
Chapter

1 RISCs and MIPS
Architectures

MIPS is the most elegant among the effective RISC architectures; even the
competition thought so, as evidenced by the strong MIPS influence to

be seen in later architectures like DEC’s Alpha and HP’s Precision. Elegance by
itself doesn’t get you far in a competitive marketplace, but MIPS microproces-
sors have generally managed to be among the most efficient of each generation
by remaining among the simplest.

Relative simplicity was a commercial necessity for MIPS Computer Sys-
tems Inc., which spun off in 1985 from an academic project to make and
market the chips. As a result, the architecture had (and perhaps still has)
the largest range of active manufacturers in the industry—working from
ASIC cores (MIPS Technologies, Philips) through low-cost CPUs (IDT, AMD/
Alchemy) to the only 64-bit CPUs in widespread embedded use (PMC-Sierra,
Toshiba, Broadcom).

At the low end the CPU has practically disappeared from sight in the
“system on a chip”; at the high end Intrinsity’s remarkable processor ran at
2 GHz—a speed unmatched outside the unlimited power/heat budget of
contemporary PCs.

ARM gets more headlines, but MIPS sales volumes remain healthy enough:
100 M MIPS CPUs were shipped in 2004 into embedded applications.

The MIPS CPU is one of the RISC CPUs, born out of a particularly fertile
period of academic research and development. RISC (Reduced Instruction Set
Computing) is an attractive acronym that, like many such, probably obscures
reality more than it reveals it. But it does serve as a useful tag for a number of
new CPU architectures launched between 1986 and 1989 that owe their remark-
able performance to ideas developed a few years earlier in a couple of seminal
research projects. Someone commented that “a RISC is any computer
architecture defined after 1984”; although meant as a jibe at the industry’s use
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of the acronym, the comment is also true for a technical reason—no computer
defined after 1984 can afford to ignore the RISC pioneers’ work.

One of these pioneering projects was the MIPS project at Stanford. The
project name MIPS (named for the key phrase “microcomputer without inter-
locked pipeline stages”) is also a pun on the familiar unit “millions of instruc-
tions per second.” The Stanford group’s work showed that pipelining, although
a well-known technique, had been drastically underexploited by earlier archi-
tectures and could be much better used, particularly when combined with 1980
silicon design.

1.1 Pipelines

Once upon a time in a small town in the north of England, there was Evie’s fish
and chip shop. Inside, each customer got to the head of the queue and asked for
his or her meal (usually fried cod, chips, mushy peas,1 and a cup of tea). Then
each customer waited for the plate to be filled before going to sit down.

Evie’s chips were the best in town, and every market day the lunch queue
stretched out of the shop. So when the clog shop next door shut down, Evie
rented it and doubled the number of tables. But they couldn’t fill them! The
queue outside was as long as ever, and the busy townsfolk had no time to sit
over their cooling tea.

They couldn’t add another serving counter; Evie’s cod and Bert’s chips were
what made the shop. But then they had a brilliant idea. They lengthened the
counter and Evie, Bert, Dionysus, and Mary stood in a row. As customers came
in, Evie gave them a plate with their fish, Bert added the chips, Dionysus spooned
out the mushy peas, and Mary poured the tea and took the money. The cus-
tomers kept walking; as one customer got the peas, the next was already getting
chips and the one after that fish. Less hardy folk don’t eat mushy peas—but
that’s no problem; those customers just got nothing but a vacant smile from
Dionysus.

The queue shortened and soon they bought the shop on the other side as
well for extra table space.

That’s a pipeline. Divide any repetitive job into a number of sequential parts
and arrange them so that the work moves past the workers, with each specialist
doing his or her part for each unit of work in turn. Although the total time
any customer spends being served has gone up, there are four customers being
served at once and about three times as many customers being served in that
market day lunch hour. Figure 1.1 shows Evie’s organization, as drawn by her
son Einstein in a rare visit to nonvirtual reality.2

Seen as a collection of instructions in memory, a program ready to run
doesn’t look much like a queue of customers. But when you look at it from

1. Non-English readers should probably not inquire further into the nature of this delicacy.

2. It looks to me as if Einstein has been reading books on computer science.
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FIGURE 1.1 Evie’s fish and chip shop pipeline.

the CPU’s point of view, things change. The CPU fetches each instruction from
memory, decodes it, finds any operands it needs, performs the appropriate
action, and stores any results—and then it goes and does the same thing all
over again. The program waiting to be run is a queue of instructions waiting to
flow through the CPU one at a time.

The various different jobs required to deal with each instruction already
require different specialized chunks of logic inside the CPU, so building a pipe-
line doesn’t even make the CPU much more complicated; it just makes it work
harder.

The use of pipelining is not new with RISC microprocessors. What makes
the difference is the redesign of everything—starting with the instruction set—
to make the pipeline more efficient.3 So how do you make a pipeline efficient?
Actually, that’s probably the wrong question. The right question is this: What
makes a pipeline inefficient?

1.1.1 What Makes a Pipeline Inefficient?

It’s not good if one stage takes much longer than the others. The organization
of Evie’s shop depends on Mary’s ability to pour tea with one hand while giving
change with the other—if Mary takes longer than the others, the whole queue
will have to slow down to match her.

3. The first RISC in this sense was probably the CDC6600, designed by Seymour Cray in the 1970s,
but the idea didn’t catch on at that time. However, this is straying into the history of computer
architecture, and if you like this subject you’ll surely want to read Hennessy and Patterson, 1996.
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In a pipeline, you try to make sure that every stage takes roughly the same
amount of time. A circuit design often gives you the opportunity to trade off the
complexity of logic; against its speed, and designers can assign work to different
stages: with care, the pipeline is balanced.

The hard problem is not difficult actions, it’s awkward customers. Back in
the chip shop Cyril is often short of cash, so Evie won’t serve him until Mary
has counted his money. When Cyril arrives, he’s stuck at Evie’s position until
Mary has finished with the three previous customers and can check his pile of
old bent coins. Cyril is trouble, because when he comes in he needs a resource
(Mary’s counting) that is being used by previous customers. He’s a resource
conflict.

Daphne and Lola always come in together (in that order) and share their
meals. Lola won’t have chips unless Daphne gets some tea (too salty without
something to drink). Lola waits on tenterhooks in front of Bert until Daphne
gets to Mary, and so a gap appears in the pipeline. This is a dependency (and the
gap is called a pipeline bubble).

Not all dependencies are a problem. Frank always wants exactly the same
meal as Fred, but he can follow him down the counter anyway—if Fred gets
chips, Frank gets chips.

If you could get rid of awkward customers, you could make a more efficient
pipeline. This is hardly an option for Evie, who has to make her living in a town
of eccentrics. Intel is faced with much the same problem: The appeal of its CPUs
relies on the customer being able to go on running all that old software. But with
a new CPU you get to define the instruction set, and you can define many of the
awkward customers out of existence. In section 1.2 we’ll show how MIPS did
that, but first we’ll come back to computer hardware in general with a discussion
of caching.

