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1.05.1 Introduction

Body waves are solutions of the elastic equation of

motion that propagate outward from a seismic source
in expanding, quasi-spherical wave fronts, much like

the rings seen when a rock is thrown in a pond. The

normals to the wave fronts, called rays, are useful in the

illustrating body waves’ interactions with gradients and

discontinuities in elastic velocities and as well as their

sense of polarization of particle motion. Except for the
special cases of grazing incidence to discontinuities,

body-wave solutions to the equations of motion are

nearly nondispersive. All frequencies propagate at

nearly the same phase and group velocities. Hence
the body wave excited by an impulsive, delta-like,

seismic source-time function will retain its delta-like

shape with propagation to great distances (Figure 1).
Surface waves are solutions of the elastic equa-

tions of motion that exponentially decay with depth

beneath the surface of the Earth for a boundary con-

dition of vanishing stress at the surface (see Chapter
1.02). Unlike body waves, surface waves are strongly
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dispersed in the Earth, having phase and group velo-
cities that depend on frequency. Observations of
surface waves in the 0.001–0.1 Hz band of frequencies
can constrain structure of the crust and upper mantle
of the Earth, but only body waves provide informa-
tion on the elastic velocities of the deeper interior of
the Earth, all the way to its center. Summing modes
of free oscillation of the Earth can represent both
body and surface waves. The most efficient represen-
tation of the highest frequency content body waves,
however, is given by propagating wave front or ray-
type solutions of the elastic equations.

In a homogeneous Earth, the wave fronts of body
waves are spherical, with radii equal to the distance
from the source to an observation point on the wave
front. Since the density of kinetic energy at a point
in time is simply the surface area of the wave front,
the particle velocity of a body wave is inversely
proportional to the distance to the source. This
inverse scaling of amplitude with increasing distance
is termed the geometric spreading factor, R. Even
in an inhomogeneous Earth, the inverse-distance
scaling of body-wave amplitude can be used to
make a rough estimate of the behavior of amplitude
versus distance.

Rays follow paths of least or extremal time, repre-
senting a stationary phase approximation to a

solution of a wave equation, Fourier-transformed in

space and time. The least-time principle is expressed

by Snell’s law. In spherical geometry and radially

varying velocity, Snell’s law is equivalent to the con-

stancy of a ray parameter or horizontal slowness p.

The ray parameter is defined by p ¼ r sin(i )/v(r),

where i is the acute angle between the intersection

of a ray path and a surface of radius r, and v is the

body-wave velocity. Snell’s law is obeyed by ray

paths in regions of continuously varying velocity as

well as by the ray paths of reflected and transmitted/

converted waves excited at discontinuities. Since

velocities usually increase with depth (decrease

with radius) in the Earth, ray paths of body waves

are usually concave upward (Figure 2). The least-

time principle can also be exploited in linearized

tomography to find perturbations to reference Earth

models by assuming that ray paths are stationary with

respect to small perturbations in velocities.
Complementing the information contained in tra-

vel times are the shapes (waveforms) of the body

waves. Complexities and subtle shape changes

observed in waveforms can be used to image elastic

properties of the Earth at spatial scales down to a

quarter wavelength from its surface to its center. The

velocities of body waves in the Earth range from

1.5 km s�1 to greater than 13 km s�1. Since waves

that penetrate the deep interior of the Earth are

commonly observed at frequencies at least up to

2 Hz, structure having spatial scales as small as 1 km

can be potentially imaged from a densely sampled

wavefield. Body waveforms also contain information

about the spatial and temporal history of earthquake,

explosion, or impact seismic sources.
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Figure 1 (a) Displacement of body waves is concentrated
in propagating quasi-spherical wave fronts. (b) The

displacement of surface waves exponentially decays away

from the surface of the Earth. (c) Example seismogram

showing implusive, pulse-like, body waves and dispersive
surface waves.
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Figure 2 Following Snell’s law in spherical geometry
(r sin(i )/v ¼ constant), the ray paths of body waves in the

Earth are mostly concave upward because elastic velocities

mostly increase with depth.
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This chapter reviews algorithms for modeling the
effects of structure and source on teleseismic wave-
forms (see Chapter 1.22). It will point to references for
the theoretical background of each algorithm and
currently existing software. It will also make sugges-
tions for the model parametrization appropriate to
each algorithm, and the treatment of source-time
functions, instrument responses, attenuation, and
scattering. Mathematical development of each algo-
rithm can be found in textbooks in advanced and
computational seismology (Dahlen and Tromp,
1998; Aki and Richards, 1980, 2002; Kennett, 1983,
2001; Cerveny, 2001; Chapman, 2004). A thorough
understanding of the derivation of each algorithm
requires a background that includes solution of par-
tial differential equations by separation of variables,
special functions, integral transforms, complex vari-
ables and contour integration, and linear algebra.
Practical use of each algorithm, however, often
requires no more than a background in simple calcu-
lus and an intuitive understanding how a wavefield
can be represented by superposing either wave fronts
or modes at different frequencies.

1.05.2 Plane-Wave Modeling

1.05.2.1 Elastic Velocities and
Polarizations

Two types of body waves were identified in early
observational seismology, P, or primary, for the first
arriving impulsive wave and S, or secondary, for a
second slower impulsive wave (Bullen and Bolt,
1985). These are the elastic-wave types that propa-
gate in an isotropic solid. In most regions of the Earth,
elasticity can be well approximated by isotropy, in
which only two elastic constants are required to
describe a stress–strain relation that is independent
of the choice of the coordinate system. In the case of
anisotropy, additional elastic constants are required
to describe the stress–strain relation. In a general
anisotropic solid, there are three possible body-
wave types, P, and two quasi-S waves, each having
a different velocity.

The velocities of propagation and polarizations of
motion of P and S waves can be derived from elastic
equation of motion for an infinitesimal volume in a
continuum:

�
q2ui

qt 2
¼ þ�ij ; j ¼ – fi ½1�

where � is density, ui is the ith component of the
particle displacement vector U, �ij is the stress ten-
sor, and fi is the ith component of body force that
excites elastic motion. The elastic contact force in the
ith direction is represented by the jth spatial deriva-
tive of the stress tensor, �ij ; j . The stress tensor
elements are related to spatial derivatives of displa-
cement components (strains) by Hooke’s law, which
for general anisotropy takes the form

�ij ¼ cijkl uk; l ½2�

and for isotropy the form

�ij ¼ �
qui

qxi

þ � qui

qxj

þ quj

qxi

� �
½3�

where cijkl , �, and � are elastic constants. The sum-
mation convention is assumed in [1]–[3], that is,
quantities are summed over repeated indices.

Elastic-wave equations for P and S waves can be
derived by respectively taking the divergence and
curl of the equation of motion [11], demonstrating
that volumetric strain, r?U , propagates with a

P-wave velocity,

VP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�þ 2�

�

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K þ 4=3�

�

s
½4a�

and rotational strain, r� U , propagates with the
S-wave velocity,

VS ¼
ffiffiffi
�

�

r
½4b�

Note that the P-wave velocity can be represented in
terms of either the Lame parameter � and shear
modulus � or the bulk modulus K and shear modulus
�.

Alternatively, the phase velocities and polariza-
tions of body waves can be derived by assuming
propagation of a plane wave having frequency !
and a normal k of the form

Uðx; tÞ ¼ Aeði!t – k�xÞ ½5�

and substituting this form into [1]. This substitution
leads to an eigenvalue/eigenvector problem, in
which the eigenvalues represent the magnitudes of
the wavenumber vector k, and hence phase velocities
from v ¼ !/jkj. The associated eigenvectors repre-
sent the possible orientations of particle motion (e.g.,
Keith and Crampin, 1977). For propagation in three
dimensions (3-D), there are three possible eigenva-
lues/eigenvectors, two of which are equal or
degenerate in an isotropic medium. The eigenvalue
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with the fastest phase velocity is the P wave. It has an
eigenvector or polarization that is in the direction of
the P ray, normal to the wave front. In an isotropic
medium, the two degenerate eigenvalues and their
eigenvectors are associated with the S wave. Their
eigenvectors of polarization are perpendicular to the
S ray, tangent to the wave front.

To facilitate the solution and understanding of the
interactions of the P- and S-wave types with discon-

tinuities in elastic moduli and/or density, it is

convenient to define a ray (sagittal) plane containing

the source, receiver, and center of the Earth. In an

isotropic medium, the S polarization, which depends

on the details of source excitation and receiver azi-

muth, is decomposed into an SV component, lying in

the sagittal plane, and an SH component, perpendi-

cular to the sagittal plane (Figure 3). At a

discontinuity in elastic velocity, SV waves can excite

converted–transmitted and reflected P waves and

vice versa, but SH waves can only excite transmitted

and reflected SH waves. The effects of body-

wave-type conversions on polarizations have con-

tributed to fundamental discoveries in deep Earth

structure. The most famous example of these discov-

eries is the SV polarization of the SKS wave, which

confirms that the outer core of the Earth is liquid. In

this example, the SV component of an S wave inci-

dent on the boundary of the solid mantle excites a

converted–transmitted P wave in the liquid outer

core (K wave), which can convert back to an SV

wave in the solid mantle. The SH component of the

incident S wave cannot excite a K wave in the liquid

outer core, and hence the received SKS wave is
purely SV polarized in an isotropic Earth (Figure 4).

Solutions of the elastic equations of motions can
also be developed in terms of potentials, showing that
the existence of fully decoupled P- and S-wave equa-
tions exist only in homogeneous regions where
elastic moduli and density are constant in space
(e.g., Aki and Richards, 2001). The use of potentials,
however, leads to needless mathematical complexity
when the quantities of modeling interest are displa-
cements and stresses. This is especially true when
solutions are continued across discontinuities in elas-
tic moduli and density. At discontinuities, boundary
conditions must be imposed on components ui of the
particle displacement vector U and stress tensor ele-
ments �ij . Three fundamental types of boundary
conditions occur in seismic wave propagation in the
Earth: (1) the surface of the Earth, where all elements
�ij vanish; (2) welded, slip-free, discontinuities

between two solid discontinuities, where both parti-
cle displacements and stress tensor elements are
continuous; and (3) liquid–solid discontinuities such
as the ocean/ocean crust, mantle/outer core, and
outer core/inner core, where only the displacements
and stresses perpendicular to the discontinuity are
continuous (see Chapter 1.19). These boundary con-
ditions and the associated changes in the eigenvectors
and eigenvalues of plane-wave solutions can be com-
pactly handled by a fundamental matrix and
propagator formalism (Gilbert and Backus, 1966). In
this approach, the vertically separated component for
the solution to the equations of motion is written as a
linear system of the type:

df

dz
¼ Af ½6�

where f is a 2-vector for the components of displace-
ment and stress associated with SH waves or a

Solid mantle
SVSV

SH K
Liquid outer core

Figure 4 The SV component of the S wave on core–

mantle boundary excites a compressional (K) wave in the

outer core, which has its particle motion along its ray. The K
wave exits the outer core as a transmitted SV wave in the

mantle, which has its particle motion perpendicular to its

ray, lying in the sagittal plane.

Incident   P

Reflected/converted SV

Reflected P

Transmitted P

Transmitted/converted SV

Figure 3 The interaction of a P wave incident on a

discontinuity in P and S velocity, showing reflected and

converted P and SV waves and their polarizations (arrows).
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4-vector for the components of stress and displace-
ment associated with P and SV waves; A is either a
2� 2 matrix for SH waves or a 4� 4 matrix for P and
SV waves; and derivative d/dz is with respect to
depth or radius. The possibility of both up- and
down-going waves allows the most general solution
of the linear system in eqn [6] to be written as a
solution for a fundamental matrix F, where the rows
of F are the components of displacement and stress
and the columns correspond to up- and down-going
P and S waves. For P and SV waves, F is a 4� 4
matrix; for SH waves, F is a 2� 2 matrix. An example
of the fundamental matrix for SH waves in a homo-
geneous layer is

F ¼
ei!kzðz – zoÞ e – i!kzðz – zoÞ

ikz�ei!kzðz – zoÞ – ikz�e – i!kzðz – zoÞ

 !
½7�

where zo is the reference depth, and the sign of the
complex phasors represents propagation with or
against the z-axis to describe down- or up-going
waves.

