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Glossary

g9000 coherence The state of sticking together, here

meaning neurons firing (or changing firing) at the

same times.

g9005 context A set of variables having to do with the

environment, either internal or external.

g9010 ensembles Groups of neurons recorded

simultaneously.

g9015 forebrain The rostral-most portion of the brain,

including the thalamus, hypothalamus, basal gang-

lia, limbic system, and of course cerebral cortex.

g9020 hierarchy Classification for a system containing a

series of levels, each of which does a particular job

or set of jobs.

g9025 interactions Activity in one element (here, a neuron

or brain region) having an impact on activity in another.

g9030pattern completion A property of a neural net-

work architecture, whereby the act of setting a

small subset of units into a state reflecting a par-

ticular global pattern causes, through time, the

rest of the network to complete this global

pattern.

g9035receptive field The range of stimuli to which a

neuron responds.

g9040taste space A theoretical organization of the rela-

tive similarities between the stimuli within a

particular modality.

g9045top-down Interregional interactions reflecting the

influence of a higher level of a hierarchy on a lower

level of the same hierarchy.

s0005 4.16.1 Introduction

p0005 Two main theories of taste coding, the labeled-line

(LL) and across-neuron pattern (ANP) hypotheses,

dominate research in gustation. The two theories are

similar, in that both explain taste coding in terms of

activity in populations of neurons. They differ in

only one regard: according to the LL theory, a

particular subgroup of neurons communicates infor-

mation for a particular taste, and therefore a

reduction in firing among one subgroup (say,

sucrose-best neurons) codes a reduction in that taste

(sweetness); according to the ANP theory, the entire

population of taste-responsive neurons participates

in all codes, and therefore a reduction in the response

of sucrose-best neurons is expected to code both a

reduction in sweetness and an increase in some other

taste quality (which is coded, in part, by specifically

low firing rates in sucrose-best neurons).
p0010It is not our intent to pursue these distinctions

here. Excellent pro-LL (Scott, K., 2004) and pro-

ANP (Smith, D. V. and St. John, S. J., 1999) reviews

have been written in the last 10 years. Instead, we will

discuss a basic aspect of neural population function

that is largely lacking from debates over taste coding.

In this essay, we will suggest that coding in distrib-

uted neural populations is intrinsically interactive,

and that future advances in our theories of gustatory

population coding will therefore require an

accounting of such interactions. We will present

data demonstrating that such interactions occur in

sensory systems, including the gustatory system.

This will lead to a discussion of the spatial and

temporal structures that such interactions introduce
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into population activity, and finally to our suggestion
that dynamic population codes may be best thought
of not as coding stimuli themselves, but rather as
driving the transformation of sensory-related activity
into action-related activity. Guided by seminal the-
orizing about perception and action (Gibson, J. J.,
1966; Erickson, R., 1984) and by data from taste and
other sensory systems, we will argue that the time has
come to think about gustatory population coding in a
way that is orthogonal to the LL–AFP debate.

s0010 4.16.2 Population Coding and Neural
Interactions

p0015 While the LL and ANP hypotheses both refer to
activity in populations of neurons, neither suggests
a specific role for interactions between the neurons.
Such interactions, embodied at the simplest level by
concepts such as lateral or reciprocal inhibition and
excitation, would in fact introduce complications into
the decoding of a LL or ANP code, because such
interactions cause neural activity to be modulated
through time (see below). In fact, any purely spatial
coding scheme (such as both LL and ANP) proposed
to function in a network in which neurons interact
must include specification of the operative time per-
iod during which the spatial code will be polled for
content.

