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Shape Operators

202

In Chapter 2 we measured the shape of a curve in R3 by its curvature and
torsion functions. Now we consider the analogous measurement problem for
surfaces. It turns out that the shape of a surface M in R3 is described infini-
tesimally by a certain linear operator S defined on each of the tangent planes
of M. As with curves, to say that two surfaces in R3 have the same shape means
simply that they are congruent. And just as with curves, we shall justify our
infinitesimal measurements by proving that two surfaces with “the same”
shape operators are, in fact, congruent. The algebraic invariants (determinant,
trace, . . .) of its shape operators thus have geometric meaning for the surface
M. We investigate this matter in detail and find efficient ways to compute these
invariants, which we test on a number of geometrically interesting surfaces.

From now on, the notation M Ã R3 means a connected surface M in R3 as
defined in Chapter 4.

5.1 The Shape Operator of M Ã R3

Suppose that Z is a Euclidean vector field (Definition 3.7 of Chapter 4) on a
surface M in R3. Although Z is defined only at points of M, the covariant
derivative �vZ (Chapter 2, Section 5) still makes sense as long as v is tangent

to M. As usual, �vZ is the rate of change of Z in the v direction, and there
are two main ways to compute it.

Method 1. Let a be a curve in M that has initial velocity a ¢(0) = v. Let
Za be the restriction of Z to a, that is, the vector field t Æ Z(a(t)) on a. Then

where the derivative is that of Chapter 2, Section 2.

— = ( )¢ ( )vZ Za 0 ,
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5.1 The Shape Operator of M Ã R3 203

Method 2. Express Z in terms of the natural frame field of R3 by

Then

where the directional derivative is that of Definition 3.10 in Chapter 4.
It is easy to show that these two methods give the same result. In fact, since

,

(Compare Lemma 5.2 of Chapter 2.) Note that even if Z is a tangent vector
field, the covariant derivative �vZ need not be tangent to M.

If M is an orientable surface, Proposition 7.5 of Chapter 4 shows that there
is always a (differentiable) unit normal vector field U on the entire surface,
and in fact—since M is now assumed connected—there are exactly two, ±U.
Even if M is not orientable, unit normals ±U are available locally, since a
small region around any point is orientable. In fact, we will find explicit for-
mulas for U on the image x(D) Ã M of any patch.

We are now in a position to find a mathematical measurement of the shape
of a surface in R3.

1.1 Definition If p is a point of M, then for each tangent vector v to M
at p, let

where U is a unit normal vector field on a neighborhood of p in M. Sp is
called the shape operator of M at p derived from U.† (Fig. 5.1.)

S Up vv( ) = -— ,

Z z U z Ui i i ia a( )¢ ( ) = ( )¢ ( ) = [ ]Â Â0 0 v .

Z zUi i= Â

— = [ ]Âv i iZ z Uv ,

Z zUi i= Â .

Sp(v) v

FIG. 5.1

† The minus sign artificially introduced in this definition will sharply reduce the total number of
minus signs needed later on.
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The tangent plane of M at any point q consists of all Euclidean vectors
orthogonal to U(q). Thus the rate of change �vU of U in the v direction tells
how the tangent planes of M are varying in the v direction—and this gives
an infinitesimal description of the way M itself is curving in R3.

Note that if U is replaced by -U, then Sp changes to -Sp.

1.2 Lemma For each point p of M Ã R3, the shape operator is a linear
operator

on the tangent plane of M at p.

Proof. In Definition 1.1, U is a unit vector field, so U • U = 1. Thus by
a Leibnizian property of covariant derivatives,

where v is tangent to M at p. Since U is also a normal vector field, it follows
that Sp(v) is tangent to M at p. Thus Sp is a function from Tp(M) to Tp(M).
(It is to emphasize this that we use the term “operator” instead of
“transformation.”)

The linearity of Sp is a consequence of a linearity property of covari-
ant derivatives:

◆

At each point p of M Ã R3 there are actually two shape operators, ±Sp,
derived from the two unit normals ±U near p. We shall refer to all of these,
collectively, as the shape operator S of M. Thus if a choice of unit normal is
not specified, there is a relatively harmless ambiguity of sign.

1.3 Example Shape operators of some surfaces in R3.
(1) Let S be the sphere of radius r consisting of all points p of R3 with 

|| p || = r. Let U be the outward normal on S. Now as U moves away from
any point p in the direction v, evidently U topples forward in the exact direc-
tion of v itself (Fig. 5.2). Thus S(v) must have the form -cv.

In fact, using gradients as in Example 3.9 of Chapter 4, we find

U
r

xUi i= Â1
.

S a b U a U b U

aS bS

p av bw v w

p p

v w

v w

+( ) = -— = - — + —( )
= ( ) + ( )

+

.

0 2 2= [ ] = — ( ) = - ( ) ( )v p v pU U U U S Uv p• • • ,

S T M T Mp p p: ( ) Æ ( )

204 5. Shape Operators
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5.1 The Shape Operator of M Ã R3 205

But then

Thus for all v. So the shape operator S is merely scalar
multiplication by . This uniformity in S reflects the roundness of
spheres: They bend the same way in all directions at all points.

(2) Let P be a plane in R3. A unit normal vector field U on P is evidently
parallel in R3 (constant Euclidean coordinates) (Fig. 5.3). Hence

for all tangent vectors v to P. Thus the shape operator is identically zero,
which is to be expected, since planes do not bend at all.

(3) Let C be the circular cylinder x2 + y2 = r2 in R3. At any point p of C,
let e1 and e2 be unit tangent vectors, with e1 tangent to the ruling of the cylin-
der through p, and e2 tangent to the cross-sectional circle. Use the outward
normal U as indicated in Fig. 5.4.

Now, when U moves from p in the e1 direction, it stays parallel to itself just
as on a plane; hence S(e1) = 0. When U moves in the e2 direction, it topples

S Uvv( ) = -— = 0

-1 r

S rv v( ) = -

— = [ ] ( ) = -Âv i iU
r

x U
r

1
v p

v
.

FIG. 5.2

FIG. 5.3

FIG. 5.4
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206 5. Shape Operators

forward exactly as on a sphere of radius r; hence S(e2) = -e2/r. In this way S
describes the “half-flat, half-round” shape of a cylinder.

(4) The saddle surface M: z = xy. For the moment we investigate S only at
p = (0, 0, 0) in M. Since the x and y axes of R3 lie in M, the vectors 

u1 = (1, 0, 0) and u2 = (0, 1, 0)

are tangent to M at p. We use the “upward” unit normal U, which at p is 
(0, 0, 1). Along the x axis, U stays orthogonal to the x axis, and as it pro-
ceeds in the u1 direction, U swings from left to right (Fig. 5.5).

FIG. 5.5

In fact, a routine computation (Exercise 3) shows that �u1
U = -u2. Similarly,

we find �u2U = -u1. Thus the shape operator of M at p is given by the formula

These examples clarify the analogy between the shape operator of a surface
and the curvature and torsion of a curve. In the case of a curve, there is only
one direction to move, and k and t measure the rate of change of the unit
vector fields T and B (hence N). For a surface, only one unit vector field is
intrinsically determined—the unit normal U. Furthermore, at each point,
there is now a whole plane of directions in which U can move, so that rates
of change of U are measured, not numerically, but by the linear operators S.

1.4 Lemma For each point p of M Ã R3, the shape operator

is a symmetric linear operator; that is,

for any pair of tangent vectors to M at p.

S Sv w w v( ) = ( )• •

S T M T Mp p: ( ) Æ ( )

S a b b au u u u1 2 1 2+( ) = + .
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We postpone the proof of this crucial fact to Section 4, where it occurs
naturally in the course of general computations.

From the viewpoint of linear algebra, a symmetric linear operator on a
two-dimensional vector space is a very simple object indeed. For a shape
operator, its eigenvalues and eigenvectors, its trace and determinant, all turn
out to have geometric meaning of first importance for the surface M Ã R3.

Exercises

1. Let a be a curve in M Ã R3. If U is a unit normal of M restricted to the
curve a, show that S(a ¢) = -U ¢.

2. Consider the surface M: z = f(x, y), where

(The subscripts indicate partial derivatives.) Show that
(a) The vectors u1 = U1(0) and u2 = U2(0) are tangent to M at the origin 0,
and

is a unit normal vector field on M.
(b) S(u1) = fxx(0, 0)u1 + fxy(0, 0)u2,

S(u2) = fyx(0, 0)u1 + fyy(0, 0)u2.

(Note: The square root in the denominator is no real problem here because
of the special character of f at (0, 0). In general, direct computation of S is
awkward, and in Section 4 we shall establish indirect ways of getting at it.)

3. (Continuation.) In each case, express S(au1 + bu2) in terms of u1 and u2,
and determine the rank of S at 0 (rank S is dimension of image S: 0, 1, or
2).

(a) z = xy. (b) z = 2x2 + y2.
(c) z = (x + y)2. (d) z = xy2.

4. Let M be a surface in R3 oriented by a unit normal vector field

Then the Gauss map G: M Æ S of M sends each point p of M to the point
(g1(p), g2(p), g3(p)) of the unit sphere S. Pictorially: Move U(p) to the origin
by parallel motion; there it points to G(p) (Fig. 5.6).

Thus G completely describes the turning of U as it traverses M.

U g U g U g U= + +1 1 2 2 3 3.

U
f U f U U

f f

x y

x y

=
- - +

+ +
1 2 3

2 21

f f fx y0 0 0 0 0 0 0, , ,( ) = ( ) = ( ) = .
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208 5. Shape Operators

For each of the following surfaces, describe the image G(M ) of the Gauss
map in the sphere S (use either normal):

(a) Cylinder, x2 + y2 = r2.
(b) Cone,
(c) Plane, x + y + z = 0.
(d) Sphere, (x - 1)2 + y2 + (z + 2)2 = 1.

5. Let G: T Æ S be the Gauss map of the torus T (Example 2.5 of Ch. 4)
derived from its outward unit normal U. What are the image curves under G
of the meridians and parallels of T? Which points of S are the image of
exactly two points of T?

6. Let G: M Æ S be the Gauss map of the saddle surface M: z = xy derived
from the unit normal U obtained as in Exercise 2. What is the image under
G of one of the straight lines, y = constant, in M? How much of the sphere
is covered by the entire image G(M )?

