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7.04.1 Introduction

Geodynamics is the study of how Earth materials

deform and flow over long (�102–103 years) time-

scales. It is thus a science with dual citizenship: at

once a central discipline within the Earth sciences

and a branch of fluid dynamics more generally.
The basis of fluid dynamics is a set of general

conservation laws for mass, momentum, and energy,

which are usually formulated as partial differential

equations (PDEs) (Batchelor, 1967, chapter 3).

However, because these equations apply to all fluid

flows, they describe none in particular, and must

therefore be supplemented by material constitutive

relations and initial and/or boundary conditions that

are appropriate for a particular phenomenon of inter-

est. The result, often called a model problem, is the

ultimate object of study in fluid mechanics.
Once posed, a model problem can be solved in one

of three ways. The first is to construct a physical

analog in the laboratory and let nature do the solving.

The experimental approach has long played a central

role in geodynamics, and is discussed in Chapter 1.03.

Another approach is to solve the model problem

numerically on a computer, using one of the methods

discussed in Chapter 1.05. The third possibility, the
subject of the present chapter, is to solve the problem

analytically.
Admittedly, analytical approaches are most effec-

tive when the model problem at hand is relatively

simple, and lack some of the flexibility of the best

experimental and numerical methods. However, they
compensate for this by providing a degree of under-

standing and insight that no other method can match.

What is more, they also play a critical role in the

interpretation of experimental and numerical results.

For example, dimensional analysis is required to

ensure proper scaling of experimental and numerical
results to the Earth; and local scaling analysis of

numerical output can reveal underlying laws that

are obscured by numerical tables and graphical

images. For all these reasons, the central role that

analytical methods have always played in geody-
namics is unlikely to diminish.

The purpose of this chapter is to survey the prin-
cipal analytical methods of geodynamics and the

major results that have been obtained using them.

These methods are remarkably diverse, and require

a correspondingly broad and comprehensive treat-
ment. However, it is equally important to highlight
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the common structures and styles of argumentation
that give analytical geodynamics an impressive unity.
In this spirit, we begin with a discussion of the art of
formulating geophysical model problems, focusing
on three paradigmatic phenomena (heat transfer
from magma diapirs, gravitational instability of buoy-
ant layers, and plume–lithosphere interaction (PLI))
that will subsequently reappear in the course of the
chapter treated by different methods. Thus, heat
transfer from diapirs is treated using dimensional
analysis (Sections 7.04.3.1 and 7.04.3.2), scaling ana-
lysis (Section 7.04.3.3), and boundary-layer (BL)
theory (Section 7.04.7.1.2); gravitational instability
using scaling analysis (Section 7.04.4.3), long-wave
analysis (Section 7.04.8.3), and linear stability analysis
(Section 7.04.9.1); and PLI using lubrication theory
and scaling analysis (Sections 7.04.8.1 and 7.04.8.2).
Moreover, the discussions of these and other
phenomena are organized as much as possible around
three recurrent themes. The first is the importance of
scaling arguments (and the scaling laws to which they
lead) as tools for understanding physical mechanisms
and applying model results to the Earth. Examples of
scaling arguments can be found in Sections 7.04.3.3,
7.04.4.3, 7.04.7.2, 7.04.8.2, 7.04.9.2.5, 7.04.9.2.6,
7.04.9.3.1, and 7.04.9.3.4. The second is the ubiquity
of self-similar behavior in geophysical flows, which
typically occurs in parts of the spatiotemporal flow
domain that are sufficiently far from the inhomoge-
neous initial or boundary conditions that drive the
flow to be uninfluenced by their structural details
(Sections 7.04.4.1, 7.04.4.2, 7.04.5.3.3, 7.04.5.3.4,
7.04.7.1.1, 7.04.7.3, 7.04.8.1, 7.04.8.2, and 7.04.9.3.4).
The third theme is asymptotic analysis, in which
the smallness of some crucial parameter in the
model problem is exploited to simplify the governing
equations, often via a reduction of their dimension-
ality (Sections 7.04.4.1, 7.04.5.7, 7.04.7, 7.04.7.2,
7.04.8.1, 7.04.8.3, 7.04.8.4, 7.04.8.5, 7.04.8.6, 7.04.9.2.5,
7.04.9.2.6, 7.04.9.3.2, 7.04.9.3.3, and 7.04.9.3.4). While
these themes by no means encompass everything the
chapter contains, they can serve as threads to guide
the reader through what might otherwise appear a
trackless labyrinth of miscellaneous methods.

A final aim of the chapter is to introduce some less
familiar methods, drawn from other areas of fluid
mechanics, that deserve to be better known among
geodynamicists. Examples include the use of
Papkovich–Fadle eigenfunction expansions (Section
7.04.5.4.1) and complex variables (Section 7.04.5.5)
for two-dimensional (2-D) Stokes flows, solutions in
bispherical coordinates for 3-D Stokes flows (Section

7.04.5.4.3), and multiple-scale analysis of modulated
convection rolls (Sections 7.04.9.2.5 and 7.04.9.2.6).

Throughout this chapter, unless otherwise stated,
Greek indices range over the values 1 and 2; Latin
indices range over 1, 2, and 3; and the standard sum-
mation convention over repeated subscripts is
assumed. Subscript notation (e.g., ui, eij) and vector
notation (e.g., u, e) are used interchangeably as conve-
nience dictates, and the notations (x, y, z)¼ (x1, x2, x3)
for Cartesian coordinates and (u, v, w)¼ (u1, u2, u3) for
the corresponding velocity components are equivalent.
Unit vectors are denoted by symbols ex, er, etc. Partial
derivatives are denoted either by subscripts or by the
symbol q, and qi¼ q/qxi. Thus, for example,

Tx ¼ qxT ¼ q1T ¼ qT

qx
¼ qT

qx1
½1�

The symbols R[. . .] and I[. . .] denote the real and
imaginary parts, respectively, of the bracketed quanti-
ties. Frequently used abbreviations are listed in Table 1.

7.04.2 Formulating Geodynamical
Model Problems: Three Case Studies

Ideally, a geodynamical model should respect two dis-
tinct criteria: it should be sufficiently simple that the
essential physics it embodies can be easily understood,
yet sufficiently complex and realistic that it can be used
to draw inferences about the Earth. It is seldom easy to
satisfy both these desiderata in a single model; and so
most geophysicists tend to emphasize one or the other,
according to temperament and education.

Table 1 Frequently used abbreviations

Abbreviation Meaning

1-D One-dimensional

2-D Two-dimensional

3-D Three-dimensional
BL Boundary layer

BVP Boundary-value problem

CMB Core–mantle boundary
LHS Left-hand side

MEE Method of eigenfunction expansions

MMAE Method of matched asymptotic

expansions
ODE Ordinary differential equation

PDE Partial differential equation

PLI Plume-lithosphere interaction

RHS Right-hand side
R-T Rayleigh–Taylor

SBT Slender-body theory

TBL Thermal boundary layer
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However, there is a way around this dilemma: to
investigate not just a single model, but rather a
hierarchical series of models of gradually increasing
complexity and realism. Such an investigation –
whether carried out by one individual or by
many – is a cumulative one in which the initial
study of a highly simplified model provides the
physical understanding required to guide the formu-
lation and investigation of more complex models. To
show how this process works in practice, I have
chosen three exemplary geophysical phenomena as
case studies: heat transfer from mantle diapirs;
buoyant instability of thermal boundary layers
(TBLs); and the interaction of mantle plumes
with the lithosphere. Mathematical detail and biblio-
graphical references are kept to a minimum in order
to focus on the conceptual structure of the hierarch-
ical approach.

7.04.2.1 Heat Transfer from Mantle Diapirs

Our first example is the ascent of a hot blob or diapir
of magma through the lithosphere, a possible
mechanism for the formation of island-arc volcanoes
(Marsh and Carmichael, 1974; Marsh, 1978). To eval-
uate this model, one needs to know how far the diapir
can move through the colder surrounding material
before losing so much of its excess heat that it
solidifies. Figure 1 illustrates a series of model pro-
blems that can be used to investigate this question.

Probably the simplest model that still retains
much of the essential physics (Marsh, 1978) can be
formulated by assuming that (1) the diapir is spheri-
cal and has a constant radius; (2) the diapir’s interior
temperature is uniform and (3) does not vary with
time; (4) the ascent speed and (5) the temperature of
the lithosphere far from the diapir are constants;
(6) the lithosphere is a uniform viscous fluid with
constant physical properties; and (7) the viscosity of
the diapir is much less than that of the lithosphere.
The result is the model shown in Figure 1(a), in
which an effectively inviscid fluid sphere with radius
a and temperature �T moves at constant speed U

through a fluid with constant density �, thermal
diffusivity �, and viscosity �, and constant tempera-
ture T¼ 0 far from the sphere. An analytical solution
for the rate of heat transfer q from the diapir (Section
7.04.7.1.2) can now be obtained if one makes
the additional (and realistic) assumption (8) that the
Peclet number Pe XUa/�� 1, in which case the
temperature variations around the leading hemi-
sphere of the diapir are confined to a thin BL of

thickness �� a (Figure 1(a)). One thereby finds
(see Section 7.04.3.3 for the derivation)

q � kca�TPe1=2 ½2�

where kc is the thermal conductivity.
While the model just described provides a first esti-

mate of how the heat transfer scales with the ascent
speed and the radius and excess temperature of the
diapir, it is far too simple for direct application to the
Earth. A more realistic model can be obtained by relax-
ing assumptions (3) and (5), allowing the temperatures
of the diapir and the ambient lithosphere to vary with

(b)
SP

SP

T = ΔT

T = ΔT

T = 0

T = 0

(a)

U

v

v

θ

δ
a

u

u

z = 0
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δ

ρ, κ, ν (T )

ρ, κ, ν

Figure 1 Models for the heat transfer from an ascending

magma diapir. (a) Original model in spherical geometry. A

sphere of radius a and constant temperature �T is immersed
in an infinite fluid with density �, kinematic viscosity �, and

thermal diffusivity�. The fluid far from the sphere moves with a

constant streaming speed U, and its temperature is zero. The

colatitude measured from the upstream stagnation point (SP)
is �, and the components of the velocity in the colatitudinal

and radial directions are u and v, respectively. In the limit

Ua/�� 1, temperature variations in the hemisphere ���/2
are confined to a boundary layer of thickness �� a. The

viscosity � may be constant (Marsh, 1978) or temperature-

dependent (Morris, 1982). (b) Modified stagnation-point flow

model of Morris (1982). The surface of the hot sphere is
replaced by the plane z¼ a, and the steady streaming velocity

U is imposed as a boundary condition at z¼0.
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time. If these variations are slow enough, the heat trans-
fer at each instant will be described by a law of the form
[2], but with a time-dependent excess temperature
�T(t). A model of this type was proposed by Marsh
(1978), who obtained a solution in the form of a con-
volution integral for the evolving temperature of a
diapir ascending through a lithosphere with a prescribed
far-field temperature Tlith(t).

A different extension of the simple model of
Figure 1(a), also suggested by Marsh (1978), begins
from the observation that the viscosity of mantle mate-
rials decreases strongly with increasing temperature. A
hot diapir will therefore be surrounded by a thin halo of
softened lithosphere, which will act as a lubricant and
increase the diapir’s ascent speed. The effectiveness of
this mechanism depends on whether the halo is thick
enough, and/or has a viscosity low enough, to carry a
substantial fraction of the volume flux ��a2U that the
sphere must displace in order to move. Formally, this
model is obtained by replacing the constant viscosity �
in figure 1(a) by one that depends exponentially on
temperature as �¼ �0 exp(�T/�Tr).

While this new variable-viscosity model is more
realistic and dynamically richer than the original
model, its spherical geometry makes analytical solu-
tion impossible except in certain limiting cases
(Morris, 1982; Ansari and Morris, 1985). However,
closer examination reveals that the spherical geome-
try is not in fact essential: all that matters is that the
flow outside the softened halo varies over a charac-
teristic length scale a that greatly exceeds the halo
thickness. This recognition led Morris (1982) to
study a simpler model in which the flow around the
sphere is replaced by a stagnation-point flow
between two planar boundaries z¼ 0 and z¼ a

(Figure 1(b)). The model equations now admit 1-D
solutions T¼T(z) and �¼ �(z) for the temperature
and the vertical velocity, respectively, which can be
determined using the method of matched asymptotic
expansions (MMAE) (Section 7.04.7.2) in the limit of
large viscosity contrast �T/�Tr� 1 (Morris, 1982).

7.04.2.2 Plume Formation in TBLs

Our second example (Figure 2) is the formation of
plumes via the gravitational instability of a horizontal
TBL. The first step in formulating a model for this
process is to choose a simple representation for the
relevant physical properties (density, viscosity, and
thermal diffusivity) of the fluid. Because these depend
on pressure, temperature, and (possibly) chemical com-
position, they will vary continuously with depth in the

TBL and with time (due to thermal diffusion). As a first
approximation, however, one can model the depth dis-
tribution of the fluid properties as a nondiffusing and
spatially discontinuous two-fluid configuration in which
a dense layer with constant thickness h0, density
�0þ��, and viscosity �1 overlies a half-space with
density �0 and viscosity �0 (Figure 2(a)). The case of a
less-dense BL beneath a denser fluid is obtained by
turning the system upside down and switching the sign
of ��. Because both configurations are gravitationally
unstable, any small perturbation of the interface
between the two fluids will grow with time via the
Rayleigh–Taylor (R–T) instability. The growth rate of
an infinitesimal sinusoidal perturbation with arbitrary
wave number k can be determined analytically (Selig,
1965; Whitehead and Luther, 1975) via a standard linear
stability analysis (Section 7.04.9.1).

While the simple RT model embodies some of the
essential physics of plume formation, it is unable to
describe such crucial features as the characteristic
periodicity of TBL instabilities (Howard, 1964). For
this purpose, a more realistic model that incorporates
a diffusing temperature field is required. Figure 2(b)
shows such a model (Canright, 1987; Lemery et al.,

(a)

(b)

{

T = –ΔT

T = 0
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Figure 2 Models for plume formation in a dense/cold
thermal boundary layer. (a) Rayleigh–Taylor instability of a

layer of fluid with density �0þ�� and viscosity �1 above a

half-space of fluid with density �0 and viscosity �0. The initial

thickness of the dense layer is h0, and the deformation of the
interface is 	. The maximum values of the horizontal and

vertical velocities at the interface z¼ 	 are U and W,

respectively, and û is the magnitude of the change in
horizontal velocity across the layer. (b) Buoyant instability of

a cold thermal boundary layer. The upper surface x3¼ 0 of a

fluid half-space is held at a fixed temperature ��T relative

to the interior. The density of the fluid varies with
temperature as �¼ �0(1�g
T), where 
 is the thermal

expansion coefficient. The thickness of the boundary layer

is h(x1, x2, t) and the viscosity within it is �̂(x3).
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2000), in which a diffusive TBL grows away from a
cold surface and subsequently becomes unstable. The
density of the fluid varies linearly with temperature,
and the viscosity �̂ can vary as a function of the depth
x3 within the TBL. The additional assumptions that
the wavelength of the instability greatly exceeds the
thickness of the TBL and that the horizontal compo-
nents of the fluid velocity are constant across it then
permit an analytical reduction of the full 3-D equa-
tions to an equivalent set of 2-D equations for the
horizontal velocities and the first moment of the
temperature in the TBL (Section 7.04.8.3).

7.04.2.3 Plume–Lithosphere Interaction

PLI refers to the processes that occur after a rising
mantle plume strikes the base of the lithosphere.
Because the plume fluid is buoyant relative to its
surroundings, it will spread beneath the lithosphere,
eventually forming a thin layer or pancake whose
lateral dimensions greatly exceed its thickness.

Figure 3 shows a series of fluid dynamical models
that have been used to study PLI, beginning with the
kinematic model of Sleep (1987) (Figure 3(a)).
Sleep’s insight was that the flow associated with a
plume rising beneath a moving plate can be regarded
as the sum of two parts: a (horizontal) radial flow
representing buoyant plume fluid emanating from a
steady localized source at the top of the plume
conduit; and an ambient mantle wind in the direction

of the plate motion. Fluid from the source can

travel only a finite distance upstream against the
wind before being blown back downstream again,

leading to the formation of a stagnation point (labeled

SP in Figure 3(a)) at which the wind speed just equals

the speed of radial outflow from the source. The
stagnation streamline that passes through this point

(heavy line in Figure 3(a)) divides the (x, y) plane

into an inner region containing fluid from the source,

and an outer region containing fluid brought in from
upstream by the wind. The stagnation streamline

resembles the shape of the topographic swell around

the Hawaiian island chain (Richards et al., 1988).
While the kinematic model of Sleep (1987) nicely

illustrates the geometry of PRI, it neglects the
(driving) buoyancy force and (resisting) viscous force

that control the spreading of the plume pancake. We

now seek the simplest possible model that embodies

these dynamics. Following the logic of Section 7.04.2.2,
we replace the continuous variation of fluid properties

by a two-fluid structure, comprising a pancake with

constant viscosity � spreading in an ambient fluid with

viscosity �m. We further assume that �m/� is not too
large, so that the influence of the ambient mantle on

the spreading of the plume pancake can be neglected.

Another simplifying assumption (to be relaxed later) is

that the plate does not move with respect to the source
of plume fluid. Finally, we suppose that the strength

of the source is constant. The result is the viscous

gravity current model (Huppert, 1982), wherein

(c) (d)
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Figure 3 Hierarchy of models for plume–lithosphere interaction. (a) Steady streamlines for the 2-D kinematic model of Sleep

(1987). The source is indicated by the black circle, the heavy solid line is the stagnation streamline, and d is the distance
between the source and the stagnation point SP. (b) Spreading beneath a rigid surface of an axisymmetric current of viscous

fluid with viscosity � and anomalous density ���, supplied at a volumetric rate Q. (c) Same as (b), but beneath a rigid plate

moving at speed U0. (d) Same as (c), but beneath two plates separated by a spreading ridge with half-spreading rate U0.
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fluid with viscosity � and anomalous density ���
relative to its surroundings is supplied at a
constant volumetric rate Q and spreads beneath a
stationary rigid surface (Figure 3(b)). The analytical
solution for the closely related problem of a
current with constant volume V is discussed in
Section 7.04.8.1.

The next step is to generalize the gravity current
model by allowing the plate to move with a constant
velocity U0 relative to the source (Olson, 1990). The
resulting refracted plume model (Figure 3(c)) is in
essence a dynamically self-consistent extension of
the 2-D kinematic model of Sleep (1987), and is
discussed further in Section 7.04.8.2.

As a final illustration, Figure 3(d) shows a further
extension of the refracted plume model in which the
uniform plate is replaced by two plates separated by
a spreading ridge. Despite the increased complexity of
this plume–ridge interaction model, analytical meth-
ods can still profitably be applied to it (Ribe et al.,
1995).

7.04.3 Dimensional and Scaling
Analysis

The goal of studying model problems in fluid
mechanics is typically to determine functional rela-
tions, or scaling laws, that obtain between certain
parameters of interest and the various other para-
meters on which they depend. Two simple yet
powerful methods that can be used for this purpose
are dimensional analysis and scaling analysis.

7.04.3.1 Buckingham’s �-Theorem and
Dynamical Similarity

Dimensional analysis begins from the principle that the
validity of physical laws cannot depend on the units in
which they are expressed. An important consequence of
this principle is the �-theorem of Buckingham (1914).

Suppose that there exists a (generally unknown)
functional relationship among N-dimensional para-
meters P1 P2, . . ., PN, such that

f1 P1; P2; . . . ; PNð Þ ¼ 0 ½3�

Let M < N be the number of the parameters Pn which
have independent physical dimensions (note that a
dimensionally consistent functional relationship
among the parameters Pn is impossible if M¼N ). In
most (but not all!) cases, M is just the number of

independent units that enter into the problem, for
example, M¼ 3 for mechanical problems involving
units of m, kg, and s and M¼ 4 for thermomechanical
problems involving temperature (units K) in addi-
tion. The �-theorem states that the functional
relationship [3] is equivalent to a relation of the form

f2 �1; �2; . . . ; �N –Mð Þ ¼ 0 ½4�

where �1, �2, . . . , �N�M are N�M independent
dimensionless combinations (or groups) of the
dimensional parameters Pn. The fact that all systems
of units (SI, cgs, etc.) are equivalent requires that each
dimensionless group �i be a product of powers of the
dimensional parameters Pn; no other functional form
preserves the value of the dimensionless group when
the system of units is changed. The function f2, by
contrast, can have any form. While the total number
of independent groups �i is fixed (XN�M), the
definitions of the individual groups are arbitrary
and can be chosen as convenient. A more detailed
discussion and proof of the �-theorem can be found
in Barenblatt (1996, chapter 1).

The �-theorem is the basis for the concept of
dynamical similarity, according to which two physical
systems behave similarly (i.e., proportionally) if they
have the same values of the dimensionless groups �i

that define them. The crucial point is that two systems
may have identical values of �i even though they are
of very different size, that is, even if the values of the
dimensional parameters Pn are very different.
Dynamical similarity is thus a natural generalization
of the concept of geometrical similarity, whereby, for
example, two triangles of different sizes are similar if
they have the same values of the dimensionless para-
meters (angles and ratios of sides) that define them.
Geometrical similarity is a necessary, but not a suffi-
cient, condition for dynamical similarity.

The importance of dynamical similarity for phy-
sical modeling is that it allows results obtained in the
laboratory or on a computer to be applied to another
system with very different scales of length, time, etc.
Its power derives from the fact that the function f2 in
[4] has M fewer arguments than the original function
f1. Thus, an experimentalist or numerical analyst who
seeks to determine how a target dimensional para-
meter P1 depends on the other N� 1 parameters
need not vary all of the latter individually; it suffices
to vary only N�M� 1 dimensionless parameters.
Consequently, if the variation of a given dimensional
parameter requires 	10 samplings, then use of the
�-theorem reduces the effort involved in searching
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the parameter space by a factor 	10M (Barenblatt,
1996; see also Chapter 7.02) By the same token, the
�-theorem makes possible a far more economical
representation of experimental or numerical data. As
an example, suppose that we have N¼ 5 dimensional
parameters P1–P5 from which N�M¼ 2 indepen-
dent dimensionless groups �1 and �2 can be
formed. To represent our data without the help of
the �-theorem, we would need many shelves (one
for each value of P5), each containing many books
(one for each value of P4), each containing many
pages (one for each value of P3), each containing a
plot of P2 versus P1. By using the �-theorem, how-
ever, we can collapse the whole library onto a single
plot of �2 versus �1.

As a simple illustration of the �-theorem, consider
again the model for heat transfer from a hot sphere
(Figure 1(a)). Suppose that we wish to determine the
radial temperature gradient � (proportional to the local
conductive heat flux) as a function of position on the
sphere’s surface. A list of all the relevant parameters
includes the following eight (units in parentheses):
�(K m�1), a(m), U(m s�1), �(kg m�3), �(m2 s�1),
�(m2 s�1), �T(K), and � (dimensionless). However, �
can be eliminated immediately because it is the only
parameter that involves units of mass: no dimensionless
group containing it can be defined. The remaining
parameters are N¼ 7 in number, M¼ 3 of which (e.g.,
a, �T, and U ) have independent units, so N�M¼ 4
independent dimensionless groups can be formed. It is
usually good practice to start by defining a single group
containing the target parameter (� here.) While inspec-
tion usually suffices, one can also proceed more
formally by writing the group (�1 say) as a product of
the desired parameter (�) and unknown powers of any
set of M parameters with independent dimensions, for
example, �1¼ �an1�T n2U n3. The requirement that �1

be dimensionless then implies n1¼ 1, n2¼�1, and
n3¼ 0. Additional groups are then obtained by applying
the same procedure to the remaining dimensional para-
meters in the list (� and � in this case.) Finally, any
remaining parameters in the list that are already dimen-
sionless (� in this case) can be used as groups by
themselves. For the hot sphere, the result is

�a

�T
¼ fct

Ua

�
;

Ua

�
; �

� �
½5�

where fct is an unknown function. The groups
Ua/� X Pe, Ua/� X Re, and �a/�T X N are tradition-
ally called the Peclet number, the Reynolds number,
and the (local) Nusselt number, respectively (the last

to be distinguished from the global Nusselt number
Nu X

R
s

N dS that measures the total heat flux across
the sphere’s surface S.) As we remarked earlier, the
definitions of the dimensionless groups in a relation
like [5] are not unique. Thus one can replace any
group by the product of itself and arbitrary powers of
the other groups, for example, Pe in [5] by the Prandtl
number �/� X Pe/Re. Furthermore, it often (but not
always!) happens that the target parameter ceases to
depend on a dimensionless group whose value is very
large or very small. For example, in a very viscous
fluid such as the mantle, Re << 1 because inertia is
negligible, and so Re no longer appears as an argu-
ment in [5].

7.04.3.2 Nondimensionalization

When the equations governing the dynamics of the
problem at hand are known, another method of
dimensional analysis becomes available: nondimen-
sionalization. We illustrate this using the same
example of a hot sphere.

The first step is to write down the governing
equations, together with all the relevant initial and
boundary conditions. Because the problem is both
steady and axisymmetric, the dependent variables
are the temperature T(r, �) and the velocity u(r, �),
where r and � are the usual spherical coordinates. If
viscous dissipation is negligible, the governing equa-
tions and boundary conditions are (see Chapter 7.06)

� ? u ¼ 0; u ? �T ¼ �r2T ;
u ? �u ¼ – � – 1�p þ �r2u

½6a�

T a; �ð Þ –�T ¼T 1; �ð Þ ¼ u a; �ð Þ
¼ u 1; �ð Þ –Uez ¼ 0 ½6b�

where ez is a unit vector in the direction of the steady
stream far from the sphere. The next step is to define
dimensionless variables (denoted, e.g., by primes)
using scales that appear in the equations and/or initial
and boundary conditions. An obvious (but not
unique) choice is r9¼ r/a, T9¼T/�T, u9¼ u/U,
and p9¼ a(p� p0)/��U, where p0 is the (dynamically
insignificant) pressure far from the sphere.
Substituting these definitions into [6] and immediately
dropping the primes to avoid notational overload, we
obtain the dimensionless BVP:

� ? u ¼ 0; Pe u ? �T ¼ r2T ;
Re u ? �u ¼ –�p þr2u

½7a�

T 1; �ð Þ–1¼ T 1; �ð Þ ¼ u 1; �ð Þ ¼ u 1; �ð Þ–ez ¼ 0 ½7b�
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where Pe and Re are the Peclet and Reynolds num-
bers defined in Section 7.04.3.1. Now because these
are the only dimensionless parameters appearing in
[7a] and [7b], the dimensionless temperature must
have the form T¼T (r, �, Pe, Re). Differentiating this
with respect to r and evaluating the result on the
surface r¼ 1 to obtain the quantity �a/�T, we find
the same result [5] as we did using the �-theorem.

Whether one chooses to do dimensional analysis
using the �-theorem or nondimensionalization
depends on the problem at hand. The �-theorem is
of course the only choice if the governing equations
are not known, but its effective use then requires a
good intuition of what the relevant physical para-
meters are. When the governing equations are
known, nondimensionalization is usually the best
choice, as the relevant physical parameters appear
explicitly in the equations and initial/boundary
conditions.

7.04.3.3 Scaling Analysis

Except when N�M¼ 1, dimensional analysis yields
a relation involving an unknown function of one or
more dimensionless arguments. To determine the
functional dependence itself, methods that go beyond
dimensional analysis are required. The most detailed
information is provided by a full analytical or numer-
ical solution of the problem, but finding such
solutions is rarely easy. Scaling analysis is a powerful
intermediate method that provides more information
than dimensional analysis while avoiding the labor of
a complete solution. It proceeds by estimating the
orders of magnitude of the different terms in a set of
governing equations, using both known and unknown
quantities, and then exploiting the fact that the terms
must balance (the definition of an equation!) to deter-
mine how the unknown quantities depend on the
known.

To illustrate this, we consider once again the
problem of determining the local Nusselt number
N for the hot sphere, but now in the specific limit
Re� 1 and Pe� 1. Recall that Re measures the ratio
of advection to diffusion of gradients in velocity
(Xvorticity), while Pe does the same for gradients in
temperature. In the limit Re� 1, advection of velo-
city gradients is negligible relative to diffusion
everywhere in the flow field, and u is given by the
classic Stokes–Hadamard solution for slow viscous
flow around a sphere of another fluid (Section
7.04.5.3.2). When Pe� 1, temperature gradients are
transported by advection with negligible diffusion

everywhere except in a thin TBL of thickness
�(�)� a around the leading hemisphere where
advection and diffusion are of the same order.
Because radial temperature gradients greatly exceed
surface-tangential gradients within this layer, the
temperature distribution there is described by the
simplified BL forms of the continuity and energy
equations (cf. Section 7.04.7)

a sin �vr þ u sin �ð Þ�¼ 0 ½8a�

a – 1uT� þ vTr ¼ �Trr ½8b�

where u(r, �) and v(r, �) are the tangential (�) and
radial (r) components of the velocity, respectively,
and subscripts indicate partial derivatives. Equations
[8] are obtained from [145] by setting x¼ a� and
r¼ a sin �.

We begin by determining the relative magnitudes
of the velocity components u and v in the BL. While
these can be found directly from the Stokes–
Hadamard solution, it is more instructive to do a
scaling analysis of the continuity equation [8a].
Now vr��v/�, where �v is the change in v across
the BL; but because v(a, �)¼ 0, �v¼ v. Similarly,
u���u/��, where �u is the change in u over an
angle �� of order unity from the forward stagnation
point �¼ 0 toward the equator �¼ �/2. But because
u(r, 0)¼ 0, �u¼ u. The continuity equation therefore
implies

v � �=að Þu ½9�

We turn now to the left-hand side (LHS) of the
energy equation [8b], whose two terms represent
advection of temperature gradients in the tangential
and radial directions, respectively. Now the radial
temperature gradient Tr��T/� greatly exceeds
the tangential gradient a�1T���T/a, but this dif-
ference is compensated by the smallness of the radial
velocity v� (�/a)u, and so the terms representing
tangential and radial advection are of the same
order. The balance of advection and diffusion in the
BL is therefore a�1uT���Tr r , which together with
Trr��T/�2 implies

�2 � �a=u ½10�

It remains only to determine an expression for u,
which depends on the ratio � of the viscosity of the
sphere to that of the surrounding fluid. We consider
the limiting cases �� 1 (a traction-free sphere) and
�� 1 (an effectively rigid sphere). Because the fluid
outside the sphere has constant viscosity, u varies
smoothly over a length scale �a. Within the TBL,
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therefore, u can be approximated by the first term of
its Taylor series expansion in the radial distance
r� a X 	 away from the sphere’s surface. If the sphere
is traction free, u	j	¼0¼ 0, implying that u�U is
constant across the TBL to lowest order. If however
the sphere is rigid, uj	¼0¼ 0 and u� (	/a)U. The
tangential velocity u at the outer edge 	� � of the
TBL is therefore

u � �=að ÞnU ½11�

where n¼ 0 for a traction-free sphere and n¼ 1 for a
rigid sphere. Substituting [11] into [10] and noting
that N � a/�, we obtain

N � Pe1=ðnþ2Þfn �ð Þ ½12�

where fn(�) (n¼ 1 or 2) are unknown functions. Thus
when Pe� 1, N � Pe1/2 if the sphere is traction-free
and N � Pe1/3 if it is rigid. N is greater in the former
case because the tangential velocity u, which carries
the heat away from the sphere, is �U across the
whole TBL.