p0020 By comparison, most conceptions of neural popu-
lation function explicitly rely on convergence and/or
feedback between nodes (see, for instance, Nagai, T.
et al., 1992; van Vreeswijk, C. and Sompolinsky, H.,
1998; Nagai, T., 2000; Masuda, N. and Aihara, K.,
2003). The earliest neural network models, founded
on basic neuroscientific principles but developed
before researchers had the means to do ensemble
electrophysiology, suggested that population coding
relies on information transfer among an entire set of
neural elements (McClelland, J. L. and Rumelhart, D.
E., 1981). No individual group of neurons in these
models (save the input and output nodes) is profit-
ably described as coding any particular stimulus.
Instead, processing is a function of the interactions
between neurons. Input to such models – even LL
input – is transformed by interconnected neural net-
works into dynamic patterns in which individual
neural elements seldom code stimulus attributes
independently of their neighbors (see, for instance,
Lumer, E. D. et al., 1997; Rabinovich, M. I. et al., 2000;
Sporns, O. et al., 2000).

p0025Data collected in the light of such neural network
modeling has suggested that real brain systems
engage in exactly this sort of population coding. A
variety of vertebrate and invertebrate sensory, cog-
nitive, and motor systems may make explicit use of
interactions between neurons (see below). These
interactions introduce considerable complexity into
single-neuron behavior and do processing work in
neural systems. And while most of this work has
been done in the visual, auditory, somatosensory,
and olfactory systems, it now appears that the same
can be said of the gustatory system – neuronal inter-
actions occur both within and between brain regions
in the taste neuroaxis. We will now briefly discuss
those anatomical and physiological data.

p0030Interactive processing within single brain regions
can be revealed in cross-correlogram (CCG) and
cross-coherence peaks, which indicate that one
neuron produces action potentials in a consistent tem-
poral relationship to those of another (Brody, C. D.,
1999). When that correlated activity is specific to
particular stimuli, it suggests that neural coding may
involve population interactions. Such coding has
been observed to occur in the somatosensory
(Roy, S. and Alloway, K. D., 1999), auditory (e.g.,
Eggermont, J. J., 1994; DeCharms, R. C. and
Merzenich, M. M., 1996; Eggermont, J. J., 2000),
visual (e.g., Brosch, M. et al., 1997; Lampl, I. et al.,
1999; Bretzner, F. et al., 2001; Yoshimura, Y. et al.,
2005), and olfactory (e.g., Wehr, M. and Laurent, G.,
1996; Christensen, T. A. et al., 2003) systems, and
similar findings have been reported in the frontal
cortex of monkeys performing a GO NO-GO task
(Vaadia, E. et al., 1995) and in motor cortex
(Hatsopoulos, N. G. et al., 2003).

p0035In the taste system as well, pairs of cortical neu-
rons produce correlated spike patterns during the
presentation of particular subsets of tastes (Yokota,
T. et al., 1996; Nakamura, T. and Ogawa, H., 1997;
Yokota, T. and Satoh, T., 2001; Katz, D. B. et al.,
2002b). Taste administration recruits taste-specific
but overlapping neuronal ensembles, including
some neurons that are broadly tuned and some that
according to classic single-neuron analyses cannot
even be identified as taste responsive, that is, neurons
with flat or unremarkable responses to taste admin-
istration may still be involved in taste-specific cross-
correlations (Katz, D. B. et al., 2002b). Taste-specific
cross-correlations have also been observed in the
nucleus of the solitary tract (NTS, Adachi, M. et al.,
1989) and in the pontine parabrachial nuclei (PbN,
Yamada, S. et al., 1990; Adachi, M., 1991). Patterns of
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neural interactions appear to provide an additional
source of taste-related information not inherent in
single-unit spike trains, suggesting that taste neurons
are embedded in interactive ensembles.

p0040 Of course, these intraregional ensembles are them-
selves embedded in larger interactive networks.
Various dye-labeling techniques have demonstrated
the existence of reciprocal connections among taste-
responsive nuclei in brainstem, thalamic, limbic, and
cortical regions. Just as injections of horse-radish per-
oxidase into PbN have revealed two parallel
ascending taste pathways in rodents – a parabrachio-
thalamo-cortical and parabrachio-amygdaloid path-
way (Halsell, C. B., 1992) – similar methods have
revealed descending pathways back to the brainstem
(van der Kooy, D. et al., 1984; Huang, T. et al., 2003).
Reciprocal connections have been shown to exist
between various pairs of taste regions, including gus-
tatory cortex (GC) and thalamus (Nakashima, M.
et al., 2000), GC and amygdala (McDonald, A. J. and
Jackson, T. R., 1987), and amygdala and PbN
(Takeuchi, Y. et al., 1982). These data suggest that
taste information is processed in a distributed system
of information exchange involving ascending and des-
cending pathways.