7. Show that the shape operator of M is (minus) the tangent map of its
Gauss map: If S and G: M Æ S are both derived from U, then S(v) and 
-G*(v) are parallel for every tangent vector v to M.

8. An orientable surface has two Gauss maps derived from its two unit
normals. Show that they differ only by the antipodal mapping of S (Example
8.2 of Ch. 4). Define a Gauss-type mapping for a nonorientable surface in R3.

9. If V is a tangent vector field on M (with unit normal U), then S(V) is
the tangent vector field on M whose value at each point p is Sp(V(p)). Show
that if W is also tangent to M, then

Deduce that the symmetry of S is equivalent to the assertion that the bracket

of two tangent vector fields is again a tangent vector field.

V W W VV W,[ ] = — - —

S V W W UV( ) = —• • .

z x y= +2 2 .

FIG. 5.6
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5.2 Normal Curvature 209

5.2 Normal Curvature

Throughout this section we shall work in a region of M Ã R3 that has been
oriented by the choice of a unit normal vector field U, and we use the shape
operator S derived from U.

The shape of a surface in R3 influences the shape of the curves in M.

2.1 Lemma If a is a curve in M Ã R3, then

Proof. Since a is in M, its velocity a ¢ is always tangent to M. Thus 

a ¢ • U = 0,

where U is restricted to the curve a. Differentiation yields

But from Section 1, we know that S(a ¢) = -U¢. Hence

◆

Geometric interpretation: at each point, a ≤ · U is the component of accel-
eration a ≤ normal to the surface M (Fig. 5.7). The lemma shows that this
component depends only on the velocity a¢ and the shape operator of M.
Thus all curves in M with a given velocity v at point p will have the same normal

component of acceleration at p, namely, S(v) • v. This is the component of
acceleration that the bending of M in R3 forces them to have.

Thus if v is standardized by reducing it to a unit vector u, we get a mea-
surement of the way M is bent in the u direction.

2.2 Definition Let u be a unit vector tangent to M Ã R3 at a point p.
Then the number k(u) = S(u) • u is called the normal curvature of M in the u
direction.

¢¢ = - ¢ ¢ = ¢( ) ¢a a a a• • •U U S

¢¢ + ¢ ¢ =a a• • .U U 0

¢¢ = ¢( ) ¢a a a• • .U S

FIG. 5.7
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210 5. Shape Operators

In this context, we define a tangent direction to M at p to be a one-
dimensional subspace L of Tp(M), that is, a line through the zero vector
(located for intuitive purposes at p). Any nonzero tangent vector at p deter-
mines a direction L, but we prefer to use one of the two unit vectors ±u
in L. Note that

Thus, although we evaluate k on unit vectors, it is, in effect, a real-valued
function on the set of all tangent directions to M.

Given a unit tangent vector u to M at p, let a be a unit-speed curve in M
with initial velocity a ¢(0) = u. Using the Frenet apparatus of a, the preced-
ing lemma gives

Thus the normal curvature of M in the u direction is k (0)cosJ, where k(0)
is the curvature of a at a(0) = p, and J is the angle between the principal
normal N(0) and the surface normal U(p), as in Fig. 5.8.

Given u, there is a natural way to choose the curve so that J is 0 or p. In
fact, if P is the plane determined by u and U(p), then P cuts from M (near
p) a curve s called the normal section of M in the u direction. If we give s
unit-speed parametrization with s ¢(0) = u, then N(0) = ±U(p), since 

s ≤(0) = k (0)N(0)

is orthogonal to s ¢(0) = u and tangent to P. So for a normal section in the u
direction (Fig. 5.9),

k N Uu p( ) = ( ) ( ) ( ) = ± ( )k ks s0 0 0• .

k S U N Uu u u p p( ) = ( ) = ¢¢( ) ( ) = ( ) ( ) ( )
= ( )

• • •

cos .

a k

k J

0 0 0

0

k S S ku u u u u u( ) = ( ) = -( ) -( ) = -( )• • .

FIG. 5.8
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5.2 Normal Curvature 211

Thus it is possible to make a reasonable estimate of the normal curvatures
in various directions on a surface M Ã R3 by picturing what the corre-
sponding normal sections would look like. We know that the principal
normal N of a curve tells in which direction it is turning. Thus the preced-
ing discussion gives geometric meaning to the sign of the normal curvature
k(u) (relative to our fixed choice of U).

(1) If k(u) > 0, then N(0) = U(p), so the normal section s is bending
toward U(p) at p (Fig. 5.10). Thus in the u direction the surface M is bending
toward U(p).

(2) If k(u) < 0, then N(0) = -U(p), so the normal section s is bending
away from U(p) at p. Thus in the u direction M is bending away from U(p)
(Fig. 5.11).

(3) If k(u) = 0, then ks(0) = 0 and N(0) is undefined. Here the normal
section s is not turning at s(0) = p. We cannot conclude that in the u direc-
tion M is not bending at all, since k might be zero only at s(0) = p. But we
can conclude that its rate of bending is unusually small.

In different directions at a fixed point p, the surface may bend in quite dif-
ferent ways. For example, consider the saddle surface z = xy in Example 1.3.
If we identify the tangent plane of M at p = (0, 0, 0) with the xy plane of

FIG. 5.9

FIG. 5.10 FIG. 5.11
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212 5. Shape Operators

R3, then clearly the normal curvature in the direction of the x and y axes is
zero, since the normal sections are straight lines. However, Fig. 5.5 shows that
in the tangent direction given by the line y = x, the normal curvature is pos-
itive, for the normal section is a parabola bending upward. (U(p) = (0, 0, 1)
is “upward.”) But in the direction of the line y = -x, normal curvature is
negative, since this parabola bends downward.

Let us now fix a point p of M Ã R3 and imagine that a unit tangent vector
u at p revolves, sweeping out the unit circle in the tangent plane Tp(M). From
the corresponding normal sections, we get a moving picture of the way M is
bending in every direction at p (Fig. 5.12).

2.3 Definition Let p be a point of M Ã R3. The maximum and minimum
values of the normal curvature k(u) of M at p are called the principal curva-

tures of M at p, and are denoted by k1 and k2. The directions in which these
extreme values occur are called principal directions of M at p. Unit vectors
in these directions are called principal vectors of M at p.

Using the normal-section scheme discussed above, it is often fairly easy to
pick out the directions of maximum and minimum bending. For example, if
we use the outward normal (U) on a circular cylinder C as in Fig. 5.4, then
the normal sections of C all bend away from U, so k(u) � 0. Furthermore,
it is reasonably clear that the maximum value k1 = 0 occurs only in the direc-
tion e1 of a ruling; minimum value k2 < 0 occurs only in the direction e2

tangent to a cross-section.
An interesting special case occurs at points p for which k1 = k2. The

maximum and minimum normal curvature being equal, it follows that k(u)
is constant: M bends the same amount in all directions at p (so all directions
are principal).

2.4 Definition A point p of M Ã R3 is umbilic provided the normal cur-
vature k(u) is constant on all unit tangent vectors u at p.

FIG. 5.12
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5.2 Normal Curvature 213

For example, what we found in (1) of Example 1.3 was that every point of
the sphere S is umbilic, with 

2.5 Theorem (1) If p is an umbilic point of M Ã R3, then the shape oper-
ator S at p is just scalar multiplication by k = k1 = k2.

(2) If p is a nonumbilic point, k1 π k2, then there are exactly two princi-
pal directions, and these are orthogonal. Furthermore, if e1 and e2 are prin-
cipal vectors in these directions, then

In short, the principal curvatures of M at p are the eigenvalues of S, and
the principal vectors of M at p are the eigenvectors of S.

Proof. Suppose that k takes on its maximum value k1 at e1, so

Let e2 be merely a unit tangent vector orthogonal to e1 (presently we shall
show that it is also a principal vector).

If u is any unit tangent vector at p, we write

where c = cosJ, s = sinJ (Fig. 5.13). Thus normal curvature k at p becomes
a function on the real line: k(J) = k(u(J)).

For 1 � i, j � 2, let Sij be the number S(ei) · ej. Note that S11 = k1, and
by the symmetry of the shape operator, S12 = S21. We compute

(1)

Hence

k S c s c s

c S scS s S

J( ) = +( ) +( )
= + +

e e e e1 2 1 2

2
11 12

2
222

•

.

u u e e= ( ) = +J c s1 2 ,

k k S1 1 1 1= ( ) = ( )e e e• .

S k S ke e e e1 1 1 2 2 2( ) = ( ) =, .

k k r1 2 1= = - .

FIG. 5.13
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214 5. Shape Operators

(2)

If J = 0, then c = 1 and s = 0, so u(0) = e1. Thus, by assumption, k(J)
is a maximum at J = 0, so (dk/dJ)(0) = 0. It follows immediately from (2)
that S12 = 0.

Since e1, e2 is an orthonormal basis for Tp(M), we deduce by orthonor-
mal expansion that

(3)

Now if p is umbilic, then S22 = k(e2) is the same as S11 = k(e1) = k1, so (3)
shows that S is scalar multiplication by k1 = k2.

If p is not umbilic, we look back at (1), which has become

(4)

Since k1 is the maximum value of k(J), and k(J) is now nonconstant, it
follows that k1 > S22. But then (4) shows: (a) the maximum value k1 is taken
on only when c = ±1, s = 0, that is, in the e1 direction; and (b) the minimum
value k2 is S22, and is taken on only when c = 0, s = ±1 that is, in the e2 direc-
tion. This proves the second assertion in the theorem, since (3) now reads:

◆

Contained in the preceding proof is Euler’s formula for the normal cur-
vature of M in all directions at p.