1.1.2 The Pipeline and Caching

We said earlier that efficient pipeline operation requires every stage to take the
same amount of time. But a 2006 CPU can add two 64-bit numbers 50 to 100
times quicker than it can fetch a piece of data from memory.

So effective pipelining relies on another technique to speed most mem-
ory accesses by a factor of 50—the use of caches. A cache is a small, very
fast, local memory that holds copies of memory data. Each piece of data is
kept with a record of its main memory address (the cache tag) and when
the CPU wants data the cache gets searched and, if the requisite data is
available, it’s sent back quickly. Since we’ve no way to guess what data the
CPU might be about to use, the cache merely keeps copies of data the
CPU has had to fetch from main memory in the recent past; data is dis-
carded from the cache when its space is needed for more data arriving from
memory.

Even a simple cache will provide the data the CPU wants more than 90 per-
centage of the time, so the pipeline design needs only to allow enough time to
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FIGURE 1.2 MIPS five-stage pipeline.

fetch data from the cache; a cache miss is a relatively rare event and we can just
stop the CPU when it happens (though cleverer CPUs find more useful things
to do).

The MIPS architecture was planned with separate instruction and data
caches, so it can fetch an instruction and read or write a memory variable simul-
taneously.

CISC architectures have caches too, but they’re most often afterthoughts,
fitted in as a feature of the memory system. A RISC architecture makes more
sense if you regard the caches as very much part of the CPU and tied firmly into
the pipeline.

1.2 The MIPS Five-Stage Pipeline

The MIPS architecture is made for pipelining, and Figure 1.2 is close to the
earliest MIPS CPUs and typical of many. So long as the CPU runs from the
cache, the execution of every MIPS instruction is divided into five phases, called
pipestages, with each pipestage taking a fixed amount of time. The fixed amount
of time is usually a processor clock cycle (though some actions take only half
a clock, so the MIPS five-stage pipeline actually occupies only four clock
cycles).

All instructions are rigidly defined so they can follow the same sequence
of pipestages, even where the instruction does nothing at some stage. The net
result is that, so long as it keeps hitting the cache, the CPU starts an instruction
every clock cycle.
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Let’s look at Figure 1.2 and consider what happens in each pipestage.

IF (instruction fetch) Gets the next instruction from the instruction cache
(I-cache).

RD (read registers) Fetches the contents of the CPU registers whose num-
bers are in the two possible source register fields of the instruction.

ALU (arithmetic/logic unit) Performs an arithmetical or logical operation in
one clock cycle (floating-point math and integer multiply/divide can’t
be done in one clock cycle and are done differently, but that comes
later).

MEM Is the stage where the instruction can read/write memory variables in
the data cache (D-cache). On average, about three out of four instruc-
tions do nothing in this stage, but allocating the stage for each instruc-
tion ensures that you never get two instructions wanting the data cache
at the same time. (It’s the same as the mushy peas served by
Dionysus.)

WB (write back) Stores the value obtained from an operation back to the
register file.

You may have seen other pictures of the MIPS pipeline that look slightly
different; it has been common practice to simplify the picture by drawing each
pipestage as if it takes exactly one clock cycle. Some later MIPS CPUs have
longer or slightly different pipelines, but the pipeline with five stages in four
cycles is where the architecture started, and something very like it is still used
by the simpler MIPS CPUs.

The tyranny of the rigid pipeline limits the kinds of things instructions can
do. First, it forces all instructions to be the same length (exactly one machine
word of 32 bits), so that they can be fetched in a constant time. This itself dis-
courages complexity; there are not enough bits in the instruction to encode
really complicated addressing modes, for example. And the fixed-size instruc-
tions directly cause one problem; in a typical program built for an architecture
like x86, the average size of instructions is only just over three bytes. MIPS code
will use more memory space.

Second, the pipeline design rules out the implementation of instructions
that do any operation on memory variables. Data from cache or memory is
obtained only in phase 4, which is much too late to be available to the ALU.
Memory accesses occur only as simple load or store instructions that move
the data to or from registers (you will see this described as a load/store
architecture).

The RISC CPUs launched around 1987 worked because the instruction sets
designed around those restrictions prove just as useful (particularly for com-
piled code) as the complicated ones that give so much more trouble to the
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hardware. A 1987 or later RISC is characterized by an instruction set designed
for efficient pipelining and the use of caches.

The MIPS project architects also attended to the best thinking of the time
about what makes a CPU an easy target for efficient optimizing compilers. Many
of those requirements are quite compatible with the pipeline requirements, so
MIPS CPUs have 32 general-purpose registers and three-operand arithmeti-
cal/logical instructions. Happily, the complicated special-purpose instructions
that particularly upset pipelines are often those that compilers are unwilling to
generate.

The RISC pioneers’ judgment has stood the test of time. More recent
instruction sets have pushed the hardware/software line back even further;
they are called VLIW (very long instruction word) and/or EPIC (explicitly
parallel instruction computing). The most prominent is Intel’s IA64 architec-
ture, but it has not succeeded despite massive investment; it appears to have
got the hardware/software boundary wrong.

1.3 RISC and CISC

We can now have a go at defining what we mean by these overused terms.
For me, RISC is an adjective applied to machine architectures/instruction
sets. In the mid-1980s, it became attached to a group of relatively new
architectures in which the instruction set had been cunningly and effectively
specified to make pipelined implementations efficient and successful. It’s a
useful term because of the great similarity of approach apparent in SPARC,
MIPS, PowerPC, HP Precision, DEC Alpha, and (to a lesser extent) in ARM.

By contrast to this rather finely aimed description, CISC (Complex Instruc-
tion Set Computing) is used negatively to describe architectures whose defini-
tion has not been shaped by those insights about pipelined implementations.
The RISC revolution was so successful that no post-1985 architecture has aban-
doned the basic RISC principles;4 thus, CISC architectures are inevitably those
born before 1985. In this book you can reasonably assume that something said
about CISC is being said to apply to both Intel’s x86 family and Motorola’s
680x0.

Both terms are corrupted when they are applied not to instruction sets but
to implementations. It’s certainly true that Intel accelerated the performance of
its far-from-RISC x86 family by applying implementation tricks pioneered by
RISC builders. But to describe these implementations as having a RISC core is
misleading.

4. Even Intel’s complex and innovation-packed IA64 shares some RISC pipeline-friendly features.
But the adjective EPIC—as used by Intel—nicely captures both their boundless ambition and
the possibility of a huge flop.



8 Chapter 1—RISCs and MIPS Architectures

1.4 Great MIPS Chips of the Past and Present

It’s time to take a tour through the evolution of MIPS processors and the systems
that use them, over the span of the past 20 years or so. We’ll look at events in
the order they occurred, roughly speaking, with a few scenic detours. Along the
way, we’ll see that although the MIPS architecture was originally devised with
UNIX workstations in mind, it has since found its way into all sorts of other
applications—many of which could hardly have been foreseen during the early
years. You’ll get to know some of these names much better in the chapters that
follow.

And although much has happened to the instruction set as well as the sil-
icon, the user-level software from a 1985 R2000 would run perfectly well and
quite efficiently on any modern MIPS CPU. That’s possibly the best backward-
compatibility achievement of any popular architecture.