7.04.4 Self-Similarity and
Intermediate Asymptotics

In geophysics and in fluid dynamics more generally,
one often encounters functions that exhibit the prop-
erty of scale-invariance or self-similarity. As an
illustration, consider a function f ( y, t) of two arbi-
trary variables y and t. The function f is self-similar if
it has the form

f y; tð Þ ¼ G tð ÞF y

� tð Þ

� �
½13�

where F, G, and � are arbitrary functions and
� X y/�(t) is the similarity variable. Self-similarity
simply means that curves of f versus y for different
values of t can be obtained from a single universal
curve F(�) by stretching its abscissa and ordinate by
factors �(t) and G(t), respectively.

Self-similarity is closely connected with the con-
cept of intermediate asympotics (Barenblatt, 1996). In
many physical situations, one is interested in the
behavior of a system at intermediate times, long
after it has become insensitive to the details of the
initial conditions but long before it reaches a final
equilibrium state. The behavior of the system at these
intermediate times is often self-similar, as we now
illustrate using a simple example of conductive heat
transfer (Barenblatt, 1996, Section 7.04.2.1).

7.04.4.1 Conductive Heat Transfer

Consider the 1-D conductive heat transfer in a rod

y P [0, L] in which the initial temperature is zero

everywhere except in a heated segment of length h

centered at y¼ y0 (Figure 4). The width of the

heated segment is much smaller than the distance to

either end of the rod, and the segment is much closer

to the left end than to the right end, that is, h� y0 and

y0� L� y0. The ends of the rod are held at zero

temperature, and its sides are insulated.
The equation and initial/boundary conditions

governing the temperature T ( y, t) in the rod are

Tt ¼ �Tyy ½14a�

T y; 0ð Þ ¼ T0ðyÞ; Tð0; tÞ ¼ T L; tð Þ ¼ 0 ½14b�

where T0( y) is the concentrated initial temperature
distribution. While it is relatively easy to solve [14a]
and [14b] numerically for an arbitrary initial tem-
perature T0( y), such an approach would not reveal
the essential fact that the solution has two distinct
intermediate asymptotic, self-similar stages. The first
obtains long after the temperature distribution has
forgotten the details of the initial distribution T0( y),
but long before it feels the influence of the left
boundary condition T(0, t)¼ 0, that is, for (roughly)
0.1h2/�� t � 0.1y0

2/�. In this time range, the rod
appears effectively infinite, and the integrated tem-
perature anomaly

Q ¼
Z 1
–1

T y; tð Þdy ½15�

is constant. The temperature T can depend only on
Q, �, t, and y� y0, and only three of these five para-
meters have independent dimensions. Applying the
�-theorem with N¼ 5 and M¼ 3, we find

T ¼ Q

�tð Þ1=2
F1 �ð Þ; � ¼ y – y0

�tð Þ1=2
½16�

T = 0 T = 0h

y = 0 y = Ly = y0

T (y, 0) = T0(y ) h << y0, y0 << L – y0

Figure 4 Model for 1-D conductive heat transfer in a rod
y P [0, L] in which the initial temperature is zero everywhere

except in a heated segment of length h centered at y¼ y0.

The width of the heated segment is much smaller than the
distance to either end of the rod, and the segment is much

closer to the left end than to the right end. Both ends of the

rod are held at zero temperature, and its sides are insulated.
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which is of the general self-similar form [13].
Substituting [16] into [14a] and [15], we find that F1

satisfies

2F 01 þ �F 91 þ F1 ¼ 0;

Z 1
–1

F1 d� ¼ 1 ½17�

Upon solving [17] subject to F1(
1)¼ 0, [16]
becomes

T ¼ Q

2
ffiffiffiffiffiffiffiffi
��t
p exp –

y – y0ð Þ2

4�t

� �
½18�

The second intermediate asymptotic stage occurs
long after the temperature distribution has begun to
be influenced by the left boundary condition
T(0, t)¼ 0, but long before the influence of the
right boundary condition T(L, t)¼ 0 is felt, or
y0

2/�� t� 0.1(L� y0)2/�. During this time interval,
the rod is effectively semi-infinite, and the tempera-
ture satisfies the boundary conditions

T 0; tð Þ ¼ T 1; tð Þ ¼ 0 ½19�

The essential step in determining the similarity solu-
tion is to identify a conserved quantity. Multiplying
[14a] by y, integrating from y¼ 0 to y¼1, and then
taking the time derivative outside the integral sign,
we obtain

d

dt

Z 1
0

yT dy ¼ �
Z 1

0

yTyydy ½20�

However, the RHS of [20] is zero, as can be shown by
integrating by parts, applying the conditions [19],
and noting that yTyjy¼1¼ 0 because Ty! 0 more
rapidly (typically exponentially) than y!1. The
temperature moment

M ¼
Z 1

0

yT dy ½21�

is therefore constant; and because the initial tempera-
ture distribution is effectively a delta-function
concentrated at y¼ y0, M¼Q y0. Now in the time
interval in question, the influence of the temperature
distribution that existed at the time 	0.1y0

2/� when
the heated region first reached the near end y¼ 0 of
the rod will no longer be felt. The temperature will
therefore no longer depend on y0, but only on M, �, y,
and t� t0, where t0 is the effective starting time for
the second stage, to be determined later. Applying
the �-theorem as before, we find

T ¼ M

� t – t0ð Þ F2 �ð Þ; � ¼ yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� t – t0ð Þ

p ½22�

Now substitute [22] into [14a] and [21], and solve the
resulting equations subject to F2(0)¼ F2(1)¼ 0,
whereupon [22] becomes

T ¼ My

2
ffiffiffi
�
p

� t – t0ð Þ½ �3=2
exp –

y2

4� t – t0ð Þ

� �
½23�

The final step is to determine the starting time
t0¼�y0

2/6� (Barenblatt, 1996, p. 74). Because t0 < 0,
that is, before the rod was originally heated, it repre-
sents a virtual starting time with respect to which the
behavior of the second stage is self-similar.

7.04.4.2 Classification of Self-Similar
Solutions

The solutions [18] and [23] are examples of what
Barenblatt (1996) calls self-similar solutions of the
first kind, for which dimensional analysis (in some
cases supplemented by scaling analysis of the govern-
ing equations) suffices to find the similarity variable.
They are distinguished from self-similar solutions of
the second kind, for which the similarity variable can
only be found by solving an eigenvalue problem. We
will meet some examples of these below, in the
sections on viscous eddies in a corner (Section
7.04.5.3.4) and the spreading of viscous gravity
currents (Section 7.04.8.1).

An example of a self-similar solution that does not
fit naturally into either class is the impulsive cooling
of a half-space deforming in pure shear. Suppose that
the half-space y� 0 has temperature T¼ 0 initially,
and that at time t¼ 0 the temperature at its surface
y¼ 0 is suddenly decreased by an amount �T. The
2-D velocity field in the half-space is u¼ _
(xex�
yey), where _
 is the constant rate of extension of the
surface y¼ 0 and ex and ey are unit vectors parallel to
and normal to the surface, respectively. Given this
velocity field, a temperature field T¼T( y, t) that is
independent of the lateral coordinate x is an allow-
able solution of the governing advection–diffusion
equation Ttþ u ? �T¼�r2T, which takes the form

Tt – _
yTy ¼ �Tyy ½24�

subject to the conditions Tðy; 0Þ ¼ T ð1; tÞ ¼
T ð0; tÞ þ�T ¼ 0. The limit _
¼ 0 corresponds to

the classic problem of the impulsive cooling of a
static half-space.

Neither dimensional analysis nor scaling analysis is
sufficient to determine the similarity variable, which
does not have the standard power-law monomial form.
However, the solution can be found via a generalized
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form of the familiar separation-of-variables procedure
often used to solve PDEs such as Laplace’s equation.
Note first that the amplitude �T of the temperature
in the half-space is a constant. This implies that the
function G(t) in the similarity transformation [13] must
be independent of time, whence T(y, t)¼�TF(y/�(t)).
Substituting this expression into [24] and bringing all
terms involving �(t) to the LHS, we obtain

� _� þ _
�
� �
�

¼ –
F 0

�F 9
½25�

where dots and primes denote differentiation with
respect to t and � X y/�(t), respectively. Now the
LHS of [25] is a function of t only, whereas the
RHS depends on y through the similarity variable �.
Equation [25] is therefore consistent only if both
sides are equal to a constant �2, which is positive
because _�> 0. The solutions for � and F subject to
the conditions �(0)¼ F(1)¼ F(0)� 1¼ 0 are

F ¼ erfc
�yffiffiffi
2
p
�
; � ¼ � �

_

1 – exp – 2 _
tð Þ½ �

n o1=2

½26�

Evidently � cancels out when the solution for � is
substituted into the solution for F, because different
values of � merely correspond to different (arbitrary)
definitions of the thermal layer thickness �. With _
¼ 0
and the conventional choice � ¼

ffiffiffi
2
p

, we recover the
well-known solution � ¼ 2

ffiffiffiffiffi
�t
p

for a static half-space.
However, when _
> 0, the BL thickness approaches a
steady-state value �¼ (2�/ _
)1/2 for which the down-
ward diffusion of temperature gradients is balanced by
upward advection, and the similarity variable involves
an exponential function of time. The only reliable way
to find such nonstandard self-similar solutions is the
separation-of-variables procedure outlined above. But
the same procedure works just as well for problems
with similarity variables of standard form, and there-
fore will be used throughout this chapter.

In conclusion, we note that similarity transforma-
tions can also be powerful tools for reducing and
interpreting the output of numerical models. As a
simple example, suppose that some such model yields
values of a dimensionless parameter W as a function
of two dimensionless groups �1 and �2. Depending
on the physics of the problem, it may be possible to
express the results in the self-similar form

W �1; �2ð Þ ¼ F1 �1ð ÞF2
�1

F3 �2ð Þ

� �
½27�

where F1–F3 are functions to be determined numeri-
cally. A representation of the form [27] is not

guaranteed to exist, but when it does it provides a
compact way of representing multidimensional
numerical data by functions of a single variable that
can be fit by simple analytical expressions. An exam-
ple of the use of this technique for a problem
involving five dimensionless groups is the lubrication
theory model for plume–ridge interaction of Ribe
and Delattre (1998).

7.04.4.3 Intermediate Asymptotics with
Respect to Parameters: The R–T Instability

The concept of intermediate asymptotics is not lim-
ited to self-similar behavior of systems that evolve in
time, but also applies in a more general way to func-
tions of one or more parameters that exhibit simple
(typically power-law) behavior in some asymptoti-
cally defined region of the parameter space. Because
power-law scaling usually results from a simple
dynamical balance between two competing effects,
the identification of intermediate asymptotic limits
that have this form is crucial for a physical under-
standing of the system in question.

The dynamical significance of intermediate
asymptotic limits and the role that scaling arguments
play in identifying them are nicely illustrated by the
RT instability of a fluid layer with density �0þ��,
viscosity �1, and thickness h0 above a fluid half-space
with density �0 and viscosity �0 (Figure 2(a)). The
following discussion is adapted from Canright and
Morris (1993).

Linear stability analysis of this problem (cf.
Section 7.04.9.1) shows that an infinitesimal sinusoi-
dal perturbation 	¼ 	0 sin kx of the initially flat
interface z¼ 0 in Figure 2(a) grows exponentially
at a rate (Whitehead and Luther, 1975)

s ¼ s1
�

2


� C – 1ð Þ þ S – 2


�2 S þ 2
ð Þ þ 2�C þ S – 2


� �
½28�

where s1¼ g��h0/�1, �¼ �1/�0, 
¼ h0k, C¼ cos h(2
),
and S¼ sin h(2
). Here we shall consider only the long-
wavelength limit 
� 1, for which [28] reduces to

s

s1
� 
� 2
þ 3�ð Þ

2 2
3 þ 3� þ 6
�2ð Þ ½29�

where the viscosity contrast � is arbitrary.
By noting the ranges of �(
) for which different

pairs of terms in [29] (one each in the numerator and
the denominator) are dominant, one finds that [29]
has four intermediate asymptotic limits: �� 
3, 
3�
�� 
, 
� �� 
�1, and �� 
�1. The essential
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dynamics associated with each are summarized in
columns 3–5 of Table 2. Column 3 shows the ratio
of the amplitudes of the vertical (W ) and horizontal
(U ) components of the velocity at the interface
(Figure 2(a)). As � increases, the motion of the inter-
face changes from dominantly vertical in limit 1 to
dominantly horizontal in limits 3 and 4. The ratio of
shear deformation to plug flow in the layer is mea-
sured by the ratio û/U (column 4), where û is the
change in horizontal velocity across the layer
(Figure 2(a)). The layer deforms mainly by shear in
limits 1 and 2, and by plug flow in limits 3 and 4.

The growth rate is determined by whether
the interfacial buoyancy �g��	0 is supported by
the pressure p1 in the layer or the pressure p0 in the
half-space. Column 5 of Table 2 gives the expression
for the pressure that balances the buoyancy in
each limit, and column 6 shows the corresponding
growth rate s¼W/	0. While the pressures can be
calculated directly from the analytical solution of
the problem (Section 7.04.9.1), it is more revealing
to obtain them via a scaling analysis of the horizontal
component qxp¼ �r2u of the momentum equation.
In the half-space, the only length scale is k�1, so
that qx� qz� k. The continuity equation then
implies u�w. The magnitude of u�w is set by the
larger of the two components of the velocity at the
interface, namely, u� [U, W], where [. . .] denotes
the maximum of the enclosed quantities. Turning
now to the layer, we note that the horizontal and
vertical length scales are different, so that qx� k and
qz� h0

�1. Moreover, r2u� [û/h0
2, k2U] is the sum of

terms arising from the shear and plug flow compo-
nents of u. We thereby find

p1 �
�1

h2
0k

û; 
2U
	 


; p0 � �0k U ; W½ � ½30�

In view of the pressure scales [30] and those for
W/U and û/U from Table 2, the essential dynamics
of each of the four intermediate limits can be sum-
marized as follows. In limit 1, the half-space feels the
layer as an effectively traction-free boundary, the
buoyancy is balanced by the pressure p0� �0kW in

the half-space, and s is controlled by the half-space
viscosity �0. In limit 2, the half-space still sees the
layer as traction-free, but the pressure p1� �1û/h0

2k

induced by shear flow in the layer is nevertheless
sufficient to balance the buoyancy. Because the layer
deforms mostly in shear, û is related directly to W via
the continuity equation (W� 
û ), so s is controlled
by the layer viscosity �1. In limit 3, each layer feels
the shear stress applied by the other. While the buoy-
ancy is still balanced by the shear-induced pressure
in the layer, the dominance of plug flow means that û

and W are no longer related via the continuity equa-
tion, but rather by the matching condition on the
shear stress. The growth rate is therefore controlled
by the half-space viscosity �0. Finally, in limit 4 the
layer feels the half-space as a traction-free boundary,
the buoyancy is balanced by the pressure p1� �1kU

induced by plug flow in the layer, and s is controlled
by the layer viscosity �1.

7.04.5 Slow Viscous Flow

Flows with negligible inertia are fundamental in the
Earth’s mantle, where the Reynolds number
Re	 10�20. A particularly important subclass of iner-
tialess flow – variously called slow, creeping, or low
Reynolds number flow – comprises flows in which
the fluid is incompressible, isothermal, and has a
rheology with no memory (elasticity). These condi-
tions, while obviously restrictive, are nevertheless
sufficiently realistic to have served as a basis for
many important geophysical models.

7.04.5.1 Basic Equations and Theorems

The most general equations required to describe the
slow viscous flows discussed in this section are (see
Chapter 7.06)

qj uj ¼ 0 ½31a�

qj�ij þ bi ¼ 0 ½31b�

Table 2 Rayleigh–Taylor instability: intermediate asymptotic limits

Limit g W/U û/U Balancing pressure s

1 �
3 
2/� 
/� p0� �0kW ��g/2k�0

2 
3� �� 
 
2/� 
/� p1� �1û/h0
2k� �1W/h0

3k2 ��gh0
3k2/3�1

3 
� �� 
�1 
 
/� p1� �1û/h0
2k� �0W/h0

2k ��gh0
2k/2�0

4 �
�1 
 
2 p1� �1kU� �1W/h0 ��gh0/4�1
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bi ¼ – �qi� ½31c�

r2� ¼ 4�G� ½31d�

�ij ¼ – p þ 2�eij ; eij ¼
1

2
qi uj þ qj ui

� �
½31e�

� ¼ �0 I=I0ð Þ – 1þ1=n; I ¼ eij eij

� �1=2 ½31f �

where ui is the velocity vector, �ij is the stress tensor, bi

is the gravitational body force per unit volume, � is the
gravitational potential, � is the density, p is the pressure,
� is the viscosity, and eij is the strain-rate tensor with
second invariant I. Equation [31a] is the incompressi-
bility condition. Equation [31b] expresses conservation
of momentum in the absence of inertia, and states that
the net force (viscous plus gravitational) acting on each
fluid element is zero. Equation [31d] is Poisson’s equa-
tion for the gravitational potential. Equation [31e] is the
standard constitutive relation for a viscous fluid.
Finally, [31f] is the strain-rate-dependent viscosity
for a power-law fluid (sometimes called a generalized
Newtonian fluid), where �0 is the viscosity at a refer-
ence strain rate I¼ I0 and n is the power-law exponent.
A Newtonian fluid has n¼ 1, while the rheology of dry
olivine deforming by dislocation creep is well
described by [31f] with n	 3.5 (Bai et al., 1991). A
discussion of more complicated non-Newtonian fluids
is beyond the scope of this chapter; the interested
reader is referred to Bird et al. (1987).

Viscous flow described by [31] can be driven
either externally, by velocities and/or stresses

imposed at the boundaries of the flow domain, or

internally, by buoyancy forces (internal loads) arising

from lateral variations of the density �. On the scale

of the whole mantle, the influence of long-wave-

length lateral variations of � on the gravitational

potential � (self-gravitation) is significant and cannot

be neglected. In modeling flow on smaller scales,

however, one generally ignores Poisson’s equation

[31d] and replaces �� in [31c] by a constant gravita-

tional acceleration �g.
Slow viscous flow exhibits the property of instan-

taneity: ui and �ij at each instant are determined

throughout the fluid solely by the distribution of

forcing (internal loads and/or boundary motions)

acting at that instant. Instantaneity requires that the

fluid have no memory (elasticity) and that accelera-

tion and inertia be negligible; there is then no time

lag between the forcing and the fluid’s response to it.

A corollary is that slow viscous flow is quasi-static,

any time-dependence being due entirely to the time-

dependence of the forcing.

The theory of slow viscous flow is most highly
developed for the special case of Newtonian fluids
(Stokes flow), and several excellent monographs on
the subject exist (Ladyzhenskaya, 1963; Langlois,
1964; Happel and Brenner, 1991; Kim and Karrila,
1991; Pozrikidis, 1992). Relative to general slow
viscous flow, Stokes flow exhibits the important addi-
tional properties of linearity and reversibility.
Linearity implies that for a given geometry, a sum
of different solutions (e.g., for different forcing dis-
tributions) is also a solution. It also implies that ui and
�ij are directly proportional to the forcing that gen-
erates them, and hence for example, that the force
acting on a body in Stokes flow is proportional to its
speed. Reversibility refers to the fact that changing
the sign of the forcing terms reverses the signs of ui

and �ij for all material particles. The reversibility
principle is especially powerful when used in con-
junction with symmetry arguments. It implies, for
example, that a body with fore-aft symmetry falling
freely in any orientation in Stokes flow experiences
no torque, and that the lateral separation of two
spherical diapirs with different radii is the same
before and after their interaction (Manga, 1997).

An important theorem concerning Stokes flow is
the ‘Lorentz reciprocal theorem,’ which relates two
different Stokes flows (ui, �ij, bi) and (ui

�, �ij
�, bi
�). This

theorem is the starting point for the boundary-inte-
gral representation of Stokes flow derived in Section
7.04.5.6.4. Consider the scalar quantity ui

�qj�ij , which
we manipulate as follows:

u�i qj�ij ¼ qj u�i �ij

� �
– �ij qj u�i

¼ qj u�i �ij

� �
– – p�ij þ 2�eij

� �
qj u
�
i

¼ qj u�i �ij

� �
– 2�eij e

�
ij ½32�

By subtracting from [32] the analogous expression with
the starred and unstarred fields interchanged and set-
ting qj �ij¼�bi and qj �ij

�¼�bij
�, we obtain the

differential form of the Lorentz reciprocal theorem:

qj u�i �ij – ui�
�
ij

� �
¼ uj b�j – u�j bj ½33�

An integral form of the reciprocal theorem is
obtained by integrating [33] over a volume V

bounded by a surface S and applying the divergence
theorem, yielding

Z
S

u�i �ij nj dS þ
Z

V

bj u
�
j dV ¼

Z
S

ui�
�
ij nj dS

þ
Z

V

b�j uj dV ½34�

where nj is the outward unit normal to S.
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Two additional theorems for Stokes flow concern
the total rate of energy dissipation

E ¼ 2�

Z
V

eij eij dV ½35�

in a volume V. The first states that the solution of the
Stokes equations subject to given boundary condi-
tions is unique, and is most easily proved by showing
that the energy dissipated by the difference of two
supposedly different solutions is zero (Kim and
Karrila, 1991, p. 14.) The second is the minimum
dissipation theorem, which states that a solution of
the Stokes equations for given boundary conditions
dissipates less energy than any other solenoidal vec-
tor field satisfying the same boundary conditions
(Kim and Karrila, 1991, p. 15.) Note that this theorem
merely compares a Stokes flow with other flows that
do not satisfy the Stokes equations. It says nothing
about the relative rates of dissipation of Stokes flows
with different geometries and/or boundary condi-
tions, and therefore its use as a principle of
selection among such flows is not justified.

7.04.5.2 Potential Representations for
Incompressible Flow

In an incompressible flow satisfying � ? u¼ 0, only
N� 1 of the velocity components ui are independent,
where N¼ 3 in general and N¼ 2 for 2-D and
axisymmetric flows. This fact allows one to express
all the velocity components in terms of derivatives of
N� 1 independent scalar potentials, thereby redu-
cing the number of independent variables in the
governing equations. The most commonly used
potentials are the streamfunction  (for N¼ 2) and
the poloidal potential P and the toroidal potential T
(for N¼ 3). Below we give expressions for the
components of u in terms of these potentials in
Cartesian (x, y, z), cylindrical (�, �, z), and spherical
(r, �, �) coordinates, together with the PDEs they
satisfy for the important special case of constant
viscosity.

7.04.5.2.1 2-D and axisymmetric flows

A 2-D flow is one in which the velocity vector u is
everywhere perpendicular to a fixed direction (ez

say) in space. The velocity can then be represented
in terms of a streamfunction by

u ¼ ez � � ¼ – ex y þ ey x ¼ – e� � þ
e�
�
 � ½36�

The PDE satisfied by  is obtained by applying the
operator ez�� to the momentum equation [31b]
with the constitutive law [31e]. If the viscosity is
constant and bi¼ 0,  satisfies the biharmonic
equation

r4
1 ¼ 0; r2

1 ¼ q2
xx þ q2

yy ¼ �–1q� �q�
� �

þ �–2q2
�� ½37�

An axisymmetric flow (without swirl) is one in
which u at any point lies in the plane containing the

point and some fixed axis (ez, say). For this case,

u ¼ e�
�
� � ¼ –

ez

�
 � þ

e�

�
 z ½38a�

u ¼ e�
r sin�

� � ¼ e�
r sin�

 r –
er

r 2sin�
 � ½38b�

where  is referred to as the Stokes streamfunction.
The PDE satisfied by the Stokes streamfunction is
obtained by applying the operator e��� to the
momentum equation. For a fluid with constant visc-
osity and no body force, the result is

E4 ¼ 0;

E2 ¼ h3

h1h2

q
qq1

h2

h1h3

q
qq1

� �
þ q
qq2

h1

h2h3

q
qq2

� �� �
½39�

where (q1, q2) are orthogonal coordinates in any half-
plane normal to e�, (h1, h2) are the corresponding
scale factors, and h3 is the scale factor for the
azimuthal coordinate �. Thus (q1, q2, h1, h2, h3)¼
(z, �, 1, 1, �) in cylindrical coordinates and
(q1; q2; h1; h2; h3Þ ¼ ðr ; �; 1; r ; r sin �Þ in spherical
coordinates. The operator E 2 is in general different
from the Laplacian operator

r2
1 ¼

1

h1h2h3

q
qq1

h2h3

h1

q
qq1

� �
þ q
qq2

h1h3

h2

q
qq2

� �� �
½40�

the two being identical only for 2-D flows (h3¼ 1).

7.04.5.2.2 3-D flows

The most commonly used (but not the only) poten-

tial representation of 3-D flows in geophysics is a

decomposition of the velocity u into poloidal and

toroidal components (Backus, 1958; Chandrasekhar,

1981). This representation requires the choice of a

preferred direction, which is usually chosen to be an

upward vertical (ez) or radial (er) unit vector.

Relative to Cartesian coordinates, the poloidal/tor-

oidal decomposition has the form

u ¼ �� ez � �Pð Þ þ ez � �T
¼ ex – P xz – T y

� �
þ ey – P yz þ T x

� �
þ ezr2

1P ½41�
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where P is the poloidal potential and T is the
toroidal potential. The associated vorticity
w X�� u is

w ¼ ex r2P y – T xz

� �
þ ey –r2P x – T yz

� �
þ ezr2

1T ½42�

Inspection of [41] and [42] immediately reveals the
fundamental distinction between the poloidal and
toroidal fields: the former has no vertical vorticity,
while the latter has no vertical velocity.

The PDEs satisfied by P and T are obtained by
applying the operators �� (ez��) and ez��,

respectively, to the momentum equation [31b] and

[31e]. Supposing that the viscosity is constant but

retaining a body force b X�g��ez where ��(x) is a

density anomaly, we find

r2
1r4P ¼ g

�
r2

1��; r2
1r2T ¼ 0 ½43�

Note that the equation for T is homogeneous,
implying that flow driven by internal density anoma-
lies in a fluid with constant viscosity is purely
poloidal. The same is true in a fluid whose viscosity
varies only as a function of depth, although the
equations satisfied by P and T are more complicated
than [43]. When the viscosity varies laterally, how-
ever, the equations for P and T are coupled, and
internal density anomalies drive a toroidal flow that
is slaved to the poloidal flow. Toroidal flow will also
be driven by any surface boundary conditions having
a nonzero vertical vorticity, even if the viscosity does
not vary laterally.

Because of the Earth’s spherical geometry, the
spherical-coordinate form of the poloidal–toroidal

representation is particularly important in geophy-

sics. However, the definitions of P and T used by

different authors sometimes differ by a sign and/or a

factor of r. Following Forte and Peltier (1987)

u ¼�� rer � �Pð Þ þ rer � �T

¼ e� –
1

r
r Pð Þr� –

T �

sin �

� �
þ e� –

1

r sin �
r Pð Þr�þT �

� �

þ er

r
B 2P ½44�

where

B 2 ¼ 1

sin �

q
q�

sin �
q
q�
þ 1

sin2 �

q2

q�2
½45�

Another common convention is that of
Chandresekhar (1981, appendix III), who uses a
poloidal potential � X�rP and a toroidal potential
� X�rT .

Two additional quantities of interest are the lat-
eral divergence �1 ? u and the radial component
er ? (�� u) of the vorticity, which are

�1 ? u ¼ – B 2 1

r 2
r Pð Þr

� �
; er ? �� uð Þ ¼ B 2T

r
½46�

The lateral divergence depends only on the poloidal
component of the flow, whereas the radial vorticity
depends only on the toroidal component. At the
Earth’s surface r¼ a, therefore, divergent and con-
vergent plate boundaries (where �1 ? u 6¼ 0) are
associated with poloidal flow, while transform faults
(where er ? (�� u) 6¼ 0) reflect toroidal flow.

The PDEs satisfied by P and T in a fluid of
constant viscosity in spherical coordinates are
obtained by applying the operators �� (r er��)
and r er��, respectively, to the momentum equa-
tion [31b] and [31e], yielding

B 2r4P ¼ g

�r
B 2��; B 2r2T ¼ 0 ½47�

Because the above equation for T is homogeneous,
the remarks following [43] apply also to spherical
geometry.

7.04.5.3 Classical Exact Solutions

The equations of slow viscous flow admit exact ana-
lytical solutions in a variety of geophysically relevant
geometries. Some of the most useful of these solu-
tions are the following:

7.04.5.3.1 Steady unidirectional flow

The simplest conceivable fluid flow is a steady uni-
directional flow with a velocity w(x, y, t)ez, where
(x, y) are Cartesian coordinates in the plane normal
to ez. If the viscosity is constant and inertia is negli-
gible, w satisfies (Batchelor, 1967)

�r2
1w ¼ –G ½48�

where �G X pz is a constant pressure gradient and �
is the viscosity. Two special cases are of interest in
geophysics. The first is the steady Poiseuille flow
through a cylindrical pipe of radius a driven by a
pressure gradient �G, for which the velocity w and
the volume flux Q are

w ¼ G

4�
a2 – r 2
� �

; Q X 2�

Z a

0

rw dr ¼ �Ga4

8�
½49�

Poiseuille flow in a vertical pipe driven by an effec-
tive pressure gradient g�� has been widely used as a
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model for the ascent of buoyant fluid in the conduit
or tail of a mantle plume (e.g., Whitehead and Luther,
1975). The second case is that of a 2-D channel 0�
y� d bounded by rigid walls in which flow is driven
by a combination of an applied pressure gradient �G

and motion of the boundary y¼ d with speed U0 in its
own plane. For this case,

w ¼ G

2�
y d – yð Þ þ U0y

d
½50�

An example of a geodynamical application of [50] is
the asthenosphere flow model of Yale and Phipps
Morgan (1998).

7.04.5.3.2 Stokes–Hadamard solution for

a sphere

Another classical result that is useful in geophysics is
the Stokes–Hadamard solution for the flow in and
around a fluid sphere with radius a and viscosity �1 in
an unbounded fluid with viscosity �0¼ �1/� and
velocity Uez far from the sphere (Batchelor, 1967,
pp. 230–238). The outer (n¼ 0) and inner (n¼ 1)
streamfunctions are  n¼Ua2 sin2 �fn(r), where

f0 ¼
2þ 3�ð Þr̂–�r̂–1 –2 1þ �ð Þr̂ 2

4 1þ �ð Þ ; f1 ¼
r̂ 2 – r̂ 4

4 1þ �ð Þ ½51�

and r̂¼ r/a. The drag on the sphere is

F ¼ 4�
�0U
1þ 3�=2

1þ � ez ½52�

If the densities of the two fluids differ such that �1¼
�0þ��, the steady velocity V of the sphere as it
moves freely under gravity is obtained by equating F
to the Archimedean buoyancy force, yielding

V ¼ a2g��

3�0

1þ �
1þ 3�=2

½53�

where g is the gravitational acceleration. The speed
of an effectively inviscid sphere (�¼ 0) is only 50%
greater than that of a rigid sphere (�!1). Equation
[53] has been widely used to estimate the ascent
speed of plume heads (e.g., Whitehead and Luther,
1975) and isolated thermals (e.g., Griffiths, 1986) in
the mantle.