The solution of [6] can be continued across dis-
continuities, with all boundary conditions satisfied,
by use of a propagator matrix P, where P also satisfies
[6]. The fundamental matrix in layer 0 at depth z1,,
Fo(z1), is related to the fundamental matrix in layer N

at zN, FN (zN), through a propagator matrix P(z1, zN)
such that

Foðz1Þ ¼ Pðz1; zN ÞFN ðzN Þ ½8a�

where

Pðz1; zN Þ ¼ ðF1ðz1ÞF – 1
1 ðz2ÞÞðF2ðz2ÞF – 1

2 ðz3ÞÞ????
� ðFN – 1ðzN – 1ÞF – 1

N–1ðzN ÞÞ ½8b�

In an isotropic Earth model, once the relative
source excitation of S waves has been resolved into
separate SH and SV components of polarization, the
treatment of boundary conditions on P and SV waves
can be separated from that needed for SH waves by
the use of the either the 4� 4 fundamental matrices
for P and SV waves or the 2� 2 fundamental
matrices for SH waves.

1.05.2.2 Superposition of Plane Waves

Superposition of plane waves of the form in [5] along
with techniques of satisfying boundary conditions at
discontinuities using fundamental and propagator
matrix solutions of [8a] and [8b] allow calculation
of all possible body-wave solutions of the elastic
equations of motion as well as the dispersive-wave

interactions with the free surface (surface waves) and
deeper discontinuities (diffractions and head waves).
This process of superposition in space and frequency
is equivalent to solution of the equations of motion by
the integral transform methods of Fourier, Laplace,
Bessel, or spherical harmonics. Fourier and Laplace
transforms can always be applied in a Cartesian
coordinate system, but analytic solutions of the equa-
tion of motion in terms of Bessel/Hankel and
spherical harmonics is limited to Earth models
whose layers and discontinuities are either spheri-
cally symmetric or plane-layered, having cylindrical
symmetry about the source point. Some well-tested
extensions and perturbation methods, however, allow
their application to models in which the symmetry is
broken by lateral heterogeneity, aspherical or non-
planar boundaries, and anisotropy.

Transform-based methods, ray-based methods,
and their extensions are reviewed in Section 1.05.4.
Before beginning this review, however, it is impor-
tant to have an intuitive feel for the effects of the
Earth structure on the propagation of body waves,
how structure can induce complexity in body wave-
forms, and what outstanding problems can be
investigated by the synthesis of waveforms.

1.05.3 Structural Effects

1.05.3.1 Common Structural Effects
on Waveforms

Body waves are commonly synthesized to study the
effects of waveform complexity or multipathing due
to rapid or discontinuous changes in elastic velocity.
Two common structures inducing waveform com-
plexity are a rapid or discontinuous velocity
decrease and a rapid or discontinuous velocity
decrease (Figure 5). A rapid or discontinuous
decrease is characterized by a shadow zone, followed
by a caustic and two multipaths in the lit zone, each
having opposite sign of curvature in their associated
traveltime curves. A caustic is a surface, line, or point
where body waves are strongly focused, frequency-
independent ray theory breaks down, and geometric
spreading vanishes. A rapid or discontinuous velocity
increase produces a triplication of the traveltime
curve, with a region of distances in which three
different ray paths, one of which has an opposite
sign of curvature in its traveltime curve compared
to those of the other two paths. The two points where
the curvature of traveltime versus distance changes
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denote the distance at which the caustics intersect the

Earth’s surface.
P waves interacting with the Earth’s inner

and outer core boundaries provide an example of

both the waveform complexity induced by a discon-

tinuous velocity increase and a discontinuous velocity

decrease. A shadow zone and caustic are induced by

a discontinuous velocity decrease at the core–mantle

boundary, and a triplication is induced by a dis-

continuous velocity increase at the inner core

boundary (Figure 6). The velocity decrease at

the core–mantle boundary generates a reversal of the

traveltime–distance curve and strong focusing of

waves at the caustic distance B. The discontinuous

increase in velocity at the outer core–inner core

boundary generates the triplication C–D–F.
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Observed broadband displacement and narrow band-passed velocity (SP-DWWSSN) seismograms from a deep
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Frequency-dependent diffraction occurs along the

extension of BC to shorter distance. A lower-amplitude

partial reflection along the dashed segment extends

from D to shorter distances. In addition to the effects

induced by radially symmetric structure, lateral het-

erogeneity near the core–mantle boundary can scatter

body waves in all directions. The curved dashed line

extended to shorter distances from point B in Figure 6

represents the minimum arrival time of high-fre-

quency energy scattered from either heterogeneity

near or topography on the core–mantle boundary.
Changes in the curvature of traveltime curves for

waves also induce changes in the shapes of the waves

associated with each multipath. These waveform dis-

tortions can be understood from geometric spreading

effects. In an inhomogeneous medium, geometric

spreading R is proportional to the square root of the

product of the principal radii of curvature of the

wave front,

R _
ffiffiffiffiffiffiffiffiffi
r 1r 2
p ½9�

In a homogeneous medium, where wave fronts are
spherical, r1¼ r2, and geometric spreading reduces

simply to the distance to the source. A wave front is

described by a 3-D surface �(x) over which travel-

time is constant. Hence, the principal radii of

curvature of the wave front are determined by the

second spatial derivatives of the traveltime surface � .

From [9], a change in the sign of either of the two

principal wave front curvatures ðr1 or r2Þ produces a

change in the sign of the argument of the square root

in [9] and hence a �/2 phase change in the waveform

associated with that wave front. A consequence of this

relation is that any two waveforms having traveltime

branches with a difference in the sign of the second

derivative with respect to great circle distance, will

differ by �/2 in phase. This �/2 phase change is

called a Hilbert transform. A Hilbert transform of a

delta function has a gradual positive onset, sharp

downswing to negative values, and a gradual negative

return to zero (Figure 7). The traveltime curve of the

PKP waves along the AB branch in Figure 6 has a

concave upward curvature, while travel time curva-

tures of the PKP waves along the BC branch and the

PKIKP waves along the DF branch are concave

downward. Hence, waveforms of PKP-AB are

Hilbert transformed with respect those of the PKP-

BC and PKP-DF (Figure 8).
These changes in pulse shape are correct in the

limit of infinite frequency, but at finite frequency

pulse shapes near the cusps B, C, and D are neither

delta-like nor Hilbert-transformed-like. Near

these points, the shapes exhibit frequency depen-

dence and appear as some kind of average of the

two fundamental shapes. This type of pulse shape

can also exist in cases where a reflection/transmis-

sion/conversion coefficient of a plane wave becomes

complex, as in certain distance ranges of the SKS

phase. In these cases, the pulse shape can be repre-

sented by a linear combination of a delta function

and Hilbert-transformed delta function (Aki and

Richards, 1980, pp. 157–158). In the shadows of

cusps and caustics, diffracted waves exist, which

decay with increasing frequency and increasing dis-

tance from the cusp or caustic (e.g., the diffracted

PKP-B in the broadband seismogram in Figure 6).
Waves having rays with multiple turning points

also exhibit �/2 phase shifts for each turning point.

Examples are PP waves and SS waves that are

Hilbert-transformed with respect to the waveforms

of the direct P and S waves, and waves multiply

reflected along the underside of the core mantle

boundary, such as PKKP, SKKS, PKnKP, SKnKS,

etc. (Choy and Richards, 1975). In three-dimension-

ally varying media and for body waves having

multiple turning points in waveguide-like structures,

it is possible to have N multiple �/2 phase shifts for N

turning points or N points of tangency to a caustic. N

is termed the KMAH index (named after wave the-

orists Keller, Maslov, Arnold, and Hormander). The

KMAH index is an important parameter to inventory

t
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t = 0

t = 0

πt
–1

Figure 7 (a) Delta function and (b) its Hilbert transform.

6 s

PKP-DF
(PKIKP)

PKP-BC PKP-AB

Figure 8 Observed and synthesized PKP waveforms from

Choy and Cormier (1993). PKP-AB is Hilbert-transformed
with respect to PKP-DF.
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as rays are shot or traced in dynamic ray tracing
(DRT). In DRT (Section 1.05.4.5), the KMAH
index can be determined by tracking accumulated
sign changes in the determinant of Cerveny’s (2001)
Q matrix, where geometric spreading R is propor-
tional to the square root of the determinant of Q:

R _

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðQ Þ

p
½10�

In vertically varying, flat-layered models, det(Q)
takes the form

detðQ Þ ¼ cosðiÞ
V

cosðioÞ
Vo

X

p

dX

dp
½11a�

and in spherically symmetric Earth models,

detðQ Þ ¼ ðr roÞ2cosðiÞcosðioÞ
sinð�Þ

p

d�

dp
½11b�

In [11a] and [11b], vertical takeoff angle i, velocity
V, and radius r having the subscript ‘o’ are evaluated
at a ray origin or source point, and unsubscripted
quantities are evaluated at a ray end point or recei-
ver. X is the distance measured from source to
receiver along the surface of the Earth model, and
� is the great circle distance of the source to the
receiver measured in radians. In [11a] the ray para-
meter p is that for rays in plane-layered models ( p ¼
sin(i)/V ¼ constant ¼ dT/dX), but in [11b] p is that
for rays in spherically layered models (p ¼ r sin(i)/
V¼ constant ¼ dT/d�).

Head waves are another effect of a discontinuous
velocity increase with depth that can induce frequency-
dependent effects and waveform complexity. Head
waves travel along the underside of a boundary in the
higher-velocity medium. Depending on vertical gradi-
ent of the medium below the discontinuity, a head
wave can either have an amplitude inversely propor-
tional to frequency (no gradient) or be represented by
an interference or a whispering gallery of waves multi-
ply reflected along the underside of the discontinuity
(e.g., Cerveny and Ravindra, 1971; Menke and
Richards, 1980).

In some distance ranges, surface waves, and phases
best described by modal representations interfere
with body waves. Examples include late arriving
body waves having multiple interactions with the
core–mantle boundary and/or the free surface that
interfere with fundamental mode Love and Rayleigh
waves. Another example is shear-coupled PL waves
that are generated by SV waves that turn in the
mantle and excite converted P waves trapped in

the crust (Baag and Langston, 1985). Shear-coupled
PL waves can arrive as a dispersive wavetrain imme-
diately following an SV wave in some distance
ranges. The interference of shear-coupled PL waves
with the direct SV phase has made it difficult to
simultaneously model SH and SV phases to obtain
mantle models from S waveforms (e.g., Helmberger
and Engen, 1974). In this situation, it is important to
choose an algorithm that includes a sufficiently com-
plete set of rays or modes to represent both the direct
body wave as well as the dispersed waves interacting
with the crust and surface of the Earth.

1.05.3.2 Deep-Earth Structural Problems

The modeling problems of greatest research interest
are structures in depth zones that introduce wave-
form complexity in the form of triplications, caustics,
shadow zones, diffractions, head waves, and multi-
paths. For teleseismic observations, the zones of rapid
spatial variation that are most often studied are the
crust–mantle discontinuity (Moho), a regionally
varying low-velocity zone in the upper mantle, nar-
row zones or discontinuities in velocity and density
at or near 400 km, 500 km, and 660 km depth, a zone
of regionally varying velocities between 100 and
300 km above the core–mantle boundary, and a
100–300 km region on both sides of the inner core
boundary.