1.4.1 R2000 to R3000 Processors

MIPS Becomes a Corporation

MIPS Computer Systems Inc. was formed in 1984 to commercialize the work
of Stanford University’s MIPS CPU group; we’ll abbreviate the name to “MIPS
Inc.” Stanford MIPS was only one of several U.S. academic projects that were
bringing together chip design, compiler optimization, and computer architec-
ture in novel ways with great success. The commercial MIPS CPU was enhanced
with memory management hardware and first appeared late in 1985 as the
R2000.

Chip fabrication plants were very expensive to set up even during the mid-
1980s; they were certainly beyond the means of a small start-up company. MIPS
got its designs into production by licensing them to existing semiconductor
vendors who’d already committed the sizable investments required. Early
licensees included Integrated Device Technology (IDT), LSI Logic, Performance
Semiconductor, and NEC.

An ambitious external math coprocessor chip (the R2010 floating-point
accelerator, or FPU) first shipped in mid-1987. Since MIPS was intended to
serve the vigorous market for engineering workstations, good floating-point
performance was important, and the R2010 delivered it.

MIPS itself bought some of the devices produced by those vendors, incor-
porating them into its own small servers and workstations. The vendors were
free under their licensing agreements to supply the devices to other
customers.

The R3000 Processor

First shipped in 1988–1989, this took advantage of a more advanced manu-
facturing process along with some well-judged hardware enhancements, which
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combined to give a substantial boost to performance. From the programmer’s
point of view, the R3000 was almost indistinguishable from the R2000, which
meant the speed of this new design could be unleashed immediately on the
rapidly growing base of MIPS software. It was soon joined by the R3010 FPU—a
similarly improved version of its predecessor.

By the beginning of the 1990s, a few pioneers were using the R3000 in
embedded applications, beginning with high-performance laser printers and
typesetting equipment.

The R2000/R3000 chips include cache controllers—to get a cache, just add
commodity static RAMs. The FPU shared the cache buses to read instructions
(in parallel with the integer CPU) and to transfer operands and results. At 1986
speeds, this division of function was ingenious, practical, and workable; impor-
tantly, it held the number of signal connections on each device within the pin
count limitations of the pin-grid array packages commonly used at the time.
This made it possible to produce the devices at reasonable cost and also to
assemble them into systems using existing manufacturing equipment.

The Challenges of Raising the Clock Rate

Although it made good sense at the time of its introduction, difficulties even-
tually arose centering on the partitioning of functions among the R3000, the
R3010 FPU, and the external caches.

First, the R3000’s external cache implementation led indirectly to some
tricky problems for system designers. To squeeze as much performance as pos-
sible from the external cache RAMs, their control signals had to be switched at
very short, very precisely defined time intervals. The responsibility for imple-
menting the precision delays was passed along to the system designer: the R3000
required four externally generated copies of the input clock, separated by phase
shifts that defined the time intervals essential to correct management of the
cache control signals. At 20 MHz that was manageable, but as clock speeds rose
through 30 MHz and above, the relentless tightening of the accuracy require-
ments made the task much harder.

Second, the pressure to increase system clock rates also led to problems for
the RAM vendors: To keep pace with shrinking cycle times at the processor pipe-
line, they had to find ways to achieve corresponding improvements in the access
time of the memory devices.

All these difficulties became increasingly apparent as the 1980s drew to a
close and limited the designs of this generation to a modest rate of improve-
ment. Starting at 25 MHz in 1988, R3000 systems eventually reached 40 MHz
in 1991—and they weren’t going any faster.

1.4.2 The R6000 Processor: A Diversion

The late 1980s saw lively debates among processor designers about the best
way to increase microprocessor clock rates. Two subjects in particular came
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to the fore. First: Would it be better for future processor designs to keep
the cache implementation external, or to bring the caches on-chip? Second:
Which logic technology would be the most advantageous choice for future
designs?

The first-generation RISC CPUs were built using CMOS chips. They ran
cool and packed a lot of logic into a small space, and all low-cost (pre-RISC)
microprocessors used CMOS. CMOS proponents thought they had an advan-
tage for many years to come. Yes, CMOS logic was not the fastest, but that
would get fixed—the necessary investment would certainly be forthcoming
from companies like Intel. And they argued that CMOS would get even bet-
ter at the things it already did well—packing even more logic into a given
silicon area and switching at even higher frequency within a given power
budget.

Other designers knew how compelling speed was for CPUs, and they con-
cluded that high-end processors would be better off using ECL chips like those
that were already used for mainframe and supercomputer CPUs. Simple ECL
logic gates were faster, and it was much faster at sending signals between chips.
But you got less logic into a single chip, and it ran much hotter.

Since the two technologies faced such different challenges, it was very dif-
ficult to predict which one was the more likely to emerge as the eventual win-
ner. Among the ECL champions was Bipolar Integrated Technology (BIT), and
in 1988 it started work on a MIPS CPU called R6000. The project was ambi-
tious, and BIT hoped to redefine the performance of “super-minicomputers”
in the same way that CMOS RISC microprocessors had redefined workstation
performance.

There were problems. Because of ECL’s density limitations, the processor
design had to be partitioned into multiple devices. And customers were anx-
ious about a complete shift to ECL’s chip-to-chip signaling standards. BIT built
BiCMOS hybrids that sought to mix the best of both worlds.

In the end, the problems overwhelmed the project. The R6000 was delayed
by one problem after another, and slipped to be later than the R4000: the first of
a new generation of CMOS processors that used their greater density to move
the caches on-chip, gaining clock rate by a different route.

BiCMOS CPUs didn’t die along with BIT: A few years later, a company
named Exponential Technology made another valiant attempt, creating a
PowerPC implementation around 1996 that achieved a very impressive clock
rate for its time of over 500 MHz. Like BIT, however, the company was
eventually thwarted by a combination of technical and contractual difficulties
and went out of business.

In a really big argument, both sides are often wrong. In the end, several
more years were to pass before on-chip implementation of the caches became
essential to achieving the highest clock rate. Hewlett Packard stuck with CMOS
chips and a (large) external primary cache for its rather MIPS-like Precision
architecture. HP eventually pushed its clock rate to around 120 MHz—three
times the fastest R3000—without using ECL or BiCMOS. HP was its own
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customer for these processors, using them in its own workstations; the
company felt this market was best served by an evolutionary approach and
could bear the costs of high pin-count packages and careful high-speed system-
level design. This strategy put HP at the top of the performance stakes for a
long, long time; the winner is not always the most revolutionary.

1.4.3 The First CPU Cores

In the early 1980s, LSI Logic pioneered the idea of adapting high-volume chip
design and manufacturing techniques so that systems companies could create
devices specifically tailored to the needs of their own products. Those chips were
called Application-Specific Integrated Circuits (ASICs); by around 1990, they
could contain up to several thousand gates, equivalent to a large board full of
1970s-era logic devices. The unit cost was very low, and development costs were
manageable.

