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7.05.1 Introduction

The governing equations for mantle convection are

derived from conservation laws of mass, momentum,

and energy. The nonlinear nature of mantle rheology

with its strong temperature and stress dependence

and nonlinear coupling between flow velocity and

temperature in the energy equation require that

numerical methods be used to solve these governing

equations. Understanding the dynamical effects of

phase transitions (e.g., olivine-to-spinel phase transi-

tion) and multicomponent flow also demands

numerical methods. Numerical modeling of mantle

convection has a rich history since the late 1960s (e.g.,

Torrance and Turcotte, 1971; McKenzie et al., 1974).

Great progress in computer architecture along with

improved numerical techniques has helped advance

the field of mantle convection into its own niche in

geophysical fluid dynamics (e.g., Yuen et al., 2000).
In this chapter, we will present several commonly

used numerical methods in studies of mantle convec-

tion with the primary aim of reaching out to students

and new researchers in the field. First, we will present

the governing equations and the boundary and initial

conditions for a given problem in mantle convection,

and discuss the general efficient strategy to solve this

problem numerically (Section 7.05.2). We will then

briefly discuss finite-difference (FD), finite-volume

(FV), and spectral methods in Section 7.05.3. Since

finite elements (FEs) have attained very high popu-

larity in the user community, we will discuss FEs

in greater details as the most basic numerical

tool (Section 7.05.4). For simplicity and clarity,

we will focus our discussion on homogeneous,
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incompressible fluids with the Boussinesq approxi-
mation. However, we will also describe methods for
more complicated and realistic mantle situations by
including non-Newtonian rheology, solid-state phase
transitions, and thermochemical (i.e., multicompo-
nent) convection (Section 7.05.5). Finally, in Section
7.05.6, we will discuss some new developments in
computational sciences, such as software develop-
ment and visualization, which may impact our
future studies of mantle convection modeling.

7.05.2 Governing Equations and
Initial and Boundary Conditions

The simplest mathematical formulation for mantle
convection assumes incompressibility and the
Boussinesq approximation (e.g., McKenzie et al.,
1974). Under this formulation, the nondimensional
conservation equations of the mass, momentum, and
energy are (see Chapter 7.02):

ui;i ¼ 0 ½1�

�ij ; j þ RaT�i3 ¼ 0 ½2�

qT

qt
þ ui T;i ¼ ð�T;iÞ;i þ � ½3�

where ui, �ij , T, and � are the velocity, stress tensor,
temperature, and heat-production rate, respectively,
Ra is Rayleigh number, and �ij is a Kronecker delta
function. Repeated indexes denote summation, and
u,i represents partial derivative of variable u with
respect to coordinate xi. These equations were
obtained by using the following characteristic scales:
length D, time D2/�; and temperature �T, where D

is often the thickness of the mantle or a fluid layer, �
is thermal diffusivity, and �T is the temperature
difference across the fluid layer (see Chapters 7.02
and 7.04 for discussion on nondimensionalization).
The stress tensor �ij can be related to strain rate _"ij

via the following constitutive equation:

�ij ¼ –P�ij þ 2� _"ij ¼ –P�ij þ �ðui; j þ uj ; iÞ ½4�

where P is the dynamic pressure and � is the
viscosity.

Substituting eqns [4] into [2] reveals three pri-
mary unknown variables: pressure, velocity, and
temperature. The three governing eqns [1]–[3] are
sufficient to solve for these three unknowns, together
with adequate boundary and initial conditions. Initial
conditions are only needed for temperature due to
the first-order derivative with respect to time in the

energy equation. Boundary conditions are in general

a combination of prescribed stress and velocity for

the momentum equation, and of prescribed heat flux

and temperature for the energy equation. The initial

and boundary conditions can be expressed as

Tðri ; t ¼ 0Þ ¼ TinitðriÞ ½5�

ui ¼ gi on �g i
; �ij nj ¼ hi on �hi

½6�

T ¼ Tbd on �Tbd
; ðT;iÞn ¼ q on �q ½7�

where �g i
and �hi

are the boundaries where ith
components of velocity and forces are specified to
be gi and hi, respectively, nj is the normal vector of
boundary �hi

, and �Tbd
and �q are the boundaries

where temperature and heat flux are prescribed to be
Tbd and q, respectively.

Often free-slip (i.e., zero tangential stresses and
zero normal velocities) and isothermal conditions

are applied to the surface and bottom boundaries in

studies of mantle dynamics, although in some studies

surface velocities may be given in consistent with

surface plate motions (e.g., Bunge et al., 1998). When

steady-state or statistically steady-state solutions are

to be sought, as they often are in mantle dynamics,

the choice of initial condition can be rather arbitrary

and it does not significantly affect final results in a

statistical sense.
Although full time-dependent dynamics of ther-

mal convection involves all three governing

equations, an important subset of mantle dynamics

problems, often termed as instantaneous Stokes flow

problem, only require solutions of eqns [1] and [2].

For Stokes flow problem, one may consider the

dynamic effects of a given buoyancy field (e.g., one

derived from seismic structure) or prescribed surface

plate motion on gravity anomalies, deformation rate,

and stress at the surface and the interior of the mantle

(Hager and O’Connell, 1981; Hager and Richards,

1989, also see Chapters 7.02 and 7.04).
These governing equations generally require

numerical solution procedures for three reasons.

(1) The advection of temperature in eqn [3], uiT;i ,

represents a nonlinear coupling between velocity and

temperature. (2) The constitutive law or eqn [4] is

often nonlinear in that stress and strain rate follow a

power-law relation; that is, the viscosity � in eqn [4]

can only be considered as effective viscosity that

depends on stress or strain rate. (3) Even for the

Stokes flow problem with a linear rheology, spatial

variability in viscosity can make any analytic solution

method difficult and impractical.

228 Numerical Methods for Mantle Convection



Irrespective of numerical methods used for the
treatment of the individual governing equations, it
is usual to solve the coupled system explicitly in time
as follows: (1) At a given time step, solve eqns [1] and
[2] (i.e., the instantaneous Stokes flow problem) for
flow velocity for given buoyancy or temperature.
(2) Update the temperature to next time step from
eqn [3], using the new velocity field. (3) Continue
this process of time stepping by going back to step (1).

7.05.3 Finite-Difference, Finite-
Volume, and Spectral Methods

In this section, we will briefly discuss how finite-
difference (FD), finite-volume (FV), and spectral
methods are used in studies of mantle convection.
These methods have a long history in modeling
mantle convection (e.g., Machetel et al., 1986; Gable
et al., 1991), and remain important in the field (e.g.,
Tackley, 2000; Kageyama and Sato, 2004; Stemmer
et al., 2006; Harder and Hansen, 2005).

7.05.3.1 Finite Difference

FD methods have a much earlier historical beginning
than FE, spectral, or FV methods because they are
motivated intuitively by differential calculus and are
based on local discretization of the derivative opera-
tors based on a Taylor series expansion with an
assigned order of accuracy about a given point. The
unknowns at each grid point depend on those of the
neighboring points from the local Taylor expansion.
For examples of FD implementation, the reader is
urged to consult an excellent introductory book by
Lynch (2005). Additional material of FORTRAN 95
listings of library subprograms using FD methods can
be found in Griffiths and Smith (2006). Hence FD
formulations are easy to grasp and to program and
they have been the leading tool in numerical compu-
tations since the 1950s, as evidenced by the
pioneering codes written for meteorology and
applied weapons research (e.g., Richtmeyer and
Morton, 1967). All of the initial codes in mantle
convection were written with the FD formulation
(Torrance and Turcotte, 1971; Turcotte et al., 1973;
McKenzie et al., 1974; Parmentier et al., 1975; Jarvis
and McKenzie, 1980). The initial numerical techni-
ques in solving mantle convection in the nonlinear
regime were based on second-order FD methods
(Torrance and Turcotte, 1971; McKenzie et al.,
1974). In the early 1980s, splines with a fourth-

order accuracy were used to solve two-dimensional
(2-D) problems with variable viscosity (Christensen,

1984). Malevsky (1996) developed a 3-D mantle con-

vection code based on 3-D splines, which allowed
one to reach very high Rayleigh numbers, like 108

(Malevsky and Yuen, 1993). Recently, Kageyama and
Sato (2004) have developed a 3-D FD technique,

using a baseball-like topological configuration called
the ‘yin–yang’ grid, for solving the 3-D spherical

convection problem.

7.05.3.1.1 FD implementation of

the governing equations

For 2-D mantle convection within the Boussinesq

approximation and isoviscous flow in FD methods,
a commonly used formulation employs stream-func-

tion � and vorticity ! to eliminate the pressure and
velocities, and the governing equations are written in

terms of stream function �, vorticity !, and

temperature T (e.g., McKenzie et al., 1974). They
are written in time-dependent form as (also see

eqns [1–3])

r2� ¼ –! ½8�

r2! ¼ Ra
qT

qx
½9�

qT

qt
¼ r2T –

�
q�

qx

qT

qz
–
q�

qz

qT

qx

�
þ � ½10�

where the velocity vector is defined as

v ¼ ðvx ; vzÞ ¼ ?ð q�

qz
; –

q�

qx
?Þ ½11�

which automatically satisfies the continuity, and !
is the only component left of the vorticity vector
r� �v, x and z are the horizontal and vertical
coordinates, respectively, with z vector pointing
upward, and t is the time. We note that eqns [8] and
[9] are given by a set of coupled second-order partial
differential equations. Alternatively, we could have
combined them to form a single fourth-order partial
differential equation in terms of �, called the bihar-
monic equation, as developed in the numerical
scheme of Christensen (1984) using bicubic splines
and also by Schott and Schmeling (1998) using
FDs. We note that solving the biharmonic solution
by FDs takes more time than solving two coupled
Laplacian equations. We have restricted ourselves
here to constant viscosity for pedagogical purposes.
Examples of variable-viscosity convection equations
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can be found in Christensen and Yuen (1984) and
Schubert et al. (2000).

Zero tangential stress and impermeable boundary
conditions can be expressed as

!j� ¼ �j� ¼ 0 ½12�

Other boundary conditions are similar to those dis-
cussed in Section 7.05.2.

In 2-D mantle convection problems, one can also
utilize the so-called primitive variables (i.e., velocity
and dynamical pressure) formulation by solving the
coupled equations of mass and momentum conserva-
tions at each time step. This procedure may involve
more numerical care and computational time because
of more unknowns. The examples can be found in
Auth and Harder (1999) and Gerya and Yuen (2003,
2007).

