THE REGULATORY GENOME
THE REGULATORY GENOME

Gene Regulatory Networks in Development and Evolution

Eric H. Davidson
Division of Biology
California Institute of Technology
Pasadena, California
CONTENTS

Preface

Chapter 1

The “Regulatory Genome” for Animal Development

1

- The Framework 1
- The Regulatory Apparatus Encoded in the DNA 3
 - Genomes, Genes, and Genomic “Space” 3
 - Overview of Regulatory Architecture 8
 - Gene Regulatory Networks 11
- The Regulatory Demands of Development 16
 - Readout and Generation of Regulatory Information in Developmental Specification 16
 - Spatial Gene Expression 18
 - From Regional Specification to Terminal Differentiation 21
- Evolution, Development, and the Regulatory Genome 27

Chapter 2

cis-Regulatory Modules, and the Structure/Function Basis of Regulatory Logic

31

- General Operating Principles 31
- Modularity, A General Property of Genomic cis-Regulatory Control Units 33
- Inside the cis-Regulatory Module: Logic Processing and Input/Output Relations 47
 - cis-Regulatory Logic Processors: Examples 48
 - Target Site Occupancy and Transcriptional Output 57
 - Generalization: The Combinatorial cis-Regulatory Logic Code 59
- cis-Regulatory Design 61
 - Integration of Spatial Inputs at the cis-Regulatory Level 61
 - Repression and the Diversity of cis-Regulatory Design 68
 - cis-Regulatory Design and the Creation of Spatial Complexity in Development 73
Control by Sequence-Specific Interactions Among Distant \textit{cis}-Regulatory Elements
<table>
<thead>
<tr>
<th>78</th>
</tr>
</thead>
<tbody>
<tr>
<td>Development and BTA Specificity 79</td>
</tr>
<tr>
<td>Control Functions of Sequence-Specific, Intra- and Intergenic Genomic Looping 80</td>
</tr>
</tbody>
</table>

Chapter 3
Development as a Process of Regulatory State Specification 87

Developmental Processes of the Pregastrular Embryo 87
<table>
<thead>
<tr>
<th>87</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vectorial Embryogeniss 88</td>
</tr>
<tr>
<td>Maternal Anisotropy and External Cues for Axial Polarity 90</td>
</tr>
<tr>
<td>Spatial Regulatory Complexity and Interblastomere Signaling Territories 94</td>
</tr>
</tbody>
</table>

Comparative View of Embryonic Processes, and the Organization of the Underlying Gene Regulatory Networks 102

<table>
<thead>
<tr>
<th>102</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shallow Gene Regulatory Networks of Type 1 Embryos 103</td>
</tr>
<tr>
<td>More Complex Forms of Embryonic Process 109</td>
</tr>
</tbody>
</table>

Regulatory State and Network Circuitry in Building Adult Body Parts 114

<table>
<thead>
<tr>
<th>114</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steps in the Postembryonic Developmental Process 114</td>
</tr>
<tr>
<td>The Progenitor Field Concept 115</td>
</tr>
<tr>
<td>Subdivision of the Progenitor Field Regulatory State 121</td>
</tr>
</tbody>
</table>

Body Plan Development and the Organism 122

<table>
<thead>
<tr>
<th>122</th>
</tr>
</thead>
</table>

Chapter 4
Gene Regulatory Networks for Development: What They Are, How They Work, and What They Mean 125

General Structural Properties of Developmental Gene Regulatory Networks 126

<table>
<thead>
<tr>
<th>126</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall Network Structure 127</td>
</tr>
<tr>
<td>Gene Regulatory Networks from Different Perspectives: Subcircuits to Process Diagrams 135</td>
</tr>
<tr>
<td>Qualitative Diversity of Network Components 136</td>
</tr>
<tr>
<td>Extensions 140</td>
</tr>
</tbody>
</table>

Gene Regulatory Networks for Embryonic Development 144

<table>
<thead>
<tr>
<th>144</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Sea Urchin Endomesoderm Network 144</td>
</tr>
<tr>
<td>Regulatory Gene Network for Specification of Mesoderm in the \textit{Xenopus} Embryo 159</td>
</tr>
<tr>
<td>Gene Regulatory Network Controlling Dorsal-Ventral Territorial Specification in the \textit{Drosophila} Embryo 166</td>
</tr>
</tbody>
</table>
Chapter 5
Gene Regulatory Networks: The Roots of Causality and Diversity in Animal Evolution 187

Evolutionary Implications of the Structure and Function of Gene Regulatory Networks 188
The Parts of Gene Regulatory Networks, and the Qualities of Evolutionary Change 188
Linnaean Framework for the Evolutionary Consequences of Alterations in Gene Regulatory Networks 195

Bilaterian Kernels, Predicted and Real 196
Caveats and a Caution 197
Regional Specification in the Bilateral Nervous System 200
The Bilateral Gut 212
A Possible Pan-Bilateral Kernel Underlying Specification of the Heart Progenitor Field 218
Distribution of Kernels 221

Subphyletic Evolution of Bilateral Body Plans:
box Genes as Sources of Labile Network Input/Output Switches 223
Diverse Functional Consequences of box Gene Expression 223
Multiple Examples: Regional Repression and Installation of Patterning Output, and the Evolutionary Diversification of Body Parts 224
box Gene Subnetworks and Spatial Evolution 233

Metazoan Origins and Gene Networks Before Kernels 235
“Deconstructing” Bilateral Gene Regulatory Networks in Time 235
Concluding Reflection: The Principle of Animal Development and Evolution 239

References 241
Figure Citations 275
Index 279
PREFACE

This book came about in the following way. In the winter of 2004, Jasna Markovac, the publisher of my monograph “Genomic Regulatory Systems” (2001), asked me to think about doing a second edition of that work. But no sooner had I opened that door and begun to survey the landscape than, as in an old legend of magic, everything seemed to have been transformed to another landscape. The conceptual peaks that were the landmarks of “Genomic Regulatory Systems” were still there, but now new mountains towered over them, and the whole domain appeared to be much more brightly illuminated, and to extend farther toward the horizon. It was beyond possibility to “update” a vista so changed.