p0045 Interregional connectivity in the taste system is
both convergent and functional (Di Lorenzo, P. M.
and Monroe, S., 1997), just as it is in other systems
(e.g., Kay, L. M. et al., 1996; Alonso, J. M. et al., 2001;
Alloway, K. D. and Roy, S. A., 2002; Villalobos, M. E.
et al., 2005). For example, stimulation of GC, amyg-
dala, or hypothalamus modifies single-neuron PbN
responses to lingual application of the four basic
tastes (Lundy, R. F. and Norgren, R., 2004; Li, C. S.
et al., 2005). A large percentage of the PbN taste
neurons that receive any sort of feedback receive it
from at least two forebrain sites, suggesting that mul-
tiple feedback loops may converge upon single
brainstem taste neurons. Modulation of neurons in
NTS, the very first central taste relay, via manipula-
tion of both central amygdala and lateral
hypothalamus, produces similar results (Cho, Y. K.
et al., 2003).

p0050 The specific function of feedback from forebrain
to brainstem has been suggested to be a sharpening of
receptive field (i.e., forebrain stimulation typically
reduces the number of stimuli to which brainstem
neurons respond, see Lundy, R. F. and Norgren, R.,
2004). It might be tempting to conclude that the
ultimately sharpened responses are evidence for a
LL code, but in fact these data compellingly demon-
strate that feed-forward projections are relatively

broadly tuned (reflecting either broadly receptive
transduction mechanisms or very early mixing of
pathways), and that the apparent labeling of brain-
stem neurons represents an interactive network
effect, in which the broad responses are tuned up by
forebrain populations.

s00154.16.3 Functional Implications of
Interactive Population Coding

p0055The existence of interactive ensembles has strong
implications for neural network function.
Specifically, within- and between-region interactions
affect neural activity by introducing structure – both
spatial and temporal – into spontaneous and evoked
neural activity. Through such imposition of struc-
ture, interneuronal interactions imbue neural activity
with contextual and behavioral specificity. We will
now discuss studies demonstrating that these phe-
nomena are prominent in many neural systems and,
to the extent that they have been studied, in the taste
system as well.

p0060Classical analysis of sensory neural coding relies
on the tacit assumption that spontaneous, prestimu-
lus neural activity is random and uncorrelated –
noise with which stimulus-evoked signals must
compete. In populations of interacting neural ele-
ments, however, spontaneous activity is far from
random. Hallmark phenomena of interactive proces-
sing, such as pattern completion (Rumelhart, D. E.
and McClelland, J. L., 1986), ensure that spontaneous
activity can drive a network into preferred coherent
states.

p0065Little work on this topic has yet been done in the
taste neuroaxis, but visual cortex has been shown to
spontaneously attain spatially coherent global states
(Arieli, A. et al., 1996). Images of intrinsic V1 signals,
keyed to the spontaneous firing of individual neu-
rons, are nearly identical to the maps produced when
those neurons’ best stimuli are presented (Tsodyks,
M. et al., 1999; Kenet, T. et al., 2003). Analogously,
motor cortical networks have been suggested to
attain states, referred to as preshapes, that predict
population codes for particular movements well in
advance of such movements (Bastian, A. et al., 1998;
2003). Cortex can produce best-stimulus responses
both in the presence and absence of these stimuli.