2.6 Corollary Let k1, k2 and e1, e2 be the principal curvatures and vectors
of M Ã R3 at p. Then if u = cosJ e1 + sinJ e2, the normal curvature of M

in the u direction is (Fig. 5.13)

Here is another way to show how the principal curvatures k1 and k2 control
the shape of M near an arbitrary point p. Since the position of M in R3 is of
no importance, we can assume that (1) p is at the origin of R3, (2) the tangent
plane Tp(M) is the xy plane of R3, and (3) the x and y axes are the principal
directions. Near p, M can be expressed as M: z = f(x, y), as shown in Fig.
5.14, and the idea is to construct an approximation of M near p by using only
terms up to quadratic in the Taylor expansion of the function f. Now (1) and
(2) imply f 0 = f 0

x = f 0
y = 0, where the subscripts indicate partial derivatives

and the superscript zero denotes evaluation at x = 0, y = 0. Thus the qua-
dratic approximation of f near (0, 0) reduces to

k k ku( ) = +1
2

2
2cos sin .J J

S k ke e e e1 1 1 2 2 2( ) = ( ) =, S .

k c k s SJ( ) = +2
1

2
22.

S S Se e e e1 11 1 2 22 2( ) = ( ) =, S .

dk

d
sc S S c S S

J
J( ) = -( ) + -( )2 222 11

2 2
12.

Ch005-P088735.qxd  27/1/2006  2:54 PM  Page 214



5.2 Normal Curvature 215

In Exercise 1.2 we found that for the tangent vectors

at p = 0,

By condition (3) above, u1 and u2 are principal vectors, so it follows from
Theorem 2.5 that k1 = f 0

xx, k2 = f 0
yy, and f 0

xy = 0.
Substituting these values in the quadratic approximation of f, we conclude

that the shape of M near p is approximately the same as that of the surface

near 0. M¢ is called the quadratic approximation of M near p. It is an ana-
logue for surfaces of a Frenet approximation of a curve.

From Definition 2.2 through Corollary 2.6 we have been concerned with
the geometry of M Ã R3 near one of its points p. These results thus apply
simultaneously to all the points of the oriented region O on which, by our
initial assumption, the unit normal U is defined. In particular then, we have
actually defined principal curvature functions k1 and k2 on O, where at each
point p of O, k1(p) and k2(p) are the principal curvatures of M at p. Note that
these functions are only defined “modulo sign”: If U is replaced by -U, they
become -k1 and -k2.

¢ = +( )M z k x k y:
1
2 1

2
2

2

S U f fxy yyu u uu2
0

1
0

22( ) = -— = + .

S U f fxx xyu u uu1
0

1
0

21( ) = -— = + ,

u u1 21 0 0 0 1 0= ( ) = ( ), , and , ,

f x y f x f xy f yxx xy yy,( ) + +( )~ .
1
2

20 2 0 0 2

FIG. 5.14
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Exercises

1. Use the results of Example 1.3 to find the principal curvatures and prin-
cipal vectors of

(a) The cylinder, at every point.
(b) The saddle surface, at the origin.

2. If v π 0 is a tangent vector (not necessarily of unit length), show that the
normal curvature of M in the direction of v is 

3. For each integer n � 2, let an be the curve t Æ (rcos t, rsin t, ±tn) in the
cylinder M: x2 + y2 = r2. These curves all have the same velocity at t = 0;
test Lemma 2.1 by showing that they all have the same normal component
of acceleration at t = 0.

4. For each of the following surfaces, find the quadratic approximation near
the origin:

(a) z = exp (x2 + y2) - 1. (b) z = logcosx - log cosy.
(c) z = (x + 3y)3.

5.3 Gaussian Curvature

The preceding section found the geometrical meaning of the eigenvalues and
eigenvectors of the shape operator. Now we examine the determinant and
trace of S.

3.1 Definition The Gaussian curvature of M Ã R3 is the real-valued func-
tion K = detS on M. Explicitly, for each point p of M, the Gaussian curva-
ture K(p) of M at p is the determinant of the shape operator S of M at p.

The mean curvature of M Ã R3 is the function trace S. Gaussian
and mean curvature are expressed in terms of principal curvature by

3.2 Lemma .

Proof. The determinant (and trace) of a linear operator may be defined
as the common value of the determinant (and trace) of all its matrices. If
e1 and e2 are principal vectors at a point p, then by Theorem 2.5, we have
S(e1) = k1(p)e1 and S(e2) = k2(p)e2. Thus the matrix of S at p with respect
to e1, e2 is

K k k H k k= = +( )1 2 1 2

1
2

,  

H = 1 2

k Sv v v v v( ) = ( ) • • .

216 5. Shape Operators
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5.3 Gaussian Curvature 217

This immediately gives the required result. ◆

A significant fact about the Gaussian curvature: It is independent of the
choice of the unit normal U. If U is changed to -U, then the signs of both

k1 and k2 change, so K = k1k2 is unaffected. This is obviously not the case with
mean curvature which has the same ambiguity of sign as
the principal curvatures themselves.

The normal section method in Section 2 lets us tell, by inspection, approx-
imately what the principal curvatures of M are at each point. Thus we get a
reasonable idea of what the Gaussian curvature K = k1k2 is at each point p
by merely looking at the surface M. In particular, we can usually tell what the
sign of K(p) is—and this sign has an important geometric meaning, which
we now illustrate.

3.3 Remark The sign of Gaussian curvature at a point p.

(1) Positive. If K(p) > 0, then by Lemma 3.2, the principal curvatures k1(p)
and k2(p) have the same sign. By Corollary 2.6, either k(u) > 0 for all unit
vectors u at p or k(u) < 0. Thus M is bending away from its tangent plane Tp(M)
in all tangent directions at p (Fig. 5.15)

The quadratic approximation of M near p is the paraboloid

(2) Negative. If K(p) < 0, then by Lemma 3.2, the principal curvatures k1(p)
and k2(p) have opposite signs. Thus the quadratic approximation of M near
p is a hyperboloid, so M is also saddle-shaped near p (Fig. 5.16).

z k x k y= ( ) + ( )1
2

1
21

2
2

2p p .

H k k= +( )1 2 2 ,

k

k

1

2

0

0

p

p

( )
( )

Ê
ËÁ

ˆ
¯̃
.
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218 5. Shape Operators

(3) Zero. If K(p) = 0, then by Lemma 3.2 there are two cases:
(a) If only one principal curvature is zero, say

(b) If both principal curvatures are zero, say

In case (a) the quadratic approximation is the cylinder so M
is trough-shaped near p (Fig. 5.17).

In case (b), the quadratic approximation reduces simply to the plane 
z = 0, so we get no information about the shape of M near p.

A torus of revolution T provides a good example of these different cases.
At points on the outer half O of T, the torus bends away from its tangent
plane as one can see from Fig. 5.18; hence K > 0 on O. But near each point
p of the inner half J, T is saddle-shaped and cuts through Tp(M). Hence 
K < 0 on J.

Near each point on the two circles (top and bottom) that separate O and
J, the torus is trough-shaped; hence K = 0 there. (A quantitative check of
these qualitative results is given in Section 7.)

In case 3(b) above, where both principal curvatures vanish, p is called a
planar point of M. (There are no planar points on the torus.) For example,
the central point p of a monkey saddle, say

is planar. Here three hills and valleys meet, as shown in Fig. 5.19. Thus p
must be a planar point—the shape of M near p is too complicated for the
other three possibilities in Remark 3.3.

We consider now some ways to compute Gaussian and mean curvature.

M z x x y x y: = +( ) -( )3 3 ,

2 1
2z k x= ( )p ,

k k1 2 0p p( ) = ( ) = .

k k1 20 0p p( ) π ( ) =, .

FIG. 5.17 FIG. 5.18
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5.3 Gaussian Curvature 219

3.4 Lemma If v and w are linearly independent tangent vectors at a point
p of M Ã R3, then

Proof. Since v, w is a basis for the tangent plane Tp(M), we can write

This shows that

is the matrix of S with respect to the basis v, w. Hence

Using standard properties of the cross product, we compute

and a similar calculation gives the formula for H(p). ◆

Thus if V and W are tangent vector fields that are linearly independent at
each point of an oriented region, we have vector field equations

S V S W KV W

S V W V S W HV W

( ) ¥ ( ) = ¥

( ) ¥ + ¥ ( ) = ¥

,

2 .

S S a b c d

ad bc K

v w v w v w

v w p v w

( ) ¥ ( ) = +( ) ¥ +( )
= -( ) ¥ = ( ) ¥ ,

K S ad bc H S a dp p( ) = = - ( ) = = +( )det ., trace
1
2

1
2

a b

c d

Ê
ËÁ

ˆ
¯̃

S a b

S c d

v v w

w v w

( ) = +

( ) = +

,

.

S S K

S S H

v w p v w

v w v w p v w

( ) ¥ ( ) = ( ) ¥

( ) ¥ + ¥ ( ) = ( ) ¥

,

2 .

FIG. 5.19
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These may be solved for K and H by dotting each side with the normal
vector field V ¥ W, and using the Lagrange identity (Exercise 6). We then find

The denominators are never zero, since the independence of V and W is
equivalent to (V ¥ W) • (V ¥ W) > 0. In particular, the functions K and H
are differentiable.

Once K and H are known, it is a simple matter to find k1 and k2.

3.5 Corollary On an oriented region O in M, the principal curvature
functions are

Proof. To verify the formula, it suffices to substitute

and note that

◆

A more enlightening derivation (Exercise 4) uses the characteristic polyno-
mial of S.

This formula shows only that k1 and k2 are continuous functions on O; they
need not be differentiable since the square-root function is badly behaved at
zero. The identity in the proof shows that H 2 - K is zero only at umbilic points,
however, so k1 and k2 are differentiable on any oriented region free of umbilics.

A natural way to single out special types of surfaces in R3 is by restric-
tions on Gaussian and mean curvature.

3.6 Definition A surface M in R3 is flat provided its Gaussian curvature
is zero, and minimal provided its mean curvature is zero.

H K
k k

k k
k k2 1 2

2

1 2
1 2

2

4 4
- =

+( )
- =

-( )
.

K k k H
k k

= =
+

1 2
1 2

2
and

k k H H K1 2
2, = ± - .

K

S V V S V W

S W V S W V

V V V W

W V W W

H

S V V S V W

W V W W

V V V W

S W V S W W

V V V W

W V W W

=

( ) ( )
( ) ( )

=

( ) ( )
+ ( ) ( )

 

• •

• •
• •

• •

 

• •

• •

• •

• •
• •

• •
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As expected, a plane is flat, for by Example 1.3 its shape operators are all
zero, so K = det S = 0. On a circular cylinder, (3) of Example 1.3 shows that
S is singular at each point p, that is, has rank less than the dimension of the
tangent plane Tp(M). Thus, although S itself is never zero, its determinant is
always zero, so cylinders are also flat. This terminology seems odd at first for
a surface so obviously curved, but it will be amply justified in later work.