We’ve seen already that LSI took a very early interest in MIPS and made
some R2000/R3000 chips. A couple of years later, it was a natural move for the
company to create an implementation of the MIPS architecture that used its
own in-house ASIC technology; that move opened the door for customers to
include a MIPS processor within a chip that also incorporated other logic. Other
MIPS licensees, such as IDT, also began to offer products that integrated simple
peripheral functions alongside a MIPS CPU.

Even at the very beginning of the 1990s, you could easily put the basic logic
of an R3000-class CPU on an ASIC; but ASICs didn’t have very efficient RAM
blocks, so integrating the caches was a problem. But ASIC technology pro-
gressed rapidly, and by 1993 it was becoming realistic to think of implementing
an entire microprocessor system on a chip—not just the CPU and caches, but
also the memory controllers, the interface controllers, and any small miscella-
neous blocks of supporting logic.

The ASIC business depended on customers being able to take a design into
production in a relatively short time—much less than that needed to create a
chip using “custom” methods. While it was obviously attractive to offer cus-
tomers the idea of integrating a complete system on a chip, ASIC vendors had
to strike a balance: How could the inevitable increase in complexity still be
accommodated within the design cycles that customers had come to expect?

The ASIC industry’s answer was to offer useful functional elements—such
as an entire MIPS processor—in the form of cores: ready-made building blocks
that conveniently encapsulated all the necessary internal design work and ver-
ification, typically presented as a set of machine-readable files in the formats
accepted by ASIC design software. Systems designs of the future would be cre-
ated by connecting several ASIC cores together on a chip; in comparison with
existing systems—created by connecting together devices on a circuit board—
the new systems implemented as core-based ASICs would be smaller, faster, and
cheaper.
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Until this time, ASIC designers had naturally thought in terms of
combining fairly small logic blocks—state machines, counters, decoders, and
so forth. With the advent of ASIC cores, designers were invited to work with a
broader brush on a much larger canvas, bringing together processors, RAMs,
memory controllers, and on-chip buses.

If you suspect that it can’t have been that easy, you have good instincts.
It sounded compelling—but in practice, creating cores and connecting them
together both turned out to be very difficult things to do well. Neverthe-
less, these early ASIC cores are of great historical significance; they’re the
direct ancestors of the system-on-a-chip (SoC) designs that have become
pervasive during the early 2000s. We’ll take up the SoC story again a bit
later on, after we’ve followed several threads of MIPS development through
the 1990s.

1.4.4 The R4000 Processor: A Revolution

The R4000, introduced in 1991, was a brave and ground-breaking develop-
ment. Pioneering features included a complete 64-bit instruction set, the largest
possible on-chip caches (dual 8 KB), clock rates that seemed then like science
fiction (100 MHz on launch), an on-chip secondary cache controller, a system
interface running at a fraction of the internal CPU clock, and on-chip sup-
port for a shared-memory multiprocessor system. The R4000 was among the
first devices to adopt a number of the engineering developments that were to
become common by around 1995, though it’s important to note that it didn’t
take on the complexity of superscalar execution.

The R4000 wasn’t perfect. It was an ambitious chip and the design was
hard to test, especially the clever tricks used for multiprocessor support.
Compared with the R3000, it needs more clock cycles to execute a given
instruction sequence—those clock cycles are so much shorter that it ends
up well in front, but you don’t like to give performance away. To win on
clock speed the primary caches are on-chip: To keep the cost of each device
reasonable, the size of the caches had to be kept relatively small. The R4000
has a longer pipeline, mainly to spread the cache access across multiple clock
cycles. Longer pipelines are less efficient, losing time when the pipeline is
drained by a branch.

1.4.5 The Rise and Fall of the ACE Consortium

Around the time of the R4000’s introduction, MIPS had high hopes that the
new design would help it to become an important participant in the market for
workstations, desktop systems, and servers.

This wasn’t mere wishful thinking on the part of MIPS. During the early
1990s, many observers predicted that RISC processors would take an increas-
ing portion of the market away from their CISC competitors; the bolder
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prognosticators even suggested that the CISC families would die away entirely
within a few years.

In 1991, a group of about 20 companies came together to form a consortium
named the Advanced Computing Environment (ACE) initiative. The
group included DEC (minicomputers), Compaq (PCs), Microsoft, and SCO
(then responsible for UNIX System V). ACE’s goal was to define specifications
and standards to let future UNIX or Windows software drop straight onto any
of a range of machines powered by either Intel x86 or MIPS CPUs. Even in 1991,
a small percentage of the PC business would have meant very attractive sales for
MIPS CPUs and MIPS system builders.

If hype could create a success, ACE would have been a big one. But looking
back on it, Microsoft was more interested in proving that its new Windows NT
system was portable (and perhaps giving Intel a fright) than in actually breaking
up their PC market duopoly. For MIPS, the outcome wasn’t so good; chip vol-
umes wouldn’t sustain it and its systems business entered into a decline, which
before long became so serious that the future of the company was called into
question.

1.4.6 SGI Acquires MIPS

As 1992 progressed, the hoped-for flock of new ACE-compliant systems based
on MIPS processors was proving slow to materialize, and DEC—MIPS’s
highest-profile workstation user—decided that future generations of its systems
would instead use its own Alpha processor family.

That left workstation company Silicon Graphics, Inc. (SGI) as by far the
leading user of MIPS processors for computer systems. So in early 1993, SGI was
the obvious candidate to step in and rescue MIPS Inc., as a way of safeguarding
the future of the architecture on which its own business depended. By the end
of 1994, late-model R4400 CPUs (a stretched R4000 with bigger caches and
performance tuning) were running at 200–250 MHz and keeping SGI in touch
with the RISC performance leaders.

1.4.7 QED: Fast MIPS Processors for Embedded Systems

Some of MIPS Inc.’s key designers left to start a new company named Quantum
Effect Design (QED). The QED founders had been deeply involved in the design
of MIPS processors from the R2000 through R4000.

With IDT as a manufacturing partner and early investor, QED’s small team
set out to create a simple, fast 64-bit MIPS implementation. The plan was to
create a processor that would offer good performance for a reasonable selling
price, so that the device could find a home in many applications, ranging from
low-end workstations, through small servers, to embedded systems like top-of-
the-range laser printers and network routers.
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There were determined people who’d applied R4000 chips to embedded
systems, but it was a fight. QED made sure that the R4600 was much more
appealing to embedded systems designers, and the device soon became a suc-
cess. It went back to a simple five-stage pipeline and offered very competitive
performance for a reasonable price. Winning a place in Cisco routers as well as
SGI’s Indy desktops led to another first: The R4600 was the first RISC CPU that
plainly turned in a profit.

The QED design team continued to refine its work, creating the R4650 and
R4700 during the mid-1990s. We’ll take up the QED story again a little further
on, when we talk about the R5000.

1.4.8 The R10000 Processor and Its Successors

During the mid-1990s, SGI placed very high importance on high-end worksta-
tions and supercomputers. Absolute performance was a very important selling
point, and the MIPS division was called upon to meet this challenge with its
next processor design.