7.04.5.3.3 Models for subduction zones

and ridges

Two-dimensional viscous flow in a fluid wedge driven
by motion of the boundaries (corner flow) has been
widely used to model mantle flow in subduction zones
and beneath mid-ocean ridges. Figures 5(a) and 5(b)

show the geometry of the simplest corner-flow models
of these features, due respectively to McKenzie (1969)
and Lachenbruch and Nathenson (1974).

The models of Figures 5(a) and 5(b) admit analy-
tical solutions for both Newtonian and power-law
rheology. The boundary conditions for both models
can be satisfied by a self-similar (of the first kind; cf.
Section 7.04.4.2) streamfunction  ¼�U0rF(’), where
(r, ’) are polar coordinates. The only nonzero compo-
nent of the strain-rate tensor e is er�¼U0(Fþ F0)/2r,
whence the second invariant of e is

I X eij eij

� �1=2¼
ffiffiffi
2
p

er�. The equation satisfied by F is

obtained by applying the operator ez�� to the
momentum equation [31b] with the power-law consti-
tutive relation [31e] and [31f], where ez is a unit vector
normal to the flow plane. The result is

d2

d’2
þ 2n – 1

n2

� �
F 0þ Fð Þ1=n¼ 0 ½54�

where n is the power-law index. The associated
pressure, obtained by integrating the er-component
of the momentum equation with respect to r subject
to the condition of vanishing pressure at r¼1 is

(a)

(b)

(c)

U0

U0

U 0

r

r

ϕ = α

ϕ = α

ϕ

ϕ

ϕ = α

ϕ = –α

Figure 5 Models for slow viscous flow in wedge-shaped

regions. (a) subduction zone; (b) mid-ocean ridge; (c) self-

similar viscous corner eddies generated by an agency far
from the corner. In all models, streamlines (for Newtonian

rheology) are shown by solid lines with arrows.
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p¼��U0r�1 (F9þ F-). Equation [54] can be solved
analytically if n is any positive integer (Tovish et al.,
1978). The values most relevant to geophysics (see
Chapter 1.02) are n¼ 1 and n¼ 3, for which the
general solutions are

F1 ¼ A1sin’þ B1cos’þ C1’sin’þ D1’cos’ ½55�

F3 ¼ A3sin’þ B3cos’þ C3H ’; D3ð Þ ½56�

respectively, where

H ’; D3ð Þ ¼ 27 cos

ffiffiffi
5
p

3
’þ D3ð Þ – cos

ffiffiffi
5
p

’þ D3ð Þ ½57�

and An�Dn are arbitrary constants for n¼ 1 and
n¼ 3 that are determined by the boundary condi-
tions. For the ridge model,

A1; B1; C1; D1f g ¼ c2; 0; 0; – 1f g

 – sc

½58�

A3; B3; C3; D3f g

¼ –C3 h1s þ h91cð Þ; 0;
1

h91s – h1c
;

3�

2
ffiffiffi
5
p


 �
½59�

where s¼ sin
, c¼ cos
, h1¼H(
, D3), and
h91¼H’(
, D3). For the Newtonian (n¼ 1) subduc-
tion model in the wedge 0�’�
,

A1; B1; C1; D1f g ¼ 
s; 0; 
c – s; –
sf g

2 – s2

½60�

For the power-law (n¼ 3) subduction model in
0�’�
, D3 satisfies h1� h0c� h90s¼ 0 and the
other constants are

C3 ¼ h91 þ h0s – h90cð Þ – 1; B3 ¼ – h0C3;

A3 ¼ – h90C3 ½61�

where h0¼H (0, D3), and h90¼H’(0, D3). If needed,
the solutions in the wedge 
�’� � can be obtained
from [55] and [56] by applying the boundary condi-
tions shown in Figure 5(a). The solution [60]
together with the corresponding one for the wedge

�’� � was the basis for Stevenson and Turner’s
(1977) hypothesis that the angle of subduction is
controlled by the balance between the hydrodynamic
lifting torque and the opposing gravitational torque
acting on the slab. Their results were extended to
power-law fluids by Tovish et al. (1978).

7.04.5.3.4 Viscous eddies

Another important exact solution for slow viscous
flow describes viscous eddies near a sharp corner
(Moffatt, 1964). This solution is an example of a
self-similar solution of the second kind (Section

7.04.4.2), the determination of which requires the

solution of an eigenvalue problem. Here we consider

only Newtonian fluids; for power-law fluids, see

Fenner (1975).
The flow domain is a 2-D wedge j’j �
 bounded

by rigid walls (Figure 5(c)). Flow in the wedge is

driven by an agency (e.g., stirring) acting at a distance

�r0 from the corner. We seek to determine the

asymptotic character of the flow near the corner,

that is, in the limit r/r0! 0. Because the domain of

interest is far from the driving agency, we anticipate

that the flow will be self-similar.
The streamfunction satisfies the biharmonic equa-

tion [37], which admits separable solutions of the

form

 ¼ r�F ’ð Þ ½62�

Substituting [62] into [37], we find that F satisfies

F 00þ �2 þ � – 2ð Þ2
	 


F 0þ �2 � – 2ð Þ2¼ 0 ½63�

where primes denote d/d’. For all � except 0, 1, and
2, the solution of [63] is

F ¼ A cos�’þ B sin�’þ C cos � – 2ð Þ’
þ D sin � – 2ð Þ’ ½64�

where A–D are arbitrary constants. The solutions for
�¼ 0, 1, and 2 do not exhibit eddies (the solution
with �¼ 1 is the one used in the models of subduc-
tion zones and ridges in Section 7.04.5.3.3).

The most interesting solutions are those for which
 (r, ’) is an even function of ’. Application of the

rigid-surface boundary conditions F(

)¼ F9(

)¼ 0

to [64] with B¼D¼ 0 yields two equations for A and C

that have a nontrivial solution only if

sin 2 � – 1ð Þ
þ � – 1ð Þsin 2
 ¼ 0 ½65�

The only physically relevant roots of [65] are those
with R(�) > 0, corresponding to solutions that are
finite at r¼ 0. When 2
< 146
, these roots are all
complex; let �1 X p1þ iq1 be the root with the smallest
real part, corresponding to the solution that decays
least rapidly towards the corner. Figure 5(c) shows
the streamlines R(r�F)¼ cst for 2
¼ 30
, for which
p1¼ 4.22 and q1¼ 2.20. The flow comprises an infi-
nite sequence of self-similar eddies with alternating
senses of rotation, whose successive intensities
decrease by a factor exp(�p1/q1)	 414 towards the
corner. In the limit 
¼ 0 corresponding to flow
between parallel planes, p1¼ 4.21 and q1¼ 2.26,
all the eddies have the same size (	2.78 times the
channel width), and the intensity ratio	 348.
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In a geophysical context, corner eddies are signif-
icant primarily as a simple model for the tendency of
forced viscous flows in domains with large aspect
ratio to break up into separate cells. An example
(Section 7.04.9.3), is steady 2-D cellular convection
at high Rayleigh number, in which Stokes flow in the
isothermal core of a cell is driven by the shear stresses
applied to it by the thermal plumes at its ends. When
the aspect ratio (width/depth) �¼ 1, the core flow
comprises a single cell ; but when �¼ 2.5, the flow
separates into two distinct eddies (Jimenez and
Zufiria, 1987, Figure 2).

7.04.5.4 Superposition and Eigenfunction
Expansion Methods

The linearity of the equations governing Stokes flow
is the basis of two powerful methods for solving
Stokes flow problems in regular domains: the
methods of superposition and eigenfunction expan-
sion. In both methods, a complicated flow is
represented by infinite sums of elementary separable
solutions of the Stokes equations for the coordinate
system in question, and the unknown coefficients in
the expansion are determined to satisfy the boundary
conditions. In the superposition method, the
individual separable solutions do not themselves
satisfy all the boundary conditions in any of the
coordinate directions. In the method of eigenfunction
expansions (henceforth MEE), by contrast, the separ-
able solutions are true eigenfunctions that satisfy all
the (homogeneous) boundary conditions at both ends
of an interval in one of the coordinate directions, so
that the unknown constants are determined entirely
by the boundary conditions in the other direction(s).
Let us turn now to some concrete illustrations
of these methods in three coordinate systems of
geophysical interest: 2-D Cartesian, spherical, and
bispherical.

7.04.5.4.1 2-D flow in Cartesian

coordinates

The streamfunction  for 2-D Stokes flow satisfies
the biharmonic equation [37], which has the general
solution

 ¼ f1 x þ iyð Þ þ f2 x – iyð Þ þ y þ ixð Þf3 x þ iyð Þ
þ y – ixð Þf4 x – iyð Þ ½66�

where f1–f4 are arbitrary functions of their (complex)
arguments. However, the most useful solutions
for applications are the separable solutions that

vary periodically in one direction. Setting
 _ exp ikx and solving [37] by separation of vari-
ables, we find

 ¼ ½ A1 þ A2yð Þexp – kyð Þ
þ A3 þ A4yð Þexp ky�exp ikx ½67�

where A1–A4 are arbitrary functions of k. An
analogous solution is obtained by interchanging x

and y in [67], and both solutions remain valid if k is
complex.

The solution [67] has been widely used in geody-
namics to describe flows generated by loads that vary

sinusoidally in the horizontal direction (e.g., Fleitout

and Froidevaux, 1983.) The representation of more

general flows, however, typically requires the use of a

superposition or an eigenfunction expansion. To

illustrate the use of these two methods, we consider

the problem of driven cavity flow in a rectangular

domain x P [��/2, �/2], y P [�1/2, 1/2] with

impermeable ( ¼ 0) boundaries (Figure 6). The

sidewalls x¼
�/2 and the bottom y¼�1/2 are

rigid and motionless, while the upper boundary

y¼ 1/2 moves in its own plane with velocity U(x)

(Figure 6, boundary conditions a).
In the superposition method, the solution is repre-

sented as a sum of two ordinary Fourier series in

the two coordinate directions. The flow is the sum

of two parts that are even and odd functions of y,

(a) ψx = 0

(a) ψx = 0

(a) ψy = –U(x)

(b) ψy = 0 (rigid) or ψyy = 0 (free)

(b) ψy = 0 (rigid) or ψyy = 0 (free)

(a) ψy = 0

(b) ψx ψxx = – 1/2

(b) ψx ψxx = 1/2

–1/2

1/2

– β /2 β /2

x

y

Figure 6 Geometry and boundary conditions for (a) driven

cavity flow and (b) steady cellular convection in a rectangle
x P[��/2, �/2], y P[�1/2, 1/2] with impermeable

boundaries. All lengths are nondimensionalized by the

height of the rectangle.
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respectively, and the representation for the even part
is (Meleshko, 1996)

 ¼
X1
m¼1

AmF y; pm; 1
� �

cos pmx

þ
X1
n¼1

BnF x; qn; �ð Þcos qny ½68a�

pm ¼
2m – 1

�
�; qn ¼ 2n – 1ð Þ� ½68b�

F z; k; rð Þ ¼ r tanh rk=2ð Þcosh kz – 2z sinh kz

2 cosh rk=2ð Þ ½68c�

where Am and Bn are undetermined coefficients. Due
to the choice of the wave numbers pm and qn and the
function F(z,k,r) (which vanishes at z¼
r/2), each of
the series in [68a] satisfies the impermeability condi-
tion  ¼ 0 on all boundaries. Moreover, because the
trigonometric systems cos pmx and cos qny are com-
plete, the superposition [68] (with suitable choices of
Am and Bn) can represent arbitrary distributions of
tangential velocity on y¼
1/2 and x¼
�/2.

Unlike the superposition method, the MEE makes
use of so-called Papkovich–Fadle eigenfunctions
�(x) that satisfy all the homogeneous boundary con-
ditions in the direction (x in this case) perpendicular
to two motionless walls. For simplicity, suppose that
U(x)¼U (�x), so that  is an even function of x. The
even eigenfunctions on the canonical unit interval x

P [�1/2, 1/2] are obtained by substituting  ¼�(x)
exp(�y) into the biharmonic equation [37] and sol-
ving the resulting equation for � subject to the
conditions �(
1/2)¼�x(
1/2)¼ 0, yielding

�n xð Þ ¼ x sin�nx –
1

2
tan

�n

2
cos�nx ½69�

where �n are the first-quadrant complex roots of sin
�nþ�n¼ 0. The streamfunction for the flow in the
cavity with x P [��/2,�/2] (Figure 6) can then be
written as (Shankar, 1993)

 ¼
X1
n¼1

(
An�n exp –�n y þ 1

2

� �� �

þ �An
��n exp – ��n y þ 1

2

� �� �

þ Bn�n exp –�n

1

2
– y

� �� �

þ �Bn
��n exp – ��n

1

2
– y

� �� �)
½70�

where �n¼�n(x/�), overbars denote complex con-
jugation, and the constants An and Bn are chosen to

satisfy the boundary conditions at y¼
1/2. The
difficulty, however, is that the reduced biharmonic
equation (d2/dx2þ�2)2�¼ 0 satisfied by the eigen-
functions �n is not self-adjoint, as can be seen by
rewriting it in the form

d2

dx2

�

–� – 2�0

 !
¼ �2

0 – 1

1 – 2

 !
�

–� – 2�0

 !
½71�

and noting that the square matrix on the RHS is not
Hermitian. Consequently, the eigenfunctions �n are
not mutually orthogonal, which makes the determi-
nation of An and Bn a nontrivial matter. One solution
is to use a complementary set of adjoint eigenfunc-
tions �m which are biorthogonal to the set �n,
although considerable care must then be taken to
ensure convergence of the expansion (see
Katopodes et al. (2000) for a discussion and references
to the relevant literature). A cruder but very effective
approach is to determine An and Bn via a numerical
least-squares procedure that minimizes the misfit of
the solution [70] to the boundary conditions
(Shankar, 1993; Bloor and Wilson, 2006). Shankar
(2005) showed how this approach can be extended
to an irregular domain by embedding the latter in a
larger, regular domain on which a complete set of
eigenfunctions exists.

Another geophysically relevant 2-D Stokes pro-
blem that can be solved using superposition and
eigenfunction expansion methods is that of the flow
within the isothermal core of a vigorous (high
Rayleigh number) convection cell. The boundary
conditions for this case (Figure 6, conditions b) com-
prise either rigid ( y¼ 0) or traction-free ( yy¼ 0)
conditions at y¼
1/2 and nonlinear sidewall con-
ditions  x xx¼
1/2 (derived in Section 7.04.9.3.2)
that represent the shear stresses applied to the core
by the buoyant thermal plumes. If the boundaries
y¼
1/2 are traction free, the conditions  ¼ yy¼ 0
involve only even derivatives of  , and are satisfied
identically if  _ cos qny where qn is defined by [68b].
The streamfunction that also satisfies the sidewall
impermeability conditions  (
�/2, y)¼ 0 is
(Roberts, 1979)

 ¼
X1
n¼0

AnF x; qn; �ð Þcos qny ½72�

where F(x, qn, �) is defined by [68c]. The constants An

are then determined iteratively to satisfy the bound-
ary conditions  x xx (
�/2, y)¼
1/2. Strictly
speaking, [72] is an eigenfunction expansion, because
the functions cosqny satisfy all the homogeneous
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boundary conditions at y¼
1/2. In practice, how-
ever, the term eigenfunction expansion is usually
reserved for expressions like [70] that involve a
sequence of complex wave numbers �n. No such
terminological ambiguity applies for a convection
cell bounded by rigid surfaces, for which the flow
can be represented by the eigenfunction expansion
(Roberts, 1979)

 ¼
X1
n¼1

An�n yð Þcosh�nx þ �An
��n yð Þcosh ��nx

	 

½73�

Other examples of the use of superposition and
eigenfunction expansion methods for cellular con-
vection problems can be found in Turcotte (1967),
Turcotte and Oxburgh (1967), Olson and Corcos
(1980), Morris and Canright (1984), and Busse et al.

(2006).

7.04.5.4.2 Spherical coordinates

Lamb (1932) derived a general solution of the equa-
tions of Stokes flow in spherical coordinates (r, �, �).
Because the pressure p satisfies Laplace’s equation, it
may be expressed as a sum of solid spherical harmo-
nics pl:

p ¼
X1

l¼ –1
pl ; pl ¼ r l

Xl

m¼ – l

clmY m
l �; �ð Þ ½74�

where Y l
m are surface spherical harmonics and clm are

complex coefficients. The velocity u can then be
written

u ¼
X1

l¼ –1
��l þ �� x�lð Þ½ �

þ
X1
l¼ –1

l 6¼1

1=2ð Þ l þ 3ð Þr 2�pl – lxpl

� l þ 1ð Þ 2l þ 3ð Þ

� �
½75�

where � is the viscosity, x is the position vector and �l

and �l are solid spherical harmonics of the form [74]
but with different coefficients. The first sum in [75] is
the solution of the homogeneous Stokes equations
r2u¼ 0, r ? u¼ 0, whereas the second sum is the
particular solution of r2u¼�p/�. A recent applica-
tion of [75] is the solution of Gomilko et al. (2003) for
steady Stokes flow driven by the motion of one of
three mutually perpendicular walls that meet in a
corner, a 3-D generalization of the 2-D corner-flow
model (Figure 5(a)). The main difficulty in using
Lamb’s solution is in applying boundary conditions,
because the elements of [75], while complete, do not
form an orthogonal basis for vector functions on the
surface of a sphere in the way that standard spherical

harmonics form an orthonormal basis for scalar func-
tions. Methods for dealing with this problem are
discussed in chapter 4 of Kim and Karrila (1991).

7.04.5.4.3 Bispherical coordinates
Flow in a domain bounded by nonconcentric spheres
is a useful model for the interaction of one buoyant
diapir or plume head with another or with a flat
interface (i.e., a sphere of infinite radius). Such flow
problems can often be solved analytically using
bispherical coordinates (�, �, �), which are related
to the Cartesian coordinates (x, y, z) by

x; y; zð Þ ¼ a sin � cos�; a sin � sin�; asin h �ð Þ
cos h � – cos �

½76�

where a is a fixed length scale. Surfaces of constant �
are nonconcentric spheres with their centers on the
axis x¼ y¼ 0, and �¼ 0 corresponds to the plane z¼ 0
(Figure 7). For axisymmetric (i.e., independent of �)
Stokes flow, the general solution for the streamfunction
 and the pressure p is (Stimson and Jeffreys, 1926)

 ¼ cos h � – �ð Þ – 3=2
X1
n¼0

C
– 1=2

nþ1 �ð Þ
	
an cosh� – 1�

þ bn sinh � – 1� þ cn cosh �3� þ dn sinh �3�


½77a�

p ¼ cos h � – �ð Þ – 1=2
X1
n¼0

	
An exp�1�

þ Bn exp – �1�ð Þ


Pn �ð Þ; ½77b�

0

1

2

3

4

0 1 2 3 4

θ = π/12

x /a

z /
a

π/6

φ

π/3

ξ = 0

1.0

0.6

0.2

Figure 7 Bispherical coordinates (�, �, �) defined by [76].

Selected lines of constant � (solid) and constant � (dashed)

are shown.
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where �¼ cos �, �m¼ nþm/2, Cnþ 1
�1/2 is a

Gegenbauer polynomial of order nþ 1 and degree
�1/2, Pn is a Legendre polynomial, and an� dn, An,
and Bn are arbitrary constants. Koch and Ribe (1989)
used a solution of the form [77] to model the effect of
a viscosity contrast on the topography and gravity
anomalies produced by the motion of a buoyant and
deformable fluid sphere beneath a free surface of a
fluid with a different viscosity. A representation of
general nonaxisymmetric flows in bispherical coor-
dinates was derived by Lee and Leal (1980), and used
to determine the flow due to the arbitrary motion of a
sphere near a plane wall.

7.04.5.5 The Complex-Variable Method for
2-D Flows

A powerful method for 2-D Stokes flows and analo-
gous problems in elasticity (Muskhelishvili, 1953) is
based on the Goursat representation of a biharmonic
function  in terms of two analytic functions � and �
of the complex variable z X xþ iy :

 ¼ R �z� zð Þ þ � zð Þ½ � ½78�

where an overbar denotes complex conjugation. If  
is the streamfunction of a 2-D flow, then the velocity
components u¼� y and v¼ x are

v – iu ¼ � zð Þ þ z�9 zð Þ þ �9 zð Þ ½79�

the vorticity ! Xr2 and the pressure p are

!þ ip=� ¼ 4�9 zð Þ ½80�

where � is the viscosity and the components of the
stress tensor are

�xx ¼ – 2�I 2�9 zð Þ – �z�0 zð Þ –�0 zð Þ½ � ½81a�

�yy ¼ – 2�I 2�9 zð Þ þ �z�0 zð Þ þ �0 zð Þ½ � ½81b�

�xy ¼ 2�R �z�0 zð Þ þ �0 zð Þ½ � ½81c�

The Goursat representation reduces the task of
solving the biharmonic equation to one of finding two
analytic functions that satisfy the relevant boundary
conditions. The method is most powerful when used
in conjunction with conformal mapping, which
allows a flow domain with a complex shape to be
mapped onto a simpler one (such as the interior of
the unit circle). A remarkable example is Jeong
and Moffatt’s (1992) analytical solution for the
formation of a cusp above a vortex dipole located
at depth d beneath the free surface of a viscous fluid.
In the geodynamically relevant limit of zero

surface tension, the surface displacement y(x) satisfies
x2y¼�(yþ 2d/3)3, which has an infinitely sharp
cusp at (x,y)¼ (0, �2d/3). Although the model is
too idealized for direct application to the mantle, its
dynamics are relevant to the formation of cusp-like
features by entrainment in thermochemical convec-
tion (Davaille, 1999).

7.04.5.6 Singular Solutions and the
Boundary-Integral Representation

The Stokes equations admit a variety of singular
solutions in which the velocity and/or the pressure
becomes infinite at one or more points in space. Such
solutions are the basis of the boundary-integral
representation, whereby a Stokes flow in a given
domain is expressed in terms of surface integrals of
velocities and stresses over the domain boundaries.
The dimensionality of the problem is thereby
reduced by one (from 3-D to 2-D or from 2-D to
1-D), making possible a powerful numerical techni-
que – the boundary element method – that does not
require discretization of the whole flow domain
(Pozrikidis, 1992.)

The most useful singular solutions fall into two
classes: those involving point forces, and those asso-
ciated with volume sources and sinks.

7.04.5.6.1 Flow due to point forces

The most important singular solution of the Stokes
equations is that due to a point force Fi, or Stokeslet,
applied at a position x9 in the fluid. The velocity ui

and stress tensor �ij induced at any point x satisfy

qj�ij ¼ – Fi� x – x9ð Þ; qj uj ¼ 0 ½82�

where �(x� x9)¼ �(x1� x91)�(x2� x92)�(x3� x93) and
� is the Dirac delta-function. Here and throughout
Section 7.04.5.6, vector arguments of functions are
denoted using boldfaced vector notation, while
other quantities are written using Cartesian tensor
(subscript) notation. In an infinite fluid, the required
boundary conditions are that ui! 0 and �ij!�p0�ij

as jx� x9j!1, where p0 is the (dynamically irrele-
vant) far-field pressure. Because the response of the
fluid is proportional to the applied force, ui¼ JijFj/�
and �ik¼ KijkFj, where � is the viscosity and Jij and
Kijk are tensorial Green’s functions representing the
response to a unit force. Substituting these expres-
sions into [82] and eliminating the arbitrary vector Fj,
we obtain

qiKijk ¼ – �jk� x – x9ð Þ; qi Jij ¼ 0 ½83�
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The solutions of [83] can be found using a Fourier
transform (Kim and Karrila, 1991, p. 33) or by redu-
cing [83] to Poisson’s equation (Pozrikidis, 1992, p.
22), and are

Jij rð Þ ¼ 1

8�

�ij

r
þ ri rj

r 3

� �
; Kijk rð Þ ¼ –

3

4�

ri rj rk

r 5
½84�

where r¼ x� x9 and r¼ jrj. The tensor Jij is often
called the Oseen tensor. The analogs of [84] for a 2-D
flow are

Jij rð Þ ¼ 1

4�
– �ij ln r þ ri rj

r 2

� �
; Kijk rð Þ ¼ –

1

�

ri rj rk

r 4
½85�

The expression [85] for Jij does not vanish as r!1,
which is related to the fact that a 2-D Stokes flow
around an infinitely long cylinder does not exist
(Stokes’s paradox). Below we will see how this para-
dox is resolved by the presence of a boundary.

Starting from the Stokeslet solution, one can use
the principle of superposition to construct an infinite
variety of additional singular solutions. An example is
the flow due to a force dipole, comprising a point
force Fi at x9 and an equal and opposite force �Fi at
x9� dn, where n is a unit vector directed from the
negative to the positive force. The associated velocity
field is ui(x)¼ [Jij(r)� Jij(rþ dn)]Fj. In the limit
d! 0 with dFjnk fixed,

ui ¼ dFj nkGFD
ijk ½86a�

GFD
ijk rð Þ ¼ – qkJij rð ÞX 1

8�

�ij rk – �ikrj – �jkri

r 3
þ 3ri rj rk

r 5

� �

½86b�

where Gijk
FD is the force-dipole Green’s function. The

force-dipole moment dnjFk is sometimes decomposed
into symmetric (stresslet) and antisymmetric (rotlet)
parts (Kim and Karrila, 1991, Section 7.04.2.5.)

7.04.5.6.2 Flows due to point sources

The basic singular solution of the second class is that
associated with a volume source of strength Q at x9,
which generates a spherically symmetric flow

ui ¼
Qri

4�r 3
½87�

The flow due to a source doublet comprising a source
and sink with equal strengths Q separated by a vector
dn pointing from the sink to the source is

ui ¼ Qdnj GSD
ij ;

GSD
ij rð Þ ¼ –

1

4�
qj

ri

r 3

� �
X

1

4�

3ri rj

r 5
–
�ij

r 3

� � ½88�

7.04.5.6.3 Singular solutions in the

presence of a boundary

The flow produced by a point force is modified by

the presence of an impermeable wall. Consider a

force Fi at a point x9 located a distance d from the

wall, and let n be a unit vector normal to the wall

directed towards the side containing x9 (Figure 8(a)).

The modified velocity can be written as ui¼Gij
BFj,

where Gij
B(x, x9) is a Green function that satisfies all

the required boundary conditions at the wall. Its

general form is

GB
ij x; x9ð Þ ¼ Jij x – x9ð Þ þ GIM

ij x – xIM
� �

½89�

where Gij
IM is a Green function that is singular at the

image point xIM¼ x9� 2dn (Figure 8a).
The two limiting cases of greatest interest are

traction-free and rigid walls. Because a traction-free

wall is equivalent to a plane of mirror symmetry,

the modified flow for this case can be constructed

simply by adding a reflected Stokeslet with

strength R ? F XF� at the image point xIM, where

Rij X �ij� 2ninj is a reflection tensor that reverses the

sign of the wall-normal component of a vector while

leaving its wall-parallel components unchanged

(Figure 8(a)). Therefore

GIM
ij rIM
� �

¼ RjkJik rIM
� �

½90�

(a) (b)

Source
 dipole

ForceStokeslet

Stokeslet Stokeslet

x ′

–d 
2 F *

d
n 

F *

F F

–F2d n F *

x  

IMxIM

x′

dipole Stokeslet

Figure 8 Singular solutions required to describe the flow

due to a point force F located at a point x9 a distance d

above a plane wall. The boundary conditions on the wall
(horizontal lines) are satisfied by adding one or more

singular solutions at the image point xIM
X x9�2dn, where n

is the unit vector normal to the wall. The strength or moment

of each required singular solution is indicated, and F� is the
reflection of the vector F across the wall. (a) traction-free

wall; (b) rigid wall.
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where rIM¼ x� xIM. If the surface is rigid, the
boundary conditions can be satisfied by adding
three different singular solutions at xIM: a Stokeslet
with strength �F, a force dipole with moment
2dnF�, and a source dipole with strength �d2F�

(Figure 8(b)) The result is (Blake, 1971)

GIM
ij rIM
� �

¼ – Jij rIM
� �

þ 2dRjl nkGFD
ikl rIM
� �

– d 2RjkGSD
ik rIM
� �

½91�

where Gij
FD and Gij

SD are defined by [86b] and [88],
respectively.

Expressions analogous to those above also apply
to 2-D flow in the presence of a boundary. The
basic idea is illustrated by the free-surface case, for

which both [89] and [90] remain valid if Jij has its

2-D form [85]. Now, however, the presence of the

image singularity Gij
IM cancels the logarithmic

divergence of Jij at large distances from the point

force, thereby resolving Stokes’s paradox and ren-

dering the problem well-posed. A rigid surface has
the same effect, although the corresponding expres-

sions for the Green’s function are more

complicated.

7.04.5.6.4 Boundary-integral

representation

The boundary-integral representation for Stokes

flow expresses the velocity ui at any point in a fluid
volume V bounded by a surface S in terms of the

velocity and traction on S. The starting point is

the integral form [34] of the Lorentz reciprocal the-

orem. Let (ui, �ij) be the flow of interest in a fluid
with no distributed body forces (bi¼ 0), and let

ui
�
X Jij(x� x9)Fj/� and �ik

�
XKijk(x� x9)Fj be the

flow produced by a point force bi
�
X Fi�(x� x9) at

the point x9. Substituting these expressions into [34]

and dropping the arbitrary vector Fi, we obtain

1

�

Z
S

Jij x – x9ð Þ�ik xð Þnk xð ÞdS xð Þ –
Z

V

uj xð Þ� x – x9ð ÞdV xð Þ

¼
Z

S

Kijk x – x9ð Þui xð Þnk xð ÞdS xð Þ ½92�

where the normal n points out of V. Now

Z
V

uj xð Þ� x – x9ð ÞdV ¼ � x9ð Þuj x9ð Þ ½93�

where �(x9)¼ 0, 1/2, or 1 depending on whether x9

lies outside V, right on S, or inside V, respectively.
Substituting [93] into [92] and interchanging the

roles of x and x9, we obtain the boundary-integral
representation

1

�

Z
S9

Jij�iknkdS9 –

Z
S9

KijkuinkdS9 ¼ � xð Þuj xð Þ ½94�

where the arguments of the quantities in the integrands
(x9 for nk, �ik, and ui ; x9� x for Jij and Kijk) have been
suppressed for brevity and dS9¼ dS(x9). The first inte-
gral in [94] represents the velocity due to a surface
distribution of point forces with density �iknk dS9. It is
called the single-layer potential by analogy to the
electrostatic potential generated by a surface distribu-
tion of electric charges. The second integral, called the
double-layer potential, represents the velocity field
generated by the sum of a distribution of sources and
sinks and a symmetric distribution of force dipoles
(Kim and Karrila, 1991, Section 7.04.2.4.2).