p0070The complementary result has also been shown:
cortex produces surprisingly variable responses to
static stimuli. In fact, the specific spatial structure of
cortical responses is less dependent on the exact
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physical stimulus than on the cognitive context, that
is, the animal’s interpretation of the stimulus at a
particular moment. In the visual system, for example,
attention modulates the magnitude of sensory activ-
ity, enhancing responses to the attended object and
suppressing responses to unattended ones (e.g.,
Fischer, B. and Boch, R., 1985; Reynolds, J. H. and
Chelazzi, L., 2004). In situations in which a stimulus
is bistable (e.g., the figure-ground illusion), mean-
while, cortical neurons shift firing rates in direct
relation to changes in perception, despite the fact
that the actual sensory stimulus is static (Leopold,
D. A. and Logothetis, N. K., 1996; Otterpohl, J. R.
et al., 2000). Cognitive states also influence the corre-
lations between neurons responding to
simultaneously presented stimuli, modifying spatial
patterns of neural interactions in cortical regions
(Hatsopoulos, N. G. et al., 1998; 2003), and thereby
tagging the ensembles recruited to code particular
real-world objects; the visual responses to discon-
nected line segments that are perceived to be part
of a single occluded rod fire in synchrony, for
instance, while responses to identical line segments
that do not present the percept of an occluded rod do
not (Singer, W., 1993; see also Harris, K. D., 2005).

p0075 In the taste system, as well, attentional variables
affect cortical coding: when a rat ceases to pay atten-
tion to taste stimuli, the responses of 40% of the
neurons in taste cortex suddenly change their recep-
tive fields (Fontanini, A. and Katz, D. B., 2006). These
changes are not random, but rather represent an
interpretable modulation of perceptual taste space –
specifically, an increase in the salience of the palat-
ability dimension. Changes in orofacial responses to
the tastes (Grill, H. J. and Norgren, R., 1978;
Berridge, K. C., 2000) confirm this interpretation
(Fontanini, A. and Katz, D. B., 2006). Such placing
of coherent responses into a meaningful context has
been suggested to have its source in feedback from
higher neural centers (Engel, A. K. et al., 2001;
Buffalo, E. A. et al., 2005). In other words, inclusion
of multiple brain regions in the coding population
places the neural code into the motivational and
cognitive context, such that sensory responses reflect
the meaning of stimuli, and not simply their physical
makeup.

p0080 While it has not yet been shown that taste net-
works organize into analogous spatial coherence (but
see Yoshimura, H. et al., 2004), it is becoming clear
that neural responses to taste administration, like
those to other stimuli (e.g., Golomb, D. et al., 1994;
Vaadia, E. et al., 1995; MacLeod, K, and Laurent, G.,

1996; Seidemann, E. et al., 1996; Compte, A. et al.,
2000; Kirkland, K. L. et al., 2000; Bazhenov, M. et al.,
2001; Miller, P. et al., 2005), do have temporal struc-
ture. Such temporal structure has been extensively
described in both brainstem (Di Lorenzo, P. M. and
Schwartzbaum, J. S., 1982; Erickson, R. P. et al., 1994;
Di Lorenzo, P. M. and Victor, J. D., 2003) and cortex
(Katz, D. B. et al., 2001; see also Tabuchi, E. et al.,
2002). The use of chronic recordings in active, tasting
rats has allowed us to observe not only slower
dynamics but also oscillations (Fontanini, A. and
Katz, D. B., 2005) in taste cortex, a region rife with
inhibitory cross-talk (Ogawa, H. et al., 1998). These
cortical dynamics have been directly linked to net-
work functioning (Katz, D. B. et al., 2002b), a finding
that is consistent with paired-pulse studies showing
that two identical inputs, separated by just long
enough to allow the processing of information from
the first input to begin, cause reliably distinct pat-
terns of response in NTS neurons (Lemon, C. H. and
Di Lorenzo, P. M., 2002; Di Lorenzo, P. M. et al.,
2003). Gustatory responses are clearly dynamic, as
predicted by interactive population models (but not
by either the LL or ANP model).