Key to the interpretation of these zones of rapid
spatial variation is the relative changes in P velocity,
S velocity, and density. From body-wave modeling, it
is often only possible to make an estimate of velocity
changes, either P or S velocity, but neither simulta-
neously, with little or no constraint on the associated
density change. A common example of this is the
estimate of the velocity increase required to repro-
duce the spacing of traveltime branches in the ranges
of the triplicated portion of a traveltime curve due to
a rapid increase in velocity with depth (e.g., Figures
5 and 6). The amplitudes of the body waves in the
triplicated range, where one traveltime branch cor-
responds to a wave totally reflected from the
discontinuity, have little or no sensitivity to any
density change associated with the velocity change.
The amplitude of a reflected body wave at more
vertical incidence, however, is much more sensitive
to the product of density and velocity changes
(Figure 9). By combining observations of narrow
angle and grazing incidence waves to a discontinuity,
it is possible to remove or reduce the tradeoffs
between velocity and density change. Combined
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modeling of P and S waveforms for both narrow- and
wide-angle incidence then makes it possible to sepa-
rately estimate P, S, and density changes at a
discontinuity. From these estimates, it is possible to
distinguish the nature of the discontinuity, for exam-
ple, whether it is chemical change or a solid–solid
mineral phase change.

When P- and S-wave waveform analyses are
available, an additional diagnostic tool can be the
calculation of the change in bulk sound velocity VK,
where

V 2
K ¼ V 2

p – 4=3V 2
S ½12�

and VP and VS are the P and S velocities, respectively
(Su and Dziewonski, 1997). Bulk sound velocities are
more directly observed in high-pressure mineral phy-
sics experiments and theory, and can be directly
compared against known mineralogy (Zhao and
Anderson, 1994). Other constraints in interpreting
3-D variations in velocity are provided in comparing
theoretical and observed estimates of the relative frac-
tional changes in P velocity, S velocity, and density,
dln VP/dln VS and dlnVS/dln � (e.g., Trampert et al.,
2001). Care, however, might be needed in comparing
the frequency band of an observation with that of
theoretical predictions due to the dispersive effects
of viscoelasticity (Section 1.05.7.4; Karato, 1993).

The effect of temperature on velocity is known
from experimental and theoretical predictions.
Known temperature derivatives, or even practical
bounds on the temperature derivative, can be used
to determine whether a rapid velocity change is due
to either a spatially sharp temperature, chemical, or

phase change. In this analysis, it is also important to
consider the effects of thermal diffusivity. For exam-
ple, given an estimate of the thermal diffusivity, the
spatial extent of a thermally induced velocity anom-
aly cannot persist at a scale smaller than a certain size.
Thermally induced anomalies below this size diffuse
away over time periods shorter than the timescale at
which they are created by mantle circulation.

Estimating whether a region of velocity change is
a true discontinuity or a transition spread out in
space requires careful study of the frequency content
of reflected and converted waves interacting with the
region of rapid velocity change (see Chapter 1.17).
This has been an enduring challenge in interpreting
rapid changes in velocity in the upper mantle as
solid–solid phase changes. Waves reflected at wave-
lengths much longer than the depth range of a
gradient transition cannot distinguish a transition
from a discontinuity. Shorter-wavelength waves,
however, will not be reflected at narrow incidence
angles. Reflected and converted waves at grazing
incidence to a depth zone of rapid transition are
relatively insensitive to the width of the transition
even for a relatively broad frequency band of record-
ing (e.g., Ward, 1978). Taking these sensitivities
together, the frequency-dependent behavior of the
amplitudes of body waves partially reflected at nar-
row angles of incidence to regions of rapid transition
in depth can help diagnose whether a structure is a
true discontinuity or transition zone. In practice, only
a lower bound on the width of a depth transition can
be safely diagnosed (e.g., Richards and Frasier, 1976),
since there is typically an upper bound on the fre-
quency (lower bound on wavelength) on observable
teleseismic body waves (usually 2–3 Hz).

1.05.4 Modeling Algorithms
and Codes

Modeling of body waves can be broadly classified into
four approaches: (1) transform methods for spherically
symmetric or plane-layered media, with some exten-
sions for weak heterogeneity and anisotropy; (2) ray
summation methods for regions in which frequency-
independent ray theory is a good approximate solu-
tion; (3) mode summation methods; and (4) full or
partial numerical solutions to elastic equations of
motion that can treat the cases of strong heterogeneity,
anisotropy, and small spatial scales of heterogeneity. A
summary of these modeling methods follows.
Published applications of each method are extensive,
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and an attempt is made to primarily cite material in
which the theory of each method is most completely
developed. In many cases, this will be a textbook
rather than a journal paper. Good starting points to
obtain software for many approaches are the ORFEUS
software library, codes deposited with the World Data
Center as part of the Seismological Algorithms text, codes
and tutorials by R. Hermann, example synthetics and
codes distributed by the COSY Project, codes distrib-
uted on a CD supplied with the International Handbook

for Earthquake and Engineering Seismology (Lee et al.,
2001), and computational seismology software avail-
able from the Computational Infrastructure in
Geodynamics (CIG) web page.

1.05.4.1 Reflectivity

Reflectivity (Fuchs and Müller, 1971; Müller, 1985;
Kind, 1985; Kennett, 1983, 2001) is perhaps the most
general and popular transform method of modeling
seismograms in radially symmetric or plane-layered
Earth models. Planar homogeneous layers parame-
trize the Earth model, after an Earth-flattening
approximation (EFA) is applied. Plane-wave solu-
tions of the wave equation are found in the
frequency domain, with boundary conditions
handled by propagator matrix techniques. This
approach is used to derive a transformed solution at
great circle distance �o for displacement, u(!, p,
�o), in ray parameter and frequency space, where p

is related to the horizontal component of the wave-
number vector by kz ¼ !p

re
, with re the mean spherical

radius of the Earth. The solution U(t, �o) is then
found by inverting Fourier transforms represented by

Uð!; �oÞ ¼
1

2�

Z 1
–1

d!e – i!t

Z
�

dp uð!; p; �oÞ ½13�

Transform inversion is commonly accomplished by
integrating u(!, p, �o) along a contour D confined to a
finite segment of the real p or kx axis for the series of
discrete 2N frequencies required to invert the complex
frequency spectrum by a fast Fourier transform (FFT).

Depending on the needs of the modeler, the inte-
grand of [13] can be constructed to contain either one
or several body-wave arrivals interacting with major
discontinuities, fundamental or higher-mode surface
waves, or a complete seismogram. In the most com-
mon applications, the integrand is constructed to
represent the reflection of a body wave incident on
a stack of layers in a reflection zone (Figure 10).
Above the reflection zone, the incident wave is

assumed to be transmitted down through and back
up the layers overlying the reflection zone.
Neglecting details of the source excitation, the fac-
tors making up uð!; p; �Þ include transmission
coefficients TD down and TU up through the layers
above the reflection zone, the reflection RU from the
reflection zone, and phase factor expði!p�Þ accumu-
lated through horizontal propagation to the great
circle distance �, or

uð!; p; �Þ _ TDRUTD
exp½ið!p� – �=4Þ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

!p sinð�Þ
p ½14�

The reflectivity response RU can include all inter-
nal multiples and P-to-SV conversions within the

thin homogeneous layers of the reflection zone. The
reflectivity can be calculated from fundamental and
propagator matrices. For example, RU for SH waves
can be calculated by solving the system

Foðz1Þ
1

R o
U

 !
¼ Pðz1; zN ÞFN ðzN ÞðT N

D Þ ½15�

where R o
U is the total wavefield reflected upward at

the top of the boundary of the layered reflection zone
and T N

D is the total wavefield transmitted through the
bottom of the reflection zone. A similar system can be
set up for P and SV reflectivity, but care must be
taken to rearrange the system to exploit algebraic
cancellation of some exponentially growing terms
for certain domains of ray parameter (Abo-Zena,
1979). Elimination of these troublesome terms
can also be accomplished by rearranging the
multiplication of fundamental matrices in such a
way that also enables identification of infinite series
of internal layer multiples. These interlayer multi-
ples can be neglected after a small finite number of
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Figure 10 A typical layered model used in reflectivity
synthesis, showing a transmission zone and rays

reverberating in a reflection zone.
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reverberations (Kennett, 1983, 2001). Truncation of
these internal multiples helps eliminate later-arriving
energy that folds back into the finite time window
required given by finite-length Fourier transforms.
An alternative approach to eliminate the acausal
arrival of the late-arriving interlayer multiples is to
add a small imaginary part to each frequency –i/� in
the evaluation of the reflectivity response before
inverting the Fourier transform (Kennett, 1979;
Chapman, 2004, p. 361). Using the damping theorem
of Fourier transforms, at each time point the inverted
signal is then multiplied by the exponential exp(t/� ).

After choosing a method to eliminate acausal late-
arriving multiples, one must still decide on how to
best suppress the numerical noise of the all of the
causal internal layer multiples of the thin layers used
to approximate a continuously varying model. This
numerical noise can be minimized by either low-
pass-filtering the response before inverting the
Fourier transform or by making layer thicknesses
smaller than 1/4 the shortest wavelength correspond-
ing to the highest frequency of interest to model
(Figure 11).

Parametrization of the spherical Earth by plane
homogeneous layers with depth z first requires an
EFA of velocities v(r) of the type (Müller, 1977)

vf ðzÞ ¼
re

r
vðrÞ ½16a�

z ¼ re ln
r

re

� �
½16b�

Errors on the order of 1/! are introduced in
synthetic seismograms in this process, and include
problems associated with the decoupling of P and S
wave potentials and the lack of an ideal density
transformation (Chapman, 1973). The EFA will also
breakdown at the center of the Earth (r ¼ 0), limiting
accurate modeling to body waves that penetrate only
the upper 500 km of the inner core. With this limita-
tion and unless applied to a region in which velocity
gradients are anomalously high at very low
(<0.01 Hz) frequencies, the EFA combined with
thin homogeneous layering can usually be applied
without introducing significant error in the modeling.

Another variant of the reflectivity method is the
discrete wave number method, in which the integral
over ray parameter p is replaced by a sum over
discrete horizontal wave numbers, kx (Bouchon and
Aki, 1977; Bouchon, 1979). One advantage of this
method is that it can include the zero wave number,
which provides a solution for the static displacement
near an earthquake source (Honda and Yomogida,
2003). The need for fictitious image sources to treat
the surface boundary conditions introduces some
complexity in the formulation of the discrete wave
number method, but both SH and P-SV codes are
available and well developed.

Because its input parameters are simple to under-
stand, the reflectivity method is probably the most
popular forward modeling technique. Input consists
of an Earth model specified by velocities and densi-
ties in a stack of homogeneous layers, starting and
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ending points of integration along a real ray para-
meter axis, a time window and sampling rate, and a
simple source description. Some 2-D extensions are
now available, allowing separate models to be speci-
fied in the source and receiver regions (see Section
1.05.7.1). Aside from simplicity of the input para-
meters, an advantage of reflectivity is that it easily
allows the investigation of vertical transition zones in
properties modeled by arbitrarily thin layers. This
advantage, in common with all methods that allow
for the insertion of thin layers, can lead to the neglect
of physical constraints on radial derivatives of elastic
moduli and density. Compared to ray-based methods
that assume asymptotic approximations to vertical
wave functions discussed in following sections,
reflectivity can be numerically expensive for pro-
blems requiring thousands of thin layers.

1.05.4.2 Generalized Ray

The method commonly dubbed the generalized ray
technique (GRT) originated from a technique of
handling the integral transform inversions from ray
parameter and frequency to time and space by the
Cagniard–de Hoop method. It was recognized that
most important teleseismic arrivals can be calculated
by a first-motion approximation, allowing the time
domain solution for ray interactions in each layer,
both reflected and head waves, to be solved analyti-
cally (Helmberger 1974; Helmberger and Harkrider,
1978). Ray solutions within each layer are summed,
usually just the first multiples. The volume of pub-
lished applications using the GRT method is
probably the largest of any other method, but its
available computer codes are less widely circulated
than those employing reflectivity methods. An

application of GRT synthetics (Burdick and
Helmberger, 1978) was instrumental in the first
major revision of standard Earth models originating
from the pioneering work of Jeffreys and Bullen,
namely the replacement of a zone of strong velocity
gradient in the upper mantle (Jeffreys, 1936) with two
first-order discontinuities at 400 and 660 km depth
(Figure 12).