An important extension of the integral representa-
tion [94] is to the buoyancy-driven motion of a fluid
drop with viscosity �2 X ��1 and density �2 X �1þ��
in another fluid with viscosity �1 and density �1

(Pozrikidis, 1990; Manga and Stone, 1993.) Let S,
V1, and V2 be the surface of the drop and the volumes
outside and inside it, respectively. We begin by writ-
ing separate integral equations of the form [94] for
each fluid:

–
1

�1

Z
S9

Jij�
1ð Þ

ik nkdS9þ
Z

S9

Kijku
1ð Þ

i nkdS9

¼ �1 xð Þu 1ð Þ
j xð Þ ½95a�

1

�2

Z
S9

Jij�
2ð Þ

ik nkdS9 –

Z
S9

Kijku
2ð Þ

i nkdS9

¼ �2 xð Þu 2ð Þ
j xð Þ ½95b�

where n points out of the drop and the volume (V1 or
V2) in which a given quantity is defined as indicated
by a superscript in parentheses. Here �1(x)¼ 0, 1/2,
or 1 if x is in V2, right on S, or in V1, respectively, and
�2(x) is defined similarly but with the subscripts 1
and 2 interchanged. Now multiply [95b] by �, add
the result to [95a], and apply the matching conditions
uj

(1)¼ uj
(2)¼ uj and (�ik

(1)� �ik
(2))nk¼ ni��gkx9k on S,

where gk is the gravitational acceleration. The result is

�1 xð Þu 1ð Þ
j xð Þ þ ��2 xð Þu 2ð Þ

j xð Þ – 1 – �ð Þ
Z

S9

Kijkui nkdS9

¼ –
gk��

�1

Z
S9

Jij ni x9kdS9 ½96�

For points x on S, [96] reduces to

1

2
uj xð Þ – 1 – �

1þ �

Z
S9

Kijkui nkdS9

¼ –
gk��

�1 1þ �ð Þ

Z
S9

Jij ni x9kdS9 x P Sð Þ ½97�
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a Fredholm integral equation of the second kind for
the velocity u of the interface. Once u on S has been
determined by solving [97], u at points in V1 and V2

can be determined if desired from [96]. A general-
ization of [97] to N > 1 interacting drops was derived
by Manga and Stone (1993).

The integral equation [97], which must in general
be solved numerically, has been used in geodynamics
to model systems comprising distinct fluids with dif-
ferent viscosities. Manga and Stone (1993) solved the
N-drop generalization of [97] using the boundary
element method (Pozrikidis, 1992) to investigate the
buoyancy-driven interaction between two drops in
an infinite fluid with a different viscosity. Manga et al.

(1993) used a similar method to study the interaction
of plume heads with compositional discontinuities in
the Earth’s mantle. The deformation of viscous blobs
in a 2-D cellular flow was investigated by Manga
(1996), who concluded that geochemical reservoirs
can persist undisturbed for relatively long times if
they are 10–100 times more viscous than the sur-
rounding mantle. Finally, Manga (1997) showed
that the deformation-induced mutual interactions of
deformable diapirs in a rising cloud causes the diapirs
progressively to cluster, but that the rate of this
clustering is probably too slow to affect significantly
the lateral spacing of rising diapirs in the mantle.

7.04.5.7 Slender-Body Theory

Slender-body theory (SBT) is concerned with Stokes
flow around thin rod-like bodies whose length greatly
exceeds their other two dimensions. The approach
takes its departure from Stokes’s paradox: the fact
that a solution of the equations for Stokes flow around
an infinitely long circular cylinder moving steadily in
an unbounded viscous fluid does not exist, due to a
logarithmic singularity that makes it impossible to
satisfy all the boundary conditions (Batchelor, 1967).
However, the problem can be regularized in one of
three ways: by including inertia, by making the length
of the cylinder finite, or by making the domain
bounded. SBT is concerned with the second (and by
extension the third) of these possibilities.

The canonical problem of SBT is to determine the
force F on a rod of length 2, and radius a� , moving
with uniform velocity U in a viscous fluid. The solu-
tion can be found using the MMAE, which exploits
the fact that the flow field comprises two distinct
regions characterized by very different length scales.
The first or inner region includes points whose radial
distance � from the rod is small compared to their

distance from the rod’s nearer end. In this region, the
fluid is not affected by the ends of the rod, and sees it
as an infinite cylinder with radius a. The second, outer
region �� a is at distances from the rod that are large
compared to its radius. Here, the fluid is unaffected by
the rod’s finite radius, and sees it as a line distribution
of point forces with effectively zero thickness. The
basic idea of the MMAE is to obtain two different
asymptotic expansions for the velocity field that are
valid in the inner and outer regions, respectively, and
then to match them together in an intermediate or
overlap region where both expansions must coincide.

As the details of the matching are rather compli-
cated, we defer our discussion of the method to
Section 7.04.2, where it will be applied in the context
of BL theory. Here we simply quote the lowest-order
result that the force on a cylinder whose axis is
parallel to a unit vector ez is

F ¼ – 4��,
 2U – U ? ezð Þez½ � ½98�

where 
¼ (ln2,/a)�1. The force on a cylinder moving
normal to its axis (U ? ez¼ 0) is thus twice that on one
moving parallel to its axis. For further details and
extensions of SBT, see Batchelor (1970), Cox (1970),
Keller and Rubinow (1976), and Johnson (1980).
Geophysically relevant applications of SBT include
Olson and Singer (1985), who used [98] to predict the
rise velocity of buoyant quasi-cylindrical (diapiric)
plumes. Koch and Koch (1995) used an expression
analogous to [98] for an expanding ring to model the
buoyant spreading of a viscous drop beneath the free
surface of a much more viscous fluid. Whittaker and
Lister (2006a) presented a model for a creeping plume
above a planar boundary from a point source of buoy-
ancy, in which they modeled the flow outside the
plume as that due to a line distribution of Stokeslets.

7.04.5.8 Flow Driven by Internal Loads

Because inertia is negligible in the mantle, the flow at
each instant is determined entirely by the distribu-
tion of internal density anomalies (loads) at that
instant. This principle is the basis of a class of internal
loading models in which an instantaneous mantle
flow field is determined by convolving a load distri-
bution with a Green function that represents the
mantle’s response to a unit load. However, it proves
convenient here to define the unit load not as a point
force, but rather as a surface force concentrated at a
single radius and whose amplitude is proportional to
a spherical harmonic Yl

m(�, �) of degree l and order m.
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Because the Stokes equations are separable in sphe-
rical coordinates, the Green function representing
the response to an harmonic surface load of a given
degree and order satisfies an ordinary differential
equation (ODE) in the radial coordinate r that can
be solved analytically. This approach was pioneered
by Parsons and Daly (1983) for a plane layer with
constant viscosity, and was extended by Richards and
Hager (1984), Ricard et al. (1984), and Forte and
Peltier (1987) to spherical geometry with self-
gravitation and radially variable viscosity. To illus-
trate the method, we sketch below Forte and Peltier’s
(1987) analytical derivation of the Green function for
a self-gravitating mantle with uniform viscosity.

7.04.5.8.1 Wave-domain Green functions
Our starting point is the equations [31] with n¼ 1
that govern slow flow in an incompressible, self-
gravitating, Newtonian mantle. Let

� ¼ �0 þ �̂ r ; �; �ð Þ; s ¼ s0 rð Þ þ ŝ r ; �; �ð Þ;
� ¼ �0 rð Þ þ �̂ r ; �; �ð Þ ½99�

where hatted quantities are perturbations of the field
variables about a reference hydrostatic state denoted
by a subscript 0. Substituting [99] into [31b] and
[31d] and neglecting products of perturbation quan-
tities, we obtain

0 ¼ � ? ŝþ g0�̂ – �0��̂ ½100a�

r2�̂ ¼ 4�G�̂ ½100b�

where g0¼���0. The third term on the RHS of
[100b] represents the buoyancy force acting on the
internal density anomalies, and the fourth represents
the additional force associated with the perturbations
in the gravitational potential that they induce (self-
gravitation). For consistency with other sections of
this chapter, the signs of all gravitational potentials
(�0, �̂, etc.) referred to below are opposite to those of
Forte and Peltier (1987).

As noted in Section 7.04.5.2, the flow driven by
internal density anomalies in a fluid with constant or
depth-dependent viscosity is purely poloidal. The
poloidal potential P (r, �, �) satisfies the first of equa-
tions [47], which remain valid in a self-gravitating
mantle. We now substitute into this equation the
expansions

P ¼
X1
l¼0

Xl

m¼ – l

P m
l rð ÞY m

l �; �ð Þ;

�̂ ¼
X1
l¼0

Xl

m¼ – l

�̂m
l rð ÞY m

l �; �ð Þ
½101�

where Yl
m(�, �) are surface spherical harmonics satis-

fying B 2Yl
m¼�l(lþ 1)Yl

m and B 2 is defined by [45].
We thereby find that P l

m(r) satisfies

D 2
l P m

l rð Þ ¼ g0�̂
m
l

�r
; D l ¼

d2

dr 2
þ 2

r

d

dr
–

l l þ 1ð Þ
r 2

½102�

where the gravitational acceleration g0 has been
assumed constant (Forte and Peltier, 1987). Now
define a poloidal Green’s function Pl (r, r9) that satisfies

D 2
l Pl r ; r 9ð Þ ¼ � r – r 9ð Þ ½103�

Pl (r, r9) represents the poloidal flow generated at the
radius r by an infinitely thin density contrast of
spherical harmonic degree l and unit amplitude
located a radius r9. The poloidal flow due to a dis-
tributed density anomaly �̂l

m(r) is then obtained by
convolving �̂l

m(r) with the Green’s function, yielding

P m
l rð Þ ¼ g0

�

Z a1

a2

�̂m
l r 9ð Þ
r 9

Pl r ; r 9ð Þdr 9 ½104�

where a2 and a1 are the inner and outer radii of the
mantle, respectively.

At all radii r 6¼ r9, the Green’s function Pl (r, r9)
satisfies the homogeneous form of [103], which has

the general solution

Pl r ; r 9ð Þ ¼ Anr l þ Bnr – l – 1 þ Cnr lþ2 þ Dnr – lþ1 ½105�

where An�Dn are undetermined constants with n¼ 1
for r9 < r� a1 and n¼ 2 for a2� r < r9. These eight
constants are determined by the boundary conditions
at r¼ a1 and r¼ a2 and by matching conditions at
r¼ r9. The vanishing of the radial velocity at r¼ a1

and r¼ a2 requires

Pl a1; r 9ð Þ ¼ Pl a2; r 9ð Þ ¼ 0 ½106�

and the vanishing of the shear stress requires

d2Pl

dr 2
a1; r 9ð Þ ¼ d2Pl

dr 2
a2; r 9ð Þ ¼ 0 ½107�

Turning now to the matching conditions, we define
[A] X A(r9þ)� A(r9�) to be the jump in the quantity A

across the radius r¼ r9. Continuity of the normal and
tangential velocities and the shear stress requires

Pl½ � ¼
dPl

dr

� �
¼ d2Pl

dr 2

� �
¼ 0 ½108�

The normal stress, however, is discontinous at r¼ r9.
By integrating [103] from r9� to r9þ and applying
[108], we find

d3Pl

dr 3

� �
¼ 1 ½109�
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Substitution of [105] into [106]–[109] yields eight
equations for An–Dn, the solutions of which are

Cn ¼ –
Bn

a2lþ3
n

¼ 1

2 2l þ 3ð Þ 2l þ 1ð Þ r 9ð Þl – 1

� a1=anð Þ2lþ3 – r 9=a2ð Þ2lþ3

1 – a1=a2ð Þ2lþ3
½110a�

Dn ¼ – a2l – 1
n An

¼ a2l – 1
n

2 4l2 – 1ð Þ r 9ð Þl – 3

a1=anð Þ2l – 1 – r 9=a2ð Þ2l – 1

1 – a1=a2ð Þ2l – 1
½110b�

The next step is to determine the gravitational
potential anomaly. Because the flow induces defor-

mations (dynamic topography) of the Earth’s surface

and of the core–mantle boundary (CMB), the total

potential anomaly is

�̂m
l rð Þ ¼ �̂0ð Þml rð Þ þ �̂1ð Þml rð Þ þ �̂2ð Þml rð Þ ½111�

where �̂0, �̂1, and �̂2 are the potentials associated
with the internal load, the deformation â1 of the
Earth’s surface, and the deformation â2 of the CMB,
respectively. To determine �̂0, we note that the gen-
eral solution of [100b] is

�̂ xð Þ ¼ –G

Z
V

�̂ x9ð Þ
x – x9j j dV 9 ½112�

where x is the 3-D position vector and the integral is
over the whole mantle. We now invoke the expan-
sion (Jackson, 1975, p. 102)

x – x9j j – 1¼ 4�
X1
l¼0

Xl

m¼ – l

1

2l þ 1

� r l
<

r lþ1
>

Y m
l �; �ð Þ �Y m

l �9; �9ð Þ ½113�

where r<¼min(r, r9) and r>¼max(r, r9) and an over-
bar denotes complex conjugation. Substituting [113]
into [112] and integrating over �9 and �9, we obtain

�̂0ð Þml rð Þ ¼ –
4�G

2l þ 1

Z a1

a2

r 9ð Þ2 r l
<

r lþ1
>

�̂m
l r 9ð Þdr 9 ½114�

Expressions for �̂1 and �̂2 can be obtained from [114]
by replacing �̂l

m(r9) by (�0� �w) (â1)l
m�(r9� a1) and

(�c� �0) (â2)l
m�(r9� a2), respectively, where �w is the

density of seawater and �c is the core density. The
results are

�̂1ð Þml rð Þ ¼ –
4�Ga1

2l þ 1
�0 – �wð Þ r

a1

� �l

â1ð Þml ½115a�

�̂2ð Þml rð Þ ¼ –
4�Ga2

2l þ 1
�c – �0ð Þ a2

r

� �lþ1

â2ð Þml ½115b�

The boundary deformations ân are determined from
the principle that the normal stress must be continuous

across the deformed surfaces r¼ anþ ânX rn. This is

equivalent to the requirement that the nonhydrostatic

normal stress �̂rr acting on the reference surfaces

r¼ an be equal to the weight of the topography

there. Expanded in spherical harmonics, this condition

reads

– p̂ m
l anð Þ þ 2�

dŵm
l

dr
anð Þ ¼ – g0��n ânð Þml ½116�

where p is the nonhydrostatic pressure, w is the radial
velocity, ��1¼ �0� �w, and ��2¼ �0� �c. An
expression for p̂ in terms of the poloidal scalar is
obtained by integrating the e�-component of the
momentum equation [100a] and expanding the result
in spherical harmonics:

p̂l
m ¼ – �

d

dr
rDl P m

l

� �
– �0�̂

m
l ½117�

Substituting [117] and ŵl
m¼�l(lþ 1)P l

m/r into [116]
and applying the boundary conditions [106], we
obtain

ânð Þml ¼ �� – 1
n X m

l anð Þ –
�0

g0
�̂m

l anð Þ
� �

½118a�

X m
l rð Þ ¼ �

g0
– r

d3

dr 3
þ 3l l þ 1ð Þ

r

d

dr

� �
P m

l rð Þ ½118b�

Now by substituting [115] into [111] and using
[118a], we obtain the following expression for the
total gravitational potential:

�̂m
l rð Þ ¼ �̂0ð Þml rð Þ – 4�a1G

2l þ 1

r

a1

� �l

X m
l a1ð Þ –

�0

g0
�̂m

l a1ð Þ
� �

þ 4�a2G

2l þ 1

a2

r

� �lþ1

X m
l a2ð Þ –

�0

g0
�̂m

l a2ð Þ
� �

½119�

The boundary potentials �̂l
m(a1) and �̂l

m(a2) are deter-
mined by solving the coupled equations obtained by
evaluating [119] at r¼ a1 and r¼ a2, and are then
eliminated from [119]. Next, the resulting equation
for �̂m

l is rewritten as a convolution integral using
[114], [118b], [104], [105], and [110]. Finally, the
result is evaluated at r¼ a1 to obtain the surface
potential

�̂m
l a1ð Þ ¼ –

4�a1G

2l þ 1

Z a1

a2

Gl r 9ð Þ�̂m
l r 9ð Þdr 9 ½120�

where the Green function or kernel Gl is
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Gl rð Þ ¼ 1 –K1 þ K2Kr�
2lþ1

� � – 1 r

a1

� �lþ2

�
(

1 – Kr�
a2

r

� �2lþ1

– E1 1 – Kr�
2lþ2

� � a1

r

� �lþ2

– E2 1 –Kr�ð Þ a2

r

� �lþ2
)

½121a�

En ¼
l l þ 2ð Þ
2l þ 1

an

r

� �l – 2 r=a1ð Þ2l – 1 – a2=anð Þ2l – 1

1 –�2l – 1

þ l l – 1ð Þ
2l þ 1

an

r

� �l r=a1ð Þ2lþ3 – a2=anð Þ2lþ3

1 –�2lþ3
½121b�

Kn ¼
4�an�0G

2l þ 1ð Þg0
; Kr ¼

K1

1þ K2
; � ¼ a2

a1
½121c�

Figure 9 shows Gl (r) for l¼ 2 and l¼ 10, both with
(solid lines) and without (K1¼ K2¼ 0; dashed lines)

self-gravitation. The kernels are negative at all radii

because the negative gravitational potential of the

deformed upper surface exceeds the positive contri-

bution of the internal mass anomaly itself. The

maximum potential anomaly is produced by loads

in the mid-mantle when l¼ 2, and in the upper

mantle when l¼ 10. The effect of self-gravitation is

nearly a factor of 2 for l¼ 2, but only about 10% for

l¼ 10.

An expression analogous to [121] for a mantle
comprising an upper layer r > a1� z with viscosity
�U and a lower layer r < a1� z with viscosity �L is
given by Forte and Peltier (1987). The general effect
of a viscosity contrast �L/�U > 1 is to enhance the
dynamic deformation of the CMB and reduce that of
the upper surface. The reduced (negative) gravita-
tional potential anomaly of the upper surface then
counteracts less effectively the positive anomaly due
the (sinking) load, with the result that Gl (r) increases
at all depths relative to the kernels for �L/�U¼ 1. For
�L/�U¼ 30 and z¼ 670 km, for example, G10(r) > 0
for all r, while G2(r) is positive in the upper mantle
and negative in the lower mantle (Forte and Peltier,
1987, figure 17).

The simplest application of the kernel approach
(e.g., Hager et al., 1985; Forte and Peltier, 1987) is to
start with a load function �̂(r,�,�) estimated from
seismic tomography or the global distribution of sub-
ducted lithosphere, and then to determine by
repeated forward modeling the values of �L/�U and
z for which geoid and other anomalies (surface
divergence, surface topography, etc.) predicted by
formulae like [120] best match their observed
counterparts on the real Earth. A robust result of
the early studies that has been confirmed by later
work (e.g., Mitrovica and Forte, 2004) is that the
lower mantle must be more viscous than the upper
mantle by a factor �L/�U� 10� 100. In many of
these studies, the kernels were obtained using an
alternative analytical technique, the propagator
matrix method, discussed next.

7.04.5.8.2 The propagator-matrix method

The analytical Green function approach outlined in
Section 7.04.5.8.1 for a constant-viscosity mantle can
in principle be extended to models comprising any
number N of discrete layers with different viscosities.
In practice, however, the rapidly increasing complex-
ity of the analytical expressions limits the method to
N¼ 2 (Forte and Peltier, 1987). A more efficient
approach for models with multiple layers is the pro-
pagator-matrix method, whereby a flow solution is
propagated from one layer interface to the next by
simple matrix multiplication. The method is in fact
applicable to any system of linear ODEs with con-
stant coefficients of the form

dy

dz
¼ Ayþ b zð Þ ½122�

where y(z) is a vector of dependent variables, A is a
constant square matrix, and b(z) is an inhomogeneous

0

500

1000

1500

2000

2500

–0.4 –0.3 –0.2 –0.1 0.0

D
ep

th
 (

km
)

l = 2

l = 10

Gl 

Figure 9 Gravitational potential kernels Gl(r) defined by

[121] as functions of depth for spherical harmonic degrees
l¼2 and l¼10, with (solid lines) and without (dashed lines)

self-gravitation.
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vector. The general solution of [122] is (Gantmacher,
1960, I, p. 120, eqn [53])

y zð Þ ¼ P z; z0ð Þy z0ð Þ þ
Z z

z0

P z; 	ð Þb 	ð Þd	 ½123a�

P z; z0ð Þ ¼ exp A z – z0ð Þ½ � ½123b�

where y(z0) is the solution vector at the reference
point z¼ z0 and P(z, z0) is the propagator matrix.
The form of the solution [123] is identical to that for
a scalar variable y(z), except that the argument of the
exponential in [123b] is now a matrix rather than a
scalar quantity. Analytical expressions for functions
of matrices such as [123b] are given by Gantmacher
(1960, vol. I, pp. 95–110).

As an illustration, we determine the propagator
matrix for a poloidal flow driven by internal density
anomalies in a self-gravitating spherical shell with
radially variable viscosity �(r) and laterally averaged
density �(r) (Hager and O’Connell, 1981; Richards
and Hager, 1984). As in Section 7.04.5.8.1, we suppose
that the driving density anomaly is �̂l

m(r)Yl
m(�,�),

where Yl
m is a surface spherical harmonic.

The first step is to transform the equations
governing the flow in the mantle to the canonical
form [122], where A – to repeat – is a constant
matrix. The standard Stokes equations [31] for our
model mantle do not have this form for three rea-
sons: (1) the fluid properties �(r) and �(r) vary with
radius; (2) the expression for the differential
operator � in spherical coordinates involves the
scale factor r�1; and (3) a system of first-order
equations cannot be written in terms of the
primitive variables ui and p. Difficulty (1) is circum-
vented by dividing the mantle into N discrete
layers n¼ 1, 2,. . ., N, in each of which the viscosity
�n and the density �n is constant. Difficulty (2) is
overcome by using a transformed radial variable
z¼ ln(r/a1), where a1 is the outer radius of the
mantle. Finally, one circumvents (3) by using the
independent variables

y ¼ û; v̂;
r �̂rr

�0
;

r �̂r�

�0
;
�0r �̂

�0
;
�0r 2qr �̂

�0

� �T

½124�

where û and v̂ are the er- and e0-components of the
velocity, respectively, �0 and �0 are reference values
of the viscosity and density, respectively, and the
spherical harmonic dependence of each variable (û,
�̂r r, �̂, and qr�̂ _ Yl

m, v̂ and �̂r� _ q�Yl
m) has been

suppressed for clarity. The Stokes equations within
each layer n then takes the form [122] with

A ¼

– 2 L 0 0 0 0

– 1 1 0 1=�� 0 0

12�� – 6L�� 1 L 0 ��

– 6�� 2 2L – 1ð Þ�� – 1 – 2 �� 0

0 0 0 0 1 1

0 0 0 0 L 0

2
66666666664

3
77777777775

½125a�

b ¼
	
0; 0; r 2g0 rð Þ�̂ rð Þ=�0; 0; 0;

– 4�r 3G�0�̂ rð Þ=�0


T ½125b�

where L¼ l (lþ 1), ��¼ �n/�0, and ��¼ �n/�0. Further
simplification is achieved by recasting the density
anomaly �̂(r) as a sum of equivalent surface density
contrasts �̂n (units kg m�2) localized at the midpoints rn

of the layers, according to

�̂ rð Þ ¼
X

n

� r – rnð Þ�̂n ½126�

In practice, �̂n is different in each layer, while �n and
�n may be constant over several adjacent layers. For a
group of M such adjacent layers bounded by the
depths z and z0, the solution [123a] now takes the
approximate form

y zð Þ ¼ P z; z0ð Þy z0ð Þ þ
XM
m¼1

P z; zmð Þbm ½127a�

bm ¼
	
0; 0; rmg0 rmð Þ�̂m=�0; 0; 0;

– 4�r 2
mG�0�̂m=�0


T ½127b�

where zm¼ ln(rm/a1). To use [127], one must apply
boundary conditions at the CMB and at the Earth’s
surface, taking into account the dynamic topography
of these boundaries (Richards and Hager, 1984,
Appendix 1).

An analytical expression for P(z, z0) can be
written in terms of the minimal polynomial  (�) of
A. For the matrix [125a],  (�) is identical to the
characteristic polynomial, and is

 �ð Þ ¼
Y4

i¼1

� –�ið Þmi ½128a�

�1 ¼ l þ 1; �2 ¼ – l ;

�3 ¼ l – 1; �4 ¼ – l – 2
½128b�

m1 ¼ m2 ¼ 2; m3 ¼ m4 ¼ 1 ½128c�

where �1–�4 are the four distinct eigenvalues of A.
Following Gantmacher (1960, I, pp. 95–102)

P z; z0ð Þ ¼
X4

k¼1

Xmk

j¼1


kj A –�kIð Þj – 1�k ½129�
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where


kj ¼
1

j – 1ð Þ!
dj – 1

d�j – 1

exp� z – z0ð Þ
 k �ð Þ

� �
�¼�k

½130�

 k �ð Þ ¼
 �ð Þ
� –�kð Þmk

; �k ¼
Y4

i¼1
i 6¼k

A –�iIð Þmi ½131�

and I is the identity matrix.

7.04.6 Elasticity and Viscoelasticity

Fluid convection with a period � � 1015 s is the
extreme limit of a spectrum of deformational pro-
cesses in the mantle spanning an enormous range of
timescales, including postglacial rebound (� � 1011 s),
the Chandler wobble (� � 4� 107 s), and elastic free
oscillations (� � 10–103 s). All these processes can be
understood by regarding the mantle as a viscoelastic
body that deforms as a fluid when �� �M and as an
elastic solid when �� �M, where �M is the Maxwell
time of the material. �M is just the ratio of the
viscosity of the material to its elastic shear modulus,
and is of the order of a few hundred years (�1010 s) in
the mantle.

Because the theory of viscous flow is valid only at
very long-periods (�� �M), other rheological mod-
els are required to understand phenomena with
shorter periods. The two most commonly used mod-
els are the linear elastic solid (for short periods
�� �M) and the linear Maxwell solid (for intermedi-
ate periods � � �M.) The reader is referred to
Chapter 7.06 for a more extensive discussion of
these models. Here we focus on the mathematical
analogies (correspondence principles) among the vis-
cous, elastic, and viscoelastic models and the
powerful analytical techniques these analogies make
possible.

7.04.6.1 Correspondence Principles

Stokes (1845) and Rayleigh (1922) demonstrated the
existence of a mathematical correspondence (the
Stokes–Rayleigh analogy) between small incompres-
sible deformations of an elastic solid and slow flows
of a viscous fluid. As discussed in Chapter 7.06, the
constitutive law for a linear (Hookean) elastic solid is

�ij ¼ Kvkk�ij þ 2� vij –
1

3
vkk�ij

� �
½132�

where �ij is the stress tensor, vij X (qivjþ qjvi)/2 is the
linearized strain tensor, vi is the displacement vector,
K is the bulk modulus, and � is the shear modulus.
Alternatively, [132] can be written in terms of the
Young’s modulus E and Poisson’s ratio �, which are
related to K and � by

E ¼ 9K�

3K þ � ; � ¼ 3K – 2�

2 3K þ �ð Þ ½133�

An incompressible elastic solid corresponds to the
limits K/E!1, �! 1/2, and an incompressible
deformation to the limit �! 0. As these limits are
approached, however, the product �K� tends to a
finite value, the pressure p. Equation [132] then
becomes

�ij ¼ – p�ij þ 2�vij ½134�

which is identical to the constitutive relation [31e]
for a viscous fluid if the shear modulus � and
the displacement vi are replaced by the viscosity �
and the velocity ui, respectively. Consequently,
solutions of problems in linear elasticity and Stokes
flow can be transformed into one another via the
transformations

vi ; E; �ð Þ ! ui ; 3�; 1=2ð Þ; ui ; �ð Þ ! vi ; �ð Þ ½135�

Examples of the use of [135] are described in Section
7.04.8.4 on thin-shell theory.

A second useful correspondence principle relates
problems in linear viscoelasticity and linear elasticity.

Although this principle is valid for any linear viscoe-

lastic body (Biot, 1954), its geophysical application is

usually limited to the special case of a linear Maxwell

solid, for which the constitutive relation is (e.g.,

Peltier, 1974)

_�ij þ
�

�
�ij –

1

3
�kk�ij

� �
¼ 2� _vij –

1

3
_vkk�ij

� �

þ K _vkk�ij ½136�

where dots denote time derivatives. Transforming
[136] into the frequency domain using a Laplace
transform as described in Chapter 7.06, we obtain

��ij ¼ K �vkk�ij þ 2�� sð Þ �vij –
1

3
�vkk�ij

� �
½137a�

�� sð Þ ¼ �s

s þ �=� ½137b�

where s is the complex frequency and overbars denote
Laplace transforms of the quantities beneath. Equation
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[137] is identical in form to Hooke’s law [132] for an
elastic solid, but with a frequency-dependent shear
modulus ��. Accordingly, any viscoelastic problem
can be reduced to an equivalent elastic problem,
which can be solved and then inverse-Laplace trans-
formed back into the time domain to yield the solution
of the original viscoelastic problem. We now turn to
one of the principle geophysical applications of this
procedure.

7.04.6.2 Surface Loading of a Stratified
Elastic Sphere

The fundamental problem of postglacial rebound is
to determine the response of a radially stratified
Maxwell Earth to a time-dependent surface load
P(�,�, t) that represents the changing global distribu-
tion of glacial ice and meltwater. Formally, this
problem can be solved by convolving the load
distribution with a Green function that describes
the Earth’s response to an impulsive point load
applied at time t at a point r on the Earth’s surface
and then immediately removed. Now an impulse
function in the time domain corresponds to a con-
stant in the frequency domain. According to the
correspondence principle, therefore, our problem
reduces to that of determining the deformation of a
stratified elastic sphere by a static point load
(Longman, 1962; Farrell, 1972; Peltier, 1974). The
derivation below follows Peltier (1995).

The general equations governing the deformation
of a self-gravitating elastic sphere are (Backus, 1967)

0 ¼ � ? ŝþ g0�̂ – �0��̂ –� �0g0ûð Þ ½138a�

r2�̂ ¼ 4�G�̂ ½138b�

where v̂ X ûerþ v̂ e�þ ŵe� is the displacement vector
and the other symbols are the same as in the analo-
gous equations [100] for slow viscous flow.

The elastic equations [138b] differ from their
viscous analogs [100] in three ways. First, the stress
tensor ŝ in [138a] is related to the displacement
vector v̂ by the elastic constitutive law [137] with a
frequency-dependent shear modulus. Second,
because the deformation is driven by surface loading
rather than by internal density anomalies, the pertur-
bation density �̂ X�� ? (�0v̂) is determined entirely
by the requirement of mass conservation in the
deformed solid. Third, [138a] contains an additional
term ��(�0g0û), that corrects for the fact that the
strain tensor that appears in the elastic constitutive

law is at a fixed material particle and not at a fixed
point in space (Backus, 1967, p. 96).

The reduction of the governing equations [138] to
solvable form proceeds as for the viscous flow equa-
tions in Section 7.04.5.8.2, but with a few significant
differences. As in the viscous case, the goal is to
reduce [138] to a sixth-order system of ODEs of the
form

dy

dr
¼ Ay ½139�

where y is the unknown vector and A is a 6� 6
matrix. Equation [139] contains no inhomogeneous
vector b like the one in the viscous equations [122],
because the loads in the elastic problem are applied at
the boundaries rather than internally. Another
important point is that the reference profiles of den-
sity �0(r) and the elastic moduli �(r) and K(r) that
appear in the equations are essentially continuous
functions, given a priori by a seismological reference
model (e.g., PREM; Dziewonski and Anderson, 1981).
Consequently, a discrete-layer solution method like
the propagator-matrix technique is not practical, and
it is therefore superfluous to reduce [139] to con-
stant-coefficient form via the transformation
z¼ ln(r/a1).