For 3-D mantle convection, we can similarly
employ the poloidal potential � and a vorticity-like
scalar function � (Busse, 1989; Travis et al., 1990). It
is to be noted that this potential � is not the same as
the stream function � in 2-D (see Chapter 7.04). From
the general representation of an arbitrary solenoidal
vector field (Busse, 1989), we can write a 3-D velo-
city vector as

v ¼ r�r� ðez�Þ þ r � ðezYÞ ½13�

where ez is the unit vector in the vertical z-direc-
tion pointing upward. Y is the toroidal potential
and is present in problems with lateral variations
of viscosity (Zhang and Christensen, 1993; Gable
et al., 1991). Thus, for constant viscosity, Y is a
constant and the velocity vector v ¼ ðu; v; wÞ
involves higher-order derivatives of � in this
formulation:

u ¼ q2�

qyqz
; v ¼ q2�

qxqz
; w ¼ –

q2�

qx2
þ q2�

qy2

� �
½14�

The 3-D momentum equation for constant prop-
erties can be written as a system of coupled Poisson
equations in 3-D:

r2� ¼ � ½15�

r2� ¼ RaT ½16�

with the energy equation as

qT

qt
¼ r2T – v ?rT þ � ½17�

where all differential operators are 3-D in character,
and � is a scalar function playing a role analogous to
the vorticity in the 2-D formulation.

We note that in FD and FV methods the primitive
variables are now dominant in terms of popularity in

3-D mantle convection with variable viscosity

(Tackley, 1994; Albers, 2000; Ogawa et al., 1991;

Trompert and Hansen, 1996).

7.05.3.1.2 Approximations of spatial

derivatives and solution approaches

In FD methods, spatial derivations in the above

equations need to be approximated by values at grid

points. There are many algorithms for generating the

formulas in the FD approximation of spatial differ-

ential operators (e.g., Kowalik and Murty, 1993;

Lynch, 2005). The most common algorithm is to

use a Taylor expansion. For example, a second-

order differential operator (for simplicity, consider

the spatial derivative in the x-direction) can be

expressed as

d2f ðxÞ
dx2

¼ ½ f ðx1Þ þ f ðx3Þ – 2f ðx2Þ�=ð�xÞ2 ½18�

where xk is a grid point while the derivative is com-
puted at a point x which is not necessarily a grid point
(Figure 1(a)). This approximation is second-order
accurate. We will use a recursive algorithm for gen-
erating the weights in the FD approximation with
high-order accuracy. We will, for simplicity, consider
the spatial derivative in the x-direction. The nth-
order differential operator can be approximated by
a FD operator as

dnf ðxÞ
dxn

¼
Xj

k ¼ 1

Wn; j ;kf ðxkÞ ½19�

where Wn, j,k are the weights to be applied at grid
point xk, in order to calculate the nth order derivative
at the point x. The stencil is j grid points wide. An
ideal algorithm should accurately and efficiently pro-
duce weights for any order of approximation at
arbitrarily distributed grid points. Such an algorithm
has been developed and tested for simple differential
operators by Fornberg (1990, 1995). The cost for
generating each weight is just four operations and
this can be done simply with a FORTRAN program
given in Fornberg’s book (Fornberg, 1995). The
weights are collected in a ‘differentiation matrix’.
This results in calculating the derivatives of a vector,
which is derived from a matrix–vector multiplicative
operation. This algorithm can be easily generalized
for determining the spatial derivatives for higher-
dimensional operators.
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In general, a pth-order FD method converges as
O(k� p) for k grid points. However, variable coeffi-

cients and nonlinearities, such as the heat advection

term, greatly complicate the convergence. The

reader can find a more detailed discussion of the

issues related to high-order FD methods and spectral

methods in Fornberg (1995). Mantle convection in

both 2-D and 3-D configurations using this variable-

grid, high-order FD method has been studied by

Larsen et al. (1995).
Using the stream-function vorticity formulation

for 2-D and the scalar potential approach for 3-D,

we can see that we have a large system of algebraic

equations to solve at each time step. The partial

differential equations posed by eqns [8] and [9] for

2-D and eqns [15] and [16] in 3-D represent one of

the difficult aspects in mantle convection problems

because of its elliptic nature. The linear algebra aris-

ing from this elliptic problem for large systems with

varying size of matrix elements due to variable visc-

osity makes it very difficult to solve accurately. They

can be written down symbolically as a large-scale

matrix algebra problem,

Au ¼ f ½20�

where A is a matrix operator involving the second-
order spatial derivatives and the associated boundary

conditions for the stream function and vorticity, u is
the solution vector over the set of 2-D grid points for
ð�; �Þ, and f is a vector representing the right-hand

side of the system from eqns [8] and [9], namely �
and qT=qx values at 2-D grid points from the pre-
vious time step.

The matrix equation from 2-D mantle convection
problems with variable viscosity can be solved effec-

tively and very accurately with the direct method,

such as the Cholesky decomposition, with current

computational memory architecture. A high-resolu-

tion 2-D problem with around 700� 700 grid points

and billions of tracers (Rudolf et al., 2004) can be

tackled on today’s shared-memory machines with

1–2 TB of RAM memory, such as the S.G.I. Altix at

National Center for Supercomputing Applications

(NCSA) or the IBM Power-5 series in National

Center for Atmospheric Research (NCAR). This

tact of using shared-memory architecture has been

employed by Gerya et al. (2006) to solve high-resolu-

tion 2-D convection problems with strongly variable

viscosity. The presence of variable viscosity would

make the matrix A very singular because of the dis-

parity of values to the matrix elements. The adverse

condition of the matrix is further aggravated by

the presence of non-Newtonian rheology, which

makes the matrix A nonlinear, thus making it
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Figure 1 A simple three-point one-dimensional (1-D) finite-difference stencil (a), a 1-D finite-volume control-cell (b), a

staggered 2-D grid for velocity–pressure for horizontal (c) and vertical (d) components of the momentum equation and for the

continuity equation (e).
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necessary to use iterative method for solving the
matrix equation. Multigrid iterative method (e.g.,
Hackbush, 1985; Press et al., 1992; Trottenberg et al.,
2001; Yavneh, 2006) is a well-proven way of solving
the elliptic problem with strong nonlinearities.
Davies (1995) solved variable-viscosity convection
problem in 2-D with the FD-based multigrid
technique.

For 3-D mantle convection problems, one must
still employ the iterative method because of memory
requirements associated with a FD grid configuration
with over a million unknowns. The multigrid itera-
tive method used for an FD grid has been used by
Parmentier and Sotin (2000) for solving 3-D high
Rayleigh number mantle convection. We note that
for variable-viscosity convection in 3-D one must use
the pressure–velocity formulation cast in FDs (e.g.,
Peyret and Taylor, 1983) for the momentum equa-
tion. The resulting FD equations can be solved with
the multigrid method. In this connection higher-
order FD method (Fornberg, 1995) with variable
grid points together with the multigrid technique
may bring about a renaissance to the FD method
because of its favorable posture in terms of memory
requirements over FEs.

Another source of numerical difficulties in the
mantle convection is due to the temperature advec-
tion term, v ?rT . It is well known from linear
analysis that numerical oscillations result, if simple
FD schemes are used to calculate the spatial deri-
vative due to the interaction between velocity and
the FD approximations of rT . Excellent discus-
sions of this problem involving numerical
dispersion can be found in Kowalik and Murty
(1993). Different numerical approximations have
been proposed to treat the advection term in the
FD: the first is by Spalding (1972), which involves a
weighted upwind scheme and is first-order accurate,
which has been employed in the early FD codes of
mantle convection (Turcotte et al., 1973). A more
popular and effective method is an iterated upwind
correction scheme that is correct to second order
and was proposed by Smolarkiewicz (1983, 1984).
This is a scheme based on the positively definite
character of the advection term. The solutions, in
general, do not change much after one to two cor-
rection steps and it is easy to program for parallel
computers. This scheme has been implemented by
Parmentier and Sotin (2000) and by Tackley (2000)
for mantle convection problems. Use of higher-
order FD schemes (Fornberg, 1995) will also help
to increase the accuracy of the advection of

temperature because this will lead closer to a
pseudospectral quality. Other advection schemes
include the semi-Lagrangian technique, which is
based on tracer characteristics and have been used
in mantle convection for the stream-function
method (Malevsky and Yuen, 1991) and for primi-
tive variables (Gerya and Yuen, 2003).

7.05.3.2 FV Method

A FV method is often used to solve differential equa-
tions (Patankar, 1980). FV methods share some
common features with FE and FD methods. In FV
methods, discretization of a differential equation
results from integrating the equation over a control-
volume or control-cell and approximating differen-
tial operators of reduced order at cell boundaries
(Patankar, 1980). Patankar (1980) suggested that the
FV formulation may be considered as a special case
of the weighted residual method in FE in which the
weighting function is uniformly one within an ele-
ment and zero outside of the element. The FV
method is also similar to FD method in that they
both need to approximate differential operators using
values at grid points.

We will use a simple example to illustrate the
basic idea of the FV method (Patankar, 1980).
Consider a 1-D heat conduction equation with heat
source �.

d

dx

�
k

dT

dx

�
þ � ¼ 0 ½21�

where k is the heat conductivity. This equation is
integrated over a control-cell bounded by dashed
lines in Figure 1(b), and the resulting equation is

�
k

dT

dx

�
e

–

�
k

dT

dx

�
w

þ
Z e

w

� dx ¼ 0 ½22�

where e and w represent the two ends of the control-
cell (Figure 1(b)). Introducing approximations for
the flux at each end and the source term in eqn [22]
leads to

keðTE – TPÞ
ð�xÞe

–
kwðTp – TWÞ
ð�xÞw

þ ���x ¼ 0 ½23�

where ke and kw are the heat conductivity at cell
boundaries, TE, TP, and TW are temperatures at
nodal points, �� is the averaged source in the con-
trol-cell, and �x ¼ ½ð�xÞe þ ð�xÞw�=2 is the size of
the control-cell (Figure 1(b)). The eqn [23] is a
discrete equation with nodal temperatures as
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unknown for the given control-cell. Applying this
procedure to all control-cells leads to a system of
equations with unknown temperatures at all grid
points, similar to eqn [20] from a FD method.

FV methods have also been used extensively in
modeling mantle convection, possibly starting with
Ogawa et al. (1991). Tackley (1994) implemented an
FV method coupled with a multigrid solver for
2-D/3-D Cartesian models. Ratcliff et al. (1996)
developed a 3-D spherical-shell model of mantle
convection using an FV method. Harder and
Hansen (2005) and Stemmer et al. (2006) also devel-
oped FV mantle convection codes for spherical-
shell geometries using a cubed sphere grid. All
these mantle convection studies used second-order
accurate FV methods, although higher-order for-
mulas can be formulated.