The GRT commonly assumes an EFA and
ignores higher than first-order internal multiples in
each layer. It has been tested against other methods in
many standard, vertically varying, Earth models and
usually produces seismograms that are indistinguish-
able from those calculated by other common methods
discussed in this chapter.

1.05.4.3 WKBJ-Maslov

A key difference in this technique is that thin homo-
geneous layers no longer parametrize the Earth
model. Vertical gradients in depth or radius are
allowed in velocity, and asymptotically approximate,
WKBJ, solutions of the vertically separated part of
the wave equation are assumed. In contrast to
vertically homogeneous layers, where the up-
and down-going vertical wave functions are simply
exp½ �ikzðz – zref Þ�, the WKBJ solution approximates

the vertical wave functions by

g
ð1Þ
ð2Þðr ; p; !Þ ¼ e�i�=4

!r

ffiffiffiffiffiffiffiffiffi
V

�ðrÞ

s
expð� i! �Þ ½17a�

where the superscripts (1) and (2) refer to up-
and down-going waves, respectively. �ðrÞis the
vertical slowness and is related to the cosine of the
angle of incidence of a ray at any level r by
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�ðrÞ ¼ cosðiÞ=V ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=V 2 – p2=r 2

p
. � is the delay

time obtained by integrating the vertical slowness
from the radius turning point radius rp ,where
cos(i ) ¼ 0, to r :

� ¼
Z r

rp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=V 2 – p2=r 2

p
½17b�

The accuracy of these high-frequency approxima-
tions increases as the ratio �/s decreases, where � is
the wavelength and s is the scale length of the med-
ium. The scale length s is defined by

s ¼ min
VS

rVSj j ;
VP

rVp

�� �� ; �

r�j j ; rb

 !
½18�

where rb is the radius of curvature of a first-order
discontinuity in density or elastic velocity (Beydoun
and Ben-Menahem, 1985). Separability of P and S
wave potentials is assumed in each inhomogeneous
layer, and frequency-dependent reflections and
P-to-S conversions by regions of strong gradients
are ignored. Hence, transition zones, which may be
of interest to mantle solid–solid phase changes,
should be handled by thin layers of weaker gradient
where the asymptotic approximations remain valid.
For problems consisting of a body wave reflected by
or bottoming above a discontinuity, the integrand
u(!, p, �o) in [5] is replaced by

uð!; pÞ ¼ !1=2�ðpÞei!	ðpÞ ½19a�

where

	ð pÞ ¼
Z r

rp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=v2 – p2=r 2

p
þ
Z ro

rp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=v2 – p2=r 2

p
þ p�o

½19b�

�ð pÞ is a product of the plane-wave reflection
coefficient of the discontinuity and the plane-wave
transmission coefficients through layers above the
discontinuity. The factor 	ðpÞ in the phase originates
from the phases associated with the WKBJ solutions
to vertical wave functions in the transmission region
above the discontinuity and the horizontal wave
function for propagation to great circle distance, �o .
Hence, the name WKBJ is applied to this method. In
this method, body waves are synthesized by summing
a series of representations of the type given by [19a].
Each body wave in this sum is assumed to be asso-
ciated with rays that are either reflected by or turn
just above the first inhomogeneous layer above each
discontinuity (Figure 13).

Inversion to the time and space domain of the
transformed solution u(!, p, �o) of [13] is performed

by a slowness method rather than by a spectral method

as commonly done in reflectivity methods. In slowness

methods, the inversion to the time domain is per-

formed analytically, recognizing that separate

frequency-dependent factors in the integrand can be

written as convolutions in the time domain. The final

inversion to the space domain is performed by numer-

ical integration over horizontal slowness p by a

method in which the combined phase factor 	ðpÞ – t

is sampled in slowness intervals corresponding to a

fixed sampling rate in time t (Figure 14). This key

step is contained in the phase-sampling subroutine
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THETAC of Chapman’s WKBJ original codes. The
integration over horizontal slowness is truncated at
points along the real p-axis, which introduces trunca-
tion phases in the synthetic. These can be removed by
approximating the phase function’s dependence on ray
parameter from the truncation slownesses to�infinity,
assuming a linear dependence on p, and analytically
integrating the approximation (Chapman, 1978). A
well-documented package of the WKBJ algorithm by
A.R. Gorman, tailored toward continental-scale reflec-
tion and refraction, exists in the PLOTSEC package.
A code for teleseismic applications and example inputs
can be obtained from Chapman’s contribution to the
Seismological Algorithm text. Software for the evaluation
of the delay time �(p) in many standard Earth models
can be obtained from the TauP Toolkit (Crotwell
et al., 1999). Due to the need of separately describing
ray interactions with discontinuities, the input to
WKBJ codes is less black box-like than the input to
typical reflectivity codes.

The Maslov technique (Chapman and
Drummond, 1982) generalizes the WKBJ seismo-
gram technique to 2- and 3-D velocity variations.
The restrictions of the asymptotic approximations
still apply, that is, the medium scale length in any
inhomogeneous region must be greater than the
wavelength. Full implementation of the technique
sometimes requires an artful averaging of solutions
in slowness p space with those in the physical x space.
Each of these spaces can contain caustics where a
weight factor or geometric spreading factor becomes
singular. Regions of models having strong spatial
gradients, where the asymptotic approximations are
failing, are often characterized by closely spaced
caustics in slowness space and physical space for
waves at grazing incidence to the strong gradient
regions. In these regions, the weight factors averaging
the solutions in phase and physical space can be
difficult to design. This situation can exist if high
gradient zones define the boundaries of a thin high-
or low-velocity zone (e.g., subducting slab or a fault
zone). In these situations, it is better to define the
anomalous structures by first-order discontinuities
and apply boundary conditions for multiply reflected
and refracted body waves.

Compared to the reflectivity method, the WKBJ
and its related Maslov extensions are computationally
much faster and, hence, better suited to problems in
waveform inversion that may require many repeated
syntheses to evaluate a misfit or object function. The
speed of these methods is due to the use of an asymp-
totically approximate solution in spatially varying

layers. Therein, however, lies the limitation of these
methods. The vertical variation must be sufficiently
weak so as not to exceed the errors associated with the
approximation. When there is a need to sum ray
interactions with more than two or three first-order
discontinuities in a distance range, the input para-
meters describing the separate ray interactions in
some WKBJ codes can become complex unless a
user-friendly input interface is provided.

1.05.4.4 Full-Wave Theory and Integration
in Complex p Plane

The term full-wave theory can be applied to any
technique that incorporates frequency-dependent
effects of wave interactions with boundaries, including
diffraction and tunneling. Any transform approach
that includes a broad enough domain in frequency
and wave number to simulate these frequency-
dependent effects, often due to poles or branch cuts
in the response function, can be called a full-wave
theory. This term was specifically applied by
Cormier and Richards (1977) to an asymptotic spectral
technique that inverts the slowness integral by paths D

in the complex p plane and substitutes a Langer
approximation for the WKBJ approximation to the
vertical wave functions. The vertical wave function
in the Langer approximation is given by

g
ð1Þ
ð2Þ ðr ; p; !Þ ¼ ��sVs

2�V

Vse
�i�=6

!�

ffiffiffiffiffiffi
!�

V �

r
H

ð1Þ
ð2Þ

1=3 ð!�Þ ½20�

The Langer approximation remains regular at
grazing incidence to boundaries where � and � vanish
but returns the WKBJ approximation where it is
accurate. The integration over the contour D is car-
ried out numerically, with D extended into regions
off the real p-axis where the integrand in [13] expo-
nentially decays. For portions of D along the real
p-axis, the integrand can be very oscillatory, and
integration can be handled efficiently by Filon’s
method (Frazer and Gettrust, 1985). Full-wave the-
ory includes tunneling, diffraction, and other
phenomena related to frequency dependence of
reflection–transmission coefficients at grazing inci-
dence to boundaries. An example of the importance
of these phenomena includes the very strong fre-
quency dependence of the P wave that bottoms just
above the core–mantle boundary and tunnels across
the core–mantle boundary, exciting compressional (K)
waves in the liquid outer core that multiply reflect
along the underside of the core–mantle boundary
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(PKnKP waves; e.g., Richards (1973). Applying atten-
tion to the validity of asymptotic approximations to
the Legendre function representing the phase effects
of propagating in the horizontal or � direction, full-
wave theory has been extended to synthesize body
waves that are strongly focused at the antipode by
diffraction around spherical boundaries from all azi-
muths (Rial and Cormier, 1980).

The theory is most completely developed in
chapter 9 of Aki and Richards (1981) and in
Seismological Algorithms (Cormier and Richards,
1988), where example codes and inputs are distribu-
ted. As an asymptotic theory, full-wave theory shares
the limitations of WKBJ codes, in that care must be
taken not to assume too strong a velocity and density
gradient in each inhomogeneous layer. Added to the
complexity in the description of ray interactions
shared with WKBJ code input, the construction of
full-wave theory integrands and complex integration
paths can be challenging, particularly for interference
head wave and antipodal problems. Often it is best to
start with example input files specifying ray descrip-
tions and integration paths for these problems, which
are distributed with Seismological Algorithms.

1.05.4.5 DRT and Gaussian Beams

DRT is simply a ray theory solution to the elastic
equations of motion, consisting of a pulse arriving at
the least or stationary phase time, scaled by the ampli-
tude factors due to plane-wave reflection and
transmission and geometric spreading. In an inhomo-
geneous region, DRT solutions in the frequency
domain start from a trial solution in the form of factors
multiplying inverse powers of radian frequency !:

uð!Þ ¼
X

n

An

!n
expði!TÞ ½21�

The errors in the approximation given by n ¼ 0
remain small for wavelengths much smaller than the
scale length of the medium given by [18]. In practice,
no more than the n¼ 0 term is ever calculated,
because higher-order terms are expensive to calculate
and can never properly include the frequency-
dependent effects of waves reflected and converted
by regions of high spatial gradients in velocity and
density. The review by Lambare and Virieux (this
volume) provides further details on the derivation,
accuracy, and frequency-dependent corrections
to asymptotic ray theory and also reviews the rela-
tions between DRT, WKBJ/Maslov, and Gaussian
beam summation.

Superposition of Gaussian beams is an extension
of DRT and is closely related to the WKJB/Maslov
techniques. It amounts to a superposition of approxi-

mated wave fronts, weighted by a Gaussian-shaped
window in space centered about each ray. The shape
of the wave front is estimated from the first and

second spatial derivatives of the wave front at the
end point of each ray. This is referred to as a paraxial
(close to the axis of the ray) approximation of the

wave front. To calculate the first- and second-order
spatial derivatives of the wave front, a system of

linear equations must be integrated. These equations,
also required by DRT, consist of the kinematic equa-
tions that describe the evolution of ray trajectory, its

vector slowness p, and traveltime, an equation to
describe the rotation of ray-centered coordinates in

which S-wave polarization remains fixed, and a sys-
tem of equations for matrices P and Q needed to
describe the evolution of wave front curvature and

geometric spreading. The vector slowness p is simply
the spatial gradient of traveltime, and the geometric

spreading is related to the wave front curvature or
second spatial derivatives of traveltime. When a
receiver is not near a caustic, the quantities deter-

mined from integrating the DRT system can be used
to determine the frequency-dependent ray theory

solution, consisting of geometric spreading, travel-
time, and products of reflection/transmission
coefficients. The paraxially estimated phase from

the P and Q matrices of the DRT system can be
used to either avoid two-point ray tracing by spa-
tially extrapolating the traveltime near a ray or to

iteratively solve the two-point ray-tracing problem.
The traveltime at a point x in the vicinity of a ray end

point at xo can be estimated by:

TðxÞ ¼ TðxoÞ þ p?�x þ 1

2
�xt Ht MH�x ½22�

where

M ¼ PQ – 1 and

�x ¼ x – xo

The 2� 2 matrices P and Q are determined by
integrating the systems

dP

ds
¼ VQ

dQ

ds
¼ vP

½23�

along the ray paths. In [22], H is the transformation
between ray-centered coordinates to Cartesian
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coordinates. The columns of H are the vector basis of
the ray-centered coordinate system at the ray end
point. V is a matrix of second spatial derivatives of
velocity in the ray-centered coordinate system. The
matrix Q can also be used to calculate geometric
spreading [10]. The system in [23] can be generalized
using a propagator, fundamental matrix formulism,
similar to that used for propagating the solution to
vertically separated equations of motion, except that
in this system the solutions are quantities related to
wave front curvature and ray density rather than
components of displacement and stress.