We turn now to the definition of the variables y.
By symmetry, the deformation of the sphere can
depend only on the radius r and the angular distance
� from the point load. The field variables can there-
fore be expanded as

v̂¼
X1
l¼0

ûl r ; sð ÞPl cos�ð Þer þ v̂l r ; sð Þq�Pl cos�ð Þe�½ �

½140a�

�̂ ¼
X1
l¼0

�̂l r ; sð ÞPl cos �ð Þ ½140b�

where Pl (cos �) are the Legendre polynomials. Now
for each angular degree l, let

y ¼
	
û; v̂; �̂rr ; �̂r�; �̂; qr �̂

þ l þ 1ð Þ�̂=r þ 4�G�0û

T ½141�

where the subscript l on each variable has been
suppressed for simplicity. Apart from factors of r,
the definition of y6, and the replacement of velocities
by displacements, [141] is identical to its viscous
analog [124]. With the choice [141], the matrix A in
[139] is
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A ¼

–
2�

�r

L�

�r

1

�
0 0 0

– r – 1 r – 1 0 �� – 1 0 0
4

r

�

r
– �0g0

� �
–

L

r

2�

r
– �0g0

� �
–

4��

�r

L

r
–
�0M

r
�0

1

r
�0g0 –

2�

r

� �
L � þ ��ð Þ – 2��

r 2
–
�

�r
–

3

r

�0

r
0

– 4�G�0r 0 0 0 –
M

r
1

–
4�MG�0

r

4�LG�0

r
0 0 0

l – 1

r

2
6666666666666664

3
7777777777777775

½142�

where L¼ l(lþ 1), M¼ lþ 1, �¼ Kþ 4��/3, �¼ 3K��/
�, �¼ K� 2��/3, and �� is defined by [137b]. The
system [139] can be solved by a standard numerical
method for two-point boundary-value problems
(BVPs) (e.g., shooting) subject to appropriate boundary
conditions. Inversion of the resulting solution back
into the time domain and its subsequent convolution
with a given time-dependent surface load function are
then performed numerically. The use of this proce-
dure to infer the mantle viscosity profile �(r) is
reviewed by Peltier (1995).

7.04.7 BL Theory

Many geophysical flows occur in layers or conduits
whose length greatly exceeds their thickness:
examples include TBLs, subducted oceanic litho-
sphere, mantle plume stems, and gravity currents of
buoyant plume material spreading beneath the litho-
sphere. In all these cases, the gradients of the fluid
velocity and/or temperature across the layer greatly
exceed the gradients along it, a fact that can be
exploited to simplify the governing equations
substantially. The classic example of this approach
is BL theory, which describes the flow in layers
whose thickness is controlled by a balance of diffu-
sion and advection.

A BL is defined as a thin region in a flow field,
usually adjoining an interface or boundary, where the
gradients of some quantity transported by the fluid (e.g.,
vorticity, temperature, or chemical concentration) are
large relative to those elsewhere in the flow. Physically,
BLs arise when the boundary acts as a source of the
transported quantity, which is then prevented from
diffusing far from the boundary by strong advection.
BLs thus occur when UL/D� 1, where U and L are
characteristic velocity and length scales for the flow and
D is the diffusivity of the quantity in question. In
classical BL theory, the transported quantity is

vorticity, the relevant diffusivity is the kinematic visc-

osity �, and BLs form when the Reynolds number

Re XUL/�� 1. Such BLs do not occur in the mantle,

where Re� 10�20. However, because the thermal diffu-

sivity �� 10�23�, the Peclet number UL/�� 1 for

typical mantle flows, implying that TBLs will be

present.
Although BLs are 3-D structures in general, nearly

all BL models used in geodynamics involve one of the

three simple geometries shown in Figure 10: 2-D flow

(1), an axisymmetric plume (2), and axisymmetric flow

along a surface of revolution (3). Let x and y be the

coordinates parallel to and normal to the boundary (or

symmetry axis), respectively, u and v be the corre-

sponding velocity components, and �(x) be the

thickness of the BL.
The fundamental hypothesis of BL theory is that

gradients of the transported quantity (heat in this

case) along the BL are much smaller than those across

it. Diffusion of heat along the layer is therefore neg-

ligible. As an illustration, consider the simplest case

of a thermal BL in steady flow with negligible viscous

(a) (b) (c)

δ

δ δ

x x x

y y
r

y

Figure 10 Typical geometries for boundary-layer flows: (a)

2-D flow, (b) an axisymmetric plume, and (c) axisymmetric flow
along a surface of revolution. Impermeable boundaries are

shown by heavy lines, axes of symmetry by light dashed lines,

and the edges of BLs by heavy dashed lines. The coordinates
x and y are parallel to and normal to the boundary (or

symmetry axis), respectively, �(x) is the thickness of the BL,

and r(x) is the radius of the surface of revolution.
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dissipation of energy. The BL forms of the continuity
and energy equations are then

ux þ vy ¼ 0; ½143a�

uTx þ vTy ¼ �Tyy ½143b�

for 2-D flow,

ux þ y – 1 yvð Þy¼ 0 ½144a�

uTx þ vTy ¼ �y – 1 yTy

� �
y

½144b�

for an axisymmetric plume, and

ruð Þxþrvy ¼ 0 ½145a�

uTx þ vTy ¼ �Tyy ½145b�

for a surface of revolution. As noted in Section
7.04.3.3, the terms uTx and vTy are of the same order.

7.04.7.1 Solution of the BL Equations Using
Variable Transformations

A powerful technique for solving problems involving
BLs is the use of variable transformations to reduce
the BL equations to equations of simpler form.
One of the most important of these transformations
is that of Von Mises (1927), which transforms the 2-D
BL equations into the classical heat conduction
equation. A second useful transformation, due to
Mangler (1948), relates the structure of an axisym-
metric BL on a surface of revolution to that of a
2-D BL on a flat surface. After introducing both
transformations, we will show how they can be used
together to obtain a solution for the heat transfer
from a hot sphere moving in a viscous fluid
(Figure 1(a)).

7.04.7.1.1 Von Mises’s transformation

The essential trick involved in this transformation is
to use the streamfunction  instead of y as the
transverse coordinate in the BL. Denoting the
streamwise coordinate by a new symbol s X x for
clarity, we transform the derivatives in [143b] using
the chain rule as

qT

qx
¼ qT

qs

qs

qx
þ qT

q 
q 
qx

X
qT

qs
– v

qT

q 
½146�

qT

qy
¼ qT

qs

qs

qy
þ qT

q 
q 
qy

X u
qT

q 
½147�

where the streamfunction is defined according to the
convention (u, v)¼ ( y, � x). Equation [143b] then
becomes

qT

qs
¼ � q

q 
u
qT

q 

� �
½148�

Equation [148] takes still simpler forms if the
surface y¼ ¼ 0 is either traction-free or rigid.

Near a free surface, u	U(s) is constant across the

BL. Upon introducing a new downstream coordinate

� such that d� ¼U(s)ds, [148] becomes

qT

q�
¼ � q

2T

q 2
½149�

which is just the classical equation for diffusion of heat
in a medium with constant thermal diffusivity �. The
units of the time-like variable � , however, are now
those of diffusivity (m2 s�1) rather than of time. Near
a rigid surface, u¼ yf (s) and  ¼ y2f (s)/2, implying
u	 (2 f )1/2, where f (s) is arbitrary. Substituting this
result into [148] and introducing a new downstream
variable � such that d� ¼ (2f )1/2ds, we obtain

qT

q�
¼ � q

q 
 1=2 qT

q 

� �
½150�

which describes the diffusion of heat in a medium
with a position-dependent thermal diffusivity � 1/2

as a function of a time-like variable � having units of
m s�1/2.

Of special interest are the self-similar solutions of
[149] and [150] that exist when the wall temperature T0

is constant (¼�T, say) and the upstream temperature

profile is T(0, )¼ 0. The solution of the free-surface

equation [149] has the form T¼�TF(�), where

�¼ /�(�). Separating variables, we obtain �F0/

�F9¼ � _�/�¼�2 (constant), which when solved subject

to the conditions F(0)� 1¼ F(1)¼ �(0)¼ 0 yields

T ¼ �Terfc
 

2
ffiffiffiffiffiffi
��
p

� �
½151�

The solution of the rigid-surface equation [150] has
the form T¼�TF(�), where � ¼

ffiffiffiffi
 

p
=� �ð Þ.

Separating variables, we find �F0/4�2F9¼ �2 _�/
�¼�2 (constant), which when solved subject to
F(0)� 1¼ F(1)¼ �(0)¼ 0 with �2¼ 1/3 for conve-
nience gives

T

�T
¼ 1 –

3

� 1=3ð Þ
4

9

� �1=3 Z �

0

exp –
4

9
x3

� �
dx;

� ¼  1=2

��ð Þ1=3

½152�
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where � is the gamma function. Below we show how the
free-surface solution [151] can be applied to the pro-
blems of heat transfer from a sphere (next subsection)
and steady cellular convection (Section 7.04.9.3.3.)

7.04.7.1.2 Mangler’s transformation

Mangler (1948) showed that the equations governing
the axisymmetric BL on a surface of revolution with
radius r(x) (Figure 10) are related to the 2-D BL
equations by the variable transformation

�x ¼
Z x

0

r=Lð Þ2dx; �y ¼ r

L
y; �u ¼ u;

�v ¼ L

r
v þ r 9

r
yu

� �
; � ¼ L – 1 

½153�

where the variables with and without overbars are those
of the 2-D and the axisymmetric flows, respectively, L

is an arbitrary constant length scale, and  is the Stokes
streamfunction. The transformation [153], which
applies equally to vorticity and thermal BLs, allows
solutions of the 2-D BL equations to be transformed
directly into solutions of the axisymmetric BL equa-
tions on a surface of revolution. To illustrate, we
determine the heat flow from a traction-free isothermal
sphere of radius a and excess temperature �T moving
at constant speed U in a viscous fluid (Figure 1) by
transforming the Cartesian BL solution [151], which in
terms of the barred variables is

T ¼ �T erfc
� 

2
ffiffiffiffiffiffi
��
p

� �
; � �xð Þ ¼

Z �x

0

�ud�x ½154�

For a sphere, r (x)¼ a sin(x/a) X a sin �, and L¼ a is
the natural choice. The Stokes–Hadamard solution
(Section 7.04.5.3.2) gives  	 (1/2)U ay sin2�, and
u	 (1/2)U sin �, and [153] implies

� ¼ 1

2
Uy sin 2�; �x ¼ 1

2
x –

a

4
sin

2x

a
½155�

The stretched downstream variable � is therefore

� ¼
Z �x

0

�ud�x

¼
Z x

0

u
d�x

dx
dx ¼ 2

3
aU 2þ cos �ð Þ sin 4 �

2
½156�

Substitution of [155] and [156] into [154] yields the
temperature T(y, �) everywhere in the BL, and the
corresponding local Nusselt number is

N �ð Þ X –
a

�T

qT

qy
y ¼ 0ð Þ

¼ 3

2�

� �1=2
1þ cos �

2þ cos �ð Þ1=2
Pe1=2 ½157�

where Pe¼Ua/� is the Peclet number.

The result [157], together with our previous
treatments of the hot sphere in Sections 7.04.3.1,

7.04.3.2, and 7.04.3.3, shows that BL theory represents

a third stage in a hierarchy of techniques

(dimensional analysis, scaling analysis, BL theory)

that give progressively more detailed information

about the structure of the solution in the asymptotic

limit of negligible inertia (Re� 1) and Pe!1.

Table 3 summarizes the local Nusselt number N (�)

for the (traction-free) sphere predicted by each of the

three techniques. Note that the cost of the increasing

precision of the results is a decreasing range of

validity.

7.04.7.2 The MMAE

We noted in Section 7.04.5.7 that the MMAE is a

powerful method for solving problems where the

field variables exhibit distinct regions characterized

by very different length scales. The method is parti-

cularly well suited for BLs, whose characteristic

thickness � is much smaller than the scale L of the

flow outside the BL. As an illustration of the method,

consider a simple axisymmetric stagnation-point

flow model for the steady temperature distribution

in a plume upwelling beneath a rigid lithosphere

(Figure 11), in which fluid with temperature T1

and upward vertical velocity �w1 at a depth z¼ d

ascends towards a rigid surface with temperature

T¼T0. If viscous dissipation of energy is negligible,

the pressure is (nearly) hydrostatic, and all physical

properties of the fluid are constant, then T(x) satisfies

u ? �T –
g


cp

u ? ẑT ¼ �r2T ½158�

where 
 is the thermal expansion coefficient and cp is
the heat capacity at constant pressure. The three
terms in [158] represent advection of temperature

Table 3 Heat transfer from a hot sphere for Re� 1:

analytical predictions

Technique Local Nusselt number N Validity

Dimensional

analysis

fct(Pe, �) universal

Scaling

analysis

Pe1/2fct(�) Pe�1

BL theory 3

2�

� �1=2 1þ cos �

2þ cos �ð Þ1=2
Pe1=2

Pe� 1;

0 <
�

2
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gradients, adiabatic decompression, and thermal dif-
fusion, respectively.

Let u¼ u(r, z)erþw(r, z)ez. Because w(r, d) X�w1

is constant, w¼w(z), whence the continuity equation
implies u¼�r w9(z)/2. Equation [158] therefore
admits a 1-D solution T¼T(z) that satisfies

wT 9 –
g


cp

wT ¼ �T 0 ½159�

where primes denote d/dz. By substituting w¼w(z)
and u¼�rw9(z)/2 into the constant-viscosity Stokes
equations in cylindrical coordinates and solving the
resulting equation for w(z) subject to the boundary
conditions shown in Figure 11, we find

w

w1
¼ 2

z

d

� �3

– 3
z

d

� �2

½160�

Upon introducing dimensionless variables z̃¼ z/d

and T̃¼ (T�T0)/(T1�T0) X (T�T0)/�T and

then immediately dropping the tildes, [159] together
with [160] and the boundary conditions on T become

2z3 – 3z2
� �

T 9 –� T þ �ð Þ½ � ¼ 
T 0 ½161a�

T 0ð Þ ¼ T 1ð Þ – 1 ¼ 0 ½161b�

where


 ¼ �

dw1
XPe – 1; � ¼ g
d

cp

; � ¼ T0

T1 –T0
½162�

We wish to solve [161] in the limit 
! 0
(Pe!1), assuming for simplicity that �¼O (1)
and �¼O (1). However, note that 
 appears in
[161a] as the coefficient of the most highly differen-
tiated term. We therefore cannot simply set 
¼ 0 in
[161a], because that would reduce the order of the
ODE and make it impossible to satisfy all the bound-
ary conditions. Equations [161] therefore constitute a
singular perturbation problem: the solution for small
values of 
> 0 is not a small perturbation of a solution
for 
¼ 0, which in any case does not exist. The
resolution of this apparent paradox is that the solu-
tion exhibits a thin BL where the term 
T0 in [161a]
is important, no matter how small 
 may be.

We therefore anticipate that the solution to [161]
will comprise two distinct regions governed by dif-
ferent dynamics: an inner region (the BL) of
dimensionless thickness �� 1 in which advection is
balanced by diffusion, and an outer region where
advection is balanced by adiabatic decompression.
Consider the outer region first, and let the tempera-
ture there be T¼ h(z, 
). We seek a solution in the
form of an asymptotic expansion

h ¼ h0 zð Þ þ �1 
ð Þh1 zð Þ þ �2 
ð Þh2 zð Þ þ � � � ½163�

where �n(
) are (as yet unknown) gauge functions
that form an asymptotic sequence such that lim
! 0

�n/�n� 1¼ 0. The function �0(
)¼ 1 because
T¼O (1) in the outer region. Substituting [163]
into [161a] and retaining only the lowest-order
terms, we obtain

h90 –� h0 þ �ð Þ ¼ 0 ½164�

Because [164] is a first-order ODE, its solution can
satisfy only one of the boundary conditions [161b].
Evidently this must be the condition at z¼ 1, because
z¼ 0 is the upper limit of a TBL that cannot be
described by [164]. The same conclusion can be
reached in a more formal algorithmic way by assuming
contrary to fact that the BL is at z¼ 1, solving [164]
subject to the wrong boundary condition T(0)¼ 0, and
finally realizing that the inner solution for the supposed

0

1
0 1

(a)

(b)

z = 0
r, u

z, w
z 

/d

z = d
u = w + w1 = T – T1 = 0

(T – T0) /ΔT

u = w = T – T0 = 0

Figure 11 Model for the temperature distribution in a

steady stagnation-point flow beneath a rigid lithosphere. (a)
The base of the lithosphere z¼ 0 is at temperature T0, and a

uniform upward vertical velocity w1 > 0 is imposed at a

depth z¼d where the temperature is T1. The curved lines

with arrows are streamlines. (b) Temperature as a function
of depth for 
¼ 0.0001, �¼ 0.1. and �¼ 2.0.
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BL is unphysical because it increases exponentially
upward. The lowest-order terms of the (correct)
boundary condition are h0(1)¼ 1, and the solution of
[164] that satisfies this is

h0 ¼ 1þ �ð Þ exp � z – 1ð Þ –� ½165�

Turning now to the inner region, the first task is to
determine which term on the LHS of [161a] balances
the RHS. Suppose (contrary to fact, as will soon
appear) that �(Tþ�)�T 9 (decompression�
advection). Because z� � and z2� z3 in the BL, the
balance z2�(Tþ�)� 
T0 implies �� 
1/4. But then
T 9��(Tþ�), which contradicts our original

assumption. The correct balance must therefore be
z2T 9� 
T0 (advection� diffusion), which implies
�� 
1/3 and T 9��(Tþ�), consistent with our
original assumption. A more physical argument that
leads to the same conclusion is to note that the

vertical scale length over which adiabatic decom-
pression is significant in the mantle (�1000 km) is
much greater than a typical BL thickness.

Now that we know the thickness of the BL, we can
proceed to determine its structure. To discern the
thin BL distinctly, we use a sort of mathematical
magnifying glass: a new stretched depth coordinate
ẑ¼ z/� X z
�1/3 that is of order unity in the BL.

Denoting the inner solution by f (ẑ, 
) and writing
[161a] in terms of ẑ, we find

2
ẑ3 – 3
2=3ẑ2
� �


 – 1=3f 9 – � f þ �ð Þ
h i

¼ 
1=3f 0 ½166�

where primes denote differentiation with respect to ẑ.
We now seek a solution in the form

f ¼ f0 zð Þ þ �1 
ð Þf1 zð Þ þ �2 
ð Þf2 zð Þ þ � � � ½167�

where �n(
) are unknown gauge functions.
Substituting [167] into [166] and retaining only the
lowest-order terms, we obtain

f 00 þ 3ẑ2f 90 ¼ 0 ½168�

The solution of [168] that satisfies the boundary
condition f0(0)¼ 0 is

f0 ¼ A

Z ẑ

0

exp –x3
� �

dx X
A

3
� 1=3; ẑ3
� �

½169�

where � a; xð Þ ¼
R x

0 exp – tð Þt a – 1dt is the incom-
plete Gamma function and A is an unknown
constant that must be determined by matching
[169] to the outer solution [165].

The most rigorous way to do the matching is to
rewrite both the inner and outer expansions in terms

of an intermediate variable zint¼ �(
)z such that

�1/3� �� 1, and then to choose the values of
any unknown constants (A in this case) so that the
two expressions agree. However, it is often possible
to use a simpler matching principle, due to Prandtl,
which states that the inner limit of the outer expan-
sion must be equal to the outer limit of the inner
expansion – roughly speaking, that the two expan-
sions must match at the edge of the BL. For our
problem, Prandtl’s principle is

lim
ẑ!1

f0 ẑð Þ ¼ lim
z!0

h0 zð Þ; whence

A ¼ 3 1þ �ð Þ exp –�ð Þ –�½ �
� 1=3ð Þ

½170�

where � is the Gamma function.
The last step is to construct a composite expan-

sion that is valid both inside and outside the BL. This
is just the sum of the inner and outer expansions less
their shared common part h0(z! 0), or

T ¼ h0 zð Þ þ 1þ �ð Þexp – �ð Þ –�½ � � 1=3; z3=
ð Þ
� 1=3ð Þ – 1

� �

½171�

The procedure described above is a first-order
matching that retains only the first terms in the expan-
sions [163] and [167]. If desired, the matching can be
carried out to higher order by working back and forth
between the inner and outer expansions, determining
the gauge functions �n(
) and �n(
) and matching at each
step. Higher-order matching often requires the use of
the more rigorous intermediate matching principle; for
examples see Hinch (1991), Kevorkian and Cole (1996),
or the somewhat less formal treatments of Nayfeh
(1973) or Van Dyke (1975). For many problems, how-
ever, first-order matching suffices to reveal the essential
structure and physical significance of the solution.

The MMAE has been used to solve a variety of
geophysically relevant problems involving BLs,
mostly with constant viscosity. Umemura and Busse
(1989) studied the axisymmetric convective flow in a
cylindrical container of height d with free-slip
boundaries, using the MMAE to match the interior
flow to the central rising plume and the circumfer-
ential downwelling. They found that the vertical
velocity in the plume is w� (�/d)(�ln 
)1/2Ra2/3,
where the dimensionless plume radius 
 X a/d satis-
fies 
(�ln 
)1/4� Ra�1/6, Ra� 1 being the Rayleigh
number. Whittaker and Lister (2006a) studied creep-
ing plumes from a point heat source with buoyancy
flux B on an impermeable plane boundary by match-
ing the BL flow to an outer flow that sees the plume
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as a line distribution of Stokeslets. They found that
the vertical velocity w� (B/�)1/2[ln(z/z0)]1/2, where
z is the height and z0¼ 32��2�/B. Whittaker and
Lister (2006b) studied the dynamics of a plume
above a heated disk on a plane boundary, and used
the MMAE to match the flow within the plume to
both an outer flow and a horizontal BL flow across
the disk. The results show that the Nusselt number
N� Ra1/5 for a rigid boundary and N� (Ra/ln Ra)1/3

for a free-slip boundary, where Ra� 1 is defined
using the disk radius. An application of the MMAE
to a problem with variable viscosity (Morris, 1982)
appears in the next subsection.

7.04.7.3 BLs with Strongly Variable
Viscosity

In a fluid with constant viscosity and infinite Prandtl
number, thermal BLs are not accompanied by vorti-
city BLs, because the velocity field varies on a length
scale much larger than the thickness of the TBL. As a
result, the velocity field within the BL can be repre-
sented by the first term of its Taylor series expansion
(or its multipole expansion in the case of an axisym-
metric plume; cf. Whittaker and Lister, 2006a), which
greatly simplifies the task of solving the thermal BL
equation. This happy state of affairs no longer obtains
if the viscosity of the fluid depends on temperature,
because the velocity and temperature fields are then
coupled.

Most studies of variable-viscosity BLs in the geo-
dynamics literature focus on mantle plumes in either
planar (Figure 10(a)) or axisymmetric (Figure 10(b))
geometry. The basic procedure is to supplement the
BL equations [143] or [144] with a simplified BL form
of the vertical component of the momentum equation
in which derivatives along the BL are neglected rela-
tive to those normal to it. In physical terms, this
equation simply states that the buoyancy force in the
plume is balanced by the lateral gradient of the ver-
tical shear stress � , or

y – nqy yn�ð Þ þ �g
 T –T1ð Þ ¼ 0 ½172�

where T1 is the temperature far from the plume, y is
the coordinate normal to the plume, and n¼ 0 or 1
for planar or axisymmetric geometries, respectively.

An important early study based on [172] in planar
geometry was that of Yuen and Schubert (1976), who
investigated the buoyant upwelling adjacent to a ver-
tical, isothermal, and traction-free plane of a fluid
with temperature-dependent Newtonian or power-

law rheology. The governing BL equations governing
admit a similarity transformation of the form

T ¼T1 þ f �ð Þ;  ¼ x nþ2ð Þ= nþ3ð Þg �ð Þ;
� ¼ yx – 1= nþ3ð Þ ½173�

where  is the streamfunction and n is the power-law
exponent. The more realistic case of an axisymmetric
plume from a point source of heat in a fluid with
temperature-dependent viscosity was studied by
Morris (1980), Loper and Stacey (1983), and Olson
et al. (1993). Using a similarity transformation, Morris
(1980) found that the temperature on the plume axis
decreases exponentially upward with a scale height
Q/12�kc�Tr, where Q is the total heat flux carried by
the plume, �Tr is the temperature change required
to change the viscosity by a factor e, and kc is the
thermal conductivity. Using a simpler approach in
which the functional form of the temperature profile
across the plume is assumed, Olson et al. (1993) found
a scale height equal to three times that determined by
Morris (1980). Hauri et al. (1994) considered a similar
problem, but with an empirical superexponential
temperature- and depth-dependent viscosity law.

While plumes involve free or buoyancy-driven con-
vection, variable-viscosity BLs can also arise in
situations where a large-scale background flow or
wind is imposed externally (forced convection). An
example is the previously introduced stagnation-point
flow model for the heat transfer from a hot sphere
moving in a fluid with strongly temperature-dependent
viscosity (Figure 1(b)). Using the MMAE, Morris
(1982) showed that three distinct dynamical regimes
occur: a conduction limit; a Stokes limit in which the
flow around the sphere resembles that in an isoviscous
fluid; and a lubrication limit in which most of the
volume flux is carried by the low-viscosity BL adjoin-
ing the hot plate. Solutions in spherical geometry were
obtained by Morris (1982) and Ansari and Morris
(1985) for the lubrication limit and an intermediate
(lubrication/Stokes) limit.

7.04.8 Long-Wave Theories

Long-wave theories comprise a variety of loosely
related approaches whose goal is to describe the
evolving thickness or shape of a thin layer. The
fundamental idea underlying these approaches is
the distinction between small amplitude and small
slope. To take a simple example, if a 2-D fluid layer
has thickness h0þ�h sin kx, its surface has small
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amplitude if �h/h0� 1 and small slope (or long
wavelength) if k�h� 1. Long-wave theories typi-
cally exploit the fact that small slope does not
imply small amplitude to derive equations governing
the nonlinear (finite-amplitude) evolution of long-
wave disturbances in a layer.

7.04.8.1 Lubrication Theory

Viscous flows in thin layers are common in geody-
namics: examples include lava flows, the deformation
of continents, and the spreading of buoyant plume
material beneath the lithosphere. Such flows are
described by a simplified form of the Navier–Stokes
equations, called the lubrication equations because of
their importance in the design of industrial lubrication
bearings. To develop the theory, we return to the
simple model of a viscous drop or gravity current
spreading on a rigid surface sketched in Figure 3(b).
The lubrication equations that describe such a current
can be obtained from the full Navier–Stokes equations
by exploiting the fact that h/RX 
� 1, where h and R

are the layer’s characteristic thickness and lateral
extent, respectively. The thinness of the layer has
three important consequences: (1) The horizontal
fluid velocity u X uexþ vey along the layer greatly
exceeds the velocity w normal to it. The flow is there-
fore quasi-unidirectional, and inertia is negligible. (2)
Derivatives of the velocity components across the layer
greatly exceed the derivatives along the layer
(qz� h�1� qx� qy� R�1). (3) The pressure gradient
across the layer is approximately hydrostatic. The
Navier–Stokes equations then take the simplified forms

�1 ? uþ wz ¼ 0; �1p ¼ �uzz; pz ¼ – �g ½174�

where w is the vertical velocity and �1¼ exqxþ eyqy

is the horizontal gradient operator.
To illustrate the use of the lubrication equations,

we determine the shape and spreading rate of an
axisymmetric gravity current with constant volume
V (Huppert, 1982). The geometry of this situation is
that of Figure 3(b) except that the vertical conduit
supplying fluid to the current is absent. Let r be the
(horizontal) radial coordinate, u(z, r, t) the radial
component of the velocity, h(r, t) the thickness of
the current, and R(t) its radius. In this (cylindrical)
geometry, [174] take the forms

r – 1 ruð Þrþwz ¼ 0; pr ¼ �uzz; pz ¼ – �g ½175�

Integrating [175c] subject to p(z¼ h)¼ 0, we obtain

p ¼ �g h – zð Þ ½176�

Next, we substitute [176] into [175b] and integrate
subject to the no-slip condition on the plate (u(0, r,
t)¼ 0) and vanishing traction at z¼ h. Now because
the current’s upper surface is nearly horizontal, the
traction there 	 �(uzþwx). However, wx� (h/R)2uz in
the lubrication approximation, so the condition of van-
ishing traction is simply uz(h, r, t)¼ 0. The profile of
radial velocity across the current is therefore

u ¼ �ghr

2�
z2 – 2hz
� �

½177�

where �ghr is the radial gradient of the hydrostatic
pressure that drives the flow. Next, the continuity
equation [175a] is integrated across the current sub-
ject to the impermeability condition w(0, r, t)¼ 0 to
obtain

0 ¼ w h; r ; tð Þ þ r – 1

Z h

0

ruð Þr dz ½178�

We now simplify [178] by using the kinematic sur-
face condition to eliminate w(h, r, t) X htþ u(h, r, t)hr;
taking qr outside the integral using the standard
expression for the derivative of an integral with a
variable limit; and evaluating the integral using
[177]. We thereby find that h(r, t) satisfies the non-
linear diffusion equation

ht ¼ 4�r – 1 rh3hr

� �
r
; � ¼ �g

12�
½179�

where � is the spreadability. Conservation of the
current’s volume requires

2�

Z R

0

rh dr ¼ V ½180�

We anticipate that for long times, the current will
achieve a universal self-similar shape that retains no

memory of the initial shape h(r, 0). Self-similarity
requires that h depend on the normalized radius
� X r/R(t) P [0, 1], and conservation of volume requires
hR2�V. We therefore seek a solution of the form

h ¼ V

R2
H

r

R

� �
½181�

Upon substituting [181] into [179] and [180], separ-
ating variables in the now-familiar way (see Section
7.04.4.2), and solving the resulting equations subject
to the conditions H9(0)¼H(1)¼ R(0)¼ 0, we obtain

H ¼ 4

3�
1 – �2
� �1=3

; R ¼ 4096�V 3t

81�3

� �1=8

½182�

The radius of the gravity current increases as the 1/8
power of the time.
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The solution [182] is a special case of a more
general class of similarity solutions of [179] studied
by Gratton and Minotti (1990) using a phase-plane
formalism. Rather than work with the single PDE
[179], Gratton and Minotti (1990) wrote down two
coupled PDEs for the thickness h and the mean
horizontal velocity v, and then used a similarity
transformation to reduce them to coupled ODEs.
The solutions of these ODEs can be represented as
segments of integral curves on a phase plane that
connect singular points representing different bound-
ary conditions such as sources, sinks, and current
fronts. Gratton and Minotti (1990) give an exhaustive
catalog of the solutions thus found, including a novel
second kind similarity solution (cf. Section 7.04.4.2)
for the evolution of an axisymmetric gravity current
surrounding a circular hole.

Geophysical applications of viscous gravity-cur-
rent theory include the solutions of Lister and Kerr
(1989b) for the spreading of 2-D and axisymmetric
currents at a fluid interface, which were applied by
Kerr and Lister (1987) to the spread of subducted
lithosphere along the boundary between the upper
and lower mantle. In the next subsection, we discuss
an extension of the theory to currents spreading
on moving surfaces, which have been widely used
to model the interaction of mantle plumes with a
moving or rifting lithosphere.