To solve fluid flow problems that are governed by
the continuity and momentum equations, such as those
in mantle convection, it is often convenient to use the
pressure–velocity formulation, similar to FE method.
Also, a staggered grid is often used in which pressures
and velocities are defined at different locations of a
control-cell (Patankar, 1980; Tackley, 1994) (Figures
1(c)–1(e)). Such a staggered grid helps remove check-
erboard pressure solutions. In the staggered grid,
control-cells for the momentum equation are different
from those for the continuity equation. For example,
for the continuity equation, a pressure node is at the
center of a control-cell, while velocities are defined at
the cell boundaries such that each velocity component
is perpendicular to the corresponding cell boundary
(Figure 1(e)). For the momentum equation, the velo-
cities are at the center of a cell, while the pressures are
defined at cell boundaries (Figures 1(c) and 1(d)).

For a given pressure field, applying the FV pro-
cedure leads to discrete equations for velocities.
However, solutions to the velocity equations are
only accurate if the pressure field is accurate. The
continuity equation is used to correct the pressure
field. This iterative procedure between the velocity
and pressure is implemented efficiently in a
SIMPLER algorithm (Patankar, 1980) that is used
in the FV convection codes (Tackley, 1993, 1994;
Stemmer et al., 2006). A variety of methods can be
used to solve the discrete equations of velocities and
pressure, similar to that in FD method. They may
include successive over-relaxation and Gauss–Seidel
iteration (Harder and Hansen, 2005; Stemmer et al.,
2006), or a multigrid method (Tackley, 1994), or the
alternating-direction implicit (i.e., ADI) method
(Monnereau and Yuen , 2002).

Like in FE and FD methods, the FV method also
requires special treatment of advection term v ?rT

in the energy equation. Either upwind scheme or an
iterative correction scheme such as that proposed by
Smolarkiewicz (1983, 1984) in Section 7.05.3.1 on FD
can be used in the FV method to treat the advection
term.

7.05.3.3 Spectral Methods

The spectral method is a classical method, which is
motivated by its analytical popularity and inherent
accuracy. It is based on the concept of orthogonal
eigenfunction expansion based on the differential
operators associated with the Laplace equation and
works on orthogonal curvilinear coordinate systems.
For mantle convection problems this means that we
can express the horizontal dependence by using
Fourier expansion for Cartesian geometry and sphe-
rical harmonics for the 3-D spherical shell.
Symbolically we can write down this expansion as

Fðx1; x2; x3Þ ¼
X

ijk

aijkf ðx3Þgðx1Þhðx2Þ ½24�

where F is the field variable being expanded, aijk is the
spectral coefficient, x1 and x2 are the horizontal coor-
dinates, x3 is the vertical or radial coordinate, g and h

are the eigenfunctions being employed, and f is a
function describing the vertical or radial dependence.
We note that f can be determined by solving a two-
point boundary value, using propagator matrices, or
an orthogonal function expansion, as in the case of
Chebychev polynomials, or using the FD (e.g.,
Cserepes and Rabionowicz, 1985; Cserepes et al.,
1988; Gable et al., 1991; Travis et al., 1990; Machetel
et al., 1986; Glatzmaier, 1988).

Balachandar and Yuen (1994) developed a spectral-
transform 3-D Cartesian code for mantle convection,
based on expansion of Chebychev functions for sol-
ving the two-point boundary-value problem in the
vertical direction and fast Fourier transforms along
the two horizontal directions. This method has also
been extended to variable-viscosity problems with the
help of Krylov subspace iterative technique (Saad and
Schultz, 1986) for solving iteratively the momentum
equation. The first 3-D codes in spherical-shell con-
vection were developed by Machetel et al. (1986) who
used an FD scheme in the radial direction and sphe-
rical harmonic decomposition over the longitudinal
and latitudinal directions and by Glatzmaier (1988)
who employed Chebychev polynomials in solving
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the radial direction and spherical harmonics for the
spherical surface. The Chebychev polynomials allow
for very high accuracy near the thermal boundary
layers. They can also be expanded about internal
boundary layers, such as the one at 670 km
discontinuity. Zhang and Yuen (1995 and 1996a)
have devised a 3-D code for spherical geometry
based on higher-order FD method (Fornberg, 1995)
and spectral expansion in the field variables in
spherical harmonics along the circumferential direc-
tions. They also developed an iterative technique for
the momentum equation to solve for variable viscosity
with a lateral viscosity contrast up to 200 (Zhang and
Yuen, 1996b) in compressible convection. It is impor-
tant to check also the spectra of the viscosity decay
with the degree of the spherical harmonics (Zhang and
Yuen, 1996a) in order to ascertain whether Gibbs
phenomenon is present.

Spectral methods are very accurate, much more so
than FEs and FDs for the same computational efforts,
and their efficacy in terms of convergence can be
assessed by examining the rate of decay of the energy
in the spectrum with increasing number of terms in
the spectral expansion in eqn [24] (Peyret and Taylor,
1983). Spectral methods also have a couple of other
distinct advantages. First, they are very easy to imple-
ment, because they reduce the problems to either an
algebraic set or simple weakly coupled ordinary dif-
ferential equations, as discussed earlier. Second, using
fast transform algorithms such as fast Fourier trans-
form, spectral methods can be very efficient and fast
on a single-processor computer.

However, spectral methods only work well for
constant material properties or depth-dependent
properties in simple geometries (Balachandar and
Yuen, 1994). Furthermore, spectral techniques do not
go as far in terms of viscosity contrasts (less than a
factor of 200) for variable-viscosity convection
(Balachandar et al., 1995, Zhang and Yuen, 1996b).
We note, however, that Schmalholz et al. (2001)
showed that in a folding problem their spectral
method could go up to a viscosity contrast of around
104. Perhaps a better choice of a preconditioner in the
solution of the momentum equation in the spectral
expansion of a variable-viscosity problem will enable a
larger viscosity contrast than 104. This issue is still
open and remains a viable research topic. Spectral
methods are also difficult to be used efficiently on
parallel computers because of the global basis func-
tions used in these methods. At present, spectral
methods, although elegant mathematically, are not as
effective as other numerical methods for solving

realistic mantle convection problems. Spectral meth-
ods still remain the main driver for geodynamo
problems (e.g., Glatzmaier and Roberts, 1996; Kuang
and Bloxham, 1999) because of the exclusive choice of
constant material properties in solving the set of mag-
neto-hydrodynamic equations. Lastly, we wish to
mention briefly a related spectral method called the
spectral-element method (Maday and Patera, 1989),
which is now being used in geophysics in seismic-
wave propagation (Komatitsch and Tromp, 1999).
This approach may hold some promise for variable-
viscosity mantle convection.

7.05.4 An FE Method

FE methods are effective in solving differential equa-
tions with complicated geometry and material
properties. FE methods have been widely used in
the studies of mantle dynamics (Christensen, 1984;
Baumgardner, 1985; King et al., 1990; van den Berg
et al., 1993; Moresi and Gurnis, 1996; Bunge et al.,
1997; Zhong et al., 2000). This section will go through
some of the basic steps in using FE methods in sol-
ving governing equations for thermal convection.

The FE formulation for Stokes flow that is
described by eqns [1] and [2] is independent from
that for the energy equation. Hughes (2000) gave
detailed description on a Galerkin weak-form
FE formulation for the Stokes flow. Brooks (1981)
developed a streamline upwind Petrov–Galerkin for-
mulation (SUPG) for the energy equation involving
advection and diffusion. These two formulations
remain popular for solving these types of problems
(Hughes, 2000) and are employed in mantle convec-
tion codes ConMan (King et al., 1990) and Citcom/
CitcomS (Moresi and Gurnis, 1996; Zhong et al.,
2000). The descriptions presented here are tailored
from Brooks (1981), Hughes (2000), and Ramage and
Wathen (1994) specifically for thermal convection in
an incompressible medium, and they are also closely
related to codes ConMan and Citcom.

7.05.4.1 Stokes Flow: A Weak Formulation,
Its FE Implementation, and Solution

7.05.4.1.1 A weak formulation

The Galerkin weak formulation for the Stokes flow
can be stated as follows: find the flow velocity
uj ¼ vi þ gi and pressure P, where gi is the prescribed
boundary velocity from eqn [6] and viPV, and PPP,
where V is a set of functions in which each function,
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wi , is equal to zero on �gi
, and P is a set of functions

q, such that for all wiPV and qPPZ
�

wi; j�ij d� –

Z
�

qui; i d� ¼
Z

�

wifi d�

þ
Xnsd

i¼1

Z
�hi

wi hi d� ½25�

wi and q are also called weighting functions. Equation
[25] is equivalent to eqns [1] and [2] and boundary
conditions equation [6], provided that fi ¼ RaT�iz

(Hughes, 2000). Equation [25] can be written asZ
�

wi;j cijkl vk;l d�–

Z
�

qvi;i d�–

Z
�

wi;iP d�

¼
Z

�

wifi d�þ
Xnsd

i¼1

Z
�hi

wi hi d�–

Z
�

wi;j cijkl gk;l d� ½26�

where

cijkl ¼ �ð�ik�jl þ �il�jkÞ ½27�

is derived from constitutive eqn [4]. It is often con-
venient to rewrite

wi; j cijkl vk; l ¼ "ðwÞTD"ðvÞ ½28�

where for 2-D plane strain problems,

"ðvÞ ¼

v1;1

v2;2

v1;2 þ v2;1

8>><
>>:

9>>=
>>;
; D ¼

2� 0 0

0 2� 0

0 0 �

2
664

3
775 ½29�

(note here the change in the definition of the off-
diagonal components of the strain-rate tensor). It is
straightforward to write the expressions for other
coordinate systems including 3-D Cartesian, axisym-
metric (Hughes, 2000), or spherical geometry (Zhong
et al., 2000).

Suppose that we discretize the solution domain �
using a set of grid points (Figure 2) so that the velocity
and pressure fields and their weighting functions can
be expressed anywhere in the domain in terms of their
values at the grid (nodal) points and the so-called
‘shape functions’ which interpolate the grid points:

v ¼ viei ¼
X

AP�v – �v
gi

NAviAei ;

w ¼wiei ¼
X

AP�v – �v
gi

NAwiAei ;

g ¼
X

AP�v
gi

NAgiAei ½30�

P ¼
X

BP�p

MBPB; q ¼
X
BP�p

MBqB ½31�

where NA is the shape functions for velocity at node
A, MB is the shape functions for pressure at node B,

�v is the set of velocity nodes, �p is the set of
pressure nodes, and �v

gi
is the set of velocity nodes

along boundary �gi
. Note that the velocity shape

functions and velocity nodes can be (and usually
are) different from those for pressure (Figure 2).