Note that minimal surfaces have Gaussian curvature K � 0, because if

then k1 = -k2, so K = k1k2 � 0.
Another notable class of surfaces consists of those with constant Gauss-

ian curvature. As mentioned earlier, Example 1.3 shows that a sphere of
radius r has (for U outward). Thus the sphere S has constant
positive curvature : The smaller the sphere, the larger its curvature.

We shall find many examples of these various special types of surface as 
we proceed through this chapter.

Exercises

1. Show that there are no umbilics on a surface with K < 0, and that when
K � 0, umbilic points are planar.

2. Let u1 and u2 be orthonormal tangent vectors at a point p of M. What
geometric information can be deduced from each of the following conditions
on S at p?

(a) S(u1) • u2 = 0. (b) S(u1) + S(u2) = 0.
(c) S(u1) ¥ S(u2) = 0. (d) S(u1) • S(u2) = 0.

3. (Mean curvature.) Prove that
(a) the average value of the normal curvature in any two orthogonal direc-
tions at p is H(p). (The analogue for K is false.)

(b) 

where k(J) is the normal curvature, as in Corollary 2.6.

4. The characteristic polynomial of an arbitrary linear operator S is

where A is any matrix of S.

p k A kI( ) = -( )det ,

H k dp( ) = ( )Ú1 2
0

2

p J J
p

,

K r= 1 2

k k r1 2 1= = -

H
k k

=
+

=1 2

2
0,
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(a) Show that the characteristic polynomial of the shape operator is

(b) Every linear operator satisfies its characteristic equation; that is, p(S)
is the zero operator when S is formally substituted in p(k). Prove this in
the case of the shape operator by showing that

for any pair of tangent vectors to M.
The real-valued functions

defined for all pairs of tangent vectors to an oriented surface, are tradition-
ally called the first, second, and third fundamental forms of M. They are not
differential forms; in fact, they are symmetric in v and w rather than alter-
nating. The shape operator does not appear explicitly in the classical treat-
ment of this subject; it is replaced by the second fundamental form.

5. (Dupin curve.) For a point p of an oriented region of M, let C0 be the
intersection of M near p with its tangent plane ; specifically, C0 con-
sists of those points of M near p that lie in the plane through p orthogonal
to U(p). C0 may be approximated by substituting for M its quadratic approx-
imation M̂; thus C0 is approximated by the curve

(a) Describe Ĉ0 in each of the three cases K(p) > 0, K(p) < 0, and K(p) = 0
(not planar).
(b) Repeat (a) with C0 replaced by Ce and C-e, where the tangent plane has
been replaced by the two parallel planes at distance ±e from it.
(c) This scheme fails for planar points since the quadratic approximation
becomes M̂: z = 0. For the monkey saddle, sketch C0, Ce, and C-e.

6. For vectors x, y, v, w in R3, prove the Lagrange identity

(a) By hand. (Hint: Since both sides are linear in each vector separately, it
suffices to prove the identity when each vector is one of the unit vectors
u1, u2, u3.)
(b) By computer. (For dot and cross products, see the Appendix.)

x y v w
x v x w

y v y w
¥( ) ¥( ) =•

• •

• •
.

ˆ : .C k x k y0 1
2

2
2 0 0 0+ = ( ), near ,  

T Mp ( )

I , , II , ,

III , ,

v w v w v w v w

v w v w v w

( ) = ( ) = ( )
( ) = ( ) = ( ) ( )

• •

• •

S

S S S2

S S HS Kv w v w v w( ) ( ) - ( ) + =• • •2 0

k Hk K2 2- + .
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5.3 Gaussian Curvature 223

7. (Parallel surfaces.) Let M be a surface oriented by U; for a fixed number
e (positive or negative) let F: M Æ R3 be the mapping such that

(a) If v is tangent to M at p, show that = F*(v) is v - eS(v). Deduce that

where

When the function J does not vanish on M (for example, if M is compact
and |e | small), this shows that F is a regular mapping, so the image

is at least an immersed surface in R3 (Ex. 16 in Sec. 4.8). is said to be par-

allel to M at distance e (Fig. 5.20).
(b) Show that the canonical isomorphisms of R3 make U a unit normal on

for which .
(c) Derive the following formulas for the Gaussian and mean curvatures
of M:

8. (Continuation.)
(a) Check the results in (c) in the case of a sphere of radius r oriented by
the outward normal U. Describe the mapping F = Fe when e is 0, -r, and
-2r.
(b) Starting from an orientable surface with constant positive Gaussian
curvature, construct a surface with constant mean curvature.

K F
K

J
H F

H K

J
( ) = ( ) =

-
; .

e

S Sv v( ) = ( )M

M

M F M= ( )

J H K k k= - + = -( ) -( )1 2 1 12
1 2e e e e .

v w p v w¥ = ( ) ¥J ,

v

F Up p p( ) = + ( )e .

FIG. 5.20
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224 5. Shape Operators

5.4 Computational Techniques

We have defined the shape operators S of a surface M in R3 and found geo-
metrical meaning for its main algebraic invariants: Gaussian curvature K,
mean curvature H, principal curvatures k1 and k2, and (at each point) prin-
cipal vectors e1 and e2. We shall now see how to express these invariants in
terms of patches in M.

If x: D Æ M is a patch in M Ã R3, we have already used the three real-
valued functions

on D. Here E > 0 and G > 0 are the squares of the speeds of the u- and v-
parameter curves of x, and F measures the coordinate angle J between xu and
xv, since

(Fig. 5.21). E, F, and G are the “warping functions” of the patch x: They
measure the way x distorts the flat region D in R2 in order to apply it to the
curved region x(D) in M. These functions completely determine the dot
product of tangent vectors at points of x(D), for if

then

(In such equations we understand that xu, xv, E, F, and G are evaluated at 
(u, v) where x(u, v) is the point of application of v and w.)

Now xu ¥ xv is a function on D whose value at each point (u, v) of D is a
vector orthogonal to both xu(u, v) and xv(u, v)—and hence normal to M at
the point x(u, v). Furthermore, by Exercise 6 of Section 3,

x xu v EG F¥ = -2 2 .

v w• .= + +( ) +Ev w F v w v w Gv w1 1 1 2 2 1 2 2

v x x w x x= + = +v v w wu v u u1 2 1 2and ,

F EGu v u v= = =x x x x• cos cosJ J

E F Gu u u v v u v v= = = =x x x x x x x x• • • •, ,

FIG. 5.21
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Since x is, by definition, regular, this real-valued function on D is never zero.
Thus we can construct the unit normal function

on D, which assigns to each (u, v) in D a unit normal vector to M at x(u, v).
We emphasize that in this context, U, like xu and xv, is not a vector field on
x(D), but merely a vector-valued function on D. Nevertheless, we may regard
the system xu, xv, U as a kind of defective frame field. At least U has unit
length and is orthogonal to both xu and xv, even though xu and xv are gener-
ally not orthonormal.

In this context, covariant derivatives are usually computed along the para-
meter curves of x, where by the discussion in Section 1, they reduce to partial
differentiation with respect to u and v. As in the case of xu and xv, these partial
derivatives are again denoted by subscripts u and v. If

then just as for xu and xv on page 140, we have

Evidently xuu and xvv give the accelerations of the u- and v-parameter
curves. Since order of partial differentiation is immaterial, xuv = xvu, which
gives both the covariant derivative of xu in the xv direction and of xv in the
xu direction.

Now if S is the shape operator derived from U, we define three more real-
valued functions on D:

Because xu, xv gives a basis for the tangent space of M at each point of
x(D), it is clear that these functions uniquely determine the shape operator.
Since this basis is generally not orthonormal, l, m, and n do not lead to simple
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expressions for S(xu) and S(xv) in terms of xu and xv. In the formulas 
preceding Corollary 3.5, however, they do provide simple expressions for 
Gaussian and mean curvature.

4.1 Corollary If x is a patch in M Ã R3, then

Proof. At a point p of x(D), the formulas on page 220 express K(p) and
H(p) in terms of tangent vectors V(p) and W(p) at p. If V(p) and W(p) are
replaced by the tangent vectors xu(u, v) and xv(u, v) at x(u, v), we find the
required formulas for K and H at x(u, v). ◆

When the patch x is clear from context, we shall usually abbreviate the
composite functions K(x) and H(x) to merely K and H.

By a device like that used in Lemma 2.1, we can find a simple way to
compute l, m, and n—and thereby K and H. For example, since U • xu = 0,
partial differentiation with respect to v—that is, ordinary differentiation
along v-parameter curves—yields

(Recall that Uv is the covariant derivative of the vector field v Æ U (u0, v) on
each v-parameter curve u = u0.) Since xv gives the velocity vectors of such
curves, Exercise 1.1 shows that Uv = -S(xv). Thus the preceding equation
becomes

(Fig. 5.22). Three similar equations may be found by replacing u by v, and v
by u. In particular,

Again, since xu and xv give a basis for the tangent space at each point, this is
sufficient to prove that S is symmetric (Lemma 1.4).

4.2 Lemma If x is a patch in M Ã R3, then

L
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,
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S U

S U

S U

u u uu

u v uv

v v vv

x x x

x x x

x x x

• •
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5.4 Computational Techniques 227

The first equation in each case is just the definition, and u and v may be
reversed in the formulas for m.

4.3 Example Computation of Gaussian and mean curvature

(1) Helicoid (Exercise 5 of Section 4.2). This surface H, shown in Fig. 5.23,
is covered by a single patch

x u v u v u v bv b, , , , ,( ) = ( ) πcos sin 0

FIG. 5.22

FIG. 5.23
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for which

Hence

Because coordinate patches are, by definition, regular mappings, we have seen
in Chapter 4 that the function

is never zero. For any patch we denote this useful function by W, that is,

In the case at hand, so the unit normal function is

(A computation of U can always be checked by verifying that the result is a
unit vector orthogonal to both xu and xv.)