The SGI/MIPS R10000 was launched in early 1996. It was a major departure
for MIPS from the traditional simple pipeline; it was the first CPU to make truly
heroic use of out-of-order execution, along with multiple instruction issue.
Within a few years, out-of-order designs were to sweep all before them, and all
really high-end modern CPUs are out-of-order. But the sheer difficulty of veri-
fying and debugging the R10000 convinced both participants and observers to
conclude that it had been a mistake for SGI to undertake such an ambitious
design in-house.

SGI’s workstation business began to suffer during the latter half of the 1990s,
leading inevitably to a decline in its ability to make continuing investments in
the MIPS architecture. Even as this took place, the market for mainstream PCs
continued to expand vigorously, generating very healthy revenue streams to
fund the future development of competing architectures—most notably Intel’s
Pentium family and its descendants and, to a lesser extent, the PowerPC devices
designed by Motorola and IBM.

Against this backdrop, SGI started work on MIPS CPUs beyond the
R10000; but, because of mounting financial pressures, the projects were can-
celed before the design teams were able to complete their work. In 1998, SGI
publicly committed itself to using the Intel IA-64 architecture in its future
workstations, and the last MIPS design team working on desktop/server prod-
ucts was disbanded. In 2006 (as I write) some SGI machines are still depen-
dent on the R16000 CPU; while it takes advantage of advances in process
technology to achieve higher clock rates, the internal design has scarcely been
enhanced beyond that of the 1996 R10000. Meanwhile, IA-64 CPUs have sold
well below Intel’s most pessimistic projections, and the fastest CPUs in the
world are all variants of the x86. SGI seems to be unlucky when it comes to
choosing CPUs!
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1.4.9 MIPS Processors in Consumer Electronics

LSI Logic and the Sony PlayStation

In 1993, Sony contracted with LSI Logic for the development of the chip that
was to form the heart of the first PlayStation. Based on LSI’s CW33000 pro-
cessor core, it was clocked at 33 MHz and incorporated a number of peripheral
functions, such as a DRAM controller and DMA engine. The PlayStation’s
highly integrated design made it cheap to produce and its unprecedented CPU
power made for exciting gaming. Sony rapidly overtook more established ven-
dors to become the leading seller of video game consoles.

The Nintendo64 and NEC’s Vr4300 Processor

Nintendo game consoles lost considerable market share to Sony’s PlayStation.
In response, Nintendo formed an alliance with Silicon Graphics and decided to
leapfrog 32-bit CPU architectures and go straight for a 64-bit chip—in a $199
games machine.

The chip at its heart—the NEC Vr4300—was a cut-down R4000, but not
that cut-down. It did have a 32-bit external bus, to fit in a cheaper package with
fewer pins, and it shared logic between integer and floating-point maths. But it
was a lot of power for a $199 box.

The Vr4300’s computing power, low price, and frugal power consumption
made it very successful elsewhere, particularly in laser printers, and helped
secure another niche for the MIPS architecture in “embedded” applications.

But the Vr4300 was the last really general-purpose CPU to storm the games
market; by the late 1990s, the CPU designs intended for this market had become
increasingly specialized, tightly coupled with dedicated hardware accelerators
for 3D rendering, texture mapping, and video playback. When Sony came back
with the PlayStation 2, it had a remarkable 64-bit MIPS CPU at its heart. Built
by Toshiba, it features a floating-point coprocessor whose throughput wouldn’t
have disgraced a 1988 supercomputer (though its accuracy would have been a
problem). It has proven too specialized to find applications outside the games
market, but a version of the same CPU is in Sony’s PSP handheld games console,
which will certainly be with us for a few years to come.

Cumulative sales of these video game consoles worldwide is well into the
tens of millions, accounting for a larger volume of MIPS processors than any
other application—and also causing them to outsell a good many other CPU
architectures.

1.4.10 MIPS in Network Routers and Laser Printers

The R5000 Processor

Following the success of the R4600 and its derivatives, QED’s next major design
was the R5000. Launched in 1995—the same year as SGI’s R10000—this
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was also a superscalar implementation, though in terms of general design
philosophy and complexity, the two designs stood in stark contrast to each other.

The R5000 used the classic five-stage pipeline and issued instructions
in-order. It was capable, however, of issuing one integer instruction and one
floating-point instruction alongside each other. The MIPS architecture makes
this scheme relatively easy to implement; the two instruction categories use sep-
arate register sets and execution units, so the logic needed to recognize oppor-
tunities for dual issue doesn’t have to be very complicated.

Of course, the other side of the same coin is that the performance gain is
relatively modest. Unless the R5000 is used in a system that runs a significant
amount of floating-point computation, the superscalar ability goes unused.
Even so, the R5000 incorporated other improvements that made it appealing
to system designers as an easy upgrade from the R4600 generation.

QED Becomes a Fabless Semiconductor Vendor

During the first few years of its life, QED had operated purely as a seller of
intellectual property, licensing its designs to semiconductor device vendors who
then produced and sold the chips. In 1996, the company decided it could do
better by selling chips under its own name. The manufacturing was still carried
out by outside partners—the company remained “fabless” (that is, it didn’t have
any fabrication plants under its direct ownership)—but now QED took charge
of testing the chips and handled all of its own sales, marketing, and technical
support.

Around this time, QED embarked on a project to develop a PowerPC imple-
mentation in the same lean, efficient style as the R4600. Unfortunately, busi-
ness and contractual difficulties with the intended customer reared their heads,
with the result that the device was never brought to market. After this brief
excursion into PowerPC territory, QED resumed its exclusive focus on the MIPS
architecture.

QED’s RM5200 and RM7000 Processors

QED’s first “own-brand” CPU was the RM5200 family, a direct descendant of
the R5000. With a 64-bit external bus it played well in network routers, while a
32-bit bus and cheaper package was good for laser printers.

QED built on the RM5200’s success, launching the RM7000 in 1998. This
device marked several important milestones for MIPS implementations: It was
the first to bring the (256 Kbyte) secondary cache on-chip.5 RM7000 was also a
serious superscalar design, which could issue many pairings of integer instruc-
tions besides the integer/floating-point combination inherited from the R5000.

5. QED originally hoped to use a DRAM-like memory to make the RM7000’s secondary cache very
small, but it turned out that an adequate compromise between fast logic and dense DRAM on a
single chip was not then possible. It still isn’t.
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The RM5200 and RM7000 processor families sold well during the mid to
late 1990s into many high-end embedded applications, finding especially
widespread use in network routers and laser printers. QED wisely ensured that
the RM7000 was very closely compatible with the RM5200, both from the pro-
grammer’s and system designer’s points of view. This made it fairly straightfor-
ward to give aging RM5200 systems a quick midlife boost by upgrading them
to the RM7000, and many customers found it useful to follow this path.

SandCraft

Around 1998, the design team that had created the Vr4300 for Nintendo incor-
porated as SandCraft, and set out to produce embedded CPUs intended for the
high-end embedded applications then served by QED’s RM5200 and RM7000
families.