p0085Analogous to the above findings on spatial coher-
ence, perceptual relevance emerges in the temporal
structure of cortical taste responses, much as it does
in other systems (Sugase, Y. et al., 1999; Friedrich, R.
W. and Laurent, G., 2001). While data from primates
have suggested that only prefrontal cortical activity is
affected by important changes in state (i.e., satiety,
Rolls, E. T. et al., 1989), rat primary cortical responses
clearly contain both sensory and cognitive compo-
nents. These responses can be divided in three
epochs, each of which reflects a particular stage of
gustatory processing – somatosensation, chemosensa-
tion, and palatability (Katz, D. B. et al., 2001).
Attention-related changes in stimulus palatability
are preferentially expressed in changes in late-
epoch coding (Fontanini, A. and Katz, D. B., 2006),
a fact that reinforces the conclusion that the three
epochs represent genuine temporal coding, rather
than trivially reflecting the outcome of processing.

p0090The evolution of activity during these three
epochs could be the result of interactions/reverbera-
tions between the gustatory system and other high-
order areas known to code palatability, such as the
amygdala (Nishijo, H. et al., 1998). It has also recently
been shown that even later aspects of cortical
responses in rats change as a taste becomes familiar
(Bahar, A. S. et al., 2004). Thus, cognitive processes
are apparent both in the spatial and temporal
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structures of sensory responses, as one expects when
examining a system functioning via interacting popu-
lations of neurons.

s0020 4.16.4 The Purposes of Neural
Interactions in Taste

p0095 It is clear that the behavior of neurons in primary
gustatory cortex must be interpreted in terms of con-
text – both the physical context of the networks (of
neurons and brain areas) into which the neuron is
connected and the cognitive context of the task.
Primary GC is not a passive receiver, but rather a
dynamic processor of information constantly engaged
in a behaviorally dependent interplay with other
regions; taste neurons in cortex interact with popula-
tions of neurons throughout the taste neuroaxis in the
process of stimulus coding. A fundamental issue that
remains to be addressed, however, is the definition of
the term coding. Put another way, the question is:
what kind of processes are interacting populations of
taste neurons involved in?

p0100 It has been suggested that neural ensembles may
interact for the purposes of binding and/or effective
signal transmission, collapsing neurons into a func-
tional, synchronous ensemble in order that this
ensemble may code a context-embedded percept.
Intraregional connectivity is thought to allow flexible
assembly of a broad range of possible ensembles, while
longer-range connections modulate that assembly
according to global (cognitive) states (Brosch, M.
et al., 1997). This hypothesis has been further extended
to consider time-varying responses, wherein distinct
subpopulations of neurons fire synchronously at dif-
ferent times during the response (Vaadia, E. et al.,
1995; Wehr, M. and Laurent, G., 1996).

p0105 Synchrony is potentially powerful, because syn-
chronous input can be decoded by coincidence-
detecting readout cells whose firing represents a
synthetic and sparsened version of the input.
Perhaps the most well-studied example comes from
the insect olfactory system. Kenyon cells in the
mushroom body of the locust and fly receive com-
plex, time-varying inputs from populations of
projecting neurons in the antenna lobe (Laurent, G.
et al., 2001; Lei, H. et al., 2004; Wilson, R. I. et al., 2004)
and respond to this very complex input with rela-
tively few – and very reliable – action potentials
following the arrival of synchronous inputs (Perez-
Orive, J. et al., 2002). The attractiveness of the syn-
chronization hypothesis lies in the ease with which it

fits into an overall vision of the brain as a coding–
decoding device: every area codes the input accord-
ing to some rules and feeds its output to a higher level
area that synthesizes it into a sparser representation.
In this framework the brain is treated as a linear
hierarchical system, where the output of a level is
sent to the next, and where the highest level decodes
a fully contextualized percept.