Next we find

Here xuu = 0 is obvious, since the u-parameter curves are straight lines. The
v-parameter curves are helices, and this formula for the acceleration xvv was
found already in Chapter 2. Now by Lemma 4.2,

Hence by Corollary 4.1 and the results above,
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Thus the helicoid is a minimal surface with Gaussian curvature

The minimum value occurs on the central axis (u = 0) of the 
helicoid, and K Æ 0 as distance |u| from the axis increases to infinity.

(2) The saddle surface M: z = xy (Example 1.3). This time we use the
Monge patch x(u, v) = (u, v, uv) and with the same format as above, compute

Hence

Strictly speaking, these functions are K(x) and H(x) defined on the domain
R2 of x. In this case, it is easy to express K and H directly as functions 
on M by using the cylindrical coordinate functions and z. Note
from Fig. 5.24 that

and

hence on M,

K
r

H
z

r
=

-
+( )

=
-

+( )
1

1 12 2 2 3 2, .

z u v uvx ,( )( ) = ;

r u v u vx ,( )( ) = +2 2

r x y= +2 2

K
u v

H
uv

u v
=

-
+ +( )

=
-

+ +( )
1

1 12 2 2 2 2 3 2, .

x

x

x

x

x

u

v

uu

uv

vv

v E v

u F uv

G u

U v u W W u v

W

= ( ) = +
= ( ) =

= +

= - -( ) = + +
= =
= ( ) =
= =

1 0 1

0 1

1

1 1

0 0

0 0 1 1

0 0

2

2

2 2

, , ,

, , , ,

,

, , ,

, ,

, , , ,

,

L

N

M

,

,

.

K b= -1 2

- £ <
1

0
2b

K .

K
EG F

b W

W

b

W

b

b u

H
G E F

EG F

=
-
-

=
-( )

=
-

=
-
+( )

=
+ -

-( ) =

LN M

L N M

,
2

2

2

2

2

4

2

2 2 2

2

2
2

0.

5.4 Computational Techniques 229

Ch005-P088735.qxd  27/1/2006  2:54 PM  Page 229



230 5. Shape Operators

Thus the Gaussian curvature of M depends only on distance to the z axis,
rising from K = -1 (at the origin) toward zero as r goes to infinity, while H
varies more radically.

Like all simple (that is, one-patch) surfaces, the helicoid and saddle sur-
faces are orientable, since computations as above provide a unit normal on
the whole surface. Thus the principal curvature functions k1 ≥ k2 can be
defined unambiguously on each surface. These can always be found from K
and H by Corollary 3.5. Since the helicoid is a minimal surface, we get the
simple result

For the saddle surface,

Techniques for computing principal vectors are left to the exercises.
The computational results in this section, though stated for coordinate

patches, remain valid for arbitrary regular mappings x: D Æ R3 since the
restriction of x to any small enough open set in D is a patch.

Exercises

1. For the geographical parametrization

x u v r v u r v u r v v u, , , where( ) = ( ) - < < < <cos cos cos sin sin ,  , ,p p p p2 2

k k
z r z

r
1 2

2 2

2 3 2
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1
, =

- ± + +
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.

k k
b

b u
1 2 2 2
, =

±
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of the sphere S of radius r, find E, F, G, and W, and then the unit normal
U, Gaussian curvature K, and mean curvature H.

2. For a Monge patch x(u, v) = (u, v, f(u, v)), show that,

where

Then find formulas for K and H.

3. (Continuation.) Deduce that the image of x is
(a) flat if and only if

(b) minimal if and only if

4. Let x be the patch

defined on Show that the image of x is a minimal surface
with Gaussian curvature

where W 2 = 1 + tan2u + tan2v. (This patch is in Scherk’s surface, Ex. 5 of
Sec. 5.5.)

5. Show that a curve segment

has length

where E, F, and G are evaluated on a1, a2.
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6. Find the Gaussian curvature of the elliptic and hyperbolic paraboloids

where e = ±1.

7. Find the curvature of the monkey saddle M: z = x3 - 3xy2, and express
it in terms of

8. A patch x in M is orthogonal provided F = 0 (so xu and xv are orthogo-
nal at each point). Show that in this case

(b) A patch x in M is principal provided F = m = 0. Prove that xu and xv

are principal vectors at each point, with corresponding principal curvatures
l/E and n/G.

9. Prove that a nonzero tangent vector v = v1xu + v2xv is a principal vector
if and only if

(Hint: v is principal if and only if S(v) ¥ v = 0.)

10. Show that on the saddle surface z = xy the two vector fields

are principal at each point. Check that they are orthogonal and tangent to M.

11. If v = v1xu + v2xv is tangent to M at x(u, v), show that the normal 

curvature in the direction is

where the various functions are evaluated at (u, v).

k
v v v v
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5.4 Computational Techniques 233

12. Show that a ruled surface x(u, v) = b(u) + vd(u) has Gaussian curvature

where W = ||b ¢ ¥ d + vd¢ ¥ d ||.

13. (Flat ruled surfaces.)
(a) Show that generalized cones and cylinders are flat (Exs. 3 and 4 of Sec.
4.2).
(b) If b is a unit-speed curve in R3 with k > 0, the ruled surface

where T(u) = b¢(u), is called the tangent surface of b. Prove that x is regular
and the tangent surface is flat. (The surface is separated into two pieces by
the curve; Fig. 5.25 shows the v > 0 half.)

14. (Patch criterion for umbilics.)
(a) Show that a point x(u, v) is umbilic if and only if there is a number k
such that at (u, v),

(Then k is the principal curvature k1 = k2.)

15. Find the umbilic points, if any, on the following surfaces:
(a) Monkey saddle (Ex. 7).
(b) Elliptic paraboloid (Ex. 6), assuming a � b.

(Hint: Compute the “vectors” (E, F, G) and (l, m, n) for arbitrary (u, v), dis-
carding common factors if convenient. Then solve (E, F, G) ¥ (l, m, n) = 0
for (u, v).)

L M N, ,= = =kE kF kG  .
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16. (Loxodromes.) For a π 0, let fa: be the unique func-
tion such that 

If x is the geographical parametrization of a sphere, the curve la(t) = x(fa(t),t)
is a loxodrome.

(a) Prove that la¢ always makes a constant angle with the due-north vector
field xv. Thus la represents a trip with constant (idealized) compass
bearing.
(b) Show that the length of la from the south pole (0, 0, -r) to the north 
pole (0, 0, r) (limit values) is .

(c) (Computer.) Verify that fa(t) = a logtan , and plot l10 from
near the south pole to near the north pole on a unit sphere. (Require
smoothness, and keep the same scale on each axis.)

17. (Tubes.) If b is a curve in R3 with 0 < k � b, let

Thus the v-parameter curves are circles of constant radius e in planes orthog-
onal to b. Show that

(a) xu ¥ xv = -e(1 - ke cos v)(cos vN(u) + sin vB(u)).
(b) If e is small enough, x is regular. So x is at least an immersed surface,
called a tube around b.
(c) U = cos vN(u) + sin vB(u) is a unit normal vector on the tube.

(d)

(Hint: Use S(xu) ¥ S(xv) = K xu ¥ xv.)

The following exercises deal with use of the computer in patch com-
putations.

18. (Computer.) The Appendix gives computer commands for the functions
E, F, G, W, l, m, n derived from a patch.

(a) Write the computer commands, based on Corollary 4.1, that give the
Gaussian curvature and mean curvature of a patch in terms of these 
functions.
(b) To test these commands, find E, F, G, W, l, m, n, K, H for each of the
cases in Example 4.3. Compare with the text computations.

19. (Computer.) Make a save file containing the following patches or
parametrizations. (See Appendix for “save files” and format for parameters.)

(a) the patch in Exercise 4.

K
u v

u v
=

- ( )
- ( )( )
k

e k e
cos

cos
.

1

x u v u vN u vB u,( ) = ( ) + ( ) + ( )( )b e cos sin .

t 2 4+( )p

1 2+ a rp
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t
fa cos

  .and 0 0
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(b) a single Monge patch—with parameters a, b, e—for the hyperboloids
in Exercise 6.
(c) a Monge patch for the monkey saddle (Ex. 7), in terms of (i) rectan-
gular coordinates u, v and (ii) polar coordinates r, J on R2.
(d) the parametrization of Enneper’s surface in Exercise 16.
(e) the geographical parametrization of a sphere of radius r.

20. (Computer formulas.)
(a) For a patch x in R3, show that Gaussian curvature can be expressed
directly in terms of x as

This formula gives the fastest general computer computation of K. The
Appendix has computer commands for it in the Mathematica and Maple

systems.
(b) Test this command on the two cases in Example 4.3 and the patches in
Exercise 19.

The derivation of the corresponding formula for mean curvature is rather
tedious. This formula may be found in Alfred Gray’s book [G].
(c) Find a computer formula for the Gaussian curvature of the graph of
a function f: R2 Æ R. (Hint: use Ex. 2.) Test this command on the Monge
patches referenced in Exercises 18 and 19.

21. (Computer.)
(a) Write commands that, given a curve a on some interval, plot the tube
of radius r around a. (See Ex. 17.)
(b) Use part (a) to plot the tube of radius around two turns of the helix

t Æ (3 cos t, 3 sin t, ).
(c) Plot the tube of radius around the curve t in Exercise 19 of Sec. 2.4.
(This makes it clear that t is a trefoil knot.)

5.5 The Implicit Case

In this brief section we describe a way to compute the geometry of a surface
M Ã R3 that has a nonvanishing normal vector field Z defined on the entire
surface. The main case is a surface given in implicit form M: g = 0, for then,
by Lemma 3.8 of Chapter 4, the gradient

is such a vector field.

— =
∂
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236 5. Shape Operators

Let S be the shape operator on M derived from the unit normal

Write Then if V is a tangent vector field on M, Method 2 in
Section 1 gives

Hence, using a Leibnizian property of such derivatives,

(Fig. 5.26). The last term here, V[1/||Z||] Z, is evidently a normal vector field;
we do not care which one it is, so we denote it merely by -NV. Thus

Note that if W is another tangent vector field on M, then NV ¥ NW = 0, while
products such as NV ¥ Y are tangent to M for any Euclidean vector field Y
on M. Thus it is a routine matter to deduce the following lemma from Lemma
3.4.