7.04.8.2 Plume–Plate and Plume–Ridge
Interaction Models

The geometry of these models was introduced in
Section 7.04.2.3, and is sketched in Figures 3(c) and
3(d). Motion of a plate (or plates) with a horizontal
velocity U0(x, y) generates an ambient flow U(x, y, z)
in the mantle below, which is assumed to have uni-
form density � and viscosity �m. The plume conduit is
represented as a volume source of strength Q fixed at
(x, y)¼ (0, 0) that emits buoyant fluid with density
���� and viscosity �p� �m. This fluid spreads
laterally beneath the lithosphere to form a thin layer
whose thickness h(x, y, t) is governed by a balance of
buoyancy-driven spreading and advection by the
ambient mantle flow. Strictly spreaking, a correct
solution of such a problem requires the simultaneous
determination of the flow in both fluids subject to the
usual matching conditions on velocity and stress at
their interface. However, useful results can be
obtained via a simpler approach in which the mantle
flow U(x, y, z) is specified a priori and is assumed to be
unaffected by the flow in the plume layer. Olson

(1990) proposed a model of this type for a plume
beneath a plate moving at constant speed U0

(Figure 3(c)), and derived a lubrication equation for
h(x, y, t) assuming a uniform mantle flow
U(x,y,z)¼U0ex . For the important special case of a
steady-state plume layer, the lubrication equation is

U0hx ¼ ��r2
1h4 þ Q � xð Þ� yð Þ; �� ¼ ��g

48�p
½183�

The three terms in [183] represent advection, buoy-
ancy-driven lateral spreading, and injection of the
plume fluid, respectively. The spreadability �� is
four times smaller than that for the gravity current
(eqn [179]) because Olson (1990) applied a no-slip
boundary condition u(x,y,h)¼U0ex at z¼ h, where
the plume fluid is in contact with the much more
viscous mantle.

The fundamental scales for the thickness h and
width L of the plume fluid layer can be found via a
scaling analysis of [183]. By requiring the three terms
in [183] to be of the same order and noting that
qx� qy� �(x)� �( y)� L�1, one finds (Ribe and
Christensen, 1994)

L � Q 3=4 ��1=4

U0
XL0; h � Q

��

� �1=4

X h0 ½184�

Further insight is provided by an analytical similarity
solution of [183] that is valid far downstream
(x� L0) from the plume source. We anticipate that
at these distances, the layer thickness h will vary
more strongly in the direction normal to the plate
motion than parallel to it, so that r1

2h4� (h4)yy.
Equation [183] now reduces to

U0hx ¼ �� h4
� �

yy
; U0

Z L=2

– L=2

h dy ¼ Q ½185�

where the source strength Q now appears in an
integral relation expressing conservation of the
downstream volume flux. Equations [185] admit the
similarity solution (Ribe and Christensen, 1994)

ĥ ¼ 3

40

� �1=3

x̂ – 1=5 C2 – ŷ2x̂ – 2=5
� �1=3

;

C ¼ 390625

9�3

� �1=10 � 5=6ð Þ
� 1=3ð Þ

� �3=5

½186�

where ĥ¼ h/h0 and (x̂, ŷ)¼ (x, y)/L0. The width of the
plume layer increases with downstream distance as
L¼ 2CL0(x/L0)1/5. This law remains valid for more
realistic 3-D numerical models with moderately tem-
perature-and pressure-dependent viscosity (Ribe and
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Christensen, 1994, 1999), but must eventually break
down if the mantle/plume viscosity contrast becomes
too large.

The interaction of a plume with an oceanic
spreading ridge has been studied using a modified
version of Olson’s (1990) model in which the uniform
mantle flow U¼U0ex is replaced by a corner
flow driven by surface plates diverging with a half-
spreading rate U0 (Figure 3(d); Ribe et al., 1995). The
balance of the source term Q�(x)�( y) with vertical
advection directly beneath the ridge yields a new
length scale L1� (Q/U0)1/2, which agrees well with
the along-strike extent of the plume fluid beneath the
ridge (waist width) determined by laboratory experi-
ments (Feighner and Richards, 1995) and numerical
models (Ribe et al., 1995.)

An important extension of the theory for geody-
namical applications is to currents in which both the
buoyancy and viscosity depend on temperature. Such
a theory was developed by Bercovici (1994) and
Bercovici and Lin (1996), who supplemented the
usual lubrication theory equations with an energy
equation describing the temperature distribution
inside the current. They found that variable viscosity
and buoyancy strongly influence the current’s shape
and spreading rate, which typically no longer exhibit
the self-similar behavior typical of currents with con-
stant properties.

7.04.8.3 Long-Wave Analysis of Buoyant
Instability

In convecting systems such as the Earth’s mantle,
plumes arise as instabilities of horizontal TBLs. A
long-wave model for this process has been proposed
by Lemery et al. (2000; henceforth LRS00), based on
two assumptions: that the wavelength of the initial
instability greatly exceeds the BL thickness, and that
the horizontal velocity of the fluid is approximately
constant across the BL. These assumptions allow the
coupled 3-D dynamics of the BL and the fluid out-
side it to be reduced to 2-D equations for the lateral
velocity at the edge of the BL and a temperature
moment that describes the distribution of buoyancy
within it.

The domain of the model is a fluid half-space
bounded by a cold traction-free surface x3¼ 0 held
at temperature ��T relative to the fluid far from it
(Figure 2(b)) The BL occupies the depth interval
x3 < h(x1, x2, t), where x
 are Cartesian coordinates
parallel to the BL and t is time. In the following,
hatted and unhatted variables are those in the BL

and in the interior, respectively, and an argument in

parentheses indicates a value of x3. The (constant)

viscosity of the outer fluid is �0, and the viscosity

within the BL is �̂(x3).
The starting point is the momentum equation

within the BL, namely, �qip̂þ qj�̂ij¼ �0
gT̂�i3,

where �̂ij is the deviatoric part of the stress tensor.

Taking the curl of this equation, applying the con-

tinuity equation �̂33¼��̂��, and noting that (q11
2 �̂
3,

q12
2 �̂
3, q22

2 �̂
3)� q33�̂
3 in the long-wavelength

approximation, we obtain

q2
33�̂
3þ q3Â
 ¼ –�0
gq
T̂; Â
 ¼ q
�̂�� þ q� �̂
� ½187�

Physically, [187] are the lateral (
¼ 1 or 2) compo-
nents of the vorticity equation. Now multiply [187]
by x3, integrate across the BL from x3¼ 0 to x3¼ h,
and take lateral derivatives outside the integral signs
by neglecting the small lateral variation of the upper
limit h(x1, x2, t). The result is

– �̂
3 hð Þ þ hq3�̂
3 hð Þ þ hÂ
 hð Þ – Â

� �

¼ �0
gq
M

½188�

where hi ¼
R h

0 dx3 and

M ¼ – x3T̂
� �

½189�

is the temperature moment. Now h q3�̂
3(h)� �̂
3(h)
in the long-wave limit, and continuity of shear stress
at x3¼ h requires �̂
3(h)¼ �
3(h). But because the
interior fluid sees the BL as a skin with zero thick-
ness, �
3(h)	 �
3(0)	 �0q3u
(0). Moreover, the
lateral velocity components are constant across the
layer to lowest order and must match those in the
interior fluid, requiring û
¼ u
(0) and �̂
�¼
�̂(x3)[q
u�(0)þ q�u
(0)]. Substituting these expres-
sions into [188], we find

–q3u–� ? � 2e– I� ? uð Þ½ �–� 3�� ? uð Þ ¼ �0g


�0
�M ½190�

where

� ¼ �̂ x3ð Þ – �0

�0

� �
½191�

is a relative excess surface viscosity, u is the horizon-
tal velocity vector, e is the 2-D strain-rate tensor, � is
the 2-D gradient operator, I is the identity tensor,
and all terms are evaluated at x3¼ 0. Equation [191]
is an effective boundary condition that represents
the influence of the BL on the interior fluid. It
shows that the BL acts like an extensible skin with
shear viscosity ��0 and compressional viscosity 3��0

that applies a shear stress proportional to �M to the
outer fluid.
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The next step is to determine explicitly the flow
in the outer fluid that is driven by lateral variations in
M by solving the Stokes equations in the half-space
x3� 0 subject to [190]. Evaluating the resulting solu-
tion at x3¼ 0, we obtain the closure relationship
(LRS00, eqn [2.41])

�u kð Þ ¼ ik

2k 1þ 2�kð Þ
�0g


�0

�M kð Þ ½192�

where k is the horizontal wave vector, k¼ jkj, and
overbars denote the Fourier transform. Equation [192]
is only valid if � does not vary laterally. Finally, an
evolution equation for M is obtained by taking the first
moment of the energy equation, yielding

qt M þ u ? �M þ 2M� ? u ¼ � r2M þ�T
� �

½193�

Equations [192] and [193] are three equations for
u
(x1, x2, t) and M(x1, x2, t) that can be solved numeri-
cally subject to periodic boundary conditions in the
lateral directions for a specified initial condition
M(x1, x2, 0).

An important special case of the above
equations is the R–T instability of a layer with den-
sity �0þ�� and viscosity �1¼ ��0, obtained by the
transformation

M ! h2��=2�0
; �! h � – 1ð Þ; �! 0 ½194�

A linear stability analysis of [192] and [193] can now
be performed by setting h¼ h0þ h̃ exp(ik ? x) exp(st)
and u¼ ũ exp(ik ? x) exp (st) and linearizing in the
perturbations h̃ and ũ. The resulting growth rate
is s/s1¼ 
�/2[1þ 2
(�� 1)], where 
 ¼ h0k and
s1 ¼ g��h0=�1, which agrees with the exact analy-

tical expression [29] if �� 
. Equations [190]–[193]
are therefore valid as long as the BL is not too much
less viscous than the outer fluid.

The above equations also describe the finite-
amplitude evolution of the R–T instability of a
dense viscous layer over a passive half-space
(Canright and Morris, 1993 XCM93). Because the
half-space is effectively inviscid (�!1), the closure
law (192) is not meaningful, and the relevant equa-
tions are [190] and [193]. Rewriting these using [194]
and noting that the first term in [190] (shear stress
applied by the inviscid fluid) is negligible, we obtain

�
g��

4�1
h2 þ h� ? u

� �
þ � ? heð Þ ¼ 0 ½195�

qt h þ � ? huð Þ ¼ 0 ½196�

which are just the dimensional forms of eqns [3.8] and
[3.7], respectively, of CM93.

A remarkable feature of the eqns [192]–[193] and
[195]–[196] is the existence of similarity solutions in
which M or h becomes infinite at a finite time ts,
corresponding to the runaway escape of the plume
from its source layer. The general form of the solu-
tion for h or M1/2 is

h or M1=2 ¼ ts – tð Þafct
x

ts – tð Þb

 !
½197�

where x is the lateral or radial distance from the peak
of the instability and a and b are exponents. CM93’s
solution of [195]–[196] gives a¼�1 for a Newtonian
fluid, whereas LRS00 solved [192]–[193] in the limit
�� 1 to find a¼�1/2. The discrepancy appears to
be due to the fact that LRS00 treated � as a constant,
whereas � _ h in the problem studied by CM93.

7.04.8.4 Theory of Thin Shells, Plates, and
Sheets

A central problem in geodynamics is to determine
the response of the lithosphere to applied loads such
as seamounts, plate boundary forces (ridge push, slab
pull, etc.), and tractions imposed by underlying
mantle convection. Such problems can be solved
effectively using thin-shell theory, a branch of
applied mechanics concerned with the behavior of
sheet-like objects whose thickness h is much smaller
than their typical radius of curvature R. This condi-
tion is evidently satisfied for the Earth’s lithosphere,
for which h	 100 km and R	 6300 km. A further
assumption of thin-shell theory is that the stresses
within the shell vary laterally on a length scale L� h.
Thin-shell theory therefore properly belongs to the
general class of long-wave theories.

The basic idea of thin-shell theory is to exploit the
smallness of h/R to reduce the full 3-D dynamical
equations to equivalent 2-D equations for the
dynamics of the shell’s mid-surface. Let the 3-D
Cartesian coordinates of any point on this surface
be x0(�1, �2), where �
 are coordinates on the mid-
surface itself. In the most general formulations of
shell theory (e.g., Niordson, 1985), �
 are allowed to
be arbitrary and nonorthogonal. Such a formulation is
useful for problems involving large finite deforma-
tion, because �
 can be treated as Lagrangian
coordinates. If the deformation is small, however, it
makes sense to define �
 as orthogonal lines-of-
curvature coordinates whose isolines are parallel to
the two directions of principal curvature of the mid-
surface at each point. This less elegant but more
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readily understandable formulation is the one used in
most geodynamical applications of shell theory.

Relative to lines-of-curvature coordinates, the
fundamental quantities that describe the shape of
the mid-surface are the principal radii of
curvature R
 and the Lamé parameters A
¼ jq
x0j,
where q
¼ q/q�
. For notational convenience, let
B
¼ 1/A
 and K
¼ 1/R
. All vector and tensor
quantities defined on the mid-surface are expressed
relative to a local orthonormal basis comprising two
surface-parallel unit vectors d1, d2 and a normal
vector d3 defined by

d1 ¼ B1q1x0; d2 ¼ B2q2x0; d3 ¼ d1 � d2 ½198�

In the following, z is a coordinate normal to the mid-
surface z¼ 0. Moreover, the repeated subscript 
 is
not summed unless explicitly indicated, and �¼ 2
when 
¼ 1 and vice versa.

The general equilibrium equations for a shell
without inertia are (Novozhilov, 1959, p. 39)

q
 A�T


� �
þ q� A
Sð Þ þ Sq�A
 –T�q
A�

þ K

	
q
 A�M


� �
–M�q
A�

þ 2q� A
Hð Þ þ 2R
K�Hq�A



¼ – A1A2P
 ½199a�

X2


¼1

�
B1B2q


	
B

�
q
 A�M


� �
–M�q
A�

þ q� A
Hð Þ þ Hq�A

�


–K
T


�
¼ – P3 ½199b�

where

T
 ¼
Z h=2

– h=2

1þ K�z
� �

�

dz;

S ¼
Z h=2

– h=2

1 –K1K2z2
� �

�12dz ½200a�

M
 ¼
Z h=2

– h=2

z 1þ K�z
� �

�

dz;

H ¼
Z h=2

– h=2

z 1þ K1 þ K2ð Þz=2½ ��12dz ½200b�

Pi is the total load vector (per unit midsurface area),
and ��� is the usual Cauchy stress tensor. The essen-
tial content of [199] is that a loaded shell can deform
in two distinct ways: by in-plane stretching and shear,
the intensity of which is measured by the stress
resultants T
 and S, and by bending, which is mea-
sured by the bending moments M
 and H. In general
both modes are present, in a proportion that depends
in a complicated way on the mid-surface shape.
Shells that deform only by extension and in-plane
shear (M
¼H¼ 0) are called membranes.

Equations [199] are valid for a shell of any mate-
rial. To solve them, we need constitutive relations
that link T
, S, M
, and H to the displacement vi (for
an elastic shell) or the velocity ui (for a fluid shell) of
the mid-surface. For an elastic shell with Young’s
modulus E and Poisson’s ratio �, these are
(Novozhilov, 1959, pp. 24, 48)

T
 ¼
Eh

1 – �2


 þ �
�
� �

;

M

Eh3

12 1 –�2ð Þ �
 þ ���
� �

½201a�

S ¼ Eh

2 1þ �ð Þ!; H ¼ Eh3

12 1þ �ð Þ � ½201b�

where



 ¼ B
q
va þ B1B2v�q�A
 þ K
v3 ½202a�

! ¼
X2


¼1

A�B
q
 B�v�
� �

½202b�

�
 ¼ – B
q
 B
q
v3 –K
v
ð Þ
– B1B2q�A
 B�q�v3 –K�v�

� �
½202c�

� ¼ – B1B2q
2
12u3 þ

X2


¼1

B1B2B
 q�A

� �

q
v3

�

þK
 B�q�v
 – B1B2u3q�A

� ��

½202d�

are the six independent quantities that describe
the deformation of the mid-surface: the elongations


 and the changes of curvature �
 in the two
coordinate directions, the in-plane shear deformation
!, and the torsional (twist) deformation � . The
analogous expressions for a fluid shell are obtained
by applying the transformation [135] to [201] and
[202].

The above equations include all the special cases
commonly considered in geodynamics. The first is
that of a flat (R1¼ R2¼1, A1¼ A2¼ 1) elastic plate
with constant thickness h. The (uncoupled) equations
governing the flexural and membrane modes are
(Landau and Lifshitz, 1986)

Eh3

12 1 – �2ð Þr
4
1v3 ¼ P3 ½203a�

Eh

2 1 – �2ð Þ 1 – �ð Þr2vþ 1þ �ð Þ� � ? vð Þ
	 


¼ –P1e1 –P2e2

½203b�

where r2, �, and v are the 2D (in-plane) Laplacian
operator, gradient operator, and displacement vector,
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respectively, v3 is the normal displacement, and P is
the 3D load vector. The quantity Eh3/12(1� �2) XD is
called the flexural rigidity. Equation [203a] has been
widely used to model the deformation of the litho-
sphere caused by topographic loading (e.g., Watts,
1978). McKenzie and Bowin (1976) generalized
[203a] to a thick incompressible plate that need not
be thin relative to the load wavelength.

A second important special case is that of a sphe-
rical shell with radius R¼ R1¼ R2. If �1¼ �
(colatitude) and �2¼� (longitude), then A1¼ R and

A2¼ R sin �. Turcotte (1974) used these equations in

the membrane limit to estimate the magnitude of the
stresses generated in the lithosphere when it moves

relative to the Earth’s equatorial bulge, and found

that they may be large enough to cause propagating

fractures. Tanimoto (1998) used the complete (mem-

brane plus flexural) equations to estimate the

displacement and state of stress in subducting litho-

sphere, and concluded that the state of stress is

strongly influenced by the spherical geometry.
A third case is pure membrane flow in a flat fluid

sheet. A well-known application is the thin-sheet model

for continental deformation of England and McKenzie

(1983), whose eqn, (16) is just the fluid version of [203b]

with a power-law rheology of the form [31f] and an

expression for P1 and P2 representing the lateral forces
arising from variations in crustal thickness.

A final limiting case of interest is the finite-amplitude
deformation of a 2-D Newtonian fluid sheet. By sym-

metry, q2¼ u2¼ K2¼ 
2¼!¼�2¼ � ¼ S¼H¼ 0 for

this case. If �1X s is the arclength along the mid-surface,

then A1¼ A2¼ 1. The instantaneous mid-surface velo-

city u(s, t) produced by a given loading distribution Pi(s,

t) is governed by the fluid analogs of [199]–[202], while

the evolution of the mid-surface position x0(s, t) and the

sheet thickness h(s, t) are described by the kinematic

equations

D t x0 ¼ u; D t h ¼ – h
1 ½204�

where D t is a convective derivative that follows the
motion of material points on the (stretching) mid-
surface (Buckmaster et al., 1975.) Ribe (2003) used
these equations to determine scaling laws for the
periodic buckling instability of a viscous sheet falling
onto a horizontal surface. Ribe et al. (2007)
subsequently showed that these scaling laws predict
well the anomalous apparent widening of subducted
lithosphere imaged by seismic tomography at
700–1200 km depth beneath some subduction zones
(e.g., Central America, Java).

7.04.8.5 Effective Boundary Conditions
From Thin-Layer Flows

The interaction of a convective flow with a rheologi-

cally distinct lithosphere can be studied using a simple

extension of thin-shell theory in which the shell’s

dynamics is reduced to an equivalent boundary con-

dition on the underlying flow. For simplicity, we

consider a flat fluid sheet with constant thickness h

and laterally variable viscosity �̂(x1, x2), overlying a

mantle whose viscosity just below the sheet is ��(x1, x2).

In the following, superposed hats and bars denote

quantities within the sheet and in the mantle just

below it, respectively.
Suppose that the sheet deforms as a membrane

(cf. Section 7.04.8.4), so that the lateral velocities û

and the pressure p̂ are independent of the depth x3,

where x3¼ 0 and x3¼�h are the upper and lower

surfaces of the sheet, respectively. Integrating the lat-

eral force balance q
�̂
�þ q3�̂�3¼ 0 across the sheet

subject to the free-surface condition �̂�3jz¼ 0¼ 0, we

obtain

hq
 – p̂�
� þ 2�̂ê
�
	 


– �̂�3jz¼ – h¼ 0 ½205�

where e
�¼ (q
u�þ q�u
)/2 is the strain-rate tensor.
Now continuity of the velocity and stress at x3¼�h

requires ûi¼ �ui, ê
�¼ �e
�, �̂�3jz¼�h¼ ���3, and
– p̂þ 2�̂ê33 X – p̂ – 2�̂�e�� ¼ ��33, where the continuity

equation ê33¼�ê�� has been used. Substituting these
relations into [205], we obtain an effective boundary
condition that involves only mantle (barred) variables
and the known viscosity �̂ of the sheet:

h – 1 ���3 ¼ 2q
 �̂ �e
� þ �e���
�
� �	 


þ q� ��33 ½206�

Equation [206] remains valid even if the sheet has a
power-law rheology [31f], because Î	 (ê
�ê
�þ ê 2

��)1/2

can be written in terms of the mantle variables using the
matching condition ê
�¼ �e
�.

In reality, the sheet thickness is governed by the
conservation law qth¼�q
(hû
), and will therefore

not in general remain constant. However, this effect

is ignored in most applications. Weinstein and Olson

(1992) used the 1-D version of (206) with a power-

law rheology for �̂ to study the conditions under

which a highly non-Newtonian sheet above a vigor-

ously convecting Newtonian fluid exhibits plate-like

behavior. Ribe (1992) used the spherical-coordinate

analog of [206] to investigate the generation of a

toroidal component of mantle flow by lateral viscos-

ity variations in the lithosphere.
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7.04.8.6 Solitary Waves

Another flow that can be studied using a long-wave

approximation is the motion of finite-amplitude soli-

tary waves in a two-fluid system. The potential

importance of such waves in geodynamics was first

demonstrated theoretically using equations describing

the migration of a low-viscosity melt phase in a vis-

cous porous matrix (Richter and McKenzie, 1984;

Scott and Stevenson, 1984; see also Chapter 7.06)

Scott et al. (1986) and Olson and Christensen (1986)

subsequently showed that similar waves can exist in a

cylindrical conduit of low-viscosity fluid embedded in

a fluid of higher viscosity. These waves are examples

of kinematic waves (Whitham, 1974), which occur

when there is a functional relation between the density

or amplitude of the medium and the flux of a con-

served quantity like mass; other examples include the

propagation of a pulse of wastewater down a gutter

and the flow of traffic on a crowded highway.
To illustrate the basic principles, we follow here

the derivation of Olson and Christensen (1986) for

solitary waves in viscous conduits. Consider an infi-

nite vertical conduit with a circular cross-section of

radius R(z, t) and area A(z, t), where z is the height

and t is time. The conduit contains fluid with density

�L and viscosity �L, and is embedded in an infinite

fluid with density �M X �Lþ�� and viscosity

�M� �L. Conservation of mass in the conduit

requires

At þ Qz ¼ 0 ½207�

where Q(z, t) is the volume flux and subscripts indi-
cate partial derivatives. Because �M� �L, the fluid in
the conduit sees the wall as rigid. The volume flux is
therefore given by Poiseuille’s law

Q ¼ –
A2

8��L
Pz ½208�

where the nonhydrostatic pressure P in the conduit is
determined by the requirement that the normal stress
�rr in the radial (r) direction be continuous at r¼ R.
Now the pressure in the matrix is hydrostatic, and
the deviatoric component of �rr in the conduit is
negligible relative to that in the matrix because
�M� �L. Continuity of �rr therefore requires
�Lgz� P¼ �Mgzþ 2�M ur(R). However, because the
flow in the matrix is dominantly radial, the continu-
ity equation requires u _ r�1, whence ur(R)¼�u(R)/
R¼�At/2A and

P ¼ –��gzþ �MA – 1At ½209�

Substituting [209] into [208] and using [207], we
obtain

Q ¼ A2

8��L
��g þ �M A – 1Qz

� �
z

h i
½210�

The nonlinear coupled equations [207] and [210]
admit finite-amplitude traveling wave solutions
wherein A¼ A(z� ct) and Q¼Q(z� ct), where c is
the wave speed. Substitution of these forms into [207]
and [210] yields a dispersion relation for c as a func-
tion of the minimum and maximum amplitudes of the
wave (Olson and Christensen, 1986, eqn, (22)). The
most interesting case is that of an isolated solitary
wave that propagates without change of shape along
an otherwise uniform conduit with A¼ A0 and
Q¼��gA0

2/ 8��L XQ0. In the limit of large ampli-
tude, the velocity of such a wave is

c ¼ 2c0ln Amax=A0ð Þ ½211�

where c0 XQ0/A0 is the average Poiseuille velocity in
the conduit far from the wave and Amax is the max-
imum cross-sectional area of the wave. The speed of
the wave thus increases with its amplitude.

The mathematical properties of solitary waves in
deformable porous media were further investigated by
Barcilon and Richter (1986), who concluded that such
waves are probably not solitons, that is, that they do
not possess an infinite number of conservation laws.
Whitehead and Helfrich (1986) showed that the equa-
tions describing solitary waves in both porous media
and fluid conduits reduce to the Korteweg–de Vries
equation in the limit of small amplitude. Geophysical
applications of conduit solitary waves include
Whitehead and Helfrich’s (1988) suggestion that
such waves might transport deep-mantle material
rapidly to the surface with little diffusion or contam-
ination. Schubert et al. (1989) subsequently showed
numerically that solitary waves can also propagate
along the conduits of thermal plumes in a fluid with
temperature-dependent viscosity. Such solitary waves
have been invoked to explain the origin of the ‘V-
shaped’ topographic ridges on the ocean floor south of
Iceland (Albers and Christensen, 2001; Ito, 2001).

7.04.9 Hydrodynamic Stability and
Thermal Convection

Not every correct solution of the governing equa-
tions of fluid mechanics can exist in nature or in the
laboratory. To be observable, the solution must also
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be stable, that is, able to maintain itself against the

small disturbances or perturbations that are ubiqui-

tous in any physical environment. Whether this is the

case can be determined by linear stability analysis,

wherein one solves the linearized equations that gov-

ern infinitesimal perturbations of a solution of

interest (the basic state) to determine the conditions

under which these perturbations grow (instability) or

decay (stability). Typically, one expands the pertur-

bations in normal modes that satisfy the equations

and boundary conditions, and then determines which

modes have a rate of exponential growth with a

positive real part. However, linear stability analysis

describes only the initial growth of perturbations, and

is no longer valid when their amplitude is sufficiently

large that nonlinear interactions between the modes

become important. Various nonlinear stability meth-

ods have been developed to describe the dynamics of

this stage.
Here we illustrate these methods for two geody-

namically important instabilities: the R–T instability

of a buoyant layer, and Rayleigh–Bénard convection

between isothermal surfaces. The Section concludes

with a discussion of how similar methods have been

applied to thermal convection in more complex and

realistic systems.

7.04.9.1 R–T Instability

We have already encountered the R–T instability in

Section 7.04.4.3, where it served as an example of

how intermediate asympotic limits of a function

can be identified and interpreted. We now outline

the linear stability analysis that leads to the expres-

sion [28] for the growth rate of infinitesimal

perturbations.
The model geometry is shown in Figure 2(a).

The flow in both fluids satisfies the Stokes equations

�p¼ ��2u, which must be solved subject to the

appropriate boundary and matching conditions. Let

the velocities in the two layers be un X (un,vn, wn). The

vanishing of the normal velocity and the shear stress

at z¼�h0 requires

w1 – h0ð Þ ¼ qzu1 – h0ð Þ ¼ qzv1 – h0ð Þ ¼ 0 ½212�

where the arguments x1, x2, and t of the variables
have been suppressed. The velocity must vanish at
z¼1, which requires

u2 1ð Þ ¼ v2 1ð Þ ¼ w2 1ð Þ ¼ 0 ½213�

Finally, continuity of the velocity and traction at the
interface requires

u ? t½ � ¼ u ? n½ � ¼ t ? s ? n½ � ¼ n ? s ? n½ � þ g��	 ¼ 0

½214�

where [. . .] denotes the jump in the enclosed quan-
tity from fluid 1 to fluid 2 across the interface z¼ 	, �
is the nonhydrostatic stress tensor,

n ¼ 1þ �1	j j2
� � – 1=2

ez –�1	ð Þ ½215�

is the unit vector normal to the interface, and t is any
unit vector tangent to the interface. Because the
hydrostatic pressure gradients �ezg�n in the two
fluids are different, the nonhydrostatic part of the
normal stress jumps by an amount �g��	 across
the interface even though the total normal stress is
continuous there. The final relation required is the
kinematic condition

qt	 þ u 	ð Þ ? �1	 ¼ w 	ð Þ ½216�

which expresses the fact that the interface z¼ 	 is a
material surface.

Because the Stokes equations are linear, the non-
linearity of the problem resides entirely in the
conditions [214] and [216]. To linearize them, we
expand all field variables in Taylor series about the
undisturbed position z¼ 0 of the interface and elim-
inate all terms of order 	2 and higher, noting that
u _ 	 because the flow is driven entirely by the buoy-
ancy associated with the disturbance of the interface.
The resulting linearized matching and kinematic
conditions are

u½ � ¼ v½ � ¼ w½ � ¼ �xz½ � ¼ �yz

	 

¼ �zz½ � þ g��	 ¼ 0 ½217�

qt	 ¼ w 0ð Þ ½218�

To lowest order in �, the flow is purely poloidal
(Ribe, 1998) and can be described by two poloidal
potentials P n (one for each of the layers n¼ 0 and 1)
that satisfyr1

2r4P n¼ 0 (see Section 7.04.5.2). Let the
(exponentially growing) deformation of the interface
be 	¼ 	0f (x, y)est, where s is the growth rate and f is a
planform function satisfyingr1

2f¼�k2f, where k X jkj
is the magnitude of the horizontal wave vector k.
Then the solutions for P n must have the form

P n ¼ Pn zð Þf x; yð Þest ½219�

Substitution of [219] into [43], [212], [213], and [217]
yields the two-point BVP

D2 – k2
� �2

Pn ¼ 0 ½220a�
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P1 – h0ð Þ ¼ D2P1 – h0ð Þ ¼ P2 1ð Þ ¼ DP2 1ð Þ ¼ 0 ½220b�

P½ � ¼ DP½ � ¼ � D2 þ k2
� �

P
	 


¼ �D 3k2 –D2
� �

P
	 


– g��	0 ¼ 0 ½220c�

where D¼ d/dz. The general solution of [220a] is

Pn ¼ An þ Bnzð Þe – kz þ Cn þ Dnzð Þekz ½221�

Substitution of [221] into [220b] and [220c] yields
eight algebraic equations which can be solved for the
constants An – Dn. The growth rate is then deter-
mined from the transformed kinematic condition
	0s¼�k2P1(0), yielding [28].