Gaussian beams are defined by adding a small
imaginary part to the matrix M in the paraxially
extrapolated phase in [22], which gives an exponen-
tial decay of a beam in space away from the central
ray. The amplitude of each beam is proportional to
real part of exp(i!T), where T is made complex in
[22] by the inclusion of a complex M. Beam summa-
tion remains regular in the vicinity of ray caustics,
where geometric spreading vanishes and ray theory
solutions become singular. It supplies estimates of
frequency-dependent diffraction in the shadow of
caustics and grazing incidence to boundaries.

To properly model classical head waves, some
care must be used in the design of beam weighting
and beam widths. Weight factors of beams are deter-
mined such that a superposition of beams returns a
ray theory solution for the complex spectrum, that is,
U(!, x) ¼ exp(i!T)/sqrt(det(Q)), under a stationary
phase approximation to an integral over ray parameter
or take-off angles. Like the WKBJ/Maslov solution,
Gaussian beams give a nonsingular approximation to
the solution of the wavefield near a caustic.
Restrictions on the validity of the method tend to be
similar to that of the WKBJ/Maslov method. The
scale length of the medium needs to be much larger
than the wavelength and also larger than the beam
widths (Ben-Menahem and Beydoun, 1985).

Compared to the Maslov technique, superposition
of Gaussian beams has less mathematical support
unless formulated in terms of complex rays as in
some electromagnetic wave applications (Felsen,
1984). For grazing incidence to regions of strong
velocity gradient, the paraxial approximation quickly
fails and caustics become closely spaced, making it
difficult to design optimal beam widths such that the
paraxial approximation has small error in regions off
the central ray where some beams may still have
large amplitude.

The notational framework of the P and Q
matrices and the propagator matrix of the dynamic

ray-tracing system developed by Cerveny and his co-
workers are powerful tools that can simplify the
coding and understanding of any problem requiring
the use of ray theory. The DRT notation can be
exploited to calculate the integrand for Kirchhoff
integrals and the banana-shaped kernels needed for
frequency-dependent tomography.

Computer codes for superposition of Gaussian
beams and DRT can be obtained from Cerveny’s
group at Charles University as well as the World
Data Center. The best-developed codes are tailored
to continental scale reflection–refraction problems.
One version (ANRAY) is one of the rare codes that
combines general anisotropy with 3-D variations.
A teleseismic-oriented version of DRT and beam
summation was written by Davis and Henson
(1993), with a user-friendly graphical interface.

1.05.4.6 Modal Methods

Solutions of the elastic-wave equations can be
obtained from either a superposition of ray/wave
front solutions or from superposition modes
(Figure 15). Rays and mode representations are
fully equivalent in accuracy if properly applied to a
specific Earth model and frequency domain. In a
modal approach, the eigenfunctions of free oscillation
of a sphere have a characteristic frequency, and are
classified by the position of nodes at the surface and
at depth where displacements go through a zero and
change sign (e.g., Lapwood and Usami, 1981). For a
modal solution to be accurate at the lowest frequen-
cies of free oscillation, restoring forces due to gravity
and rotation of the Earth must be included as addi-
tional forces in [1]. In a spherically symmetric,
nonrotating, isotropic (SNREI) Earth, modes can be
separated into either spheroidal or toroidal modes of
oscillation. The motions of spheroidal modes are
analogous to those of P and SV body waves and
Rayleigh surface waves; those of toroidal modes to
those of SH body waves and Love surface waves.
Summation of normal modes of the Earth can pro-
vide a complete image of the wavefield at the surface
and at every depth (Dahlen and Tromp, 1998). Every
body wave observed at the surface can be represented
by a subset of normal modes (Figure 15). The
frequency-dependent effects of diffraction at ray-
grazing incidence to boundaries are also included in
mode sums. The normal modes of a SNREI Earth can
be efficiently computed on a single processor for
frequencies up to 0.1 Hz. A code by G. Masters for
synthesizing seismograms from sums of normal mode
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is included on the CD supplied with the International

Handbook for Earthquake and Engineering Seismology

(Lee, et al., 2001).
An advantage of mode summation is that input

parameters are especially simple, basically just an

Earth model parametrization, a frequency band, and

desired number of modes. Mode summation is routi-
nely used in the inversion of complete seismograms

to retrieve moment-tensor representations of earth-

quake sources (Dziewonski et al., 1981). A

disadvantage is that it is limited to lower frequencies

for practical computation on a single workstation.

Effects of gravity, Earth rotation, anisotropy, and

lateral heterogeneity remove degeneracy from

SNREI modes and couple spheroidal with toroidal

modes. Extensive literature exists on incorporation of
the mode coupling induced by lateral heterogeneity

by applying perturbation techniques to SNREI

modes (e.g., Dahlen, 1987; Li and Tanimoto, 1993).
Another modal-type approach is that of locked

modes (Figure 16). Here the modes are not whole-

Earth modes of free oscillation, but rather the surface-

wave modal energy that exponentially decays with

increasing depth from the surface. Modes are num-

bered by sign changes in displacement with depth,
the zeroth mode corresponding to either the funda-

mental mode Love or Rayleigh surface wave. The

integrand u(!, p) in [13] must first be constructed to

include all interactions with the surface. The locked-

mode approach then evaluates the ray parameter or

wave number integral of [13] in the frequency

domain by deforming the integration contour in the

complex plane and applying the residue theorem to
the integrand. A high-velocity capping layer is placed

at depth, which locks plate-like modes into layers

above the capping layer. The capping layer is placed
deep enough such that mode sums representing
waves of interest in a particular time window all
turn or refract above the capping layer. Since all
body waves, multiply reflected in the layers above
the capping layer, are included, the locked-mode
technique has a problem shared with the conven-
tional reflectivity technique in which late-arriving
waves are folded back into a finite-length time win-
dow. Similar to reflectivity, this problem can be
handled by adding a small complex part to frequency.
Harvey (1981) describes derivation of the technique
in models described by plane homogeneous layers
and available codes. An extension to vertically inho-
mogeneous layers using the Langer approximation is
given by Cormier et al. (1991).

1.05.4.7 Numerical Methods

Fully numerical solutions of the elastic equations of
motion can treat wave propagation in an arbitrarily
complex 3-D Earth, having velocity variations over a
broad range of scale lengths. A full solution is
obtained, containing body waves, surface waves, and
all diffraction, head-wave and leaky mode effects.
Chapter 1.06 reviews numerical techniques, concen-
trating on current methods that can handle fully 3-D
models and complete seismograms. This subsection is
a brief summary of some of the techniques that occur
in the expanded discussions in Chapter 1.06, includ-
ing both 2-D and 3-D techniques and those that are
applied to primarily the highest-frequency body
waves and shorter time windows.

The principal numerical techniques are finite dif-
ference and finite element. For accuracy up to ranges
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of 100 to 1000 wavelengths, conventional finite dif-
ference solutions typically are performed with
fourth- to eighth-order difference approximations
to spatial derivatives. The equations of motion are
most commonly solved for particle velocity and
stress on a staggered grid (Virieux, 1985, 1986). The
pseudospectral method (e.g., Figure 17) calculates
spatial derivatives in the wavenumber domain, multi-
plying by ik and inverse Fourier transforming back to
space. It is computationally more expensive than
higher-order differences but achieves much higher

accuracy at long ranges, typically having little grid
dispersion in applications to ranges of 10 000 wave-
lengths or higher. For this reason, the pseudospectral
method can be an ideal choice for teleseismic appli-
cations, where high accuracy is desirable at both
regional and teleseismic range. Kosloff and Kessler
(1990) and Fornberg (1998) review both conventional
finite difference and pseudospectral numerical
approaches, estimating error and stability conditions.

The spectral element method (SEM) formulated
with the SPECFEM code (Komatitsch and Vilotte,
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1998; Komatitsch and Tromp, 1999, 2002) is currently
one of the few numeric methods designed to handle
a fully 3-D Earth model. SPECFEM has a well-
developed interface to grid the elements needed for
arbitrarily complex 3-D models. Versions of
SPECFEM are available for both local/regional-scale
problems for ranges on the order of 0–100 km, and for
global- or teleseismic-scale problems. Another popular
regional scale code is the elastic finite difference pro-
gram by Larsen and Schultz (1995), which has been
applied to the effects of 3-D basins and extended fault
slip (e.g., Hartzell et al., 1999).

The direct solution method (DSM) is a numerical
technique that numerically solves the equations of
motion for a series of frequencies required for inver-
sion to the time domain by an FFT (Cummins et al.,
1994a, 1994b). The particular numerical technique
consists in expanding displacements in the frequency
domain by a series of basis functions consisting of a

product of splines in the vertical direction and sphe-
rical harmonics in the angular direction. In some
respects, the use of basis functions is similar to pseu-
dospectral methods that represent the spatial
spectrum of model variations by Fourier or spherical
harmonic series. In DSM, the coefficients for the
basis functions are found by the method of weighted
residuals (Geller and Ohminato, 1994). The SH and
P-SV seismograms be computed by DSM are com-
plete, in that they contain all possible body and
surface waves. Hence, DSM is a viable alternative
to summing modes of free oscillation. Weak 3-D
perturbations to a radially symmetric background
model are possible in DSM at a computational cost
not much higher than that required for the back-
ground model (Takeuchi et al., 2000).

Computational time is a practical limitation to
numerical modeling. Since most numerical techni-
ques require Earth models specified on a spatial grid
or elements, it is straightforward to parallelize the
computation by decomposing the spatial grid or ele-
ments over multiple processors. Practical
computations can be defined by time required to
compute a problem. Depending on the algorithm
and frequency band, common computer resources
in most labs allow a complete teleseismic wavefield
to be synthesized in 1 or 2 days using 10–100 pro-
cessors in parallel. Typical body waves having a high
signal-to-noise ratio in the teleseismic range
(10–180�) exist up to 2 Hz. Practical 2-D modeling
can be currently performed at teleseismic range up to
1 Hz with finite difference and pseudospectral meth-
ods; 3-D problems with the SPECFEM finite
element method can be done up to 0.1 Hz in this
time period with a similar number of processors. At
ranges less than 100 km, 3-D problems can be practi-
cally performed at frequencies up to 1 or 2 Hz (order
of 200 wavelengths). This range and frequency band
just starts to cover the frequencies of interest to
strong ground motion. Frequencies up to 10 Hz at
2000 km range (>5000 wavelengths) in complex 3-D
structure are of interest to the problem of discrimi-
nating earthquake sources from underground nuclear
tests. This is a research problem that is still inacces-
sible with small to moderate size clusters (less than
100 nodes) and numerical methods.

A large body of literature exists in the application
of finite difference and pseudospectral solutions for
local-scale problems up to 100 km for exploration
applications and strong ground motion applications
(e.g., Harzell et al., 1999; Olsen, 2000) Significantly
smaller amounts of published work exists for
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applications at regional distances (100–2000 km), in
which waves are primarily trapped in the crust and
the uppermost mantle, and a much smaller amount
exists for teleseismic propagation (e.g., Furumura
et al., 1998; Igel, 1999; Cormier, 2000).