5.1 Lemma Let Z be a nonvanishing normal vector field on M. If V and
W are tangent vector fields such that V ¥ W = Z, then

K
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To compute, say, the Gaussian curvature of a surface M: g = c using
patches, one must begin by explicitly finding enough of them to cover all of
M; a complete computation of K may thus be tedious, even when g is a rather
simple function. The following example shows to advantage the approach just
described.

5.2 Example Curvature of the ellipsoid

We write g = , and use the (nonvanishing) normal vector field

Then if is a tangent vector field on M,

since

Similar results for another tangent vector field W yield

where X is the special vector field used in Example 3.9 of Chapter 4.
It is always possible to choose V and W so that V ¥ W = Z. But then

Thus by Lemma 5.1 we have found

that is,
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238 5. Shape Operators

For any oriented surface in R3, its support function h assigns to each point
p the orthogonal distance h(p) = p • U(p) from the origin to the Euclidean
tangent plane , as shown in Fig. 5.27 for the ellipsoid. Using the above-
mentioned vector field X (whose value at p is the tangent vector pp), we find
for the ellipsoid that

Thus a clearer expression of the Gaussian curvature of the ellipsoid is

Note that if a = b = c = r (so M is a sphere), then has constant
value r, and this formula reduces to 

Exercises

1. Show that the elliptic hyperboloids of one and two sheets (Ex. 2.9 of Ch.
4) have Gaussian curvatures respec-
tively, where both support functions h are given by the same formula as for
the ellipsoid in Example 5.2.

2. If h is the support function of an oriented surface M Ã R3, show that
(a) A point p of M is a critical point of h if and only if p • S(v) = 0 for 
all tangent vectors to M at p. (Hint: Write h as X • U, where )X xUi i= Â .
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5.5 The Implicit Case 239

(b) When K(p) π 0, p is a critical point of h if and only if p (considered
as a vector) is orthogonal to M at p.

3. (a) Use the preceding exercises to find the critical points of the Gauss-
ian curvature function K on the ellipsoid and on the hyperboloids of one and
two sheets (Ex. 2.9 of Ch. 4).

(b) Assuming a � b � c for these surfaces, find their Gaussian curvature
intervals.

4. Compute K and H for the saddle surface M: z = xy by the method of
this section. (Hint: Take V and W tangent to the rulings of M.)

5. Scherk’s minimal surface, M: ezcosx = cos y. Let R be the region in the
xy plane on which cosx cosy > 0. R is a checkerboard pattern of open squares,
with vertices Show that:

(a) M is a surface.
(b) For each point (u, v) in R there is exactly one point (u, v, w) in M. The
only other points of M are entire vertical lines over each of the vertices of
R (Fig. 5.28).
(c) M is a minimal surface with 
(Hint: V = cosx U1 + sinx U3 is a tangent vector field.)
(d) The patch in Exercise 4.4 parametrizes the part of M over a typical
open square. Show that the curvature K(u, v) calculated there is consistent
with (c).

K e e xz z= - +( )2 2 2 2
1sin .

p p p p2 2+ +( )m n,  .

FIG. 5.28
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6. Let Z be a nonvanishing normal vector field on M. Show that a tangent
vector v to M at p is principal if and only if

(Hint: Recall that v is principal if and only if S(v) ¥ v = 0.)
The preceding equation together with the tangency equation Z(p) • v = 0

can be solved for the principal directions. Thus umbilics can be located using
these equations, since p is umbilic if and only if every tangent vector at p is
principal.

7. For the ellipsoid M: , show that:
(a) A tangent vector v at p is principal if and only if

(b) Assuming a1 > a2 > a3, there are exactly four umbilics on M, with 
coordinates

5.6 Special Curves in a Surface

In this section we consider three geometrically significant types of curves in
a surface M Ã R3.

6.1 Definition A regular curve a in M Ã R3 is a principal curve provided
that the velocity a ¢ of a always points in a principal direction.

Thus principal curves always travel in directions for which the bending of
M in R3 takes its extreme values. Neglecting changes of parametrization,
there are exactly two principal curves through each nonumbilic point of M—
and these necessarily cut orthogonally across each other. (At an umbilic point
p, every direction is principal, and near p the pattern of principal curves can
be quite complicated.)

6.2 Lemma Let a be a regular curve in M Ã R3, and let U be a unit
normal vector field restricted to a. Then

(1) The curve a is principal if and only if U¢ and a ¢ are collinear at each
point.
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5.6 Special Curves in a Surface 241

(2) If a is a principal curve, then the principal curvature of M in the direc-

tion of a ¢ is 

Proof. (1) Exercise 1.1 shows that S(a ¢) = -U¢. Thus U¢ and a ¢ are
collinear if and only if S(a ¢) and a ¢ are collinear. But by Theorem 2.5,
this amounts to saying that a ¢ always points in a principal direction or,
equivalently, that a is a principal curve.

(2) Since a is a principal curve, the vector field consists entirely
of (unit) principal vectors belonging to, say, the principal curvature ki. Thus

where the last equality uses Lemma 2.1. ◆

In this lemma, (1) is a simple criterion for a curve to be principal, while (2)
gives the principal curvature along a curve known to be principal.

6.3 Lemma Let a be a curve cut from a surface M Ã R3 by a plane P. If
the angle between M and P is constant along a, then a is a principal curve
of M.

Proof. Let U and V be unit normal vector fields to M and P (respec-
tively) along the curve a, as shown in Fig. 5.29. Since P is a plane, V is
parallel, that is, V¢ = 0. The constant-angle assumption means that U • V

is constant; thus

k k S

S U

i = ¢ ¢( ) = ¢ ¢( ) ¢ ¢
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242 5. Shape Operators

Since U is a unit vector, U¢ is orthogonal to U as well as to V. The same
is of course true of a ¢, since a lies in both M and P. If U and V are lin-
early independent (as in Fig. 5.29) we conclude that U¢ and a ¢ are collinear;
hence by Lemma 6.2, a is principal.

However, linear independence fails only when U = ±V. But then U ¢ = 0,
so a is (trivially) principal in this case as well. ◆

Using this result, it is easy to see that the meridians and parallels of a surface

of revolution M are its principal curves. Indeed, each meridian m is sliced from
M by a plane through the axis of revolution and hence orthogonal to M along
m, while each parallel p is sliced from M by a plane orthogonal to the axis,
and by rotational symmetry such a plane makes a constant angle with M

along p.
Directions tangent to M Ã R3 in which the normal curvature is zero are

called asymptotic directions. Thus a tangent vector v is asymptotic provided
k(v) = S(v) • v = 0, so in an asymptotic direction, M is (instantaneously, at
least) not bending away from its tangent plane.

Using Corollary 2.6 we can get a complete analysis of asymptotic direc-
tions in terms of Gaussian curvature.

6.4 Lemma Let p be a point of M Ã R3.
(1) If K(p) > 0, then there are no asymptotic directions at p.
(2) If K(p) < 0, then there are exactly two asymptotic directions at p, and

these are bisected by the principal directions (Fig. 5.30) at angle J such that

(3) If K(p) = 0, then every direction is asymptotic if p is a planar point;
otherwise there is exactly one asymptotic direction and it is also principal.
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5.6 Special Curves in a Surface 243

Proof. These cases all derive from Euler’s formula

in Corollary 2.6.
(1) Since k1(p) and k2(p) have the same sign, k(u) is never zero.
(2) Here k1(p) and k2(p) have opposite signs, and we can solve the 

equation 0 = k1(p) cos2J + k2(p) sin2J to obtain the two asymptotic
directions.

(3) If p is planar, then

hence k(u) is identically zero. If just k2(p) = 0, then

is zero only when cos J = 0, that is, in the principal direction u = e2. ◆

We can get an approximate idea of the asymptotic directions at a point p
of a given surface M by picturing the intersection of the tangent plane 
with M near p. When K(p) is negative, this intersection will consist of two
curves through p whose tangent lines (at p) are asymptotic directions (Exer-
cise 5 of Section 53).

Figure 5.31 shows the two asymptotic directions A and A¢ at a point p on
the inner equator of a torus.

T Mp ( )

k ku p( ) = ( )1
2cos J

k k1 2 0p p( ) = ( ) = ;

k k ku p p( ) = ( ) + ( )1
2

2
2cos sinJ J

FIG. 5.31

6.5 Definition A regular curve a in M Ã R3 is an asymptotic curve pro-
vided its velocity a ¢ always points in an asymptotic direction.

Thus a is asymptotic if and only if

k S¢( ) = ¢( ) ¢ =a a a• .0
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Since S(a ¢) = -U¢, this gives a criterion, U¢ • a ¢ = 0, for a to be asymptotic.
Asymptotic curves are more sensitive to Gaussian curvature than are princi-
pal curves: Lemma 6.3 shows that there are none in regions where K is pos-
itive, but two cross (at an angle depending on K) at each point of a region
where K is negative.

The simplest criterion for a curve in M to be asymptotic is that its accel-

eration a ≤ always be tangent to M. In fact, differentiation of U • a ¢ = 0 gives

so U¢ • a ¢ = 0 (a asymptotic) if and only if U • a ≤ = 0.
The analysis of asymptotic directions in Lemma 6.4 has consequences for

both flat and minimal surfaces. First, a surface M in R3 is minimal if and only

if there exist two orthogonal asymptotic directions at each of its points. In fact,
H(p) = 0 is equivalent to k1(p) = -k2(p), and an examination of the possi-
bilities in Lemma 5.4 shows that k1(p) = -k2(p) if and only if either (a) p is
planar (so the criterion holds trivially) or (b)

which means that the two asymptotic directions are orthogonal.
Thus a surface is minimal if and only if through each point there are two

asymptotic curves that cross orthogonally. This observation gives geometric
meaning to the calculations in Example 4.3, which show that the helicoid is
a minimal surface. In fact, the u- and v-parameter curves of the patch x are
orthogonal since F = 0, and their accelerations are tangent to the surface
since l = U • xuu = 0 and n = U • xvv = 0.

Recall that a ruled surface is swept out by a line moving through R3 (Def-
inition 2.6 in Chapter 4). We have seen, for example, that the helicoid and
saddle surface in Example 4.3 are ruled surfaces. Thus it is no accident that
both these surfaces have K negative, since:

6.6 Lemma A ruled surface M has Gaussian curvature K � 0. Further-
more, K = 0 if and only if the unit normal U is parallel along each ruling of M

(so all points p on a ruling have the same Euclidean tangent plane ).