SandCraft’s designs were architecturally ambitious and took time to bring
to market. Despite several years of continued efforts to build a large enough
customer base, the company eventually went out of business. Its assets
were acquired by Raza Technologies, and it remains to be seen whether any sig-
nificant portion of SandCraft’s legacy will eventually find its way into
production.

1.4.11 MIPS Processors in Modern Times

Alchemy Semiconductor: Low-Power MIPS Processors

By 1999, the markets for cellphones, personal organizers, and digital cameras
were growing rapidly. The priority for such processors is low power con-
sumption: Since these appliances need to be small, light, and have to run
from internal batteries, they must be designed to operate within very tight
power budgets. At the same time, competitive pressures require each genera-
tion of appliances to offer more features than its predecessor. Manufacturers
sought 32-bit computing power to meet the growing applications’ hungry
demands.

Taken together, these requirements present a moving target for processor
designers: Within a power budget that grows only gradually (with advances in
battery chemistry and manufacturing), they’re called upon to deliver a signifi-
cant boost in performance with every design generation.

It is really just a matter of historical accident that nobody had implemented
a fast, low-power MIPS processor. But DEC had built a 200-MHz low-power
ARM (“StrongARM”) and the ARM company was willing to build less exalted
machines that would eke out your battery life even longer. When DEC engaged
in unwise litigation with Intel over CPU patents, they lost, big-time. Among the
things Intel picked up was the StrongARM development. Amazingly, it seems
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to have taken Intel a couple of years to notice this jewel, and by that time all the
developers had left.

In 1999, Alchemy Semiconductor was founded precisely to exploit this
opportunity. With backing from Cadence, a vendor of chip design tools, some
members of the design team that had created StrongARM now turned their
ingenuity to the design of a very low power 32-bit MIPS CPU. It works very
well, but their designs were too high-end, and perhaps just a bit late, to break
the ARMlock on cellphones.

Alchemy pinned its hopes on the market for personal organizers, which
certainly needed faster CPUs than the phones did. But the market didn’t
boom in the same way. Moreover, the organizer market seemed to be one in
which every innovator lost money; and finally Microsoft’s hot-then-cold sup-
port of MIPS on Windows CE made the MIPS architecture a handicap
in this area.

SiByte

This company was also founded in 1999 around an experienced design team,
again including some members who had worked on DEC’s Alpha and Strong-
ARM projects.6

SiByte built a high-performance MIPS CPU design—it aimed for
efficient dual-issue at 1 GHz. Moreover, this was to be wrapped up for easy
integration into a range of chip-level products; some variants were to empha-
size computational capacity, featuring multiple CPU cores, while others laid the
stress on flexible interfacing by integrating a number of controllers.

SiByte’s design found considerable interest from networking equipment
makers who were already using QED’s RM5200 and RM7000 devices; as the
company began to put the device into production, however, manufacturing
difficulties caused long delays, and the 1-GHz target proved difficult.

Consolidation: PMC-Sierra, Broadcom, AMD

The last years of the 1990s saw the infamous “dotcom bubble.” Many small
technology companies went public and saw their stock prices climb to dizzying
heights within weeks.

Networking companies were among the darlings of the stock market and
with their market capitalizations rising into tens of billions, they found it easy
to buy companies providing useful technology—and that sometimes meant
MIPS CPUs.

This was the climate in which Broadcom acquired SiByte, and PMC-Sierra
acquired QED—both in mid-2000. It seemed that the future of high-end MIPS

6. In the U.S. market, a canceled project can have as seminal an effect as a successful one.
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designs for embedded systems was now doubly safeguarded by the deep pockets
of these two new parent companies.

The collapse of the technology bubble came swiftly and brutally. By late
2001, the networking companies saw their stock prices showing unexpected
weakness, and orders from their customers slowing alarmingly; by 2002, the
entire industry found itself in the grip of a savage downturn. Some companies
saw their market capitalizations drop to less than a tenth of their peak values
over one year.

The resulting downdraft inevitably affected the ability of PMC-Sierra and
Broadcom to follow through with their plans for the QED and SiByte proces-
sor designs. It wasn’t just a matter of money; it became extremely difficult for
these companies even to find a reasonable strategic direction, as sales for many
established product lines slowed to a trickle.

Alchemy Semiconductor also felt the cold wind of change, and despite the
impressively low power consumption of its designs, the company had diffi-
culty finding high-volume customers. Finally, in 2002, Alchemy was acquired
by Advanced Micro Devices (AMD), which continued to market the Au1000
product line for a couple of years. As we go to press, we hear that the Alchemy
product line has been acquired by Raza Technologies.

Highly Integrated Multiprocessor Devices

Broadcom had initially announced plans for an ambitious evolution of SiByte’s
1250 design from two CPU cores to four, along with an extra memory con-
troller and much faster interfaces. This project became a casualty of the down-
turn, and the evolutionary future of the 1250 product line fell into
uncertainty.

Meanwhile, the QED design team—now operating as PMC-Sierra’s MIPS
processor division—created its own dual-CPU device, the RM9000x2. This also
integrated an SDRAM controller and various interfaces. Due in part to the chilly
market conditions, the RM9000 family was slow to find customers, though it
did surpass the 1-GHz milestone for CPU clock rate. Subsequent derivatives
added further interfaces, including Ethernet controllers, but the difficulties in
securing large design wins persisted.

In 2006, the future for such highly integrated devices appears doubtful.
As the transistors in chips shrink, the amount of logic you can get for the
production-cost dollar increases. But the one-off cost of getting a new design
into production keeps going up: For the most recent 90-nanometer generation,
it’s $1 M or more. If you fill the space available with logic to maximize what
your chip will do, design and test costs will be tens of millions.

To get that back, you need to sell millions of units of each chip over its prod-
uct lifetime. A particular version of a chip like the RM9000x2 or Broadcom’s
1250 can sell tens or hundreds of thousands: It isn’t enough. It’s not clear what
sort of device may attract enough volume to fund full-custom embedded-CPU
design in future.
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Intrinsity: Taking a MIPS Processor to 2 GHz

Alert readers will have noticed the overall arc of the MIPS story to date: The
early R2000/R3000 implementations were performance leaders among micro-
processors, but competing families eventually caught up and overtook
MIPS.

So you might be wondering: Has anyone tried to make a really fast MIPS
processor in the last few years? The answer is yes: Intrinsity Semiconductor
announced in 2002 its FastMath processor. Using careful design techniques to
extract high performance from essentially standard process technologies, Intrin-
sity was able to produce a lean 32-bit MIPS design with an impressive clock rate
of 2 GHz.

While this was widely recognized as a fine technical achievement, the
device has struggled to find a market. It’s still not nearly as fast as a modern PC
processor, and its power consumption and heat dissipation is relatively high by
consumer standards.

1.4.12 The Rebirth of MIPS Technologies

In 1998, SGI—facing mounting cash-flow problems—decided to spin off its
CPU design group, restoring it to independence as MIPS Technologies. The new
company was chartered to create core CPUs to be used as part of a system-on-
a-chip (SoC). You might recall that we encountered the idea of an SoC much
earlier in this section, when we described the appearance of the first ASIC
cores.