1.05.5 Parametrization of the Earth
Model

An important choice in modeling a seismogram will be
the parametrization of the Earth model, or how to
describe the spatial variation of its elastic moduli and
density (Figure 18). The choice of parametrization
can have important geodynamic and geochemical
implications and is often tightly coupled to the choice
made for the modeling algorithm (see Chapter 1.23).

1.05.5.1 Homogeneous Layers Separated
by Curved or Tilted Boundaries

Certain parametrizations allow seismograms to be

synthesized by simple analytic formulas. For exam-

ple, if the Earth is isotropic and homogeneous, then

ray paths are straight lines. The amplitude of body

waves are inversely proportional to distance between

source and receiver, 1/jxo� xj. A received waveform

is simply the far-field approximation of the source–

time function S(t) evaluated at the retarded time,

S(t� jxo – x/vj). This simple solution can be

extended to models described by sequences of homo-

geneous layers bounded by planes of varying dip by

incorporating elastic boundary conditions at each

boundary to calculate reflection/transmission/con-

version coefficients. Snell’s law is applied in an
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incidence plane defined by ray direction and inter-
face normal. Geometric spreading can be calculated
from a simple function of ray length in each layer.
This algorithm is just DRT applied to homogeneous
layers.

Stacks of homogeneous layers can accurately
describe continuous spatial variations, provided that
the discretization of the model is much finer than the
shortest wavelength of interest. The accuracy of the
ray solution depends on the ratio of wavelength to
boundary curvature. The frequency dependence of
reflection by curved boundaries can be treated by the
Kirchhoff integral technique.

1.05.5.2 Vertically Inhomogeneous Layers

Except for the case of back-of-the envelope calcula-
tions and the limiting case of layering much finer
than wavelength, the Earth cannot often be well
approximated by either homogenous planar or
radially symmetric layers. Velocities and densities
vary in all three coordinate directions, but the next
most important approximation of the Earth is to
make this variation occur in the vertical direction. If
this vertical variation is approximated by thin homo-
geneous plane layers and an EFA (Section 1.05.4.1),
then simple plane wave or analytic solutions to the
wave equation can still be effectively employed in
each layer. In addition to errors associated with the
EFA, this discretization should consider physical
constraints of finite-strain and buoyancy neutrality
to be realistic, or at least the consequences of those
constraints need to be evaluated. Except at near-
vertical incidence, body waves are notoriously insen-
sitive to density variations and it is especially easy to
ignore unphysical effects of any constraints on the
velocity–density relations of known materials or the
geodynamic effects of buoyancy. The parametriza-
tion of the Earth by polynomials analytic in depth
was proposed in Preliminary Reference Earth Model
(PREM; Dziewonski and Anderson, 1981) in part
to obey the constraints of stable stratification.
Modifications to PREM and other reference earths
should attempt to take similar care in obeying
such constraints. Methods using asymptotic-ray
approximations to vertical wave functions (e.g.,
WKBJ, full wave, GRT) are readily adaptable to
this parametrization simply by extending the calcu-
lation of delay time �(p) to numerical integration
over radius or depth. Alternative parametrizations in
radius (V ¼ arb and V ¼ a þ br) are computationally
more efficient, but little penalty is involved with

current-generation processors by calculating �(p) by
numerical integration over radius.

1.05.5.3 General 3-D Models

Tomographic models are often the starting point of
synthetic modeling. The two most common parame-
trizations of these 3-D models are either by spherical
harmonics (e.g., Gu et al., 2001; Masters et al., 2000;
Ritsema and van Heijst, 2000; Chapter 1.10) or by
block volumetric elements (e.g., Grand et al., 1997).
Except in fully 3-D modeling methods such as
SPECFEM, a choice made in all 2-D modeling meth-
ods is to assume that body-wave propagation remains
in the sagittal plane and to compute motions in a 2-D
model derived by taking a cross section of the 3-D
model. If velocity perturbations are assumed to be the
same as the typically small (<3%) perturbations of
the original tomographic model, the assumption of
propagation remaining within or close to the sagittal
plane is quite accurate. Indeed, to be consistent with
the assumptions of linearized tomographic inversion,
it is appropriate to even assume that paths are unper-
turbed from those in a reference model in the
computation of traveltimes in ray-based methods. In
this case, the results of the forward modeling can be
disappointing, in that the only change in synthetic
seismograms from those computed in a reference
model will be small changes in relative traveltimes
with little or no waveform perturbations. Larger var-
iations in amplitudes and waveforms can be achieved
with higher perturbations that violate the assump-
tions of linearized tomographic inversions.

Since tomographic imaging can smear a more
intensely perturbed anomaly over its sampled ray
paths into a smoother, less intense anomaly, one
approach that has been used in forward waveform
modeling is to multiply the perturbations of the
tomographic starting model by a scale factor. Some
success in matching waveforms by this technique has
been achieved using factors of 2–3 to multiply the
images of tomographically estimated perturbations to
shear velocity (Ni et al., 2000). Some adjustments in
the boundaries of anomalies were also necessary to
obtain good matches with observed waveforms.
Starting with a tomographic model parametrized by
spherical harmonics, Breger and Romanowicz (1998)
and To et al. (2005) achieve a good match to S waves
interacting with the core–mantle boundary by pre-
serving the boundaries between the largest-scale
positive and negative velocity anomalies but
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increasing the maximum and minimum values of
velocity perturbation.

A simple parametrization allowing for fast analytic
computation of amplitudes and ray paths is that used
by the code Raytrace3D by Menke (2005), which can
be downloaded from the IRIS web site. The Earth
model is parametrized by tetrahedra constructed from
a grid specified in Cartesian coordinates. Linear inter-
polation of velocities between knots (v ¼ a þ bx þ
cy þ dz) is assumed in each tetrahedral element,
allowing ray paths to be computed analytically as
summed segments of circles. Although geometric
spreading is also analytically calculated, this code is
primarily intended for calculating traveltimes rather
than synthetic seismograms at local and regional
ranges. The fast analytic computation of traveltimes
and ray paths of this code are ideal for nonlinear
tomographic inversions, where it is necessary to
assume large perturbations from a background model.

Sophisticated and user-friendly tools for gridding
3-D models have existed in exploration and engi-
neering applications for some time, but are often
available only as expensive commercial packages.
One public domain package is distributed with the
finite element SPECFEM code. Another set of tools
are those that employ irregular cells specified by
Voronoi tetrahedra, which use a nearest neighbor
interpolation to calculate velocities and their first
spatial derivatives on irregularly spaced 3-D grids
(Sambridge and Gudmundsson, 1998). This is can
be used in conjunction with the convex hull grid
mapping software from University of Minnesota to
retrieve a physical quantity and its spatial derivatives
at any coordinate point. One example where this
approach can be examined are the 3-D slab models
shown in Sambridge’s web pages, where velocity
perturbations have been centered on Benioff zone
seismicity.

Some computational difficulties can arise in the
parametrization of general 2-D and 3-D models due
to the handling of first- and higher-order spatial
derivatives of velocity. Ray and asymptotically
approximate methods of solving elastic propagation
are strictly valid for relatively slow spatial variation
of velocity, where medium-scale lengths are much
larger than wavelength. Some parametrizations that
interpolate velocities in space can introduce high
gradients in velocity that lead to false caustics
where geometric spreading fails. Spatially continuous
interpolations like spherical harmonics and cubic
splines can introduce large first- and second-order
spatial derivatives of velocity as perturbations

increase. Some DRT codes use a spline-under-
tension routine (Cline, 1974) to interpolate between
velocities specified at grid points to reduce the size of
spurious gradients introduced by the interpolation. In
cases of high perturbations, the wave interactions
with anomalies must be treated by solving boundary
conditions on discrete scatterers (e.g., Korneev and
Johnson, 1993; Imhof and Toksoz, 2001).

Rapid advances in computation have made it pos-
sible to more routinely include the effects of
heterogeneity on the scale of wavelengths using
numerical finite difference and finite element meth-
ods. It is usually impossible to deterministically know
fine-scale structure except in a statistical sense as a
spatial spectrum of heterogeneity. The most common
way of constructing these types of models is to impose
a random number generator at finite difference or
element grid points, Fourier transform the grid from
physical space to wavenumber space, filter by an
assumed spatial spectrum of heterogeneity, and
inverse Fourier transform to physical space (Frankel
and Clayton, 1986). This idea has been extended to
media that may be composed of 2 or n types of
specific rocks or medium phases (Holliger et al., 1993).

1.05.6 Instrument and Source

Assuming an Earth model and one of the algorithms
previously described, a model response M(t, �o) can
be computed for a source consisting of a delta func-
tion in time and space. M(t, �o) is termed the Green’s
function. The remaining task in synthesizing a body-
wave seismogram consists in either incorporating or
removing the effects of the seismograph response and
source-time function. This task can be simplified
using the ideas of superposition and linear systems.
The seismogram can be thought of as a series of
convolutions of a model response M(t, �o), an instru-
ment operator I(t), a source time function S(t), a
receiver crustal response C(t, �o), and an attenuation
operator A(t, �o):

Uðt ; �oÞ ¼ I ðtÞ � SðtÞ � Cðt ; �oÞ � Aðt ; �oÞ �Mðt ; �oÞ
½24�

The two common modeling choices to infer Earth
structure are either to (1) convolve all of the opera-
tors in [24] and compare the resultant synthetic
seismogram with an observed synthetic seismogram
or to (2) deconvolve as many operators as possible to
retrieve the model response. The first choice has
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been the more common, but as the density of receiver
and source arrays has approached that common in
exploration seismology, the deconvolution choice
has become increasingly popular. Deconvolution
can increase the frequency content of the wavefield,
and hence its spatial sensitivity. It allows different
sources, receivers, and instruments to be combined to
invert an observed wavefield to an image of reflectors
and scatterers (e.g., Rost and Thomas, 2002).

1.05.6.1 Instrument Responses and
Deconvolution

The Fourier transform of I(t), or I(!), is a filter that is
a typically a narrow band pass of particle velocity.
Most instrument responses are now reported by com-
plex poles, !p

i, and complex zeros, !o
i, from which

the complex frequency response I(!) of the seismo-
graph can be represented by

I ð!Þ ¼ ð! –!
1
oÞð! –!2

oÞ???ð! –!n
oÞ

ð! –!1
pÞð! –!2

pÞ???ð! –!n
pÞ

½25�

The effect of the instrument can then be included
by filtering the synthetic spectrum by multiplying by
I(!) and inverse Fourier transforming the result to
the time domain. Alternatively, the instrument can
be deconvolved by spectral division, but I(!) must
be modified by adding a constant term (water level)
to avoid division by zero as the response goes to
zero outside the pass band of the instrument. The
instrument response can be deconvolved to displace-
ment, velocity, or acceleration (Figure 19). The
deconvolved particle velocity in the pass band of
0.01–2 Hz usually offers the best compromise
between useful information content and high signal-
to-noise ratio for teleseismic body waves.
Deconvolved displacement, however, offers nearly a
direct observation of the far-field source time func-
tion, given by shape of the P or S wave displacements
in the range of 35–90�. In this range, the waveform of
the observed displacement is primarily affected by
the pulse broadening due to viscoelastic attenuation.

1.05.6.2 Far-Field Source Time Function

Detailed and accurate representation of the forcing
function of the elastic equation of motion, or source-
time function, requires the input of both theory and
experiment for brittle failure and stick-slip friction.
Chapter 4.02 provides a review of source representa-
tions and the physical assumptions behind them. For

most modeling applications, a simple far-field repre-
sentation and a judicious choice of earthquakes are all
that is needed to begin to separate the effects of
source from the effects of structure.