Proof. A straight line t Æ p + tq is certainly asymptotic since its acceler-
ation is zero and is thus trivially tangent to M. By definition a ruled surface
contains a line through each of its points, so there is an asymptotic direc-
tion at each point. Hence, by Lemma 6.4, K � 0.

Now let a (t) = p + tq be an arbitrary ruling in M. If U is parallel along
a, then S(a ¢) = -U¢ = 0. Thus a is a principal curve with principal curva-
ture k(a ¢) = 0, so K = k1 k2 = 0.

T Mp ( )

K p( ) < = ±0 4with ,J p

¢ ¢ + ¢¢ =U U• •a a 0,
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Conversely, if K = 0 we deduce from Case (3) in Lemma 6.4 that asymp-
totic directions (and curves) in M are also principal. Thus each ruling is
principal (S(a ¢) = k(a ¢)a ¢) as well as asymptotic (k(a ¢) = 0); hence 

U¢ = -S(a ¢) ¥ 0, ◆

and U is parallel along each ruling of M.

We come now to the last and most important of the three types of curves
under discussion.

6.8 Definition A curve a in M Ã R3 is a geodesic of M provided its accel-
eration a ≤ is always normal to M.

Since a ≤ is normal to M, the inhabitants of M perceive no acceleration at
all—for them the geodesic is a “straight line.” A full study of geodesics is
given in later chapters, where, in particular, we examine their character as
shortest routes of travel. Geodesics are far more plentiful in a surface M than
are principal or asymptotic curves. Indeed, Theorem 4.2 of Chapter 7 will
show that given any tangent vector v to M there is a (unique) geodesic with
initial velocity v.

Because the acceleration a ≤ of a geodesic is orthogonal to M, it is orthog-
onal to the velocity a ¢ of a. Thus geodesics have constant speed, since dif-
ferentiation of ||a ¢||2 = a ¢ • a ¢ gives 2a ¢ • a ≤ = 0.

A straight line a(t) = p + tq contained in M is always a geodesic of M

since its acceleration a ≤ = 0 is trivially normal to M. Though they lack any
geometric significance, constant curves are also geodesics, but to avoid clutter
this case is often neglected.

6.9 Example Geodesics of some surfaces in R3.
(1) Planes. If a is a geodesic in a plane P orthogonal to u, then a ¢ • u = 0,

hence a ≤ • u = 0. But a ≤ is by definition normal to P, hence collinear with
u, so a ≤ = 0. Thus a is a straight line. Since as noted above, every such line
is a geodesic, we conclude that the geodesics of P are the straight lines in P.

(2) Spheres. A great circle in a sphere S Ã R3 is a circle cut from S by a
plane P through the center (Fig. 5.32). If a is a constant-speed parametriza-
tion of any circle, we know that its acceleration a ≤ points toward the center
of the circle. In the case of a great circle that center is also the center of the
sphere S. Thus a ≤ is normal to S, so a is a geodesic of S.

We can find such a geodesic with any given initial velocity vp (the required
plane P passes through p orthogonal to p ¥ v). Hence by the uniqueness
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246 5. Shape Operators

feature mentioned earlier, this construction yields all the geodesics of S.
Explicitly, the geodesics of a sphere are the constant-speed parametrizations of

its great circles (Fig. 5.32).
(3) Cylinders. The geodesics of, say, the circular cylinder M: x2 + y2 = r2

are all curves of the form

To see this, write an arbitrary curve in M as

A vector normal to M must have z coordinate zero. Thus if a is a geodesic,
h≤ = 0, so h(t) = ct + d. Since the speed of a geodesic is constant, the speed
(r2J¢2 + h¢2)1/2 of a is constant, so J ¢ is constant. Hence J(t) = at + b.

When both constants a and c are nonzero, a is a helix on M. In extreme
cases, a parametrizes a ruling if a = 0 and a cross-sectional circle if c = 0.◆

A closed geodesic is a geodesic segment a : [a, b] Æ M that is smoothly
closed (g ¢(b) = g ¢(a)) and hence extendible by periodicity over the whole real
line. Thus closed geodesics and periodic geodesics are effectively the same
thing. In the surfaces above, every geodesic of the sphere is closed, while on
the cylinder only the cross-sectional circles are closed.

6.10 Remark Here is a simple geometric way to find examples of geo-
desics. If a unit-speed curve a in M lies in a plane P everywhere orthogonal
to M along a, then a is a geodesic of M. Proof. Since a has constant speed,
a ≤ is always orthogonal to a ¢, but these two vectors lie in a plane orthogo-
nal to M, and a ¢ is always tangent to M. Hence a ≤ must be orthogonal to
M, so a is geodesic.

Using this remark we could have found all the geodesics in the preceding
example except the helices in the cylinder. It shows at once that on a surface
of revolution M, all meridians are geodesics, since they are cut from M by
planes passing through the axis of rotation and hence orthogonal to M.

a J Jt r t r t h t( ) = ( ) ( ) ( )( )cos sin ., ,

a t r at b r at b ct d( ) = +( ) +( ) +( )cos sin ., ,

FIG. 5.32
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5.6 Special Curves in a Surface 247

The essential properties of the three types of curves we have considered
can be summarized as follows:

Principal curves k(a ¢) = k1 or k2, S(a ¢) collinear a ¢,
Asymptotic curves k(a ¢) = 0, S(a ¢) orthogonal to a ¢, a ≤ tangent to M
Geodesics a ≤ normal to M

Exercises

1. Prove that a curve a in M is a straight line of R3 if and only if a is both
geodesic and asymptotic.

2. To which of the three types—principal, asymptotic, geodesic—do the fol-
lowing curves belong?

(a) The top circle a of a torus (Fig. 5.33).
(b) The outer equator b of a torus.
(c) The x axis in M: z = xy.

(Assume constant-speed parametrizations.)

3. (Closed geodesics.) Show:
(a) In a surface of revolution, a parallel through a point a(t) on the profile
curve is a (necessarily closed) geodesic if and only if a ¢(t) is parallel to the
axis of revolution.
(b) There are at least three closed geodesics on every ellipsoid (Ex. 9 of
Sec. 4.2).

4. Let a be an asymptotic curve in M Ã R3 with curvature k > 0.
(a) Prove that the binormal B of a is normal to the surface along a, and
deduce that S(T ) = tN.

(b) Show that along a the surface has Gaussian curvature K = -t 2.
(c) Use (b) to find the Gaussian curvature of the helicoid (Example 4.3).

5. Suppose that a curve a lies in two surfaces M and N that make a con-
stant angle along a (that is, U • V constant). Show that a is principal in M
if and only if principal in N.

FIG. 5.33
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248 5. Shape Operators

6. If x is a patch in M, prove that a curve a (t) = x(a1(t), a2(t)) is
(a) Principal if and only if

(b) Asymptotic if and only if la1¢2 + 2ma1¢a2¢ + na2¢2 = 0.

7. Let a be a unit-speed curve in M Ã R3. Instead of the Frenet frame field
on a, consider the Darboux frame field T, V, U—where T is the unit tangent
of a, U is the surface normal restricted to a, and V = U ¥ T (Fig. 5.34).

(a) Show that

where k = S(T ) • T is the normal curvature k(T ) of M in the T direction,
and t = S(T ) • V.

The new function g is called the geodesic curvature of a.
(b) Deduce that a is

8. If a is a (unit speed) curve in M, show that
(a) a is both principal and geodesic if and only if it lies in a plane every-
where orthogonal to M along a.
(b) a is both principal and asymptotic if and only if it lies in a plane every-
where tangent to M along a.
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¤ =

¤ =

¤ =

g

k
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0

0
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¢ = +

¢ = - +

¢ = - -
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U kT tV
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,
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9. On the monkey saddle M (see Fig. 5.19) find three asymptotic curves and
three principal curves passing through the origin 0. (This is possible only
because 0 is a planar umbilic point.)

10. Let a be a regular curve in M Ã R3, and let U be the unit normal of M

along a. Show that a is a principal curve of M if and only if the ruled surface
x(u, v) = a(u) + vU(u) is flat.

11. A ruled surface is noncylindrical if its rulings are always changing direc-
tions; thus for any director curve, d ¥ d ¢ π 0. Show that:

(a) a noncylindrical ruled surface has a parametrization

for which ||d || = 1 and s ¢ • d¢ = 0.
(b) for this parametrization,

The curve s is called the striction curve, and the function p is the distribution

parameter.

(c) Deduce from the behavior of K on each ruling that the route of the
striction curve is independent of parametrization, and hence that the dis-
tribution parameter is essentially a function on the set of rulings.

(Hint: For (a), find f such that s = a + fd. For (b), show that s ¢ ¥ d = pd ¢.)

12. In each case below, find the striction curve and distribution parameter,
and check the formula for K in (b) of the preceding exercise.

(a) the helicoid in Example 4.3.
(b) the tangent surface of a curve (Ex. 13 of Sec. 4).
(c) both sets of rulings of the saddle surface in Example 4.3.

(Hint: In the usual ruled parametrization (u, 0, 0) + v(0, 1, u), this last vector
must be replaced by a unit vector in order to apply Ex. 11. The curvature
formula in Example 4.3 will then change.)

13. If x(u, v) = a(u) + vd(u) parametrizes a noncylindrical ruled surface,
let L(u) be the ruling through a(u). Show that:

(a) If Je is the smallest angle from L(u) to L(u + e), and de is the orthog-
onal distance from L(u) to L(u + e), then 

Thus the distribution parameter is the rate of turning of L.

lim .
e

e

eJÆ
= ( )

0

d
p u

K
p u

p u v
p=

- ( )
( ) +( )

¢ ¥ ¢
¢ ¢

2

2 2 2 , where =
s d d

d d
•

•
.

x u v u v u,( ) = ( ) + ( )s d
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250 5. Shape Operators

(b) There is a unique point pe of L(u) that is nearest to L(u + e), and 

lim
eÆ0

pe = s(u)

(Fig. 5.35). (This gives another characterization of the striction curve s.)

(Hint: The common perpendicular to L(u) and L(u + e) is in the direction
of d(u) ¥ d(u + e) ª ed(u) ¥ d ¢(u).)