“Genomic Regulatory Systems” sought as its main objective to crystallize the incontrovertible evidence that causality in development resides ultimately in cis-regulatory control of spatial gene expression. But development is the output of regulatory systems comprising large numbers of regulatory genes. Though in that work I often referred to the gene networks that would someday represent developmental programs, the few examples were anecdotal, and their general properties remained entirely obscure. Then in 2002 we published the first real scale gene regulatory network (including about 50 genes) explanatory of a major piece of development, specification of the endomesoderm of the sea urchin embryo. As the ancients used to say, the scales fell from our eyes. A whole field of developmental gene regulatory networks has now sprung forth, that encompasses many different animal systems. The structure/function properties that emerge from the architecture of these networks are a large part of what has transformed the conceptual terrain of this large area of bioscience. There follow more new things: a different way to think comparatively about various forms of development; a different way to think about the process of evolution; hence the subtitle of this book, “Gene Networks in Development and Evolution”. Exploration of these new pathways toward scientific explanation of the developmental and evolutionary phenomena of biology is the central object of this volume. As with its predecessor, the approach I have taken here is that of demonstration by example: the points to be made rest upon powerful, exemplary experimental demonstrations, detailed, for those who desire experimental substance, in the figure captions. However, in no way have I attempted to be encyclopedic. So, willy nilly, there is much that could equally well have been included but was not, and my apologies en masse to the authors of these works.

I have not shied away from what are sometimes pejoratively been termed “big ideas,” nor taken the view of an anonymous reviewer of a paper of mine who recently amused me with the complaint “But the original ideas in this paper are speculative!” This book includes many diagrams in which concepts are set forth
in specific form, just so they can be subjected to precise tests of falsification, and just so they can be used in precise ways to generate predictions I may not have thought of. One such idea, which underlies everything in this book, is the concept of genomically encoded information processing. To return to my metaphor above, this is like the geological basis of the landscape. In my view, cis-regulatory information processing, and information processing at the gene regulatory network circuit level, are the real secret of animal development. Probably the appearance of genomic regulatory systems capable of information processing is what made animal evolution possible.

This book begins with an overview of the regulatory genome and the concept of information processing in gene regulation (Chapter 1). It proceeds to an in-depth analysis of modular cis-regulatory designs for generation of spatial patterns of gene expression, and consideration of how they generate regulatory output (Chapter 2); thence to a comparative treatment of developmental pathways in terms of transient regulatory states (Chapter 3); to gene regulatory network theory and the character of diverse real developmental regulatory networks (Chapter 4); and finally to the application of network structure/function relations to some unsolved problems of animal evolution (Chapter 5). The image of a genomically encoded information processing system that throughout the life cycle responds conditionally to incident regulatory inputs can never lie far from the surface of any of these subject areas.

Science is made by scientists, whose creations deeply affect each others’ progress. For me there have been certain scientists in each period of my own progress whose work and ideas have particularly illuminated the world: among them I must mention as of particular importance in this present period, and for what is included herein, Mike Levine, Ellen Rothenberg, Doug Erwin, Sorin Istrail, Bill McGinnis, and Lee Hood. This book would not have whatever worth it does were it not for the generosity of these people and also of Paola Oliveri and Joel Smith, postdoctoral colleagues in my laboratory, in reading, criticizing, and improving drafts of various parts, and in some cases all, of the manuscript. I have been extremely fortunate to have had the very expert services of a superb illustrator, Tania Dugatkin. In my own domain Deanna Thomas has provided invaluable assistance with figures, references, and everything else; and my graduate student Pei-yun Lee not only helped with technical research but also with figure attributions. Nor would this project have ever reached fruition were it not for the continued encouragement of Jasna Markovac, and of the careful, obsessive work of the production manager Paul Gottehrer at Academic Press/Elsevier. I also wish to say that since so much of what follows is linked to our expanding experimental invasion of gene regulatory networks, the support we have had for that research has been indirectly essential for this book as well: mainly this support has come from the National Institute of Child Health and Human Development and from the Genomes to Life Program of DOE, but also from NIGMS, NIRR, NHGRI, NSF, NASA, Caltech’s Beckman Institute, and Applied Biosystems, Inc.
Finally, I would like to dedicate this book to the person who has worked most closely with me on it, good days and bad, and that is Jane Rigg. She has been my editor, judge, administrator, research aide, and advisor throughout, as also on three other books I have written in the more than 35 years that we have worked together. Only my first book, “Gene Activity in Early Development” (1968) preceded the Jane Rigg era, but that was a very long time ago indeed.

Eric Davidson
April 2006