Substituting eqns [30] into [28] leads to the fol-
lowing equation:

"ðwÞTD"ðvÞ

¼ "
X

AP�v –�v
gi

NAwiAei

0
@

1
A

T

D"
X

BP�v –�v
gj

NBvj Bej

0
@

1
A

¼
" X

AP�v –�v
gi

"ðNAeiÞTwiA

#
D

" X
BP�v –�v

gj

"ðNBej Þvj B

#

¼
X

AP�v –�v
gi

wiA

" X
BP�v –�v

gj

eT
i BT

A DBBej vj B

#
½32�

where for 2-D plane strain problems

BA ¼

NA;1 0

0 NA;2

NA;2 NA;1

2
664

3
775 ½33�

Substituting eqns [30] and [31] into [26] leads to the
following equation:

X
AP�v – �v

gi

wiA

" X
BP�v –�v

gj

 
eT

i

Z
�

BT
A DBB d� ej vj B

!

–
X
BP�p

 
ei

Z
�

NA; iMB d� PB

!#

–
X

AP�p

"
qA

X
BP�v –�v

gj

 Z
�

MANB; j d� ej vj B

!#

¼
X

AP�v –�v
gi

wiA

" Z
�

NAei fi d�þ
Xnsd

i¼1

Z
�hi

NAei hi d�

–
X

BP�v
gj

 
eT

i

Z
�
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A DBB d� ej gj B

!#
½34�

p

v

Figure 2 Finite-element discretization and grid in 2-D. For a

four-node bilinear element, the pressure is defined at the center

of the element, while velocities are defined at the four corners.
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Because eqn [34] holds for any weighting func-
tions wiA and qA, it implies the following two
equations:

X
BP�v –�v

gj

 
eT

i

Z
�

BT
A DBB d� ej vjB

!

–
X

BP�p

 
ei

Z
�

NA; iMB d� PB

!

¼
Z

�

NAei fi d�þ
Xnsd

i¼1

Z
�hi

NAei hi d�

–
X

BP�v
gj

 
eT

i

Z
�
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A DBB d� ej gj B

!
½35�

X
BP�v –�v

gj

 Z
�

MANB; j d� ej vj B

!
¼ 0 ½36�

Combining eqns [35] and [36] into a matrix form
leads to

K G

GT 0

" #
V

P

( )
¼

F

0

( )
½37�

where the vector V contains the velocity at all the
nodal points, the vector P is the pressure at all the
pressure nodes, the vector F is the total force term
resulting from the three terms on the right-hand side
of eqn [35], the matrices K, G, and GT are the stiffness
matrix, discrete gradient operator, and discrete
divergence operator, respectively, which are derived
from the first and second terms of eqns [35] and
[36], respectively. Specifically, the stiffness matrix is
given by

Klm ¼ eT
i

Z
�

BT
A DBB d� ej ½38�

where subscripts A and B are the global velocity node
numbers as in eqn [30], i and j are the degree of
freedom numbers ranging from 1 to nsd, and l and m

are the global equation numbers for the velocity
ranging from 1 to nvnsd where nv is the number of
velocity nodes.

7.05.4.1.2 An FE implementation

We now present an FE implementation of the
Galerkin weak formulation for the Stokes flow
and the resulting expressions of different terms in
[37]. A key point of the FE approach is that all of
the equations to be solved are written in the form

of integrals over the solution domain and can,
therefore, without approximation, be written as a
sum of integrals over convenient subdomains, and
the matrix eqn [37] may be decomposed into
overlapping sums of contributions from these
domains.

Let us first introduce the elements and shape
functions. A key feature of the standard FE method
is that a local basis function or shape function is
used such that the value of a variable within an
element depends only on that at nodal points of
the element. The shape functions are generally
chosen such that they have the value of unity on
their parent node and zero at all other nodes and
zero outside the boundary of the element. Unless
there is a special, known form to the solution, it is
usual to choose simple polynomial shape functions
and form their products for additional dimensions.
In addition, this interpolating requirement con-
strains the patterns of nodes in an element and
which elements can be placed adjacent to each
other. Bathe (1996) gives an excellent overview of
the issues. (As usual, there are some useful excep-
tions to this rule, one being the element-free
Galerkin method where smooth, overlapping inter-
polating kernels are used. This does mean,
however, that the global problem cannot be trivi-
ally decomposed into local elements.) Zienkiewicz
et al. (2005) is also an excellent source of reference
for these topics.

For simplicity, we consider a 2-D domain with
quadrilateral elements. We employ mixed elements
in which there are four velocity nodes per element
each of which occupies a corner of the element, while
the only pressure node is at the center of the element
(Figure 2). For these quadrilateral elements, the
velocity interpolation in each element uses bilinear
shape functions, while the pressure is constant for
each element.

As a general remark on FE modeling of deforma-
tion/flow of incompressible media, it is important to
keep interpolation functions (shape functions) for
velocities at least 1 order higher than those for pres-
sure, as we did for our quadrilateral elements
(Hughes, 2000). Spurious flow solutions may arise
sometimes even if this condition is satisfied. The
best-known example is the ‘mesh locking’ that arises
from linear triangle elements with constant pressure
per element for which incompressibility (i.e., a fixed
elemental area) constraint per element demands zero
deformation/flow everywhere in the domain
(Hughes, 2000).
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For any given element e, velocity and pressure
within this element can be expressed through the

following interpolation:

v ¼ viei ¼
Xnen

a¼1

Naviaei ; w ¼ wiei ¼
Xnen

b¼1

Nbwibei ;

g ¼ giei ¼
Xnen

a¼1

Nagiaei ½39�

P ¼
Xnep

a¼1

MaPa; q ¼
Xnep

a¼1

Maqa ½40�

where nen and nep are the numbers of velocity and
pressure nodes per element, respectively, and nen¼ 4
and nep¼ 1 for our quadrilateral elements. The shape
function Na for a¼ 1, . . . ,nen depends on coordinates,
and Na is 1 at node a and linearly decreases to zero at
other nodes of the element. The locality of the shape
functions greatly simplifies implementation and
computational aspects of the Galerkin weak formula-
tion. For example, the integrals in eqns [35] and [36]
may be decomposed into sum of integrals from each
element and the matrix equation [37] may be decom-
posed into sums of elemental contributions.
Specifically, we may now introduce elemental stiff-
ness matrix, discrete gradient and divergence
operators, and force term.

ke ¼ ½ke
lm�; ge ¼ ½ge

ln�; f e ¼ ff e
l g ½41�

where 1 � l ; m � nennsd; 1 � n � nep (note that for
quadrilateral elements, nen ¼ 4, nep ¼ 1, and nsd ¼ 2),
ke is a square matrix of nennsd by nennsd , and ge is a
matrix of nennsd by nep.

ke
lm ¼ eT

i

Z
�e

BT
a DBb d� ej ½42�

where l¼ nsd(a� 1)þ i, m¼ nsd(b� 1)þ j, a,b¼
1, . . . ,nen, and i, j¼ 1, . . . ,nsd

ge
ln ¼ – ei

Z
�e

Na; iMn d� ½43�

where n¼ 1, . . . ,nep, and the rest of the symbols have
the same definitions as before:

f e
l ¼

Z
�e

Nafi d�þ
Z

�e
hi

Nahi d� –
Xnsdnen

m¼1

ke
lmge

m ½44�

Determinations of these elemental matrices and
force term require evaluations of integrals over each

element with integrands that involve the shape func-

tions and their derivatives. It is often convenient to

use isoparametric elements for which the coordinates
and velocities in an element have the interpolation
schemes (Hughes, 2000). For example, for 2-D quad-
rilateral elements that we discussed earlier, the
velocity shape functions for node a of an element in
a parent domain with coordinates �Pð – 1; 1Þ and
�Pð – 1; 1Þ is given as

Nað�; �Þ ¼ 1=4ð1þ �a�Þð1þ �a�Þ ½45�

where ð�a; �aÞ is (�1,�1), (1,� 1), (1, 1), and (�1, 1)
for a ¼ 1, 2, 3, and 4, respectively. The pressure
shape functions for Ma is 1, as there is only one
pressure node per element. Although the integrations
in [42]–[44] are in the physical domain (i.e., x1 and x2

coordinates) rather than the parent domain, they can
be expressed in the parent domain through coordi-
nate transformation.

In practice, these element integrals are calculated
numerically by some form of quadrature rule. In 2-D,
Gaussian quadrature rules are optimal and are
usually recommended; in 3-D, other rules may be
more efficient but are not commonly used for reasons
of programming simplicity (Hughes (2000) docu-
ments integration procedure in detail). There are a
small number of cases where it may be worthwhile
using a nonstandard procedure to integrate an ele-
ment. The most common is where the constitutive
parameters (i.e., D in eqn [29]) change within the
element; a higher-order quadrature scheme than the
standard recommended one can give improved accu-
racy in computing ke. When the constitutive
parameters are strongly history dependent, D is
known only at a number of Lagrangian sample points;
if these are used directly to integrate ke, the
Lagrangian integration point methods such as MPM
result (Sulsky et al., 1994; Moresi et al., 2003 for
application in geodynamics).

With elemental ke, ge, and f e determined, it is
straightforward to assemble them into global matrix
eqn [37]. If an iterative solution method is used to
solve [37], one may carry out calculations of the left-
hand side of [37] element by element without assem-
bling elemental matrices and force terms into the
global matrix equation form [37].

The boundary conditions described in eqn [44]
are simple to implement when the boundary is
aligned with the coordinate system, and when the
boundary condition is purely velocity or purely
boundary tractions. The difficulty arises in the case
of boundaries which are not aligned with the
coordinate system and which specify a mixture of
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boundary tractions and velocities. This form of
boundary condition is common in engineering appli-
cations of FE method, designing mechanical
components, for example, and in geodynamics it
occurs when modeling arbitrarily oriented contact
surfaces such as faults, or a spherical boundary in a
Cartesian solution domain. Unless treated appropri-
ately, this form of boundary condition leads to a
constraint on a linear combination of the degrees of
freedom at each constrained node. The solution is
straightforward: instead of using the global coordi-
nate system to form the matrix equation, we first
transform to a local coordinate system which does
conform to the boundary geometry (Desai and Abel,
1972).

Let R be a rotation matrix which transforms the
global coordinate system XYZO to a local one
X9Y9Z9O9 aligned with the boundary at node n.
The transformed stiffness matrix and force vector
contributions for this node then become

K 9n ¼ RT
n KnRn ½46�

and

F 9n ¼ RT
n Fn ½47�

R can be formulated for each node or it may be
assembled for an element or for the global matrices
but, other than the nodes where the ‘skew’ boundary
conditions occur, the block entries are simply the
identity matrix. It is possible to use this procedure
at every node in a system with a natural coordinate
system (e.g., the spherical domain) so that one can
switch freely between a spherical description of
forces and velocities where convenient, and an
underlying Cartesian formulation of the constitutive
relations. This method was used in modeling faults in
Zhong et al. (1998).

