describe the spatial correlation 
among the data 

3. Break the study area into cells, or 
nodes, of equal size 

4. Define number of realizations 
(n>100) 

5. For each realization, define a 
random path through the nodes 

6. For each node, use the original 
hard data plus any previously 
simulated values to estimate, via 
kriging, the mean and variance for 
that node 

 

7. Use the mean and the 
variance to describe a 
Gaussian distribution for that 
node 

8. Draw a value from that 
Gaussian distribution and 
apply the simulated value to 
that node 

9. Complete steps 6-8 until all 
nodes in the realization have 
been assigned values 

10. Repeat steps 5-9 until all 
realizations have been 
simulated 

11. Back transform the normal 
scores to raw values for each 
realization 
 



Mulga Sampling Scheme 
· Due to site access 

constraints, CO2 flux 
was only measured at 
24 points along 4 
transects (T1-T4) 

· Surface and soil 
temperatures were 
measured at an 
additional 69 points 

· So, soil temperature 
was measured at a 
total of 93 points 

Interpolated soil temperature map for the 
Mulga fire showing location of soil 
temperature points (circles) and transects 
along which CO2 flux was measured 
(yellow lines). The gradual trends in 
these interpolated values suggest spatial 
continuity within the data. 

 



Application of ideal methods? 

· To interpolate the 
CO2 flux data, we 
need many (>40) 
data points 
distributed evenly 
over the study area 

· Instead we have few 
data and they are 
concentrated in two 
areas 

Application of the CO2 
accumulation chamber at the 
Mulga Gob Fire. Photo by Glenn 
Stracher. 

 



Robust regression results 

· But, we have a 
statistically 
significant 
(p<0.01) 
relationship 
between CO2 
flux and soil 
temperature (10 
cm depth) 

 



Sequential Gaussian Co-simulation (SGC) 
· A data interpolation 

method similar to SGS 
· Based on: 

· Distribution and spatial 
correlation of each 
variable 

· Utilizing high soil temp 
measurement density 

· Using relationship 
between the two 
variables to create 
robust estimates of 
CO2 emission 

· Software 
· SGeMS 2.1 (Remy et 

al., 2009) 
· Open-source 
· Actively updated 
· GUI-based 



SGC Steps – Part 1 
· Transform both 

variables to normal 
scores (NS) 

· Model variogram for 
NS of each variable 
· In this case there are 

too few pairs to do 
this for CO2 flux  

· Calculate correlation 
between NS of each 
variable 

Omni-directional 
semivariogram model of 
the soil temperature data 

γ(
h)

 

 



SGC Steps – Part 2 

· Use SGS to generate 
100 realizations of 
soil temperature for 
the study area 

· Perform SGC on the 
NS of the CO2 flux 
data using: 
· SGS maps of soil 

temp 
· Variogram model of 

the soil temp data as 
a surrogate for CO2 
flux 

· Correlation results of 
the NS scores 
· r=0.66-0.76 depending 

on method 
· MM1 model for cross-

variance (Almeida 
and Journel, 1996) 



SGC Results 

· SGC generates 100 
realizations of CO2 
flux and soil temp 
for the study area 
· We are most 

interested in the 
former 

· Because it’s a 
stochastic method, 
each realization is 
different 

- 5th percentile 

- 95th percentile 

- median 

 



Estimating Site 
CO2 Emissions 

· Summing the CO2 
flux data for each 
realization provides 
100 estimates of total 
emissions 
· median = 291 Mg/day 
· 5th percentile = 210 Mg/day 
· 95th percentile = 378 

Mg/day 

 



Caveats 
· Data were collected 

on a single day in 
December, 2008 
· May not be 

representative of 
“typical” conditions 

· These procedures 
require expertise in 
flux measurement 
techniques and 
geostatistical 
methods 

· Analysis improved 
by more data and 
evenly spaced 
locations 

· No measurement 
technique is without 
errors 

· Unquantified vent 
emissions  



Conclusions 

· Methods to estimate diffuse CO2 emissions 
from ideal and non-ideal data were presented 
· sequential Gaussian simulation (ideal) 
· sequential Gaussian cosimulation (non-ideal) 

· need a second variable that correlates with CO2 flux 

· For the 8.7 ha area modeled, CO2 emissions 
estimated at  210-378 Mg/day  
· Mean Flux = 2,400-4,400 g m-2 d-1 

· For comparison, a 500 MW coal fired power plant 
emits ~10,000 Mg d-1 (O’Keefe et al., 2010). 
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