In the early days of SoCs, CPU vendors found that it was very difficult
to guarantee a core’s performance—for example, the CPU clock rate—unless
they provided their customers with a fixed silicon layout for the core internals,
predefined for each likely target chip “foundry”—a “hard core.”

MIPS Technologies originally intended to build high-performance hard
cores and built and shipped fast 64-bit designs (20 Kc and later 25 Kf). But
that was the wrong horse. During the last few years, the market has increasingly
preferred its cores to be synthesizable (originally called “soft core”).

A synthesizable core is a set of design files (usually in Verilog) that describes
the circuit and can be compiled into a real hardware design. A synthesizable
core product consists of a lot more than a Verilog design, since the customer
must be able to incorporate it in a larger SoC design and validate the CPU
and its connections well enough that the whole chip will almost certainly
work.

MIPS Technologies’ first synthesizable core was the modest 32-bit 4-K fam-
ily; since then, it has added the 64-bit 5 K, the high-performance 32-bit 24 K,
and (launched in early 2006) the multithreading 34 K.
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1.4.13 The Present Day

MIPS CPUs in use today come in four broad categories:

SoC cores: MIPS CPUs still benefit in size and power consumption from
the simplicity that came from the Stanford project, and an architecture
with a long history spanning handhelds to supercomputers is an attrac-
tive alternative to architectures tailored for the low end. MIPS was the
first “grown up” CPU to be available as an ASIC core—witness its
presence in the Sony PlayStation games console. The most prominent
supplier is MIPS Technologies Inc., but Philips retains their own
designs.

Integrated embedded 32-bit CPUs: From a few dollars upward, these chips
contain CPU, caches, and substantial application-oriented blocks (net-
work controllers are popular). There’s considerable variation in price,
power consumption, and processing power. Although AMD/Alchemy
has some very attractive products, this market seems to be doomed,
with devices in the target marketplace finding that an SoC heart does
a better job of maximizing integration, saving vital dollars and
milliwatts.

Integrated embedded 64-bit CPUs: These chips offer a very attractive
speed/power-consumption trade-off for high-end embedded applica-
tions: Network routers and laser printers are common applications.
But it doesn’t look as though they can sell in sufficient numbers to
go on paying for chip development costs.

But somewhere in this category are companies that are trying radically
new ideas, and it’s a tribute to the MIPS architecture’s clean concepts
that it often seems the best base for leading-edge exploration. Raza’s XLR
series of multicore, multithreaded processors represent a different kind
of embedded CPU, which aims to add more value (and capture more rev-
enue per unit) than a “traditional” embedded CPU. Cavium’s Octium is
also pretty exciting.

Server processors: Silicon Graphics, the workstation company that was
the adoptive parent of the MIPS architecture, continued to ship high-
end MIPS systems right up to its insolvency in 2006, even though that
was seven years after it committed to a future with Intel IA-64. But it’s
the end of the road for these systems: MIPS is destined to be “only” in
the vast consumer and embedded markets.

The major distinguishing features of some milestone products are summa-
rized in Table 1.1. We haven’t discussed the instruction set revision levels from
MIPS I through MIPS64, but there’ll be more about them in section 2.7, where
you’ll also find out what happened to MIPS II.
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1.5 MIPS Compared with CISC Architectures

Programmers who have some assembly-language-level knowledge of earlier
architectures—particularly those brought up on x86 or 680x0 CISC instruc-
tion sets—may get some surprises from the MIPS instruction set and register
model. We’ll try to summarize them here, so you don’t get sidetracked later into
doomed searches for things that don’t quite exist, like a stack with push/pop
instructions!

We’ll consider the following: constraints on MIPS operations imposed to
make the pipeline efficient; the radically simple load/store operations; possi-
ble operations that have been deliberately omitted; unexpected features of the
instruction set; and the points where the pipelined operation becomes visible
to the programmer.

The Stanford group that originally dreamed up MIPS was paying particular
attention to the short, simple pipeline it could afford to build. But it’s a testa-
ment to the group’s judgment that many of the decisions that flowed from that
have proven to make more ambitious implementations easier and faster, too.

1.5.1 Constraints on MIPS Instructions

All instructions are 32 bits long: That means that no instruction can fit into
only two or three bytes of memory (so MIPS binaries are typically 20 per-
cent to 30 percent bigger than for 680x0 or 80x86) and no instruction can
be bigger.

It follows that it is impossible to incorporate a 32-bit constant into a
single instruction (there would be no instruction bits left to encode the
operation and the target register). The MIPS architects decided to make
space for a 26-bit constant to encode the target address of a jump or
jump to subroutine; but that’s only for a couple of instructions. Other
instructions find room only for a 16-bit constant. It follows that load-
ing an arbitrary 32-bit value requires a two-instruction sequence, and
conditional branches are limited to a range of 64-K instructions.

Instruction actions must fit the pipeline: Actions can only be carried out in
the right pipeline phase and must be complete in one clock. For exam-
ple, the register write-back phase provides for just one value to be stored
in the register file, so instructions can only change one register.

Integer multiply and divide instructions are too important to leave out
but can’t be done in one clock. MIPS CPUs have traditionally provided
them by dispatching these operations into a separately pipelined unit
we’ll talk about later.

Three-operand instructions: Arithmetical/logical operations don’t have to
specify memory locations, so there are plenty of instruction bits to define
two independent sources and one destination register. Compilers love
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three-operand instructions, which give optimizers much more scope to
improve code that handles complex expressions.

The 32 registers: The choice of the number of registers is largely driven by
software requirements, and a set of 32 general-purpose registers is eas-
ily the most popular in modern architectures. Using 16 would definitely
not be as many as modern compilers like, but 32 is enough for a C com-
piler to keep frequently accessed data in registers in all but the largest
and most intricate functions. Using 64 or more registers requires a big-
ger instruction field to encode registers and also increases context-switch
overhead.

Register zero: $0 always returns zero, to give a compact encoding of that
useful constant.

No condition codes: One feature of the MIPS instruction set that is radi-
cal even among the 1985 RISCs is the lack of any condition flags. Many
architectures have multiple flags for “carry,” “zero,” and so on. CISC
architectures typically set these flags according to the result written by
any or a large subset of machine instructions, while some RISC architec-
tures retain flags (though typically they are only set explicitly, by compare
instructions).

The MIPS architects decided to keep all this information in the register
file: Compare instructions set general-purpose registers and conditional
branch instructions test general-purpose registers. That does benefit a
pipelined implementation, in that whatever clever mechanisms are built
in to reduce the effect of dependencies on arithmetical/logical operations
will also reduce dependencies in compare/branch pairs.

We’ll see later that efficient conditional branching (at least in one favorite
simple pipeline organization) means that the decision about whether to
branch or not has to be squeezed into only half a pipeline stage; the archi-
tecture helps out by keeping the branch decision tests very simple. So
MIPS conditional branches test a single register for sign/zero or a pair of
registers for equality.

1.5.2 Addressing and Memory Accesses

Memory references are always plain register loads and stores: Arithmetic on
memory variables upsets the pipeline, so it is not done. Every memory
reference has an explicit load or store instruction. The large register file
makes this much less of a problem than it sounds.