7.05.4.1.3 The Uzawa algorithm for the

matrix equation

Similar to FD or FV methods, the FE discretization
of the differential equations leads to a matrix equa-
tion such as [37]. The remaining question is to solve
the matrix equation, which we now discuss in this
section. We can use either direct or iterative methods
to solve the matrix equation, depending on problems
that we are interested, similar to what we discussed
earlier for matrix equation [20] from FD method.
Here we will focus on iterative solution methods,
because they require significantly less memory and
computation than direct solution approaches.

Iterative solution approaches are the only feasible

and practical approaches for 3-D problems. Later

we will briefly discuss a penalty formulation for the

incompressible Stokes flow that requires a direct

solution approach and is only effective for 2-D

problems.
The system of equations as it stands is singular

due to the block of zero entries in the diagonal, but it

is symmetric, and the stiffness matrix K is symmetric

positive definite and we can use this to our advantage

in finding a solution strategy. An efficient method is

the Uzawa algorithm which is implemented in

Citcom code (Moresi and Solomatov, 1995). In the

Uzawa algorithm, the matrix equation [37] is broken

into two coupled systems of equations (Atanga and

Silvester, 1992; Ramage and Wathen, 1994):

KV þ GP ¼ F ½48�

GTV ¼ 0 ½49�

Combining these two equations and eliminating V

to form the Schur complement system for pressure

(Hughes, 2000)

ðGTK – 1GÞP ¼ GTK – 1F ½50�

Notice that matrix K̂ ¼ GT K – 1G is symmetric posi-
tive definite. Although in practice eqn [51] cannot be
directly used to solve for P due to difficulties in
obtaining K�1, we may use it to build a pressure-
correction approach by using a conjugate gradient
algorithm which does not require construction of
matrix K̂ (Ramage and Wathen, 1994). The proce-
dure is presented and discussed in detail as follows.

With the conjugate gradient algorithm, for sym-
metric positive definite K̂, the solution to a linear

system of equations K̂P ¼ H can be obtained with

the operations in the left column of Figure 3 (Golub

and van Loan, 1989, p. 523).
For equations [48] and [50] for both velocities and

pressure, with initial guess pressure P0¼ 0, the initial

velocity V0 can be obtained from

KV0 ¼ F ; or V0 ¼ K – 1F ½51�

and the initial residual for pressure equation [50], r0,

and search direction, s1, are r0 ¼ s1 ¼ H ¼ GTK – 1F

¼ GTV0 (see the left column of Figure 3). To deter-
mine the search step �k in the conjugate gradient
algorithm, we need to compute the product of search
direction sk and K̂, sT

k K̂sk (Figure 3). This product can
be evaluated without explicitly constructing K̂ for the
following reasons.
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The product can be written as

sT
k K̂sk ¼ sT

k GTK – 1Gsk ¼ ðGskÞTK – 1Gsk ½52�

If we define uk, such that

Kuk ¼ Gsk; or uk ¼ K – 1Gsk ½53�

then we have

sT
k K̂sk ¼ ðGskÞTK – 1Gsk ¼ ðGskÞTuk ½54�

This indicates that if we solve [53] for uk with Gsk

as the force term, the product sT
k K̂sk can be obtained

without actually forming K̂. Similarly, K̂sk in updating
the residual rk (the left column of Figure 3) can be
obtained without forming K̂, because

K̂sk ¼ GTK – 1Gsk ¼ GTuk

As the pressure P is updated via Pk ¼ Pk – 1 þ �ksk

from the conjugate gradient algorithm (Figure 3),

the velocity field can also be updated accordingly

via

Vk ¼ Vk – 1 – �kuk ½55�

This can be seen from the following derivation. At
iteration step k� 1, the pressure and velocity are

Pk – 1 and Vk – 1, respectively, and they satisfy eqn [48]

KVk – 1 þ GPk – 1 ¼ F ½56�

At iteration step k, the updated pressure is Pk,
and the velocity Vk ¼ Vk – 1 þ v, where v is the

unknown increment to be determined. Substituting

Pk and Vk into [48] and considering Pk ¼ Pk – 1 þ �ksk ,
Vk ¼ Vk – 1 þ v, and [56] lead to

Kv þ �kGsk ¼ 0 or v ¼ –�kK – 1Gsk ½57�

From [53], it is clear that the velocity increment
v ¼ –�kuk , and consequently eqn [55] updates the
velocity.

The final algorithm is given in the right column of
Figure 3 (Ramage and Wathen, 1994). The effi-
ciency of this algorithm depends on how efficiently
eqn [53] is solved. We note that the choice of con-
jugate gradient is simply one of a number of possible
choices here. Any of the ‘standard’ Krylov subspace
methods including biconjugate gradient, GMRES,
can, in principle, be developed in the same way
using [52]–[54] wherever matrix-vector products
involving the inverse of K are required.
Preconditioning for the pressure equation can be of
great help in improving the convergence of this itera-
tion, as discussed in Moresi and Solomatov (1995).

It should be pointed out that the Uzawa algorithm
outlined above can also be used in connection with
other numerical methods including FV and FD
methods, provided that the matrix equations for pres-
sure and velocities from these numerical methods
have the form of [37].

7.05.4.1.4 Multigrid solution strategies

The stiffness matrix K is symmetric positive definite,
and this allows for numerous possible solution
approaches. For example, multigrid solvers have

k = 0; P0 = 0; r0 = H

k = 0; P0 = 0
Solve KV0 = F
r0 = H = GTV0while |r k| > a given tolerance, ε

k = k + 1
if k = 1

s1 = r 0

k = k + 1
if k = 1

s1 = r 0else 

sk = rk –1 + βk sk –1
sk = rk –1 + βk sk –1

Pk = Pk –1 + αk sk

Pk = Pk –1 + αk sk

Vk = Vk –1 – αk uk

end 

end 
P = Pk

while |rk | > a given tolerance, ε

else

end
Solve Kuk = Gsk

end 
P = Pk, V = Vk

βk = rk –1rk –1/rk –2rk –2
T T

βk = rk –1rk –1/rk –2
rk –2

T T

αk = r k –1rk –1/sk Ksk
TT ˆ

αk = r k –1rk –1/(Gsk)
T uk

T
rk = rk –1 + αk Ksk

ˆ

rk = rk –1 – αk GTuk

Figure 3 The left column is the original conjugate gradient algorithm, and the right column is the Uzawa algorithm for solving
eqns [48] and [49].
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been used for solving eqn [53] (Moresi and

Solomatov, 1995) as in Citcom code. Newer versions

of Citcom including CitcomS/CitcomCU employ

full multigrid solvers with a consistent projection

scheme for eqn [53] and are even more efficient

(Zhong et al., 2000).
The multigrid method works by formulating

the FE problem on a number of different scales –

usually a set of grids which are nested one within

the other sharing common nodes (see Figure 4(a)),

similar to how multigrid methods are used in FD

and FV methods. The solution progresses on all of

the grids at the same time with each grid eliminating

errors at a different scale. The effect is to propagate

information very rapidly between different nodes in

the grid which would otherwise be prevented by the

local support of the element shape functions. In

fact, by a single traverse from fine to coarse grid

and back, all nodes in the mesh can be directly con-

nected to every other – allowing nodes which are

physically coupled but remote in the mesh to com-

municate directly during each iteration cycle. This

matches the physical structure of the Stokes flow

problem in which stresses are transmitted instanta-

neously to all parts of the system in response to

changes anywhere in the buoyancy forces or bound-

ary conditions.
The multigrid effect relies upon using an iterative

solver on each of many nested grid resolutions which

acts like a smoother on the residual error at the

characteristic scale of that particular grid. Gauss–

Seidel iteration is a very common choice because it

has exactly this property, although its effectiveness

depends on the order in which degrees of freedom

are visited by the solver and, consequently, it can be

difficult to implement in parallel. On the coarsest

grid it is possible to use a direct solver because the

number of elements is usually very small.

For an elliptic operator such as the stiffness
matrix, K, of the Stokes flow problem in eqn [53]

we write

Khvh ¼ Fh ½58�

where the h subscript indicates that the problem has
been discretized to a mesh of fineness h. An initial
estimate of the velocity on grid h, vh, can be improved
by a correction �vh determining the solution to

Kh �vh ¼ Fh – Khvh ½59�

Suppose we obtain our approximate initial esti-
mate by solving the problem on a coarse grid. The

reduction of the number of degrees of freedom leads

to a more manageable problem which can be solved

quickly. The correction term is therefore

Kh �vh ¼ Fh – KhRH
h vH ½60�

where H indicates a coarser level of discretization,
and the operator RH

h is an interpolation from the
coarse-level H to the fine-level h.

To find vH we need to solve a coarse approxima-
tion to the problem

KH vH ¼ FH ½61�

where KH and FH are the coarse-level equivalent of
the stiffness matrix and force vector. One obvious
way to define these is to construct them from a coarse
representation of the problem on the mesh H exactly
as would be done on h. An alternative is to define

KH ¼ Rh
H KhRH

h and FH ¼ Rh
H Fh ½62�

where RH
h is a ‘restriction’ operator which has the

opposite effect to the interpolation operation in that
it lumps nodal contributions from the fine mesh onto
the coarse mesh.

The power of the algorithm is in a recursive
application. The coarse-grid correction is also

h

(a)

(b)

iteration iteration

(c)H
Fine

Coarse

Fine

Coarse

Figure 4 A nested grids with fine and coarse meshes (a), structure of V cycle multigrid iteration (b) and structure of a full

multigrid Iteration (c).
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calculated through the use of a still coarser grid and
so on, until the problem is so small that an exact
solution can be obtained very rapidly. One very
simple, but instructive, algorithm for hierarchical
residual reduction is the sawtooth cycle given in
Figure 5, and its logical layout is same as the V-
cycle in Figure 4(b).

The step in which the velocity correction is
‘improved’ is an iterative method for reducing the
residual at the current level which has the property of
smoothing the error strongly at the current mesh
scale. At each level these smoothing operators reduce
the residual most strongly on the scale of the discre-
tization – the hierarchical nesting of different mesh
sizes allows the residual to be reduced at each scale
very efficiently (see Yavneh (2006) for a more
lengthy discussion).

The projection and interpolation operators have
to be chosen fairly carefully to avoid poor approx-
imations to the problem at the coarse levels and
ineffectual corrections propagated to the fine levels.
The interpolation operator is defined naturally from
the shape functions at the coarse levels. The projec-
tion operator is then defined to complement this
choice (the operators should be adjoint).