The far-field displacement is proportional to the
time derivative of a moment-rate tensor dM(t)/dt.
A common scalar moment Mo can be factored out
of dM(t)/dt, leaving a far-field time source-time
function S(t). In the case of an earthquake faulting
source, S(t) is proportional to the time derivative of
its slip history (e.g., Shearer, 1999, chapter 9). An
operator combining the convolution of S(t), A(t, �o),
and C(t, �o) can be derived from either inversion or
empirical observations of instrument-deconvolved
P-wave displacements at all distances between 30�

and 90� .
The S(t) of many earthquakes having body-wave

magnitudes less than 6.5 often can be adequately
represented by a simple triangle-shaped pulse,
where the triangle width is related to the corner
frequency and fault length in a Brune (1970) model
of the source spectrum. A body wave magnitude of
5.5 is often the practical lower limit to modeling,
because earthquakes smaller than this size rarely
generate sufficient teleseismic recordings of body
waves having a high signal-to-noise ratio. After fac-
toring out the time-dependent factor S(t) and scalar
moment Mo from the moment-rate tensor, a radiation
pattern R(
, p) can be constructed from weighted
elements of the moment-rate tensor where 
 is the
azimuth and p is the ray parameter of a body wave ray
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Figure 19 Instrument deconvolution showing a short- and
long-period seismogram response and the deconvolved

particle velocity and displacement from Choy and Engdahl

(1987).

Forward Modeling/Synthetic Body Wave Seismograms 179



connecting source and receiver. This weighting is
equivalent to representing general faulting by three

fundamental types of faulting or source types (e.g.,

Aki and Richards, 1980, chapter 4).
The process of factoring out a slip-time history

from a point-source radiation pattern should be

avoided for earthquakes having body-wave magni-
tude greater than 6.5 or fault lengths greater than

50 km. For these larger earthquakes, a simple point-

source representation fails, and the time history and
the slip distribution become too complex to be easily

separated from the waveform complexities due to
structure.

If it were not for the fact that the majority of
earthquakes are at depths of 20 km or less, incorpor-
ating a radiation factor R(
, p) in the integrand of [13]

would be all that is needed to include an earthquake

source at teleseismic range. Since most earthquakes
are shallow, the effects of surface reflections near the

source (pP, sP) generally need to be included in
modeling a 5–10 s time window surrounding an

observed body wave. The effect of different radiation
patterns for the near-source reflections is helpful in

inversion of teleseismic P waves for the far-field
moment-rate tensor (Langston and Helmberger,

1975). The inverted source depth and point-source

representation (centroid moment-rate tensor) can be
used to construct a predicted equivalent source-time

function and radiation pattern containing P þ pP þ
sP waves (Figure 20). Alternatively, the effect of the

surface reflections can be handled by incorporating

the moment-rate representation at the appropriate
depth in reflectivity or mode summation techniques
or be included by separately adding predicted pP and

sP waveforms to P waveforms synthesized by ray-
based or other transform methods.

At local and regional ranges, surface interactions
as well as a more detailed source description can
often still be handled by superposing far-field
point-source representations. These point-source

representations can be distributed at discrete points
along fault plane, delayed by the time slip initiates
and stops at each discrete point. This type of source

representation is said to be kinematic rather than
dynamic because the slip history is prescribed rather
than resulting from a slip initiation condition related
to either crack failure or friction on the fault surface.

At very close range, the wavefield can be well
approximated by a few simple directly arriving
body waves, and the far-field Green’s function for

each body wave can be calculated by ray theory. The
synthesis problem can then be reduced to an integral
over the fault plane in which the integral is carried
out over lines of equal arrival time of energy (iso-

chrones) corresponding to the sum of the rupture
time to a point on the fault and the traveltime of a
body wave to a receiver (Spudich and Frazer, 1994).

The effects of 3-D structure and frequency-depen-
dent diffraction can be incorporated in this technique
by substituting the ray-theoretical Green’s functions
with Green’s functions calculated by Gaussian beam

summation (e.g., Cerveny et al., 1987) or WKBJ/
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Figure 20 Teleseismic P-wave displacements for the Nenana earthquake of 23 October 2002. The broadband data are

plotted as solid lines; the synthetic displacements are plotted as dashed lines. The far-field source-time function is plotted on

the time axis, determined from modeling the P waves as a combination of P, pP, and sP waves (Choy and Boatwright, 2004).
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Maslov superposition of plane waves. See Chapter
4.18 for a complete review of algorithms for synthesis
at local ranges in which spatially extended slip mod-
els are required for earthquake slip inversions and
simulation of strong ground motions.

1.05.7 Extensions

1.05.7.1 Adapting 1-D Codes to 2-D
and 3-D

Since the delay time � (p) in the WKBJ, GRT, and full-
wave methods can be calculated from integrals of
vertical slowness up to ray turning points, it is simple
to consider different Earth models on either side of the
turning points. For example, to calculate the effect of
the upper mantle in the eastern US to a station in the
western US, one might use two different models,
keeping track of where rays enter and leave the two
models (Helmberger et al., 1996). In reflectivity meth-
ods, it is a little more difficult, but not impossible, to
incorporate different receiver- and source-side mod-
els. One would need to separately consider a receiver-
and source-side transmission response. Control of ray
expansions within thin layers as in Kennett’s formula-
tion of the reflectivity method makes it possible to
consider the effects of more general 2-D models.

Purely ray-based methods, such as DRT and/or
superposition of Gaussian beams or Maslov plane
waves, can consider continuously varying models in
2-D or 3-D space. Modal methods, including the
locked-mode method, can be adapted to 2-D, 3-D,
and anisotropic models by calculating the coupling
between modes, including interactions between Love
and Rayleigh modes. Maupin (1987), Maupin and
Kennett (1989), and Kennett (1998) describe schemes
for calculating modal coupling and show seismo-
grams synthesized for rapid lateral transitions in
crustal thickness.

1.05.7.2 Hybrid Methods

To save computation, it is sometimes necessary to
combine two methods, a computationally cheaper
method in a large region, and a computationally
more expensive method in a small region to study
structural complexity near a boundary or region of
rapid velocity or density transition. Usually the com-
putationally more expensive method is a numerical
method, such as finite difference or spectral element.
The usual way in which the two methods are con-
nected is to compute a Kirchhoff integral. The integral

is carried out on a surface or boundary that separates
the structurally complex region from the simple
region, employing Huygens principle to connect the
wavefields in the two regions by allowing each point on
a wave front to propagate as a new point source.
Kirchhoff integrals can also be used to calculate the
effects of scattering by inclusions or the frequency-
dependent reflection or transmission across a curved
interface when the radius of curvature is on the order
of a wavelength. A hybrid method of this type was used
by Wen et al. (1998) to study heterogeneity in the
lowermost mantle using a finite difference method,
connecting it to GRT in a radially symmetric over-
lying mantle. The most detailed treatment of fully
elastic integrands for P, SV, and SH waves can be
found in Frazer and Sen (1985). Probably due to the
need for intense customization for specific problems,
codes for Kirchhoff integrals are not generally distrib-
uted. A good starting point for any application are the
acoustic problems described in Shearer (1999, pp. 138–
140), which can then be generalized using the elastic
formulas in Frazer and Sen (1985).

Capdeville et al. (2003a) developed a hybrid
method that allows modal solutions in large homo-
geneous or weakly heterogeneous regions to be
coupled to the numerical SEM solutions in strongly
heterogeneous regions. This hybrid method has been
applied to a thin, strongly heterogeneous, D0 region
at the base of the mantle sandwiched between a
homogeneous core and mantle (Capdeville et al.,
2003b; To et al., 2005; see Chapter 1.18). A similar
approach might also be feasible at higher frequencies
and local and regional ranges by coupling locked
surface-wave modes to SEM solutions.

1.05.7.3 Frequency-Dependent Ray Theory

Recognizing that ray theory is an approximation
applicable at infinite frequency, corrections to ray
theoretical approximation can be based on a Born
approximation that corrects amplitude and traveltimes
in such a way that a finite region in space determines
the amplitude and traveltime of a body wave, making
both depend on frequency (Dahlen et al. 2000).
Chapter 1.04 provides a review and additional refer-
ences on the calculation of these frequency-dependent
corrections. One way in which the banana-doughnut
sensitivity kernels needed to calculate the frequency
dependence of traveltimes and amplitudes is to use the
a paraxial approximation around a central ray using
DRT. This approach can exploit the strong notational
framework developed by Cerveny and colleagues
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(e.g., Dahlen et al., 2000). Sensitivity kernels derived
from the Born approximation show that traveltime is
most sensitive to velocity along the boundaries of the
banana or rim of the doughnut away from the central
ray, whereas amplitude is most sensitive to velocity in
the center of the banana in the doughnut hole. The
traveltime sensitivity is closely related to the behavior
of the stationary-phase approximation, in which the
path is assumed to be invariant for variations in velo-
city along the central ray. It is important to recognize
that an accurate measurement of the frequency-
dependent effects on traveltime depends on waveform
measurements in which the effects on amplitude and
phase are combined. To properly incorporate these
combined effects in a tomographic inversion, a syn-
thetic waveform must be cross-correlated with an
observed waveform to obtain a traveltime residual.
Except in tomographic inversion, these frequency-
dependent corrections to ray theory using the Born
approximation have not yet been used or tested as a
general forward modeling technique. It is as yet
unknown how the weak dispersion due to velocity
variation tradeoffs with the weak dispersion due to
viscoelasticity (Section 1.05.7.4), or how accurate the
amplitude correction due to a simple Born approxima-
tion is compared to that predicted by the generalized
Born approximation of Coates and Chapman (1991).

The frequency-dependent, banana-shaped, sensi-
tivity kernels of seismic rays can also be calculated
from a modal approach using a nonlinear perturba-
tion theory (Li and Romanowicz, 1995). In this case,
the forward modeling approach is mode summation.
The approximations and behavior of errors due to
asymptotic approximations of the effects of hetero-
geneous structure are better understood in this
method but are practically limited to frequencies on
the order of 0.1 Hz and lower.

1.05.7.4 Attenuation

Chapter 1.21 reviews the physical mechanisms and
global models of seismic attenuation. Thus subsec-
tion reviews common procedures for incorporating
attenuation into the synthesis of body waves.

Viscoelasticity is the term that best describes the
type of seismic attenuation resulting from the dissi-
pation of elastic energy into heat. This heat
dissipation is analogous to the heat dissipated in
electric circuits, where stress is analogous to current,
voltage is analogous to strain, and complex impe-
dance is analogous to a complex compliance
(reciprocal of a complex elastic modulus). For

ray-based and integral transform-based methods,

viscoelastic attenuation is most directly treated by

making velocity complex through the square root of

a complex modulus divided by density. The effect of

attenuation on the spectrum of a propagating body

wave can be written as

Að!Þ ¼ ei!T ð!Þ ½26�

where A(!) is just the Fourier transform of the
attenuation operator A(t) in [24]. The complex tra-
veltime T(!) is determined by integrating a ray over
a path in which velocity is complex and frequency
dependent, or T ð!Þ ¼

R
path ds=V ð!Þ.

The frequency dispersion of velocity in a visco-
elastic medium is similar to the dispersion of a

complex index of refraction in electromagnetic pro-

pagation, in which absorption is always associated with

dispersion. In body waves, this dispersion is small and

difficult to detect with narrow-band instrumentation.

In sufficiently broadband recordings, viscoelastic dis-

persion is detectible as an asymmetry in the

propagation of delta function time pulse. High fre-

quencies travel faster than low frequencies, making a

steeper rise time than fall time as the pulse propagates

(Figure 21). Velocity dispersion was first recognized

to be important in global seismology when the elastic

moduli derived from the study of low-frequency free

oscillations were found to be smaller than those

derived from the traveltimes of high-frequency body

waves (Dziewonski and Anderson, 1981).