The R–T instability has been used to model a
variety of mantle processes. The instability of a thin
layer beneath an infinite fluid half-space was studied
by Selig (1965) and Whitehead and Luther (1975),
and used by the latter as a model for the initiation of
mantle plumes. Lister and Kerr (1989a) studied ana-
lytically the instability of a rising horizontal cylinder
of buoyant fluid, motivated in part by suggestions
that the R–T instability in this geometry might
explain the characteristic spacing of island-arc volca-
noes (Marsh and Carmichael, 1974) and of volcanic
centers along mid-ocean ridges (Whitehead et al.,
1984). They found that the growth rate s and the
most unstable wavelength are independent of the
ambient fluid/cylinder viscosity ratio � when
�� 1, unlike flat layers for which s _ �1/3. Canright
and Morris (1993) performed a detailed scaling ana-
lysis of the instability for two layers of finite depth
(see Section 7.04.4.3), and studied the nonlinear evo-
lution of a Newtonian or power-law layer above an
effectively inviscid half-space as a model for the
initiation of subduction (see Section 7.04.8.3.) Ribe
(1998) used a weakly nonlinear analysis to study
planform selection and the direction of superexpo-
nential growth (spouting) in the R–T instability of a
two-layer system. Finally, analytical solutions of the
R–T instability with more complicated rheological
and density structures have been used to model the
delamination of the lowermost lithosphere (Conrad
and Molnar, 1997; Houseman and Molnar, 1997;
Molnar and Houseman, 2004).

7.04.9.2 Rayleigh–Bénard Convection

Rayleigh–Bénard (R–B) convection in a fluid layer is
the paradigmatic case of a pattern-forming instability.
The classic R–B configuration (Figure 12) comprises
fluid with constant kinematic viscosity � and thermal
diffusivity � confined between horizontal planes z¼


d/2 held at temperatures��T/2. The fluid density

depends on temperature as �¼ �0(1�
T), where 

is the coefficient of thermal expansion. The planes

z¼
d/2 may be either rigid or traction-free, and k is

the characteristic horizontal wave number of the con-

vection pattern. In the rest of this subsection, all

variables will be nondimensionalized using d, d2/�,

�/d, and �T as scales for length, time, velocity, and

temperature, respectively, and {x1,x2, x3} X {x, y, z}.
The basic state is a motionless (ui¼ 0) layer with a

linear (conductive) temperature profile T¼�z.

Because the viscosity is constant, buoyancy forces

generate a purely poloidal flow

ui ¼ L i P ; L i ¼ �i3r2 – qiq3 ½222�

where P is the poloidal potential defined by [41]. In
the geodynamically relevant limit of negligible iner-
tia, the equations satisfied by P and the perturbation
� of the conductive temperature profile are

r4P ¼ –Ra � ½223a�

�t þ L j P qj � – r2
1P ¼ r2� ½223b�

where r1
2¼ q11

2 þ q22
2 and

Ra ¼ g
d 3�T

��
½224�

is the Rayleigh number. The boundary conditions at
z¼
1/2 are obtained from [41] with T ¼ 0, noting
that P is arbitrary to within an additive function of z

(rigid)
(free)

T = ΔT/2

T = –ΔT/2
 z = 0

 π /2k–  π /2k

z = d /2

z = –d /2

x
0

= 0
 zz = 0

Figure 12 Geometry of Rayleigh–Bénard convection.

Fluid with constant kinematic viscosity �, thermal diffusivity

�, and thermal expansivity 
 is confined between horizontal
planes z¼
d/2 held at temperatures ��T/2. The

characteristic horizontal wave number of the convection

pattern is k. For the special case of 2-D rolls, the roll axis is

parallel to the y- direction. The boundary conditions on the
poloidal scalar P for free and rigid boundaries are indicated

above the top boundary, and subscripts denote partial

differentiation.
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and/or an additive function f (x, y) satisfying r1
2f¼ 0.

Impermeability requires r1
2P ¼ 0, which can be

replaced by the simpler condition P ¼ 0. The no-
slip condition at a rigid surface requires q13

2 P ¼ q23
2 P

¼ 0, which can be replaced by q3P ¼ 0. Finally, the
vanishing of the tangential stress at a free surface
requires q1 r2

1 – q
2
33

� �
P ¼ q2 r2

1 – q
2
33

� �
P ¼ 0, which

can be replaced by q33
2 P ¼ 0. In summary, the bound-

ary conditions are

� ¼ P ¼ q2
33P ¼ 0 freeð Þ ½225a�

or

� ¼ P ¼ q3P ¼ 0 rigidð Þ ½225b�

7.04.9.2.1 Linear stability analysis

The initial/BVP describing the evolution of small
perturbations to the basic state is obtained by linear-
izing [223] about (P , �)¼ (0, 0), reducing the
resulting equations to a single equation for P by
cross-differentiation, and recasting the boundary
conditions �(
1/2)¼ 0 in terms of P with the help
of [223a]. For the (analytically simpler) free-bound-
ary case, the result is

r4 r2 – qt

� �
–Rar2

1

	 

P ¼ 0 ½226a�

P ¼ q2
33P ¼ q4

3333P ¼ 0 at z ¼ 
1=2 ½226b�

Equations [226] admit normal mode solutions of the
form

P ¼ P zð Þf x; yð Þest ½227�

where � is the growth rate and f (x,y) is the planform
function satisfying r1

2f¼�k2f. Substituting [227]
into [226], we obtain

D2 – k2
� �2

D2 – k2 – s
� �

þ Rak2
h i

P ¼ 0 ½228a�

P ¼ D2P ¼ D4P ¼ 0 at z ¼ 
1=2 ½228b�

where D¼ d/dz. Equations [228] define an eigenva-
lue problem whose solution is

P ¼ sin n� zþ 1

2

� �
; s ¼ Ra k2

n2�2 þ k2ð Þ2
–n2�2 – k2 ½229�

where the index n defines the vertical wavelength of
the mode. The growth rate s becomes positive when Ra

exceeds a value Ra0(k) that corresponds to marginal
stability. This occurs first for the mode n¼ 1, for which

Ra0 ¼
�2 þ k2ð Þ3

k2
½230�

The most unstable wave number kc and the corre-
sponding critical Rayleigh number Rac are found by
minimizing Ra0(k), yielding

Rac ¼
27�4

4
	 657:5; kc ¼

�ffiffiffi
2
p 	 2:22 ½231�

The corresponding results for convection between rigid
surfaces must be obtained numerically (Chandrasekhar,
1981, pp. 36–42), and are Rac	 1707.8, kc	 3.117. The
marginally stable Rayleigh number Ra0(k) is shown for
both free and rigid surfaces in Figure 13(a). For future
reference, we note that [229] can be written

s ¼ �2 þ k2
� � Ra – Ra0

Ra0
½232�

7.04.9.2.2 Order-parameter equations for

finite-amplitude thermal convection
Linear stability analysis predicts the initial growth
rate of a normal mode with wave number k.
Typically, however, many different modes have the
same or nearly the same growth rate: examples
include convection rolls with the same wave number
but different orientations, and rolls with the same
orientation but slightly different wave numbers
within a narrow band around the most unstable
wave number kc. The question therefore arises:
among a set of modes with equal (or nearly equal)
growth rates, which mode or combination of modes is
actually realized for a given (supercritical) Rayleigh
number? The answer depends on a combination of
two factors: the nonlinear coupling between different
modes due to the nonlinear terms in the governing
equations, and external biases imposed by the initial
and/or boundary conditions. Linear stability analysis
is powerless to help us here, and more complicated
nonlinear theories are required.

An especially powerful method of this type is to
reduce the full 3-D equations governing convection to
2-D equations for one or more order parameters that
describe the degree of order or patterning in the
system. Newell et al. (1993) identified four distinct
classes of such equations, depending on whether the
degree of supercriticality 
 X [(Ra� Rac)/Rac]

1/2 is
small or of order unity, and whether the horizontal
spectrum of the allowable modes is discrete or (quasi-)
continuous (Table 4). The spectrum is discrete for
convection in an infinite layer with a periodic plan-
form characterized by a single fundamental wave
number k, and also for a layer of finite extent
L¼O (d ) when only a few of the allowable wave
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numbers 2n�/L are unstable for a given Rayleigh
number. The wave numbers of the unstable modes
become ever more closely spaced as L increases,
until in the limit L/d� 1 they can be regarded as
forming a quasi-continuous spectrum.

Historically, the first case to be studied (Malkus
and Veronis, 1958) was that of a single mode with

� 1. Here the order parameter is the amplitude A(t)
of the dominant mode, whose temporal evolution is
described by a nonlinear Landau equation (Landau,
1944). Subsequently, these weakly nonlinear results
were extended to 
¼O (1) by Busse (1967a), who
used a Galerkin method to obtain numerical solutions
for convection rolls and to examine their stability.
The more complicated case of a continuous spectrum
was first studied by Segel (1969) and Newell and
Whitehead (1969), who derived the evolution equa-
tion governing the slowly varying (in time and space)
amplitude envelope A(
x, 
1/2y, 
2t) of weakly non-
linear (
� 1) convection with modes contained in a

narrow band surrounding the critical wave vector
kc¼ (kc,0) for straight parallel rolls. Finally, Newell
et al. (1990) extended these results to 
¼O (1) by
deriving the phase diffusion equation that governs
the slowly varying phase � of a convection pattern
that locally has the form of straight parallel rolls. We
now examine each of these four cases in turn.

7.04.9.2.3 Amplitude equation for

convection rolls

Consider convection between traction-free bound-
aries in the form of straight rolls with axes parallel
to ey. The equations and boundary conditions satis-
fied by P and � are [223], where P and � are
independent of y and q2 X 0.

The basic idea of weakly nonlinear analysis is to
expand the dependent variables in powers of a small
parameter 
 that measures the degree of supercriti-
cality. By substituting these expansions into the
governing equations and gathering together the
terms proportional to different powers of 
, one
reduces the original nonlinear problem to a sequence
of linear (but inhomogeneous) problems that can be
solved sequentially. Thus we write

P ¼
X1
n¼1


nP n; � ¼
X1
n¼1


n�n;

Ra ¼ Ra0 þ
X1
n¼1


nRan ½233�

Table 4 Order-parameter equations for Rayleigh–

Bénard convection

Spectrum 
�1 
¼O(1)

Discrete amplitude

equations

finite-amplitude

convection rolls

Continuous envelope

equations

slowly modulated

patterns
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∋
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∋

Figure 13 (a) Marginally stable Rayleigh number Ra0 as a function of wave number k for Rayleigh–Bénard convection

between traction-free (solid line) and rigid (dashed line) surfaces. The critical Rayleigh number Rac and wave number kc are

indicated for the free-surface case. For a slightly super-critical Rayleigh number Ra¼ (1þ 
2)Rac, a band of wave numbers of
width � 
 is unstable. (b) The most unstable wave vector k¼ (k1, k2) for Rayleigh–Bénard convection lies on a circle of radius

kc. Changing jkj by an amount � 
 in the vicinity of the wave vector (kc, 0) for rolls with axes parallel to the x2-direction

corresponds to changing k1 and k2 by amounts � 
 and � 
1/2, respectively (rectangle).
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where the last expansion can be regarded as an
implicit definition of the supercriticality 
(Ra). Now
because the boundary conditions are the same on
both surfaces, the hot and cold portions of the flow
are mirror images of each other. The problem is
therefore invariant under the transformation {P !
�P , �!��} or (equivalently) 
!�
. Application
of the latter transformation to the expanded form of
[223a] shows that Ran¼ 0 for all odd n. To lowest
order, therefore,

Ra –Ra0 	 
2Ra2 ½234�

where Ra2¼O (1) is to be determined. Now compar-
ison of [234] with [232] shows that s _ 
2. We
therefore introduce a slow time T X 
2t which is of
order unity during the initial stage of exponential
growth, whence

qt ¼ 
2qT ½235�

Substituting [233], [234], and [235] into [223] and
collecting terms proportional to 
, we obtain

r4P 1 þ Ra0�1 ¼ 0; r2�1 þ q2
11P 1 ¼ 0 ½236�

subject to the boundary conditions P 1¼ q33
2 P 1¼ �1

¼ 0 at z¼
1/2. This is just the linear stability pro-
blem, for which the solution is

P 1 ¼ –
C

k2
cos�z cos kx; �1 ¼

C

�2 þ k2
cos �z cos kx;

Ra0 ¼
�2 þ k2ð Þ3

k2
½237�

where the amplitude C(T) of the vertical velocity
w1 X q11

2 P 1 remains to be determined. Next, we col-
lect terms proportional to 
2 to obtain

r4P 2 þ Ra0�2 ¼ –Ra1�1 X 0 ½238a�

r2�2 þ q2
11P 2 ¼ L j P 1qj �1 X –

C2�

2 �2 þ k2ð Þ sin 2�z ½238b�

Now because the inhomogeneous term in [238b]
depends only on z, we must seek solutions of [238]
of the forms

P 2 ¼ P̃ 2 x; zð Þ; �2 ¼ �̃2 x; zð Þ þ ��2 zð Þ ½239�

where P~2 and �̃2 are the fluctuating (periodic in x)
parts of the solution and ��2 is the mean (x-indepen-
dent) part. The mean part of P 2 is set to zero because
the poloidal scalar is arbitrary to within an additive
function of z, as can be verified by inspection of [41].
Now the equations satisfied by P~2 and �̃2 are just the
homogeneous forms of [238], which are identical to
the order 
 equations [236]. We may therefore set

P~2¼ �̃2¼ 0 with no loss of generality. The solution
for ��2 is then obtained by integrating [238b] subject
to the boundary conditions ��2(
1/2)¼ 0. We
thereby find

P 2 ¼ 0; �2 X
��2 ¼

C2

8� �2 þ k2ð Þ sin 2�z ½240�

Physically, ��2(z) describes the average heating (cool-
ing) of the upper (lower) half of the layer that is
induced by the convection. Despite appearances,
[240] is consistent with [238a] because P 2 is arbitrary
to within an additive function of z.

The parameter Ra2 is still not determined, so we
must proceed to order 
3, for which the equations are

r4P 3 þ Ra0�3 ¼ – Ra2�1 ½241a�

r2�3 þ q2
11P 3 ¼ qT�1 þ L j P 1qj �2 ½241b�

We now evaluate the RHSs of [241], set P 3¼ P~3(z,
T )coskx and �3¼ �~3(z, T ) coskx, and reduce the resul-
ting equations to a single equation for P~3, obtaining

D2 – k2
� �3þk2Ra0

h i
P~3

¼ –
Ra0 C3 cos 2�zþ 4 _C
� �

4 �2 þ k2ð Þ – Ra2C

" #
cos �z ½242�

where D¼ d/dz and a superposed dot denotes d/dT.
Now the homogeneous form of [242] is identical to
the eigenvalue problem at order 
, and thus has a
solution _ cos �z that satisfies the boundary condi-
tions. The Fredholm alternative theorem then
implies that the inhomogeneous equation [242] will
have a solution only if the RHS satisfies a solvability
condition. In the general case, this condition is found
by multiplying the inhomogeneous equation by the
solution of the homogeneous adjoint problem and
then integrating over the domain of the dependent
variable. For our (self-adjoint) problem, the homo-
geneous adjoint solution is _ cos �z, and the
procedure just described yieldsZ 1=2

– 1=2

��
D2 – k2

�3

þ k2Ra0

�
P̃ 3 cos �z dz

¼ –

	
Ra0

�
C3 þ 8 _C

�
– 8
�
�2 þ k2

�
Ra2C



16
�
�2 þ k2

� ½243�

Now the LHS of [243] is identically zero, as one can
easily show by integrating repeatedly by parts
and applying the boundary conditions on P~3. The
RHS of [243] must therefore vanish. Now by [233]
and [237], the amplitude of the vertical velocity is

C XW. Because only the product of 
 and C is phy-
sically meaningful, the definition of 
 itself – or,
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equivalently, of Ra2 – is arbitrary. Making the most
convenient choice Ra2¼ Ra0, we find that the vanish-
ing of the RHS of [243] yields the following
evolution equation for the physical amplitude W:

dW

dT
¼ �2 þ k2
� �

W –
Ra0

8 Ra –Ra0ð ÞW 3 ½244�

Initially, W grows exponentially with a growth rate
W�1 _W ¼ �2þ k2. At long times, however, _W ! 0 and
the amplitude approaches a steady value

W T !1ð Þ ¼ 8 �2 þ k2ð Þ Ra – Ra0ð Þ
Ra0

� �1=2

½245�

7.04.9.2.4 Finite-amplitude convection

rolls and their stability

The extension of the above results to strongly non-
linear rolls (
¼O (1)) between rigid surfaces is due to
Busse (1967a), whose development we follow here
with some changes of notation. The first step is to
determine steady roll solutions of [223] using a
Galerkin method (Fletcher, 1984) whereby � and P
are expanded in orthogonal functions that satisfy the
boundary conditions and the coefficients are then
chosen to satisfy approximately the governing
equations.

We begin by expanding � into a complete set of
Fourier modes that satisfy the boundary conditions
�(x, 
1/2)¼ 0:

� ¼
X
m;n

cmneimkx fn zð Þ; fn zð Þ ¼ sin n� zþ 1

2

� �
½246�

where 2�/k is the wavelength of the convection rolls,
cmn¼ �cn�m, where the overbar denotes complex con-
jugation, and the summations are over �1�m�1
and 1� n�1. Now substitute [246] into [223a] and
solve the resulting equation to obtain

P ¼ –Ra
X
m;n

cmneimkxQn mk; zð Þ ½247a�

Qn r ; zð Þ ¼ fn zð Þ þ n�hn rð Þ
r 2 þ n2�2ð Þ2

½247b�

hn rð Þ ¼
2SC þ rð Þ – 1 2zC sin h rz – Scosh rzð Þ n oddð Þ

2SC – rð Þ – 1
C sin h rz – 2zScosh rzð Þ n evenð Þ

(

½247c�

S ¼ sinh
r

2
; C ¼ cosh

r

2
½247d�

To determine the coefficients cmn, we substitute [247]
into [223b], multiply the result by fq(z)e�ipkx, and
integrate over the fluid layer. By using for p and q

all integers in the ranges of m and n, respectively, we
obtain an infinite set of nonlinear algebraic equations
for cmn(Ra) that can be truncated and solved numeri-
cally (Busse, 1967a.)

Another advantage of the Galerkin method is that
a stability analysis of the solution can easily be per-
formed. The linearized equations governing
infinitesimal perturbations (P~, �̃) to the steady roll
solution (P 0, �0) are

r4P~¼ –Ra�̃ ½248a�

�̃t þ L j P 0qj �̃ þ qj �0L j P~–r2
1P~¼ r2�̃ ½248b�

subject to �̃¼ P~¼ q3P~¼ 0 at z¼
1/2. Now [248]
are linear PDEs with coefficients that are periodic in
the x-direction but independent of both z and t. The
general solution can be written as a sum of solutions
which depend exponentially on x, y, and t, multiplied
by a function of x having the same periodicity as the
stationary solution (Busse, 1967a.) We therefore write

�̃ ¼
X
m;n

c̃mneimkxfn zð Þ
( )

ei axþbyð Þþst ½249�

and note further that [248a] and the boundary con-
ditions on P

˜
are satisfied exactly if

P~¼ –Ra
X
m; n

c̃mneimkxQn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mk þ að Þ2þb2

q
; z

� �( )

� ei axþbyð Þþst ½250�

Substituting [249] and [250] into [248b], multiplying
by fq(z)e�i(pkxþ axþ by)�st, and averaging over the fluid
layer, we obtain an infinite system of linear equations
for the coefficients c̃mn. The system is then truncated
and the largest eigenvalue s(Ra, k, a, b) is determined
numerically, assuming that s is real in view of the fact
that I(s)¼ 0 at the onset of convection (Busse,
1967a).

The results show that convection rolls are stable
(s < 0) in an elongate region of the (Ra, k) space often
called the Busse balloon (Figure 14). Above
Ra	 22600, convection rolls of any wave number
are unstable. The lower left edge of the balloon
(denoted by Z in Figure 14) represents the onset of
a zigzag instability in the form of rolls oblique to the
original ones. Around the rest of the balloon (denoted
by C), the stability of rolls is limited by the crossroll
instability, which grows in the form of perpendicu-
larly aligned rolls. The results of Busse (1967a) were
extended to the case of traction-free boundaries by
Straus (1972), Busse and Bolton (1984), and Bolton
and Busse (1985).
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7.04.9.2.5 Envelope equation for

modulated convection rolls

The analyses in Sections 7.04.9.2.3 and 7.04.9.2.4

assume convection in the form of straight parallel

rolls with a single dominant wave number k. In the

laboratory, however, rolls often exhibit a more

irregular pattern in which both the magnitude

and direction of the wave vector k¼ (k1, k2) vary

slowly as functions of time and position. To

describe this behavior, Newell and Whitehead

(1969) and Segel (1969) derived an envelope equa-

tion for modulated convection rolls whose wave

vectors form a continuous spectrum within a nar-

row band centered on the wave vector (kc, 0) for

straight parallel rolls. The envelope equation is

derived via a multiscale expansion that accounts

in a self-consistent way for both the fast and slow

variations of the flow field in time and space.

Richter (1973) applied a similar method to convec-

tion modulated by long-wavelength variations in

the boundary temperatures.

The first step is to determine the scales over
which the slow (i.e., long-wavelength) spatial varia-

tions occur. Because the marginal stability curve

Ra0(k) is a parabola in the vicinity of its minimum

(k, Ra0)¼ (kc, Rac), the wave numbers jkj that become

unstable when Ra exceeds Rac by an amount 
2Rac

comprise a continuous band of width �
 centered on

kc (Figure 13(a)). However, the orientation of the

rolls, measured by the ratio k2/k1, may also vary.

Now the most unstable wave vector lies on a

circle of radius kc (Figure 13(b)). Therefore if we

change jkj by an amount �
 in the vicinity of the

straight-roll wave vector (kc, 0), the (maximum) cor-

responding changes of k1 and k2 are �
 and �
1/2,

respectively. The appropriate slow variables are

therefore

X ¼ 
x; Y ¼ 
1=2y; T ¼ 
2t ½251�

where the expression for T derives from the argu-
ment preceeding [235].

The essence of the multiscale procedure is to treat
the flow fields (here, P and �) as functions of both the

fast variables (x, y, t) and the slow variables (X, Y, T).

Accordingly, the asympotic expansions analogous to

[233] are

P ¼
X1
n¼1


nP n X ; Y ; T ; x; zð Þ

� ¼
X1
n¼1


n�n X ; Y ; T ; x; zð Þ
½252�

Because the solution for steady straight rolls is inde-
pendent of y and t, P n and �n depend on these
variables only through the variables Y and T that
measure the slow modulation of the pattern. By the
chain rule, derivatives of the expansions [252] with
respect to the fast variables transform as

qt ! 
2qT ; qx ! qx þ 
qX ;

qy ! 
1=2qY ; qz ! qz ½253�

We now substitute [252] into the governing equa-
tions [223] and collect terms proportional to like

powers of 
, just as in Section 7.04.9.2.3. The solutions

at order 
 analogous to [237] are

P 1 ¼ –
1

2k2
c

Ceikcx þ �Ce – ikcx
	 


cos �z ½254a�

�1 ¼
1

2 �2 þ k2
c

� � Ceikcx þ �Ce – ikcx
	 


cos�z ½254b�

where C¼C(X, Y, T) is the slowly varying envelope
of the roll solution and overbars denotes complex
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Figure 14 Region of stability in the Rayleigh number/

wave number plane of 2-D convection rolls between rigid
isothermal surfaces (Busse balloon). Portions of the

boundary of the balloon labeled Z and C correspond to the

onset of the zigzag and cross-roll instabilities, respectively.
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conjugation. The solution at order 
2 analogous to
[240] is

P 2 ¼ 0; �2 ¼
C �C

8� �2 þ k2
c

� � sin 2�z ½255�

The temperature �2 also contains free modes propor-
tional to qX(C, �C) and qYY(C, �C), but these do not
change the solvability condition at order 
3 and can
therefore be neglected. Evaluating this solvability
condition as in Section 7.04.9.2.3 and setting

kc ¼ �=
ffiffiffi
2
p

, we obtain the Newell–Whitehead–
Segel equation for the envelope W X 
C of the vertical
velocity field:

qW

qT
–

4

3

q
qX

–
iffiffiffi
2
p
�

q2

qY 2

� �2

W

¼ 3�2

2
W –

Rac

8 Ra – Racð Þ Wj j2W ½256�

Equation [256] differs from [244] by the addition of a
diffusion-like term on the LHS, which represents the
interaction of neighboring rolls via the buoyant tor-
ques they apply to each other. Equations generalizing
[256] to N interacting wavepackets are given by
Newell and Whitehead (1969).

7.04.9.2.6 Phase diffusion equation for

thermal convection

The final case is that of large-amplitude (
¼O (1))
convection in the form of modulated rolls, which can
be described by a phase diffusion equation. The deriva-
tion below follows Newell et al. (1990)XNPS90.

The basic assumption is that the flow field consists
locally of straight parallel rolls whose wave vector
varies slowly over the fluid layer. This wave vector
can be written as k X��, where � is the phase of the
roll pattern. The phase is the crucial dynamical vari-
able far from onset, because the amplitude is an
algebraic function of the wave number k and the
Rayleigh number and no longer an independent
parameter. The amplitude is therefore slaved to the
phase gradients, and the phase diffusion equation
alone suffices to describe the dynamics.

The problem involves two very different length
scales, the layer depth d and the tank width L� d,
and may therefore be solved using a multiscale
expansion. Because the convection is strongly non-
linear, however, the relevant small parameter is no
longer the degree of supercriticality (as in Section
7.04.9.2.5), but rather the inverse aspect ratio
d/L X��1. Now the lateral scale of the variation of

k is the tank width L X�d, and its characteristic time-

scale is the lateral thermal diffusion time L2/

� X�2d2/�. Accordingly, the slow variables that char-

acterize the modulation of the basic roll pattern are

X ¼ � – 1x; Y ¼ � – 1y; T ¼ � – 2t ½257�

The starting point of the analysis is the Galerkin
representation [246]–[247] for large-amplitude

steady rolls with axes parallel to the y-direction and

wave vector k¼ (k, 0). Let A be some measure of the

amplitude of this solution, which can be calculated

via the Galerkin procedure as a function of Ra and k.

Next, we seek modulated roll solutions for the

dependent variables v¼ (P , �) in the form

v ¼ F � ¼ �� X ; Y ; Tð Þ; z; A X ; Y ; Tð Þð Þ ½258�

In [258], � is a slow phase variable defined such that

k ¼ �x� ¼ �X � ½259�

where �x and �X are the horizontal gradient opera-
tors with respect to the variables (x, y) and (X, Y),
respectively. Because derivatives act on functions of
�, z, X, Y, and T, the chain rule implies the
transformations

qz ! qz; �x ! kq� þ � – 1�X ;

qt ! � – 1qT �qY þ � – 2qT ;

r2 ! k2q2
�� þ q2

zz þ � – 1Dq� þ � – 2r2
X ;

D ¼ 2k ? �X þ �X ? k

½260�

where k¼ (k1, k2).
Because of the slow modulation, [258] is no longer

an exact solution of the Boussinesq equations. We

therefore seek solutions in the form of an asympotic

expansion in powers of ��1,

v ¼ v0 þ � – 1v1 þ � – 2v2 þ � � � ½261�

where v0 is the Galerkin solution for steady parallel
rolls. Substituting [261] into the Boussinesq equa-
tions, using [260], and collecting terms proportional
to ��1, we obtain a BVP for v1 which has a solution
only if a solvability condition is satisfied. This con-
dition yields the phase diffusion equation

q�

qT
þ 1

� kð Þ� ? kB kð Þ½ � ¼ 0 ½262�

where the functions � (k) and B(k) are determined
numerically. The diffusional character of [262]
becomes obvious when one recalls that k¼�X�. In
writing [262], we have neglected an additional mean
drift term that is nonzero only for finite values of the
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Prandtl number (NPS90, eqn. (1.1)). NPS90 show
that a linear stability analysis of [262] reproduces
closely all the portions of the boundary of the Busse
balloon for which the wavelength of the instability is
long relative to the layer depth.

7.04.9.3 Convection at High Rayleigh
Number

Even though convection in the form of steady 2-D
rolls is unstable when Ra > 22 600 (Section 7.04.9.2.4),
much can be learned by studying the structure of
such rolls in the limit Ra!1. Because temperature
variations are now confined to thin TBLs around the
edges of the cells, scaling analysis and BL theory are
particularly effective tools for this purpose.

7.04.9.3.1 Scaling analysis

The essential scalings for cellular convection at high
Rayleigh number can be determined by a scaling
analysis of the governing equations. The following
derivation (for the cell geometry shown in Figure 6)
generalizes the analysis of McKenzie et al. (1974) to
include both traction-free and rigid-surface bound-
ary conditions. For simplicity, we assume in this
subsection only that the aspect ratio � does not differ
much from unity.

The analysis proceeds by determining six equa-
tions relating six unknown quantities: the thicknesses
�p of the thermal plumes and �h of the horizontal
TBLs, the maximum vertical velocity vp and the
vorticity ! in the plumes, the vertical velocity v(�h)
in the plume at the edge of the horizontal BLs, and
the heat flux q across the layer (per unit length along
the roll axes). The heat flux carried by an upwelling
plume is

q � �cpvp�T�p ½263�

where cp is the heat capacity at constant pressure.
Because the convection is steady, the flux [263]
must equal that lost by conduction through the top
horizontal BL, implying

q � kcd�T=�h ½264�

where kc is the thermal conductivity. The thickness
�h of the horizontal BLs is controlled by the balance
vTy��Tyy of advection and diffusion, which implies

v �hð Þ�T=�h � ��T=�2
h ½265�

Now u(�h) depends on whether the horizontal sur-
faces are free or rigid. Because the velocity parallel to

the boundary is constant to lowest order across a
TBL at a free surface (n¼ 0 say) and varies linearly
across a TBL at a rigid surface (n¼ 1),

v �hð Þ � vp �h=dð Þnþ1 ½266�

The force balance in the plumes is scaled using the
vorticity equation �r2!¼ g
Tx, which implies

! � g
�T�p=� ½267�

Finally, the vorticity ! in the plumes is of the same
order as the rotation rate of the isothermal core, or

! � vp=d ½268�

The simultaneous solution of [263]–[268] yields
scaling laws for each of the six unknown quantities as
a function of R. Table 5 shows the results for vp, �p,
and the Nusselt number Nu X d/�h. The free-surface
heat transfer law Nu� Ra1/3 corresponds to a dimen-
sional heat flux q X kc�TNu/d that is independent of
the layer depth d, whereas q _ d�2/5 for rigid surfaces.
A revealing check of the results is to note that vpd/�
(column 2) is just the effective Peclet number Pe for
the flow. The scaling laws for Nu (column 4) then
imply Nu� Pe1/(nþ 2), in agreement with our pre-
vious expression [12] for the heat transfer from a
hot sphere moving in a viscous fluid.

7.04.9.3.2 Flow in the isothermal core

Given the fundamental scales of Table 5, we can
now carry out a more detailed analysis based on BL
theory. This approach, pioneered by Turcotte (1967)
and Turcotte and Oxburgh (1967) and extended by
Roberts (1979), Olson and Corcos (1980), and
Jimenez and Zufiria (1987) (henceforth JZ87), is
applicable to convection in a layer bounded by either
free or rigid surfaces. Here we consider only the
former case, following JZ87 with some changes of
notation.