Only one data-addressing mode: Almost all loads and stores select the
memory location with a single base register value modified by a
16-bit signed displacement (a limited register-plus-register address mode
is available for floating-point data).
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Byte-addressed: Once data is in a register of a MIPS CPU, all operations
always work on the whole register. But the semantics of languages such
as C fit badly on a machine that can’t address memory locations down
to byte granularity, so MIPS gets a complete set of load/store operations
for 8- and 16-bit variables (we will say byte and halfword). Once the data
has arrived in a register it will be treated as data of full register length,
so partial-word load instructions come in two flavors—sign-extend and
zero-extend.

Load/stores must be aligned: Memory operations can only load or store
data from addresses aligned to suit the data type being transferred. Bytes
can be transferred at any address, but halfwords must be even-aligned
and word transfers aligned to four-byte boundaries. Many CISC micro-
processors will load/store a four-byte item from any byte address, but the
penalty is extra clock cycles.

However, the MIPS instruction set architecture (ISA) does include a cou-
ple of peculiar instructions to simplify the job of loading or storing at
improperly aligned addresses.

Jump instructions: The limited 32-bit instruction length is a particular
problem for branches in an architecture that wants to support very large
programs. The smallest opcode field in a MIPS instruction is 6 bits, leav-
ing 26 bits to define the target of a jump. Since all instructions are
four-byte aligned in memory, the two least significant address bits need
not be stored, allowing an address range of 228 = 256 MB. Rather than
make this branch PC relative, this is interpreted as an absolute address
within a 256-MB segment. That’s inconvenient for single programs larger
than this, although it hasn’t been much of a problem yet!

Branches out of segment can be achieved by using a jump register instruc-
tion, which can go to any 32-bit address.

Conditional branches have only a 16-bit displacement field—giving a
218-byte range, since instructions are four-byte aligned—which is inter-
preted as a signed PC-relative displacement. Compilers can only code a
simple conditional branch instruction if they know that the target will
be within 128 KB of the instruction following the branch.

1.5.3 Features You Won’t Find

No byte or halfword arithmetic: All arithmetical and logical operations are
performed on 32-bit quantities. Byte and/or halfword arithmetic requires
significant extra resources and many more opcodes, and it is rarely really
useful. The C language’s semantics cause most calculations to be carried
out with int precision, and for MIPS int is a 32-bit integer.

However, where a program explicitly does arithmetic as short or
char, a MIPS compiler must insert extra code to make sure that the
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results wrap and overflow as they would on a native 16- or 8-bit
machine.

No special stack support: Conventional MIPS assembly usage does define
one of the registers as a stack pointer, but there’s nothing special to the
hardware about sp. There is a recommended format for the stack
frame layout of subroutines, so that you can mix modules from differ-
ent languages and compilers; you should almost certainly stick to these
conventions, but they have no relationship to the hardware.

A stack pop wouldn’t fit the pipeline, because it would have two regis-
ter values to write (the data from the stack and the incremented pointer
value).

Minimal subroutine support: There is one special feature: jump instruc-
tions have a jump and link option, which stores the return address into
a register. $31 is the default, so for convenience and by convention
$31 becomes the return address register.

This is less sophisticated than storing the return address on a stack, but
it has some significant advantages. Two examples will give you a feeling
for the argument: First, it preserves a pure separation between branch
and memory-accessing instructions; second, it can aid efficiency when
calling small subroutines that don’t need to save the return address on
the stack at all.

Minimal interrupt handling: It is hard to see how the hardware could do
less. It stashes away the restart location in a special register, modifies the
machine state just enough to let you find out what happened and to dis-
allow further interrupts, then jumps to a single predefined location in
low memory. Everything else is up to the software.

Minimal exception handling: Interrupts are just one sort of exception (the
MIPS word exception covers all sorts of events where the CPU may want
to interrupt normal sequential processing and invoke a software han-
dler). An exception may result from an interrupt, an attempt to access
virtual memory that isn’t physically present, or many other things. You
go through an exception, too, on a deliberately planted trap instruc-
tion like a system call that is used to get into the kernel in a protected
OS. All exceptions result in control passing to the same fixed entry
point.7

On any exception, a MIPS CPU does not store anything on a stack, write
memory, or preserve any registers for you.

By convention, two general-purpose registers are reserved so that excep-
tion routines can bootstrap themselves (it is impossible to do anything

7. I exaggerate slightly; these days there are quite a few different entry points, and there were always
at least two. Details will be given in section 5.3.
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FIGURE 1.3 The pipeline and branch delays.

on a MIPS CPU without using some registers). For a program running
in any system that takes interrupts or traps, the values of these registers
may change at any time, so you’d better not use them.

1.5.4 Programmer-Visible Pipeline Effects

So far, this has all been what you might expect from a simplified CPU. However,
making the instruction set pipeline friendly has some stranger effects as well,
and to understand them we’re going to draw some pictures.

Delayed branches: The pipeline structure of the MIPS CPU (Figure 1.3)
means that when a jump/branch instruction reaches the execute phase
and a new program counter is generated, the instruction after the jump
will already have been started. Rather than discard this potentially useful
work, the architecture dictates that the instruction after a branch must
always be executed before the instruction at the target of the branch. The
instruction position following any branch is called the branch delay slot.

If nothing special was done by the hardware, the decision to branch or
not, together with the branch target address, would emerge at the end
of the ALU pipestage—by which time, as Figure 1.3 shows, you’re too
late to present an address for an instruction in even the next-but-one
pipeline slot.

But branches are important enough to justify special treatment, and you
can see from Figure 1.3 that a special path is provided through the ALU to
make the branch address available half a clock cycle early. Together with
the odd half-clock-cycle shift of the instruction fetch stage, that means
that the branch target can be fetched in time to become the next but one,
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so the hardware runs the branch instruction, then the branch delay slot
instruction, and then the branch target—with no other delays.

It is the responsibility of the compiler system or the assembly program-
ming wizard to allow for and even to exploit the branch delay; it turns out
that it is usually possible to arrange that the instruction in the branch delay
slot does useful work. Quite often, the instruction that would otherwise
have been placed before the branch can be moved into the delay slot.

This can be a bit tricky on a conditional branch, where the branch delay
instruction must be (at least) harmless on both paths. Where nothing
useful can be done, the delay slot is filled with a nop instruction.

Many MIPS assemblers will hide this odd feature from you unless you
explicitly ask them not to.

Late data from load (load delay slot): Another consequence of the pipeline
is that a load instruction’s data arrives from the cache/memory system
after the next instruction’s ALU phase starts—so it is not possible to use
the data from a load in the following instruction. (See Figure 1.4 for how
this works.)

The instruction position immediately after the load is called the load delay
slot, and an optimizing compiler will try to do something useful with it.
The assembler will hide this from you but may end up putting in a nop.

On modern MIPS CPUs the load result is interlocked: If you try to use
the result too early, the CPU stops until the data arrives. But on early
MIPS CPUs, there were no interlocks, and the attempt to use data in the
load delay slot led to unpredictable results.