Incident wave

10 sτm

10–3

10–1

101

103

105

0.010 0.015Q–1(1Hz) = 0.005

Figure 21 Attenuation operators convolved with a

given wavelet for varying parameters of a viscoelastic

relaxation spectrum from Li and Cormier (2002).
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There is a consensus that the quality factor, Q , in
the attenuation of teleseismic body waves is nearly
independent of or slowly varying with frequency
from 0.001 to 0.1 Hz, with possibly some stronger

frequency dependence beginning between 0.1 and
1 Hz. For frequencies close to neither the low- or
high-frequency corner of a relaxation spectrum

(absorption band) of constant Q , this assumption
leads to an approximate formula for complex velocity
of the type

V ð!Þ ffi V ð!r Þ 1þ 1

�Q

� �
ln

!

!r

� �
– i

1

2Q

� �� �
½27�

where V(!r) is the real velocity at a reference fre-
quency. Substitution of V(!) into the ray path
integral for complex time T(!) in [26] and inverting
the complex spectrum defines a time domain
attenuation operator that is commonly termed the
Futterman (1962) or Carpenter (1967) Q operator.
This operator is valid in regions of the relaxation
spectrum where attenuation (1/Q) is constant. It is
not valid near the corners of the true relaxation
spectrum, where 1/Q decays as !�1. It is relatively
simple, however, to derive a formula for complex
velocity that is valid across the entire relaxation
spectrum (e.g., Cormier and Richards, 1988). An
example of the effect of attenuation operators con-
structed with this formula is shown in Figure 21.

The width of relaxation spectra in which attenua-
tion 1/Q is nearly constant or slowly varying (often
observed to be !1/3) is typically 5 decades in fre-
quency (Anderson and Given, 1981). A problem often

not considered in modeling the effects of viscolasti-
city are the limitations viscoelastic theory imposes on
the difference between the static (relaxed) elastic

modulus and the infinite frequency (unrelaxed) mod-
ulus. There are limits on the band over which
viscoleastic Q can be constant given by this modulus

difference or defect. In practice, this means that any
Q inferred from a body-wave pulse width or spec-
trum that has an exceptionally low value, for

example, 10 or lower, is probably the result of scat-
tering rather than viscoelasticity.

Slowness or ray-based methods often treat
attenuation by solving the equations of motion with
real velocities defined at the reference frequency
(often chosen to be 1 Hz) and then convolving the

result with the time domain attenuation operator of
[26] appropriate for each ray path. Since the units of
this ray-path integrand are time, a parameter often

cited in the literature of teleseismic body waves is t �.
Considering only the real part of [26] and assuming
[27] for V(!), each frequency is exponentially atte-
nuated by the factor expð –!t�Þ, where

t � ¼
Z

path

1

V ð!r ÞQ
ds ½28�

The parameter t� is found to vary relatively
slowly with range and path length of P waves in
the mantle, and is on the order of 1 s for frequencies
between 0.01 and 0.2 Hz in the distance range 30–90�.

Spectral methods that first compute the complex
spectrum of the solution of the equation of motion
(e.g., reflectivity, discrete wave number, full wave, the
DSM , mode summation) can treat attenuation simply
by substituting a complex velocity and analytically
continuing all formulas in propagator matrices and
phase factors that contain wave numbers and elastic
moduli to complex numbers. To include the dispersive
effect of attenuation in DRT and beam summation, a
Futterman-type Q operator can be convolved with the
computed amplitude of each ray or beam calculated in
a model specified at a reference frequency. Another
more general approach would be to compute ampli-
tudes by DRT at the real velocities, Re(V(!)), defined
at each frequency and then multiply each spectral
component by an exponential scale factor

exp –!

Z
Im

1

V ð!Þ

� �
ds

� � –

In finite difference methods that integrate the
equation of motion in the time domain, it is not
practical to handle viscoelastic attenuation by a con-
volution. Instead, it is possible to design a system of
stress–strain memory functions that can be simulta-
neously integrated in the time domain with the
equations of motion (Robertsson et al., 1994). Using
a memory function for only three specific relaxation
times, it is usually possible to reproduce the effects of
a relaxation spectrum of nearly constant attenuation
in a frequency band of interest.

1.05.7.5 Anisotropy

Chapter 1.09 reviews the elastic anisotropy and
computational approaches for its effects. Summarized
here are considerations primarily related to ray- and
transform-based methods of body-wave synthesis.

Elastic anisotropy removes the degeneracy of the
S-wave eigenvalue/eigenvector solutions to the
wave numbers of propagating plane waves. The SH
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and SV definitions defined by source and receiver
geometry are no longer useful for formulating
boundary conditions needed for calculating reflec-
tion and refraction. S polarization is best resolved
into components of motion along two orthogonal
quasi-S-wave eigenvectors, with motion on both the
SH and SV components of motion generally consist-
ing of a combination of two quasi-S waves. A pure SV
polarized wave incident on a weakly anisotropic
region excites two transmitted quasi-S waves such
that the SH component of the transmitted wave has
the approximate shape of the time derivative of the
SV component (Silver and Chan, 1991).

A special case of anisotropic propagation is that of
transverse isotropy with a vertical axis of symmetry.
In this case, the two-quasi S-waves are exactly polar-
ized in the SH and SV directions defined by source–
receiver geometry but with two different velocities.
Transverse isotropy can be an accurate representa-
tion for Earth models consisting of thin planar or
radially symmetric layers, having alternating or ran-
domly fluctuation velocities and layer thicknesses
much smaller than the smallest wavelength of inter-
est (Backus, 1962). Transverse isotropy can be easily
incorporated in all layered 1-D body-wave codes by
modifying the calculations of reflection–transmission
coefficients and the � (p) function in the phase factor
of WKBJ, GRT, or full-wave techniques (e.g.,
Chapman, 2004).

General anisotropy breaks the symmetry upon
which some integral transforms and spherical harmo-
nic analysis are based. Body waves can propagate in
and out of the sagittal plane. This makes the problem
of synthesizing body waves in a generally anisotropic
model automatically a 3-D problem. In plane-layered
models and Cartesian coordinates, the generalized
wave number superposition leads to reflectivity for-
mulations that require integration over two
horizontal wave numbers to invert wave number
transforms to the spatial domain (Fryer and Frazer,
1984, 1987). Similarly, the WKBJ/Maslov methods
can be generalized by integrals over two horizontal
slownesses (Garmany, 1989; Chapman, 2001). Some
approximations for weak general anisotropy and
expansion of the phase near its stationary point can
be employed to simplify the problem to integration
over a single wave number corresponding to waves
propagating in and near the saggital plane. For
seismograms synthesized by DRT or Gaussian
beam summation, the kinematic system needed
for ray trajectory and traveltimes is easily
extended to the case of general anisotropy, where

an eignevector–eigenvalue problem for the wave
types is solved for each spatial or time increment
used in numerical integration. A system for dynamic
quantities corresponding to the P and Q matrices can
be formulated for summation of Gaussian beams
(Hanyga, 1986), but a more tractable approach is to
take difference derivatives of ray positions and slow-
nesses (Gajewski and Psencik, 1987) to determine
geometric spreading and wave front curvature.

1.05.7.6 Scattering

Chapter 1.20 reviews seismic scattering. A few funda-
mental effects important to consider in the synthesis
of body waves are reviewed here, some of which are
computationally simple to include.

Single scattering by small-scale heterogeneity can
be incorporated by a Born approximation (e.g.,
Chapman, 2004, chapter 10). The Born approxima-
tion effectively treats small perturbations in velocity
and density from a background medium as seismic
sources by moving terms due to the difference in
perturbed velocity from the background velocity to
the source side of the wave equation. The strength of
these scattering sources that re-radiate energy are
proportional to the energy of the wave incident on
the heterogeneity and the size of its perturbations.
For wavelengths much greater than the heterogene-
ity, each heterogeneity can be treated by a point-
source representation similar to the moment-rate
tensor representation of earthquake sources (Wu
and Aki, 1985). The effects of many small-scale het-
erogeneities can be obtained by summing the
radiated body waves of each small scatterer. The
Green’s function solutions of the equations of motion
must be known from the source to the position of
each scatterer and from the scatterer to the receiver.
These Green’s functions can be calculated by any of
the methods described in Section 1.05.4. The volume
of the region of scatterers contributing to a specific
time window surrounding a body wave is the banana-
shaped region surrounding a least-time ray described
in Section 1.05.7.3. An example of this approach is the
synthesis of the precursor coda of PKIKP from scat-
terers near the core–mantle boundary (Cormier,
1999).

Forward scattering in the direction close to the
direction of the least-time ray can affect the pulse
shape of broadband body waves. A finite frequency
band of observation can blur the effects of many
scatterers, whose arrivals can occur over time spa-
cings much shorter than the shortest period in the
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pass band of observation. This broadening and multi-
pathing can be mistaken for the effects of viscoelastic
attenuation. Unlike viscoelastic attenuation, where
energy is lost to heat, scattering attenuation simply
redistributes high-frequency energy in time and
space out of a finite time window surrounding the
pulse observed at a particular location. One recent
approximate method of including this effect is the
theory of dynamic composite elastic moduli
(DYCEM) of Kaelin and Johnson (1998). This tech-
nique can be formulated in terms of a complex wave
number, allowing it to be treated in much the same
way as complex velocities in viscoelasticity (e.g.,
Cormier and Li, 2002).

1.05.8 Conclusions

Most of the algorithms for synthesizing body waves
in radially symmetric (1-D) structure have been suc-
cessfully tested and verified against each other (e.g.,
Choy et al., 1980; Figure 12). Factors to consider in
choosing an algorithm include the accuracy in a
required frequency band and distance range, the
width of the time window and number and types of
seismic phases, speed of computation, the complete-
ness of documentation, and the existence and
accessibility of software.

The frequency band of calculation is probably the
foremost important factor. If working in the fre-
quency band less than several one-tenths of a hertz,
then modal summation or the DSM are good choices
because they easily include all possible body waves,
surface waves, and frequency-dependent interactions
with discontinuities in an arbitrarily wide time win-
dow at an acceptable computational cost on a single
workstation. Using a perturbation approach, they can
also handle weak lateral heterogeneity (several per-
cent perturbation in velocity and density) with little
additional computational overhead. At higher fre-
quencies, reflectivity/GRT or locked-mode
approaches in thin homogeneous layers or asympto-
tically approximate ray-based methods (WKBJ/full
wave/Maslov/DRT and Gaussian beams) in homo-
geneous layers are efficient and produce identical
results if carefully used.

In either low- or high-frequency bands, the most
important limitations of each algorithm are related to
its accurate reproduction of the waveform effects of
the broad spatial spectrum of Earth structure. In all
algorithms, it is important to consider the effects of
neglecting small-scale structure on the order of a

wavelength or smaller. In high-frequency algorithms,
limitations are related to either the validity of the
EFA, the physicality of thin-layer representations, or
the validity of asymptotic approximations of wave
functions in layers having continuous and large spa-
tial gradients. Understanding these limitations is also
key to the problems of separating the effects of ani-
sotropy from heterogeneity and viscoelasticity from
scattering.

Computational hardware now makes it possible to
routinely model seismic waveforms to invert for both
radially symmetric (1-D) Earth structure and simple
point-source representations of earthquake faulting.
Recent advances in digital recording and network
telemetry have now made these inversions possible
in near real-time. The remaining advance needed to
fully exploit the real-time capabilities of 1-D model-
ing lies in making user-friendly software interfaces.

Three-dimensional modeling is still strongly lim-
ited by current computational hardware. Ray-based
3-D modeling is feasible on single workstations in
smooth models having a relatively large ratio of scale
length of heterogeneity to wavelength and for rela-
tively mild velocity and density perturbations (less
than several percent). Similarly, perturbation
approaches based on mode summation or the DSM
can be performed with modest computational over-
head for relatively weak velocity perturbations
(several percent) and at large scale lengths (thou-
sands of kilometers). Investigation of effects of very
small-scale heterogeneity (10 km or less) at high fre-
quencies (>1 Hz) can be done in 3-D but is currently
only practical for ranges on the order of hundreds of
wavelengths using clusters of processors. An effort to
test and verify 3-D modeling algorithms against each
other has just begun in the last several years (Igel
et al., 2000).
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