The sawtooth cycle outlined in this section is the
simplest multigrid algorithm. Developments include
improving the residual at each level of the restriction
as well as the interpolation, known as a ‘v-cycle’, and
cycles in which the residual is interpolated only part
way through the hierarchy before being reprojected
and subjected to another set of improvements (a ‘w-
cycle’).

The full multigrid algorithm introduces a further
level of complexity. Instead of simply casting the
problem at a single level and projecting/improving

the residual on a number of grids, the whole problem
is defined for all the grids. In this way the initial fine-
grid approximation is obtained by interpolating from
the solution to the coarsest-grid problem. The solu-
tion at each level is still obtained by projecting to the
finest level and reducing the residual at each projec-
tion step. The resulting cycle is illustrated in
Figure 4(c).

A recent overview of multigrid methods is
required reading at this point. Yavneh (2006) intro-
duces the method which is then explained for a
number of relevant examples by Oosterlee and
Gaspar-Lorenz (2006), Bergen et al. (2006), and
Bastian and Wieners (2006).

7.05.4.2 Stokes Flow: A Penalty
Formulation

For 2-D problems, an efficient method to solve the
incompressible Stokes flow is a penalty formulation
with a reduced and selective integration. This
method has been widely used in 2-D thermal con-
vection problems, for example, in ConMan (King
et al., 1990). We now briefly discuss this penalty
formulation, and detailed descriptions can be found
in Hughes (2000).

The key feature in the penalty formulation is to
allow for slight compressibility or uk; k � 0. Here it is
helpful to make an analogy to isotropic elasticity.
The constitutive equations for both compressible
and incompressible isotropic elasticity are given by
the following two equations:

�ij ¼ –P�ij þ �ðui; j þ uj ; iÞ ½63�

uk; k þ P=	 ¼ 0 ½64�

where 	 is the Lame constant which is finite for
compressible media but infinite for incompressibility
media (i.e., to satisfy uk; k ¼ 0 for finite P). To allow
for slight compressibility, 	 is taken finite but signif-
icantly larger than �, such that the error associated
with the slight compressibility is negligibly small.
Using words of 64 bit long (i.e., double precision),
	/�� 107 is effective. For finite 	, the constitutive
equation becomes

�ij ¼ 	uk; k�ij þ �ðui; j þ uj ; iÞ ½65�

which replaces eqn [4].
An interesting consequence of this new constitu-

tive equation is that the pressure is no longer needed
in the momentum equation, and this simplifies the

Obtain an approximate solution vh at the finest grid, h

Calculate residual rh = Fh − Khvh

Project residual by N levels to h – N

repeat: rh− i = Rh− i
h−( i −1)rh− i −1

Solve exactly

Δvh− N = Kh− Nrh− N

Interpolate and improve

rh−( i −1) = Rh−( i −1)
h− i Kh− iΔvh− i

Improve Δvh−( i −1)

vh−( i −1) = vh−( i −1) + Δvh−( i −1)

Figure 5 A simple sawtooth multigrid algorithm for solving

eqn [51].
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FE analysis. The weak form of the resulting Stokes
flow problem is

Z
�

wi; j cijkl vk; l d� ¼
Z

�

wifi d�þ
Xnsd

i¼1

Z
�hi

wi hi d�

–

Z
�

wi; j cijkl gk; l d� ½66�

where

cijkl ¼ 	�ij �kl þ �ð�ik�jl þ �il�jkÞ ½67�

The FE implementation of eqn [66] is similar
to that in Section 7.05.4.1. With the pressure
excluded as a primary variable, the matrix equation
is simply

½K �fVg ¼ fFg ½68�

While the elemental force vector is defined the
same as that in [44], the elemental stiffness needs
some modification in comparison with that in [42]:

ke
lm ¼ eT

i

 Z
�e

BT
a DBb d�þ

Z
�e

BT
a

�DBb d�

!
ej ½69�

where the first integral is the same as in [42] but the
second integral is a new addition with

�D ¼

	 	 0

	 	 0

0 0 0

2
664

3
775 ½70�

The matrix eqn [68] only yields correct solution
for velocities if a reduced and selective integration
scheme is used to evaluate the elemental stiffness
matrix (e.g., Hughes, 2000). Specifically, the
numerical quadrature scheme for the second inte-
gral of eqn [69] needs to be one order lower than
that used for the first integral. For example, if for a
2-D problem, a 2� 2 Gaussian quadrature scheme
is used to evaluate the first integral, then a one-
point Gaussian quadrature scheme is needed for
the second integral. Hughes (2000) discussed the
equivalence theorem for the mixed elements and
the penalty formulation with the reduced and
selective integration. Moresi et al. (1996) showed
that these two formulations yield essentially iden-
tical results for the Stokes flow problems by
comparing solutions from ConMan code employing
a penalty formulation and Citcom which uses a
mixed formulation.

Finally, we make two remarks about this penalty
formulation.

First, although the pressure is not directly
solved from the matrix equation, the pressure can

be obtained through postprocessing via P ¼ – 	
uk; k for each element. Such obtained pressure fields

often display a checkerboard pattern. However, a

pressure-smoothing scheme (Hughes, 2000) seems

to work well. The pressure field is important in

many geophysical applications including computing

dynamic topography and melt migration.
Second, with 	/�� 107, the stiffness matrix is not

well conditioned and is not suited for any iterative

solvers. A direct solver is required for this type of

equations, as done in ConMan. This implies that this

formulation may not be applicable to 3-D problems

because of the memory and computation require-

ments associated with direct solvers. Reducing 	/�
improves the condition for the stiffness matrix; how-

ever, this is not recommended as it results in large

errors associated with relaxing the incompressibility

constraints.

7.05.4.3 The SUPG Formulation for the
Energy Equation

The convective transport of any quantity at

high Peclet number (the ratio of advective trans-

port rate to diffusion rate) is challenging in any

numerical approach in which the grid does not

move with the material deformation. The transfer

of quantities from grid points to integration points

in order to calculate their updated values intro-

duces a nonphysical additional diffusion term.

Furthermore, the advection operator is difficult to

stabilize and many different schemes have been

proposed to treat grid-based advection in both an

accurate and stable fashion. Many of the successful

approaches include some attempt to track the flow

direction and recognize that the advection operator

is not symmetric in the upstream/downstream

directions. This section introduces an SUPG for-

mulation and a predictor–multicorrector explicit

algorithm for time-dependent energy equation

(i.e., eqn [3]). This method was developed by

Hughes (2000) and Brooks (1981) some twenty

years ago and remains an effective method in FE

solutions of the equations with advection and dif-

fusion such as our energy equation. FE mantle

convection codes Citcom and ConMan both

employ this method for solving the energy

equation.
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A weak-form formulation for the energy equation
[3] and boundary conditions [7] is (Brooks, 1981)

Z
�

wð _T þ ui T;iÞd�þ
Z

�

w;ið�T;iÞd�

þ
X

e

Z
�e

�w½ _T þ ui T;i – ð�T;iÞ;i – ��d�

¼
Z

�

w� d�þ
Z

�q

wq d� –

Z
�

w;i�g;i d� ½71�

where w is the regular weighting functions and is zero
on Dq, _T is the time derivative of temperature, and �w
is the streamline upwind contribution to the weight-
ing functions.

The FE implementation of [71] is similar to what
was discussed for the Stokes flow in Section 7.05.4.1.2.

While the weighting function w is similar to what was

defined in [39] except it is now a scalar, the stream-

line upwind part �w is defined through artificial

diffusivity �̃ as

�w ¼ �̃ûj w; j= uj j ½72�

where uj j is the magnitude of flow velocity, ûj ¼ uj =
uj j represents the directions of flow velocity, and �̃ is

defined as

�̃ ¼
 Xnsd

i¼1

�̃i ui hi

!�
2 ½73�

�̃i ¼

– 1 – 1=�i ; �i < – 1

0; – 1 � �i � 1

1 – 1=�i; �i > 1

; for�i ¼
ui hi

2�

8>><
>>:

½74�

where ui and hi are flow velocity and element lengths
in certain directions. It should be pointed out that eqns
[72] and [74] are empirical and other forms are possi-
ble. Such defined streamline upward weighting
function �w can be thought as adding artificial diffusion
to the actual diffusion term to lead to total diffusivity

�þ �̃ûi ûj ½75�

�w is discontinuous across elemental boundaries, dif-
ferent from w. This is why the integral in the third
term of [72] is for each element. w̃ ¼ w þ �w is also
sometimes called the Petrov–Galerkin weighting
functions which indicates that the shape function
used to weight the integrals and the shape function
for interpolation are distinct.

A reasonable assumption is the weighted diffusion
for an element in the third term of eqn [71],
�wð�T;iÞ;i , is negligibly small. Therefore, eqn [71]

can be written asZ
�

w;ið�T;iÞd�þ
X

e

Z
�e

w̃ð _T þ ui T;i – �Þd�

¼
Z

�q

wq d� –

Z
�

w;i�g;i d� ½76�

We now present relevant matrices at an element
level. The _T term in [71] implies that a mass matrix
is needed and it is given as

me
ab ¼

Z
�e

NaNb d� ½77�

where a, b ¼ 1,. . .,nen. Elemental stiffness ke is

ke
ab ¼

Z
�e

BT
a �Bb d� ½78�

where for 2-D problems

BT
a ¼ ðNa;1 Na;2Þ ½79�

Elemental force vector f e is given as

f e
a ¼

Z
�e

Ña� d�þ
Z

�e
q

Ñaq d� –
Xnen

b ¼ 1

ke
abge

b ½80�

where Ña is the Petrov–Galerkin shape function.
Elemental advection matrix ce is given as

ce
ab ¼

Z
�e

ÑauiNb; i d� ½81�

The combined matrix equation may be written as

M _�þ ðK þ CÞ� ¼ F ½82�

where � is the unknown temperature, and M, K, C,
and F are the total mass, stiffness, advection matrices,
and force vector assembled from all the elements.

Equation [82] can be solved using a predictor–
corrector algorithm (Hughes, 2000) with some initial
condition for temperature (e.g., eqn [5]). Suppose that
temperature and its time derivative at time step n are
given, �n and _�n, the solutions at time step n þ 1
with time increment �t can be obtained with the
following algorithm:

1. Predictor:

�0
nþ1 ¼ �n þ�tð1 –�Þ _�n; _�0

nþ1 ¼ 0;

iteration step i ¼ 0 ½83�
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2. Solving:

M�� _�i
nþ1 ¼

Y
e

ðf e
nþ1 –me _�i

nþ1 – ðke þ ceÞ�i
nþ1Þ ½84�

3. Corrector:

�iþ1
nþ1 ¼�i

nþ1þ�t�� _�i
nþ1;

_�iþ 1
nþ1 ¼ _�i

nþ1þ� _�i
nþ1

½85�

4. If needed, set iteration step i ¼ i þ 1 and go back
step 2.

We make four remarks for this algorithm. First, this
method is second-order accurate if � ¼ 0.5 (Hughes,
2000). Second, typically two iterations are sufficient.
Third, in [84]

Q
represents the operation of assem-

bling elemental matrix into global matrix, and M� is
the lumped mass matrix which essentially makes this
scheme an explicit scheme. Fourth, time increment
�t needs to satisfy Courant time-stepping constraints
to make the scheme stable (Hughes, 2000).