The dimensional equations governing the flow are

�r4 ¼ – g
Tx ½269a�

u�x þ v�y ¼ �r2T ½269b�

Table 5 Scaling laws for vigorous Rayleigh–Bénard

convection

Boundaries vpd/� �p/d Nu Xd/�h

Free Ra2/3 Ra�1/3 Ra1/3

Rigid Ra3/5 Ra�2/5 Ra1/5
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where T is the temperature, u¼ uexþ vey X� yexþ
 xey is the velocity, and  is the streamfunction. In
the limit Ra!1, each cell comprises a nearly iso-
thermal core surrounded by thin vertical plumes and
horizontal BLs. Because temperature gradients are
negligible in the core, the principal agency driving
the flow within it is the shear stresses applied to its
vertical boundaries by the plumes. Our first task is
therefore to derive a boundary condition on the core
flow that represents this agency.

Consider for definiteness the upwelling plume at the
left boundary x¼��d/2 X x� of the cell (Figure 6),

and let its half-width be �p. The (upward) buoyancy

force acting on the right half of this plume must

be balanced by a downward shear stress at its edge

x¼ x�þ �p (the shear stress on x¼ x� is zero by

symmetry). This requires

�vx jx¼x –þ�p
¼ – g


Z x –þ�p

x –

T –Tcð Þdx ½270�

where Tc (X 0) is the temperature in the core.
Multiplying [270] by vp, we obtain

vpvx jx¼x –þ�p
¼ –


g

��cp
�cp

Z x –þ�p

x –

vp T –Tcð Þdx

� �
½271�

where we have used the fact that vp X x is constant to
first order across the plumes to take it inside the
integral on the RHS. Now the quantity [. . .] in
[270] is just the heat flux carried by the right half of
the plume, which is kc�TNu/2. Moreover, because
the plume is thin, vx X xx can be evaluated at x¼ x�
rather than at x¼ x�þ �p. Equation [271] then
becomes

 x xx jx¼x –
¼ –

1

2

g�
�T

�
Nu ½272�

which is a nonlinear and inhomogeneous boundary
condition on the core flow. The corresponding con-
dition at x¼þ�d/2 is obtained from [272] by
reversing the sign of the RHS.

We now invoke the results of the scaling analysis
(Table 5) to nondimensionalize the equations and

boundary conditions for the core flow. We first write

the scaling law for Nu as

Nu ¼ C �ð ÞRa1=3 ½273�

where C(�) (to be determined) measures the depen-
dence of the heat transfer on the aspect ratio.
Rewriting the equations and boundary conditions in
terms of the dimensionless variables (x9, z9)¼ (x, z)/d

and  9¼ /�C(�)1/2Ra2/3 and then dropping the
primes, we obtain

r4 ¼ 0 ½274a�

 x; 
1=2ð Þ ¼  yy x; 
1=2ð Þ ¼ 0 ½274b�

 
�=2; yð Þ ¼  x 
�=2; yð Þ
�  xx 
�=2; yð Þ�1=2 ¼ 0 ½274c�

The problem [274] can be solved either numerically
(JZ87) or using a superposition method (Section
7.04.5.4.1).

7.04.9.3.3 TBLs and heat transfer

The next step is to determine the temperature in the
plumes and the horizontal TBLs using BL theory. The
temperature in all these layers is governed by the
transformed BL equation [149]. Turcotte and
Oxburgh (1967) solved this equation assuming self-
similarity, obtaining solutions of the form [151].
However, Roberts (1979) pointed out that this is not
correct, because the fluid traveling around the margins
of the cell sees a periodic boundary condition which is
alternatingly isothermal (along the horizontal bound-
aries) and insulating (in the plumes). Now because
[149] is parabolic, its solution can be written in con-
volution-integral form in terms of an arbitrary
boundary temperature Tb(�) and an initial tempera-
ture profile T( , 0) at � ¼ 0, where � ¼

R
U(s)ds is the

time-like variable introduced in Section 7.04.7.1.1 and
the velocity U(s) parallel to the boundary is deter-
mined (to within the unknown scale factor C(�))
from the core flow streamfunction  that satisfies
[274]. However, in the limit �!1 corresponding
to an infinite number of transits around the cell, the
convolution integral describing the evolution of the
initial profile vanishes, and the solution is (JZ87)

T  ; �ð Þ ¼ –
 

2 ��ð Þ1=2

�
Z 1

0

Tb � – tð Þ
t 3=2

exp –
 2

4�t

� �
dt ½275�

where all variables are dimensional. Now Tb is
known only on the top and bottom surfaces. Along
the (insulating) plume centerlines, it can be found by
setting to zero the temperature gradient q T j ¼ 0

calculated from [275] and solving numerically the
resulting integral equation. The temperature every-
where in the plumes and horizontal BLs can then be
determined from [275]. The final step is to determine
the unknown scale factor C(�) by matching the heat
flow advected vertically by the plumes to the
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conductive heat flux across the upper boundary
(JZ87, eqn [23]).

The solution of JZ87 shows that the scale factor
C(�) (and hence the Nusselt number Nu¼CRa1/3) is
maximum for �	 0.75, which may therefore be the
preferred cell aspect ratio (Malkus and Veronis,
1958). A particularly interesting result from a geo-
physical perspective is that the temperature profile in
the TBL beneath the cold upper surface exhibits a
hot asthenosphere, that is, a range of depths where
the temperature exceeds that of the cell’s interior.

7.04.9.3.4 Structure of the flow near the

corners

The solutions described above break down near the
corners of the cell, where the vorticity of the core
flow solution becomes infinite and the BL approxi-
mation is no longer valid. The (dimensional)
characteristic radius rc of this corner region can be
determined using a scaling argument. Consider for
definiteness the corner above the upwelling plume,
and let (r, ’) be polar coordinates with origin at the
corner such that ’¼ 0 on the upper surface and
’¼ �/2 on the plume centerline. Close to the corner,
the streamfunction has the self-similar form  (r,
’)¼ r�F(’) for some �, where F is given by [64].
Near the corner, the dimensional forms of the bound-
ary conditions [274b] and [274c] are

 r ; 0ð Þ ¼  r ; �=2ð Þ ¼  ’’ r ; 0ð Þ ¼ 0 ½276a�

r – 3 ’ r ; �=2ð Þ ’’ r ; �=2ð Þ ¼ 1

2

g�
�T

�
Nu ½276b�

Equation [276b] immediately implies �¼ 3/2, and
the streamfunction which satisfies all the conditions
[276] is

 ¼ �
2

r

d

� �3=2

C �ð Þ1=2
Ra2=3 sin

3

2
’ – sin

1

2
’

� �
½277�

Note that the vorticity !��(�/d2)Ra2/3(r/d)�1/2

becomes infinite at the corner. Now the balance
between viscous forces and buoyancy in the corner
region requires �r4 ��g
Tx, or

 � �Ra rc=dð Þ3 ½278�

Equating [278] with the scale  ��Ra2/3(rc/d)3/2

implied by [277], we find (Roberts, 1979)

rc � Ra – 2=9d ½279�

A corrected solution for the flow in the corner region
that removes the vorticity singularity was proposed
by JZ87.

7.04.9.3.5 Howard’s scaling for high-Ra

convection

While the above solution for cellular convection is
illuminating, we know that rolls between rigid
boundaries with R > 22 600 are not stable to small
perturbations (Section 7.04.9.2.4). In reality, convec-
tion at high Rayleigh number Ra > 106 is a quasi-
periodic process in which the TBLs grow by thermal
diffusion, become unstable, and then empty rapidly
into plumes, at which point the cycle begins again.
The characteristic timescale of this process can be
estimated via a simple scaling argument (Howard,
1964). The thickness � of both TBLs initially
increases by thermal diffusion as �	 (��t)1/2.
Instability sets in when the growth rate of R–T
instabilities in the layers (see Section 7.04.9.1)
becomes comparable to the thickening rate _�/�,
or (equivalently) when the Rayleigh number
Ra(�) X g
�T�3/�� based on the TBL thickness
attains a critical value Rac	 103. This occurs after a
time

tc 	
1

��

��Rac

g
�T

� �2=3

½280�

that is independent of the layer depth. The scaling
law [280] has been amply confirmed by laboratory
experiments (e.g., Sparrow et al., 1970.)

7.04.9.4 Thermal Convection in More
Realistic Systems

As the simplest and most widely studied example of
thermal convection, the R–B configuration is the
source of most of what has been learned about
thermal convection during the past century. From
a geophysical point of view, however, it lacks
many crucial features that are important in the
Earth’s mantle: the variation of viscosity as a function
of pressure, temperature, and stress; the presence of
solid-state phase changes; internal production of heat
by radioactive decay; density variations associated
with differences in chemical composition; and a
host of other factors such as rheological anisotropy,
the effect of volatile content, etc. Because analytical
methods thrive on simple model problems, the addi-
tion of each new complexity reduces their room for
manoeuvre; but many important analytical results
have been obtained nevertheless. Here we review
briefly some of these, focussing on the effects of
variable viscosity, phase transitions, and chemical
heterogeneity.
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A variety of important analytical results have been
obtained for fluids with temperature-dependent visc-
osity. Stengel et al. (1982) performed a linear stability
analysis of convection in a fluid whose viscosity �(T)
varies strongly (by up to a factor of 2� 104) with
temperature. For fluids for which �(T) is an expo-
nential function, the critical Rayleigh number (based
on the viscosity at the mean of the boundary tem-
peratures) first increases and then decreases as the
total viscosity contrast across the layer increases,
reflecting the fact that convection begins first in a
low-viscosity sublayer near the hot bottom boundary.
A nonlinear stability analysis of convection in a fluid
with a weak linear dependence of viscosity on tem-
perature was carried out by Palm (1960), using a
method like that described in Section 7.04.9.2.3.
Because the variation of the viscosity breaks the
symmetry between upwelling and downwelling
motions, the amplitude equation analogous to [244]
contains a quadratic term that permits transcritical
bifurcation. Subsequent work (e.g., Busse, 1967b,
Palm et al., 1967) showed that the stable planforms
are hexagons, hexagons and 2D rolls, or 2D rolls
alone, depending on the Rayleigh number. Busse
and Frick (1985) used a Galerkin method (Section
7.04.9.2.4) to study convection in a fluid whose visc-
osity depends strongly (but linearly) on temperature,
and found that a square planform becomes stable
when the viscosity contrast is sufficiently large.

Convection at high Rayleigh number in fluids
with strongly variable viscosity is a particularly diffi-
cult analytical challenge, but some noteworthy
results have been obtained. Morris and Canright
(1984) and Fowler (1985) used BL analyses similar
to that described in Section 7.04.9.3 to determine
the Nusselt number in the stagnant lid limit
�T/�Tr!1 for convection in a fluid whose
viscosity depends on temperature as
� ¼ �0exp – T –T0ð Þ=�Tr½ �. Both studies find the
Nusselt number to be Nu � �T=�Trð Þ – 1

Ra1=5
r

where Ra�¼
g�Trd
3/�0� is the Rayleigh number

based on the rheological temperature scale �Tr and
the viscosity �0 at the hot bottom boundary.
Solomatov (1995) presented a comprehensive scaling
analysis for convection in fluids with temperature-
and stress-dependent viscosity. He found that three
different dynamical regimes occur as the total visc-
osity contrast across the layer increases: quasi-
isoviscous convection, a transitional regime with a
mobile cold upper BL, and a stagnant-lid regime in
which the upper BL is motionless and convection is
confined beneath it. Busse et al. (2006) generalized

Turcotte and Oxburgh’s (1967) BL analysis of steady
cellular convection to include thin low-viscosity
layers adjoining the top and bottom boundaries,
whose presence increases the cell aspect ratio that
maximizes the heat transport.

The influence of a phase transition on the stability
of convection in a fluid with constant viscosity was
analyzed by Schubert and Turcotte (1971). The
novel elements here are two matching conditions at
the depth of the phase change: one of these equates
the energy released by the transformation to the
difference in the perturbation heat flux into and out
of the phase boundary, while the second requires the
phase boundary to lie on the Clapeyron slope. The
resulting eigenvalue problem yields the critical
Rayleigh number Rac(S, RaQ), where

S ¼ ��=�


d �g=� –�ð Þ ; RaQ ¼

gd 3Q

8cp��
½281�

�� is the density difference between the phases, Q is
the energy per unit mass required to change the
denser phase into the lighter, � is the Clapeyron
slope, and � is the magnitude of the temperature
gradient in the basic state. Rac is a decreasing function
of S (which measures the destabilizing effect of the
density change) but an increasing function of RaQ

(which measures the stabilizing influence of latent
heat). These results were extended to a divariant
phase change by Schubert et al. (1972).

Convection in a chemically layered mantle was
first studied by Richter and Johnson (1974), who
performed a linear stability analysis of a system com-
prising two superposed fluid layers of equal depth
and viscosity but different densities. The critical
Rayleigh number Rac depends on the value of a
second Rayleigh number Ra�¼ g��d3/�� propor-
tional to the magnitude of the stabilizing density
difference �� between the layers. Three distinct
modes of instability are possible: convection over
the entire depth of the fluid with advection of the
interface; separate convection within each layer; and
standing waves on the interface, corresponding to an
imaginary growth rate at marginal stability. Busse
(1981) extended these results to layers of different
thicknesses. Rasenat et al. (1989) examined a still
larger region of the parameter space, and demon-
strated the possibility of an oscillatory two-layer
regime with no interface deformation, in which the
coupling between the layers oscillates between ther-
mal and mechanical. Le Bars and Davaille (2002)
mapped out the linear stability of two-layer
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convection as a function of the interlayer viscosity
contrast � and the layer depth ratio r, and showed
that the transition from oscillatory to stratified con-
vection occurs at a critical value of the buoyancy
ratio B X Ra�/Ra that depends on � and r.

For the time being, studies like those discussed
above represent the limit of what can be learned
about convection in complex systems using analytical
methods alone. The impressive additional progress
that has been made using experimental and numer-
ical approaches is discussed in Chapters 7.02 and 7.04
of this volume.
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In: Görtler H (ed.) Proceedings of the 11th International
Congress in Applied Mechanics, pp. 1109–1115. Berlin:
Springer.

Huppert HE (1982) The propagation of two-dimensional and
axisymmetric viscous gravity currents over a rigid horizontal
surface. Journal of Fluid Mechanics 121: 43–58.

Ito G (2001) Reykjanes ‘V’-shaped ridges originating from a
pulsing and dehydrating mantle plume. Nature
411: 681–684.

Jackson JD (1975) Classical Electrodynamics. New York, NY:
John Wiley & Sons.

Jimenez J and Zufiria JA (1987) A boundary-layer analysis of
Rayleigh–Bénard convection at large Rayleigh number.
Journal of Fluid Mechanics 178: 53–71.

Jeong J-T and Moffatt HK (1992) Free-surface cusps
associated with flow at low Reynolds number. Journal of
Fluid Mechanics 241: 1–22.

Johnson RE (1980) Slender-body theory for slow viscous flow.
Journal of Fluid Mechanics 75: 705–714.

Katopodes FV, Davis AMJ, and Stone HA (2000) Piston flow in a
two-dimensional channel. Physics of Fluids 12: 1240–1243.

Keller JB and Rubinow SI (1976) An improved slender-body
theory for Stokes flow. Journal of Fluid Mechanics
99: 411–431.

Kerr RC and Lister JR (1987) The spread of subducted
lithospheric material along the mid-mantle boundary. Earth
and Planetary Science Letters 85: 241–247.

Kevorkian J and Cole JD (1996) Multiple Scale and Singular
Perturbation Methods. New York, NY: Springer.

Kim S and Karrila SJ (1991) Microhydrodynamics: Principles
and Selected Applications. Boston, MA: Butterworth-
Heinemann.

Koch DM and Koch DL (1995) Numerical and theoretical
solutions for a drop spreading below a free fluid surface.
Journal of Fluid Mechanics 287: 251–278.

Koch DM and Ribe NM (1989) The effect of lateral viscosity
variations on surface observables. Geophysical Research
Letters 16: 535–538.

Lachenbruch AH and Nathenson M (1974) Rise of a variable
viscosity fluid in a steadily spreading wedge-shaped conduit
with accreting walls. Open File Report. 74–251, 27 pp. US
Geological Survey, Menlo Park, CA.

Ladyzhenskaya OA (1963) The Mathematical Theory of
Viscous Incompressible Flow. New York, NY: Gordon and
Breach.

Lamb H (1932) Hydrodynamics. Cambridge: Cambridge
University Press.

Landau LD (1944) On the problem of turbulence. Comptes
Rendus de l’Academie des Sciences URSS 44: 311–314.

Landau LD and Lifshitz EM (1986) Theory of Elasticity, 3rd edn.
Oxford: Pergamon.

Langlois WE (1964) Slow Viscous Flow. New York, NY:
Macmillan.

Le Bars M and Davaille A (2002) Stability of thermal convection
in two superposed miscible viscous fluids. Journal of Fluid
Mechanics 471: 339–363.

Lee SH and Leal LG (1980) Motion of a sphere in the presence of
a plane interface. Part 2: An exact solution in bipolar co-
ordinates. Journal of Fluid Mechanics 98: 193–224.

Lemery C, Ricard Y, and Sommeria J (2000) A model for the
emergence of thermal plumes in Rayleigh-Bénard
convection at infinite Prandtl number. Journal of Fluid
Mechanics 414: 225–250.

Lister JR and Kerr RC (1989a) The effect of geometry on the
gravitiational instability of a region of viscous fluid. Journal of
Fluid Mechanics 202: 577–594.

Lister JR and Kerr RC (1989b) The propagation of two-
dimensional and axisymmetric viscous gravity currents at a
fluid interface. Journal of Fluid Mechanics 203: 215–249.

Longman IM (1962) A Green’s function for determining the
deformation of the Earth under surface mass loads. Journal
of Geophysical Research 67: 845–850.

Loper DE and Stacey FD (1983) The dynamical and thermal
structure of deep mantle plumes. Physics of the Earth and
Planetary Interiors 33: 305–317.

Malkus WVR and Veronis G (1958) Finite amplitude cellular
convection. Journal of Fluid Mechanics 4: 225–260.

Manga M (1996) Mixing of heterogeneities in the mantle: Effect
of viscosity differences. Geophysical Research Letters
23: 403–406.

Manga M (1997) Interactions between mantle diapirs.
Geophysical Research Letters 24: 1871–1874.

Manga M and Stone HA (1993) Buoyancy-driven interaction
between two deformable viscous drops. Journal of Fluid
Mechanics 256: 647–683.

Manga M, Stone HA, and O’Connell RJ (1993) The interaction of
plume heads with compositional discontinuities in the
Earth’s mantle. Journal of Geophysical Research
98: 19979–19990.

Mangler W (1948) Zusammenhang zwischen ebenen und
rotationssymmetrischen Grenzschichten in kompressiblen
Flüssigkeiten. Zeitschrift für Angewandte Mathematik und
Mechanik 28: 97–103.

Marsh BD (1978) On the coolling of ascending andesitic
magma. Philosophical Transactions of the Royal Society of
London 288: 611–625.

Marsh BD and Carmichael ISE (1974) Benioff zone magmatism.
Journal of Geophysical Research 79: 1196–1206.

McKenzie DP (1969) Speculations on the consequences and
causes of plate motions. Geophysical Journal of the Royal
Astronomical Society 18: 1–32.

McKenzie DP and Bowin C (1976) The relationship between
bathymetry and gravity in the Atlantic ocean. Journal of
Geophysical Research 81: 1903–1915.

224 Analytical Approaches to Mantle Dynamics



McKenzie DP, Roberts JM, and Weiss NO (1974) Convection in
the Earth’s mantle: Towards a numerical simulation. Journal
of Fluid Mechanics 62: 465–538.

Meleshko VV (1996) Steady Stokes flow in a rectangular cavity.
Proceedings of the Royal Society of London A 452: 1999–2022.

Mitrovica JX and Forte AM (2004) A new inference of mantle
viscosity based upon joint inversion of convection and
glacial isostatic adjustment data. Earth and Planetary
Science Letters 225: 177–189.

Moffatt HK (1964) Viscous and resistive eddies near a sharp
corner. Journal of Fluid Mechanics 18: 1–18.

Molnar P and Houseman GA (2004) The effects of buoyant crust
on the gravitational instability of thickened mantle
lithosphere at zones of intracontinental convergence.
Geophysical Journal International 158: 1134–1150.

Morris S (1980) An Asymptotic Method for Determining the
Transport of Heat and Matter by Creeping Flows with
Strongly Variable Viscosity; Fluid Dynamic Problems
Motivated by Island Arc Volcanism. PhD Thesis, The Johns
Hopkins University

Morris S (1982) The effects of a strongly temperature-
dependent viscosity on slow flow past a hot sphere. Journal
of Fluid Mechanics 124: 1–26.

Morris S and Canright D (1984) A boundary-layer analysis of
Benard convection in a fluid of strongly temperature-
dependent viscosity. Physics of the Earth and Planetary
Interiors 36: 355–373.

Muskhelishvili NI (1953) Some Basic Problems in the
Mathematical Theory of Elasticity. Groningen: P. Noordhoff.

Nayfeh A (1973) Perturbation Methods. New York, NY:
John Wiley & Sons.

Newell A C, Passot T, and Lega J (1993) Order parameter
equations for patterns. Annual Reviews of Fluid Mechanics
25: 399–453.

Newell AC, Passot T, and Souli M (1990) The phase diffusion
and mean drift equations for convection at finite Rayleigh
numbers in large containers. Journal of Fluid Mechanics
220: 187–252.

Newell AC and Whitehead JA, Jr. (1969) Finite bandwidth, finite
amplitude convection. Journal of Fluid Mechanics
38: 279–303.

Niordson FI (1985) Shell Theory. Amsterdam: North-Holland.
Novozhilov VV (1959) Theory of Thin Shells. Groningen:

P. Noordhoff.
Olson P (1990) Hot spots, swells and mantle plumes.

In: Ryan MP (ed.) Magma Transport and Storage, pp. 33–51.
New York, NY: John Wiley.

Olson P and Christensen U (1986) Solitary wave propagation in
a fluid conduit within a viscous matrix. Journal of
Geophysical Research 91: 6367–6374.

Olson P and Corcos GM (1980) A boundary-layer model for
mantle convection with surface plates. Geophysical Journal
of the Royal Astronomical Society 62: 195–219.

Olson P, Schubert G, and Anderson C (1993) Structure of
axisymmetric mantle plumes. Journal of Geophysical
Research 98: 6829–6844.

Olson P and Singer H (1985) Creeping plumes. Journal of Fluid
Mechanics 158: 511–531.

Palm E (1960) On the tendency towards hexagonal cells in
steady convection. Journal of Fluid Mechanics 8: 183–192.

Palm E, Ellingsen T, and Gjevik B (1967) On the occurrence of
cellular motion in Bénard convection. Journal of Fluid
Mechanics 30: 651–661.

Parsons B and Daly S (1983) The relationship between surface
topography, gravity anomalies, and the temperature
structure of convection. Journal of Geophysical Research
88: 1129–1144.

Peltier WR (1974) The impulse response of a Maxwell Earth.
Reviews of Geophysics and Space Physics 12: 649–669.

Peltier WR (1995) Mantle viscosity. In: Peltier WR (ed.) Mantle
Convection: Plate Tectonics and Global Dynamics,
pp. 389–478. New York, NY: Gordon and Breach Science
Publishers.

Pozrikidis C (1990) The deformation of a liquid drop moving
normal to a plane wall. Journal of Fluid Mechanics
215: 331–363.

Pozrikidis C (1992) Boundary Integral and Singularity Methods
for Linearized Viscous Flow. Cambridge: Cambridge
University Press.

Rasenat S, Busse FH, and Rehberg I (1989) A theoretical and
experimental study of double-layer convection. Journal of
Fluid Mechanics 199: 519–540.

Rayleigh L (1922) Theory of Sound, vol. II, 313 pp. New York,
NY: Dover.

Ribe NM (1992) The dynamics of thin shells with variable
viscosity and the origin of toroidal flow in the mantle.
Geophysical Journal International 110: 537–552.

Ribe NM (1998) Spouting and planform selection in the
Rayleigh–Taylor instability of miscible viscous fluids. Journal
of Fluid Mechanics 234: 315–336.

Ribe NM (2003) Periodic folding of viscous sheets. Physical
Review E 68: 036305.

Ribe NM and Christensen U (1994) Three-dimensional modeling
of plume-lithosphere interaction. Journal of Geophysical
Research 99: 669–682.

Ribe NM and Christensen U (1999) The dynamical origin of
Hawaiian volcanism. Earth and Planetary Science Letters
171: 517–531.

Ribe NM, Christensen UR, and Theissing J (1995) The dynamics
of plume-ridge interaction. Part 1: Ridge-centered plumes.
Earth and Planetary Science Letters 134: 155–168.

Ribe NM and Delattre WL (1998) The dynamics of plume-ridge
interaction-III. The effects of ridge migration. Geophysical
Journal International 133: 511–518.

Ribe NM, Stutzmann E, Ren Y, and van der Hilst R (2007)
Buckling instabilities of subducted lithosphere beneath the
transition zone. Earth and Planetary Science Letters
254: 173–179.

Ricard Y, Fleitout L, and Froidevaux C (1984) Geoid heights and
lithospheric stresses for a dynamic earth. Annals of
Geophysics 2: 267–286.

Richards MA and Hager BH (1984) Geoid anomalies in a
dynamic Earth. Journal of Geophysical Research
89: 5987–6002.

Richards MA, Hager BH, and Sleep NH (1988) Dynamically
supported geoid highs over hotspots: Observation and
theory. Journal of Geophysical Research 893: 7690–7708.

Richter FM (1973) Dynamical models for sea floor spreading.
Reviews of Geophysics and Space Physics 11: 223–287.

Richter FM and Johnson CE (1974) Stability of a chemically
layered mantle. Journal of Geophysical Research
79: 1635–1639.

Richter FM and McKenzie DP (1984) Dynamical models for melt
segregation from a deformable matrix. Journal of Geology
92: 729–740.

Roberts GO (1979) Fast viscous Bénard convection.
Geophysical and Astrophysical Fluid Dynamics 12: 235–272.

Schubert G, Olson P, Anderson C, and Goldman P (1989)
Solitary waves in mantle plumes. Journal of Geophysical
Research 94: 9523–9532.

Schubert G and Turcotte DL (1971) Phase changes and mantle
convection. Journal of Geophysical Research
76: 1424–1432.

Schubert G, Yuen DA, and Turcotte DL (1972) Role of phase
transitions in a dynamic mantle. Geophysical Journal of the
Royal Astronomical Society 42: 705–735.

Scott DR and Stevenson DJ (1984) Magma solitons.
Geophysical Research Letters 11: 1161–1164.

Analytical Approaches to Mantle Dynamics 225



Scott DR, Stevenson DJ, and Whitehead JA, Jr. (1986)
Observations of solitary waves in a deformable pipe. Nature
319: 759–761.

Segel L (1969) Distant side-walls cause slow amplitude
modulation of cellular convection. Journal of Fluid
Mechanics 38: 203–224.

Selig F (1965) A theoretical prediction of salt dome patterns.
Geophysics 30: 633–643.

Shankar PN (1993) The eddy structure in Stokes flow in a cavity.
Journal of Fluid Mechanics 250: 371–383.

Shankar PN (2005) Eigenfunction expansions on
arbitrary domains. Proceedings of the Royal Society of
London A 461: 2121–2133.

Sleep NH (1987) Lithospheric heating by mantle plumes.
Geophysical Journal of the Royal Astronomical Society
91: 1–11.

Solomatov VS (1995) Scaling of temperature- and stress-
dependent viscosity convection. Physics of Fluids 7: 266–274.

Sparrow EM, Husar RB, and Goldstein RJ (1970) Observations
and other characteristics of thermals. Journal of Fluid
Mechanics 41: 793–800.

Stengel KC, Oliver DS, and Booker JR (1982) Onset of
convection in a variable-viscosity fluid. Journal of Fluid
Mechanics 120: 411–431.

Stevenson DJ and Turner JS (1977) Angle of subduction. Nature
270: 334–336.

Stimson M and Jeffrey GB (1926) The motion of two spheres in a
viscous fluid. Proceedings of the Royal Society of London A
111: 110–116.

Stokes GG (1845) On the theories of the internal friction of fluids
and of the equilibrium and motion of elastic solids.
Transactions of the Cambridge Philosophical Society
8: 287–347.

Straus JM (1972) Finite amplitude doubly diffusive convection.
Journal of Fluid Mechanics 56: 353–374.

Tanimoto T (1998) State of stress within a bending spherical
shell and its implications for subducting lithosphere.
Geophysical Journal International 134: 199–206.

Tovish A, Schubert G, and Luyendyk BP (1978) Mantle flow
pressure and the angle of subduction: Non-Newtonian
corner flows. Journal of Geophysical Research
83: 5892–5898.

Turcotte DL (1967) A boundary-layer theory for cellular
convection. International Journal of Heat and Mass Transfer
10: 1065–1074.

Turcotte DL (1974) Membrane tectonics. Geophysical Journal of
the Royal Astronomical Society 36: 33–42.

Turcotte DL and Oxburgh ER (1967) Finite amplitude convection
cells and continental drift. Journal of Fluid Mechanics
28: 29–42.

Umemura A and Busse FH (1989) Axisymmetric convection at
large Rayleigh number and infinite Prandtl number. Journal
of Fluid Mechanics 208: 459–478.

Van Dyke M (1975) Perturbation Methods in Fluid Mechanics.
Stanford, CA: Parabolic Press.

Von Mises R (1927) Bemerkungen zur Hydrodynamik.
Zeitschrift für Angewandte Mathematik und Mechanik
7: 425–431.

Watts AB (1978) An analysis of isostasy in the world’s oceans.
Part 1: Hawaiian-Emperor Seamount chain. Journal of
Geophysical Research 83: 5989–6004.

Weinstein SA and Olson PL (1992) Thermal convection with
non-Newtonian plates. Geophysical Journal International
111: 515–530.

Whitehead JA, Jr., Dick HBJ, and Schouten H (1984)
A mechanism for magmatic accretion under spreading
centers. Nature 312: 146–148.

Whitehead JA, Jr. and Helfrich KR (1986) The Korteweg-de
Vries equation from laboratory conduit and magma migration
equations. Geophysical Research Letters 13: 545–546.

Whitehead JA, Jr. and Helfrich KR (1988) Wave transport of
deep mantle material. Nature 335: 59–61.

Whitehead JA, Jr. and Luther DS (1975) Dynamics of laboratory
diapir and plume models. Journal of Geophysical Research
80: 705–717.

Whitham GB (1974) Linear and Non-Linear Waves. Sydney:
Wiley-Interscience.

Whittaker RJ and Lister JR (2006a) Steady axisymmetric
creeping plumes above a planar boundary. Part I: A point
source. Journal of Fluid Mechanics 567: 361–378.

Whittaker RJ and Lister JR (2006b) Steady axisymmetric creeping
plumes above a planar boundary. Part II: A distributed source.
Journal of Fluid Mechanics 567: 379–397.

Yale MM and Phipps Morgan J (1998) Asthenosphere flow
model of hotspot-ridge interactions: A comparison of Iceland
and Kerguelen. Earth and Planetary Science Letters
161: 45–56.

Yuen DA and Peltier WR (1980) Mantle plumes and the thermal
stability of the D0 layer. Geophysical Research Letters
7: 625–628.

Yuen DA and Schubert G (1976) Mantle plumes: a boundary-
layer approach for Newtonian and non-Newtonian
temperature-dependent rheologies. Journal of Geophysical
Research 81: 2499–2510.

226 Analytical Approaches to Mantle Dynamics