p0110The evidence collected thus far, however, does
not provide strong support for such a model of gus-
tatory function. As described above, information
traversing the gustatory system is hierarchical only
to a first approximation – for every ascending path-
way between brainstem and forebrain there is
matching feedback. In the context of this recurrent
organization it is hard to identify the putative decod-
ing zone in which convergence and sparsening might
occur. Recordings confirm that the taste selectivity of
neural responses does not increase by a great deal as
one ascends through the system (Yamamoto, T. et al.,
1985; Ogawa, H. et al., 1990; Nishijo, H. et al., 1998),
and there is not much evidence for synchrony or
oscillations during gustatory processing. In fact,
while oscillations occur prominently in gustatory
cortex, they specifically occur when rats are not
engaged in taste processing (Fontanini, A. and Katz,
D. B., 2005). Significant CCGs between pairs of neu-
rons separated by more than 100 mm, meanwhile,
appear to reflect simultaneous changes of firing
rate, rather than synchronous firing of action poten-
tials (Katz, D. B. et al., 2002b).

p0115Alternative theories avoid the coding–decoding
issue entirely, simply by suggesting that processing
of a sensory stimulus can be accomplished in the
absence of coding of the sensory stimulus. Several
researchers and philosophers (see, for instance,
Varela, F. J. et al., 1991; van Gelder, T., 1992;
Eggermont, J. J., 1998; Engel, A. K. et al., 2001),
including more than one chemosensory scientist
(Freeman, W. J. and Skarda, C. A., 1994; Halpern, B.
P., 2000), have suggested that coding and representa-
tion may be constructs with more relevance to
computer function than to brain function. Such a
notion is prima facie attractive, because all extant
concepts of taste coding run into trouble over the
fact of the wide range of response latencies produced
in gustatory behavior – the fact that some taste
responses can be produced as little as 200 ms follow-
ing taste administration, while others take well over
1 s (Halpern, B. P., 2005). Furthermore, it makes
sense from an ecological prospective, in that the
function of gustation is to provide information for
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the crucial decision of ingesting or rejecting food
(Gibson, J. J., 1966). Taste is therefore intimately
linked to orofacial motor behavior – a linkage that
is explicit in the fact that the brainstem taste relays
are almost directly connected into orofacial motor-
neuron pools (Travers, J. B. and Norgren, R., 1983;
Travers, J. B. et al., 2000). It may be reasonably argued
that the job of populations of neurons in the gustatory
neuroaxis is not to code tastes at all, but rather to
transform taste input into motor output. In such a
scheme, the spatial hierarchy in which each succes-
sive brain region contains more highly processed
information is replaced by a temporal hierarchy in
which successive time points contain more highly
processed information.

p0120 This, then, would be the function of interacting
neural populations – to transform input, through
poststimulus time, into a form adequate for driving
behavior. Stimulus-related input does not get repre-
sented by neural firing (or even by neural synchrony)
for any particular finite time, but rather sets in
motion a dynamic process of population interaction
(Harris, K. D., 2005). This is consistent not only with
the recent data on temporal coding and cross-corre-
lations in taste (Katz, D. B. et al., 2002a), but also with
data from other systems showing: (1) action-oriented
responses in early sensory relays (Kay, L. M. and
Laurent, G., 1999, Shuler, M. G. and Bear, M. F.,
2006); (2) emergence of perceptual information
through time (Sugase, Y. et al., 1999); and (3) intri-
guing new data suggesting that visual input merely
perturbs active processes already underway in V1
(Fiser, J. et al., 2004).

s0025 4.16.5 Conclusions

p0125 These are necessarily speculative musings, because
the study of interactive population coding in taste
cortex and the larger taste neuroaxis is still in its
infancy. We do not write this review in an attempt
to resolve the debate between LL and ANP theories –
both theories have their adherents, both can be
thought to receive support from data, and as of now
neither can be disproved in the central nervous sys-
tem. Our suggestion is that we will need a more
explicit account of interacting populations, perhaps
adapted from research in other systems, if we are to
provide the necessary framework for a complete
understanding of the functioning of taste networks.
These interactions exist in the taste system, as they do
in other, more extensively examined systems and in

realistic neural models. The extant theory and data
suggest that they may be central to sensory function –
function that may conceivably have more to do with
transforming input smoothly into motor output than
with actual coding of the stimulus per se. It will likely
be years before these issues can be completely
resolved.
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