7.05.5 Incorporating More Realistic
Physics

In Section 7.05.2, we presented the governing equa-
tions for thermal convection in a homogeneous
incompressible fluid with a Newtonian (linear)
rheology and the Boussinesq approximation.
However, the Earth’s mantle is likely much more
complicated with heterogeneous composition and
non-Newtonian rheology (see Chapter 7.02). In addi-
tion, non-Boussinesq effects such as solid–solid phase
transitions may play an important role in affecting the
dynamics of the mantle. In this section, we will discuss
the methods that help incorporate these more realistic
physics in studies of mantle convection. We will focus
on modeling thermochemical convection, solid-state
phase transitions, and non-Newtonian rheology.

7.05.5.1 Thermochemical Convection

Thermal convection for a compositionally heteroge-
neous mantle has gained a lot of interest in recent
years (Lenardic and Kaula, 1993; Tackley, 1998a;
Davaille, 1999; Kellogg et al., 1999; Chapter 7.10),
with focus on the roles of mantle compositional
anomalies and crustal structure in mantle dynamics.
This is also called thermochemical convection.
Different from purely thermal convection for which
the fluid has the same composition, thermochemical
convection involves fluids with different compositions.

Here we will present governing equations and numer-
ical methods for solving these equations (see also

Chapters 7.02 and 7.10).

7.05.5.1.1 Governing equations

Governing equations for thermochemical convection
include a transport equation that describes the move-
ment of compositions, in addition to the conservation
laws of the mass, momentum, and energy (i.e., eqns
[1]–[3]). Suppose that C describes the compositional
field, the transport equation is

qC

qt
þ uiC;i ¼ 0 ½86�

This transport equation is similar to the energy
equation [3] except that chemical diffusion and
source terms are ignored, which is justified given
that chemical diffusion is likely extremely small for
the length- and timescales that we consider in mantle
convection. For a two-component system such as the
crust–mantle system or depleted-primordial mantle
system, C can be either 0 or 1, representing either
component. If the fluids of different compositions
have intrinsically different density, then the momen-
tum eqn [2] needs to be modified to take into account
the compositional effects on the buoyancy

�ij ; j þ RaðT – 
CÞ�iz ¼ 0 ½87�

where 
 is the buoyancy number (van Keken et al.,
1997; Tackley and King, 2003) and is defined as


 ¼ ��=ð��T�Þ ½88�

where �� is the density difference between the two
compositions, � and �T are the reference density
and temperature, and � is the reference coefficient of
thermal expansion.

A special class of thermochemical convection pro-
blems examine how the mantle compositional
heterogeneity is stirred by mantle convection (e.g.,
Gurnis and Davies, 1986; Christensen, 1989; Kellogg,
1992; van Keken and Zhong, 1999). For these studies
on the mixing of the mantle, we may assume that the
fluids with different compositions have identical den-
sity with 
 ¼ 0.

7.05.5.1.2 Solution approaches

Solving the conservation equations of the mass,
momentum, and energy for thermochemical convec-
tion is identical to what was introduced in Section
7.05.3 for purely thermal convection. The additional
compositional buoyancy term in the momentum
equation [87] does not present any new difficulties
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numerically, provided that the composition C is

given. The new challenge is to solve the transport

equation [86] effectively.
A number of techniques have been developed or

adapted in solving the transport equation in thermo-

chemical convection studies. They include a field

method with a filter (e.g., Hansen and Yuen, 1988;

Lenardic and Kaula, 1993), a marker chain method

(Christensen and Yuen, 1984; van Keken et al., 1997;

Zhong and Hager, 2003), and a particle method (e.g.,

Weinberg and Schmeling, 1992; Tackley, 1998a;

Tackley and King, 2003; Gerya and Yuen, 2003). As

reviewed by van Keken et al. (1997), while these

techniques work to some extent, they also have

their limitations, particularly in treating entrainment

and numerical diffusion of composition C. We will

briefly discuss each of these methods with more

emphasis on the particle method.
In the particle method, the transport equation for

C (i.e., eqn [86]) is not solved directly. Composition C

at a given time is represented by a set of particles.

This representation requires a mapping from the

distribution of particles to compositional field C

which is often represented on a numerical mesh.

With the mapping, to update C, all that is needed is

to update the position of each particle to obtain an

updated distribution of particles. This effectively

solves the transport equation for C.
Two different particle methods have been used to

map distribution of particles to C: absolute and ratio

methods (Tackley and King, 2003). In the absolute

method, particles are only used to represent one type

of composition (e.g., for dense component or with

C ¼ 1). The population density of particles can be

mapped to C. For example, C for an element/grid cell

with volume �e and particles Ne can be given as

Ce ¼ ANe=�e ½89�

where the constant A is the reciprocal of initial den-
sity of particles for composition C¼ 1 (i.e., total
number of particles divided by the volume of com-
position C¼ 1). Clearly, the absence of particles in an
element/grid cell represents C¼ 0. A physically
unrealistic situation with C > 1 may arise due to
statistical fluctuations in particle distribution or par-
ticle settling. Therefore, for this method to work
effectively, a large number of particles are required
(Tackley and King, 2003).

In the ratio method, two different types of parti-
cles are used to represent the compositional field C,

type 1 for C¼ 0 and type 2 for C¼ 1. C for an

element/grid cell that includes type 1 particles N1

and type 2 particles N2 is given as

Ce ¼ N2=ðN1 þ N2Þ ½90�

In the ratio method, C can never be greater than 1.
Tackley and King (2003) found that the ratio method
is particularly effective in modeling thermochemical
convection in which the two components occupy
similar amount of volumes.

We now discuss briefly procedures to update the
positions of particles. One commonly used method is
a high-order Runge–Kutta method (e.g., van Keken
et al., 1997). Here we present a predictor–corrector
scheme for updating the particle positions (e.g.,
Zhong and Hager, 2003). Suppose that at time t¼ t0,
flow velocity is u0 and compositional field is C0 that is
defined by a set of particles with coordinates, xi

0, for
particle i. The algorithm for solving composition at
the next time step t ¼ t0 þ dt ¼ t1, C1, can be
summarized as follows:

1. Using a forward Euler scheme, predict the new
position for each particle i with xi

1p ¼ xi
0 þ u0dt

and mapping the particles to compositional field
C1p at t ¼ t1.

2. Using the predicted C1p, solve the Stokes equation
for new velocity u1p .

3. Using a modified Euler scheme with second-order
accuracy, compute the position for each particle i

with xi
1 ¼ xi

0 þ 0:5ðu0 þ u1pÞdt and composi-
tional field C1 at t ¼ t1.

The marker chain method is similar to the particle
method in a number of ways. In the marker chain
method, composition C is defined by an interfacial
boundary that separates two different components.
The interfacial boundary is a line for 2-D problems
or a surface for 3-D. Using the flow velocity, one
tracks the evolution of the interfacial boundary and
hence composition C. Often the interfacial boundary
is represented by particles or markers. Therefore,
updating the interfacial boundary is essentially the
same as updating the particles in the particle method.
Composition C on a numerical grid which is desired
for solving the momentum and energy equations [87]
and [3] can be obtained by projection. As van Keken
et al. (1997) indicated, the marker chain method is
rather effective for compositional anomalies with
relatively simple structure and geometry in 2-D.

The field method is probably the most straightfor-
ward. By setting diffusivity to be zero, we can employ
the same solver for the energy equation (e.g., in
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Section 7.05.4.3) to solve the transport equation for C.
However, this often introduces numerical artifacts
including numerical oscillations and numerical diffu-
sion. Lenardic and Kaula (1993) introduced a filter
scheme that removes the numerical oscillations while
conserving the total mass of compositional field.

7.05.5.2 Solid-State Phase Transition

Solid-state phase transitions are important phenom-
ena in the mantle. Major phase transitions include
olivine–spinel transition at 410 km depth and spinel-
to-perovskite and magnesium-to-wustite transitions
at 670 km depth, that are associated with significant
changes in mantle density and seismic wave speeds.
Recently, it was proposed that the D99 discontinuity
near the core–mantle boundary is also caused by a
phase transition from perovskite to post-perovskite
(Murakami, et al., 2004). These phase transitions may
affect the dynamics of mantle convection in two
ways: (1) on the energetics due to latent heating
associated with phase transitions, (2) on the buoyancy
due to undulations at phase boundary caused by
lateral variations in mantle temperature that affects
the pressure at which phase transitions occur
(Richter, 1973; Schubert et al., 1975; Christensen
and Yuen, 1985; Tackley et al., 1993; Zhong and
Gurnis, 1994). In this section, following Richter
(1973) and Christensen and Yuen (1985), we present
a method to model phase transitions.

The undulations of a phase boundary represent
additional buoyancy force that affects the momentum
equation. For phase transition k with density change
��k , the phase boundary undulations for phase transi-
tion k with density change ��k can be described by a
dimensionless phase-change function �k that varies
from 0 to 1 where regions with �k of 0 and 1 represent
the two phases separated by this phase-change bound-
ary. The momentum equation can be written as

�ij ; j þ ðRaT – �
k

Rak�kÞ�iz ¼ 0 ½91�

where phase-change Rayleigh number Rak is

Rak ¼
��kgD3

��0
½92�

The phase-change function �k is defined via
‘excess pressure’

�k ¼ P –P0 – �kT ½93�

where �k and P0 are the Clapeyron slope and phase-
change pressure at zero-degree temperature for the

kth phase transition. After normalizing pressure by �0

gD and Clapeyron slope by �0gD=�T , the nondi-
mensional ‘excess pressure’ can be written as

�k ¼ 1 – dk – z – �kðT –TkÞ ½94�

where �k; dk , and Tk are the nondimensional
Clapeyron slope, reference-phase transition depth,
and reference-phase transition temperature for the
kth phase transition, respectively. The dimensionless
phase-change function is then given as

�k ¼
1

2

�
1þ tanh

�k

d

�
½95�

where d is dimensionless phase transition width
which measures the depth segment over which the
phase change occurs. It should be pointed out that the
effect of phase transition on buoyancy force can also
be modeled with ‘effective’ coefficient of thermal
expansion (Christensen and Yuen, 1985).

The latent heating effect, along with viscous heat-
ing and adiabatic heating, can be included in the
energy equation (also see eqn [3]) as (Christensen
and Yuen, 1985)

�
1þ

X
k

�2
k

Rak

Ra

d�k

d�k

Di ðT þ TsÞ
��

qT

qt
þ v ?rT

�

þ
�

1þ
X

k

�k

Rak

Ra

d�k

d�k

�
ðT þ TsÞDivz

¼ r2T þ Di

Ra

ij

qvi

qxj

þ � ½96�

where Ts, vz, and 
 ij are the surface temperature,
vertical velocity, and deviatoric stress, respectively;
k is phase-change index; Di is the dissipation number
and is defined as

Di ¼
�gD

Cp

½97�

where � and Cp are the coefficient of thermal expan-
sion and specific heat (see also Chapter 7.02).
Christensen and Yuen (1985) called the effects of
latent heating, viscous heating, and adiabatic heating
as non-Boussinesq effects and termed this formulation
as extended-Boussinesq formulation. They suggest
that these effects are all of similar order, proportional
to Di, and should be considered simultaneously.

The modified momentum and energy equations
[91] and [96] can be solved with the same algorithms
such as the Uzawa and SUPG for mantle convection
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problems with extended-Boussinesq approximations
in 3-D (e.g., Zhong, 2006; Kameyama and Yuen, 2006).

7.05.5.3 Non-Newtonian Rheology

Laboratory studies suggest that the deformation of
olivine, the main component in the upper mantle,
follows a power-law rheology (e.g., Karato and Wu,
1993):

_" ¼ A
n ½98�

where _" is the strain rate, 
 is the deviatoric stress, the
pre-exponent constant A represents other effects such
as grain size and water content, and the exponent n is
�3. The nonlinearity in the rheology arises from
n 6¼ 1 (see also Chapter 7.02).

The effects of non-Newtonian rheology on man-
tle convection were first investigated by Parmentier
et al. (1976) and Christensen (1984). More recent
efforts have been focused on how non-Newtonian
rheology including viscoplastic rheology may lead
to dynamic generation of plate tectonics (King and
Hager, 1990; King et al., 2002; Bercovici, 1995; Moresi
and Solomatov, 1998, Zhong et al., 1998; Tackley,
1998b; Trompert and Hansen, 1998).

Solutions of nonlinear problems in general require
an iterative approach. The power-law rheolgy may
be written as an expression for effective viscosity

�ij ¼ – P�ij þ 2�eff _"ij ½99�

�eff ¼ 
= _" ¼ 1

A
_"ð1 – nÞ=n ½100�

where _" is the second invariant of strain-rate tensor

_" ¼
�

1

2
_"ij _"ij

�1=2

½101�

It is clear that the effective viscosity depends on
strain rate which in turn depends on flow velocity.
Therefore, a general strategy for this problem is
(1) starting with some guessed effective viscosity,
solve the Stokes flow problem for flow velocities; (2)
update the effective viscosity with the newly deter-
mined strain rate, and solve the Stokes flow again;
(3) keep this iterative process until flow velocities are
convergent.

Implementation of this iterative scheme is
straightforward. The convergence for this iterative
process depends on the exponent n. For regular
power-law rheology with n� 3, convergence is
usually not a problem. However, for large n (e.g., in
case of viscoplastic rheology), the iteration may

converge very slowly or may diverge. Often some
forms of damping may help improve convergence
significantly (e.g., King and Hager, 1990).

7.05.6 Concluding Remarks and
Future Prospects

In this chapter, we have discussed four basic numerical
methods for solving mantle convection problems: FE,
FD, FV, and spectral methods. We have focused our
efforts on FE method, mainly because of its growing
popularity in mantle convection studies over the past
decade, partially prompted by the easily accessed FE
codes from Conman to Citcom. To this end, the dis-
cussions on FE method should help readers
understand the inner working of these two FE codes.
However, our discussions on FD, FV, and spectral
methods are rather brief and are meant to give
readers a solid basis for understanding the rudiments
of these methods and the references with which to
delve deeper into the subjects. These three methods
have all been widely used in studies of mantle con-
vection and will most likely remain so for years to
come. It is our view that each of these methods has its
advantages and disadvantages and readers need to find
the one that is most suited to their research. This
chapter is by no means exhaustive or extremely
advanced in character. We did not cover many poten-
tially interesting and powerful numerical techniques,
such as spectral elements (e.g., Komatitsch and
Tromp, 1999), wavelets (Daubeschies et al., 1985),
level-set method (Osher and Fedkiew, 2003), and
adaptive grid techniques (Berger and Oliger 1984;
Bruegmann and Tichy, 2004), and interested readers
can read these references to learn more.

Rapid advancement in computing power has made
3-D modeling of mantle convection practical,
although 2-D modeling still plays an essential role.
While a variety of solvers with either iterative or
direct solution method are available to 2-D models,
3-D modeling requires iterative solution techniques
due to both computer memory and computational
requirements. A powerful iterative solution approach
is the multigrid method that can be used in either FE
or FV method. Such methods are already implemen-
ted in a number of mantle convection codes including
STAG3D (Tackley, 1994), Citcom/CitcomS (Moresi
and Solomatov, 1995; Zhong et al., 2000), and Terra
(Baumgardner, 1985). We spent some effort in discuss-
ing the multigrid method, and more on this topic can
be found in Brandt (1977), Trottenberg et al. (2001),
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and Yavneh (2006). The multigrid idea is powerful in
that one can generalize this to structures other than
grids, for instance multiscale or multilevel techniques
(Trottenberg et al., 2001).

Three-dimensional modeling should almost cer-
tainly make a good use of parallel computing with
widely available parallel computers from PC-clusters
to super-parallel computers. Parallel computing
technology poses certain limitations on numerical
techniques as well. For example, spectral methods,
while having some important advantages over other
grid-based numerical methods, are much more diffi-
cult to implement efficiently in parallel computing.
This may severely limit its use to tackle next-gen-
eration computing problems. Fortunately, many
other numerical methods including FE, FD, and FV
methods are very efficient for parallel computing.
Many of the codes mentioned earlier for mantle
convection studies including STAG3D, Citcom/
CitcomS, Terra, and those in Harder and Hansen
(2005) and Kageyama and Sato (2004) are fully par-
allelized and can be used on different parallel
computers. These codes can be scaled up to possibly
thousands of processors with a great potential yet to
be explored in helping understand high-resolution,
high-Rayleigh-number mantle convection.

However, there remain many challenges in
numerical modeling of mantle convection, both in
developing more robust numerical algorithms and
in analyzing model results. At least four areas need
better numerical algorithms. (1) Thermochemical
convection becomes increasingly important in
answering a variety of geodynamic questions. We
discussed cursorily a Lagrangian technique of
advection of tracers in solving thermochemical con-
vection. However, it is clear that most existing
techniques do not work well for entrainment in ther-
mochemical convection, as demonstrated by van
Keken et al. (1997) and Tackley and King (2003).
The increasing computing power will help solve
this problem by providing significantly high resolu-
tion, but better algorithms are certainly needed.
(2) The lithosphere is characterized by highly non-
linear rheology including complex shear-localizing
feedback mechanisms and history-dependent rheol-
ogy and plastic deformation (Gurnis et al., 2000;
Bercovici, 2003). Convergence deteriorates rapidly
when nonlinearity increases. More robust algorithms
are needed for solving mantle convection with highly
nonlinear rheology. (3) Robust algorithms are needed
in order to incorporate compressibility in mantle
convection and to better compare with seismic and

mineral physics models. 2-D compressible mantle
convection models with simple thermodynamics
have been formulated (Jarvis and McKenzie, 1980;
Ita and King, 1998). We anticipate more develop-
ments in the near future. (4) Multiscale physics is
an important feature of mantle convection. Earth’s
mantle convection is of very long wavelengths, for
example,� 10 000 km for the Pacific Plate. However,
mantle convection is also fundamentally controlled
by thin thermal boundary layers that lead to thin
upwelling plumes (�100 km) and downwelling slabs
due to high Rayleigh number in mantle convection.
Plate boundary processes and entrainment in ther-
mochemical convection also occur over possibly
even smaller length scale. Furthermore, material
properties are also affected by near-microscopic
properties such as grain size, which has not been
well incorporated in mantle convection studies.
Most existing numerical methods in mantle convec-
tion work for largely uniform grids. New methods
that work with dynamic adaptive mesh refinement
are needed. Finally, it is necessary for all these new
methods and algorithms to work efficiently in 2-D/
3-D on parallel computers.

Efficient postprocessing and analyses of modeling
results are also increasingly becoming an important
issue. Mantle convection, along with many other
disciplines in the geosciences, now faces an exponen-
tial increase in the amount of numerical data
generated in large-scale high-resolution 3-D convec-
tion. It is currently commonplace to have a few
terabytes of data for a single project and this poses
significant challenges to conventional ways of
data analyses, post-processing, and visualization.
Visualization is already a severe problem even in
the era of terascale computing. Considering our
future quest to the petascale computing, this problem
would be greatly exacerbated in the coming decade.
It is essential to employ modern visualization tools to
confront this challenge. Erlebacher et al. (2001) dis-
cussed these issues and their solutions, and similar
arguments about these problems and their solutions
can be found in a report on high-performance com-
puting in geophysics by Cohen (2005). Several
potentially useful methodologies such as 2-D/3-D
feature extraction, segmentation methods, and flow
topology (see Hansen and Johnson, 2005) can help
geophysicists understand better the physical struc-
ture of time-dependent convection with coherent
structures, such as plumes or detached slabs in sphe-
rical geometry. 3-D visualization packages, for
example, AMIRA or PARAVIEW, can help to
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alleviate the burden of the researcher in unraveling

the model output. Going further into detailed exam-

ination of 3-D mantle convection, one would need

large-scale display devices such as the PowerWall

with more than 12 million pixels or CAVE-like

environments. This particular visualization method

is described under current operating conditions in

the Earth Simulator Center by Ohno et al. (2006).

Remote visualization of the data under the auspices

of Web-services using the client-server paradigm

may be a panacea for collaborative projects (see

Erlebacher et al., 2006).
Finally, it is vitally important to develop and

maintain efficient and robust benchmarks, as in any

fields of computational sciences. Benchmark efforts

have been made in the past by various groups for

different mantle convection problems (e.g.,

Blankenbach et al., 1989; van Keken et al., 1997;

Tackley, 1994; Moresi and Solomatov, 1995; Zhong

et al., 2000; Stemmer et al., 2006). As numerical meth-

ods and computer codes become more sophisticated

and our community moves into tera- and petascale

computing era, benchmark efforts become even more

important to assure the efficiency and accuracy.
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