14. Let x(u, v) = a(u) + vd(u), with ||d || = 1, parametrize a flat ruled surface
M. Show that:

(a) If a is always zero, then M is a generalized cone.
(b) If d is always zero, then M is a generalized cylinder.
(c) If both a ¢ and d ¢ are never zero, then M is the tangent surface of its
striction curve. (Hint: Parametrize by s + vd as in Ex. 11, giving s unit
speed. Use K = 0 to show that T = s ¢ and d are collinear.)

These are only the extreme cases. For example, a flat piece of paper could be
bent cylindrically at one end and conically at the other. Note that of the three
types, only the cylinder has rulings that are entire straight lines.

15. (Enneper’s minimal surface.) Prove:
(a) The mapping x: R2 Æ R3 given by

though not one-to-one, is regular, and hence defines an immersed surface E.
(b) x is a principal parametrization of E, that is, the u- and v-parameter
curves are principal curves.
(c) E is a minimal surface.
(d) The asymptotic curves of E are u Æ x(u, ±u).

16. (Continuation by computer graphics.)
(a) Plot x(D) Ã E, for D: -3 � u, v � 3. (Note that by the preceding exer-
cise the parameter curves are principal.)
(b) Show that the Euclidean isometry (x, y, z) Æ (-y, x, -z) carries E to itself.

x u v u
u

uv v
v

vu u v, , , ,( ) = - + - + -Ê
ËÁ

ˆ
¯̃

3
2

3
2 2 2

3 3
  

FIG. 5.35
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5.6 Special Curves in a Surface 251

Thus the z < 0 half of E is the mirror image of a 90° rotation of the z > 0
half. Further properties of E are developed in Exercise 10 of Section 6.8.

17. A right conoid is a ruled surface whose rulings all pass orthogonally
through a fixed axis (Fig. 5.36). Taking this axis as the z axis of R3, we find
the parametrization

where the u-parameter curves are the rulings. (This reversal of u and v from
earlier exercises makes it clear that the helicoid is a conoid.)

(a) Find the Gaussian and mean curvature of x.
(b) Show that the surface is noncylindrical if J¢ is never zero, and in this
case, find the striction curve and parameter of distribution.

18. (Computer graphics.)
(a) A right conoid has base curve a(v) = (0, 0, cos2v) and director curve
d (v) = (cosv, sinv, 0). For the resulting ruled parametrization (with u-
parameter curves as rulings), plot the portion with -2.5 � u � 2.5, 0 � v

� p.
(b) The axis of a right conoid is the z axis, and its rulings pass through
every point of the circle y2 + z2 = r2 in the plane x = c. Verify that 

x(u, v) = (uc, urcosv, rsinv) 

parametrizes this conoid, and for r = 2, c = 1 plot the portion between 
the axis and the circle.
(c) Same as (b) except that the circle is replaced by the curve y = sinz.

Find a ruled parametrization, and for c = 4, plot the region with 0 � z

� 4p and rulings running from x = -4 to x = +4.

19. Prove that a surface that is both ruled and minimal is part of either a
plane or a helicoid.

x u v u v u v h v, cos sin( ) = ( ) ( ) ( )( )J J, , ,

FIG. 5.36
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(Hint: Flat regions in M are planar; thus arguing as in Thm. 6.2 we can
suppose K < 0. Use the parametrization in Ex. 11.)

5.7 Surfaces of Revolution

The geometry of a surface of revolution is rather simple, yet these surfaces
exhibit a wide variety of geometric behavior; thus they offer a good field for
experiment.

We apply the methods of Section 4 to study an arbitrary surface of revo-
lution M, with the usual parametrization, given in Example 2.4 of Chapter
4 by

Here h(u) > 0 is the radius of the parallel at distance g(u) along the axis of
revolution of M, as shown in Fig. 4.14. This geometric significance for g and
h means that our results do not depend on the particular position of M rel-
ative to the coordinate axes of R3.

Because g and h are functions of u alone, we can write

and hence

Here E is the square of the speed of the profile curve and hence of all the
meridians (u-parameter curves), while G is the square of the speed of the par-
allels (v-parameter curves). Next we find, successively,

Taking second derivatives gives
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5.7 Surfaces of Revolution 253

Hence

Since F = m = 0, x is a principal parametrization (Exercise 8 of Section 4),
and for the shape operator S derived from U,

This is an analytical proof that the meridians and parallels of a surface of
revolution are its principal curves. Furthermore, if the corresponding princi-
pal curvature functions are denoted by km and kp , instead of k1 and k2, we
have

(1)

Thus the Gaussian curvature of M is

(2)

This formula defines K as a real-valued function on the domain of the profile
curve

By the conventions of Section 4, K(u) is the Gaussian curvature K(x(u, v)) of
M at every point of the parallel through a (u). The same is true for the other
functions above. The rotational symmetry of M about its axis of revolution
means that its geometry is “constant on parallels”—completely determined
by the profile curve.

In the special case where the profile curve passes at most once over each
point of the axis of rotation, we can usually arrange for the function g to be
simply g(u) = u (Exercise 2.8 of Chapter 4). Then the formulas (1) and (2)
above reduce to

(3)
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254 5. Shape Operators

7.1 Example Surfaces of revolution.

(1) Torus of revolution T. The usual parametrization x in Example 2.5 of
Chapter 4 has

for constants 0 < r < R. Although the axis of revolution is now the z axis,
formulas (1) and (2) above remain valid, and we compute

This gives an analytical proof that the Gaussian curvature of the torus is 
positive on the outer half and negative on the inner half. K has its maximum
value 1/r(R + r) on the outer equator (u = 0), its minimum value -1/r(R - r)
on the inner equator (u = p), and is zero on the top and bottom circles 
(u = ±p /2).

(2) Catenoid. The curve y = c cosh(x/c) is a catenary; its shape is that of
a chain hanging under the influence of gravity. The surface obtained by rotat-
ing this curve around the x axis is called a catenoid (Fig. 5.37). From the for-
mulas (3) we find,
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5.7 Surfaces of Revolution 255

and hence

Since its mean curvature H is zero, the catenoid is a minimal surface. Its
Gaussian curvature interval is -1/c2 � K < 0, with minimum value K = -1/c2

on the central circle (u = 0). ◆

7.2 Theorem If a surface of revolution M is a minimal surface, then M
is contained in either a plane or a catenoid.

Proof. M is parametrized as usual by

with u in a (possibly infinite) interval I.

Case 1. g¢ is identically zero. Then g is constant, so M is part of a plane
orthogonal to the axis of revolution.

Case 2. g¢ is never zero. By Exercise 8 in Section 4.2, M has a parame-
trization of the form

The formulas for km and kp in (3) above then show that the minimality con-
dition is equivalent to

Because u does not appear explicitly in this differential equation, there is a
standard elementary way to solve it. We merely record that the solution is

where a π 0 and b are constants. Thus M is part of a catenoid.
Case 3. g¢ is zero at some points, nonzero at others. This cannot happen.

For definiteness, suppose that g¢(u) > 0 for u < u0 but g¢(u0) = 0. By 
Case 2, the profile curve (g(u), h(u), 0) is a catenary for u < u0. The shape 
of the catenary makes it clear that slope h¢/g¢ cannot approach infinity 
as u Æ u0. ◆

h u a
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This result shows that catenoids are the only complete nonplanar surfaces of

revolution that are minimal. (Completeness, discussed in Chapter 8, implies
that the surface cannot be part of a larger surface.)

Helicoids and catenoids are called the elementary minimal surfaces. Two
others are given in the exercises for this chapter (Exercise 5 in Section 5 and
Exercise 15 in Section 6). Soap-film models of an immense variety of minimal
surfaces can easily be exhibited by the methods given in [dC], where the term
“minimal” is explained.

The expression , which appears so frequently in the formulas
above, is just the speed of the profile curve a(u) = (g(u), h(u), 0). Thus we
can radically simplify these formulas by a reparametrization that has unit
speed. The surface of revolution is unchanged; it has merely been given a new
parametrization, called canonical.

7.3 Lemma For a canonical parametrization of a surface of revolution,

and the Gaussian curvature is

Proof. Since g¢2 + h¢2 = 1 for a canonical parametrization, these expres-
sions for E, F, and G follow immediately from those at the start of this
section. The formula for K in (2) becomes

But this can be simplified. Differentiation of g¢2 + h¢2 = 1 gives g¢ g≤ = -h¢
h≤, and when this is substituted above, we get K = -h≤/h. ◆

The effect of using a canonical parametrization is to shift the emphasis
from measurements in the space outside M (for example, along the axis of
revolution) to measurement within M. This important idea will be developed
more fully as we proceed.

7.4 Example Canonical parametrization of the catenoid (c = 1).
An arc length function for the catenary a(u) = (u, cosh u) is s(u) = sinh u.

Hence a unit-speed reparametrization is
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5.7 Surfaces of Revolution 257

as indicated in Fig. 5.38. The resulting canonical parametrization of the
catenoid is given by

Hence by the preceding lemma,

This formula for K in terms of x̄ is consistent with the formula 

found in Example 6.1 for the parametrization x1. In fact, since s(u) = sinh u,
we have

The simple formula for K in Lemma 7.3 suggests a way to construct sur-
faces of revolution with prescribed Gaussian curvature. Given a function 

K = K(u) on some interval,

first solve the differential equation h≤ + Kh = 0 for h, subject to initial con-
ditions h(0) > 0 and |h¢ (0)| < 1. (The first of these conditions is a convenience;
the second is a necessity since we must have g¢2 + h¢2 = 1.)

To get a canonical parametrization, we need a function g satisfying the
equation g¢2 + h¢2 = 1. Evidently,

will do the job.
We conclude that for any interval around 0 on which the initial conditions
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258 5. Shape Operators

both hold, revolving the profile curve (g(u), h(u), 0) around the x axis
produces a surface that has, by Lemma 7.3, Gaussian curvature 

A natural use of this scheme is to look for surfaces that have constant cur-
vature. Consider first the K positive case.

7.5 Example Surfaces of revolution with constant positive curvature.

We apply the procedure to the constant function K = 1/c2. The differential
equation h≤ + h/c2 = 0 has general solution

The constant b represents only a translation of coordinates so we may as well
set b = 0. As usual, nothing is lost by requiring h > 0; hence a > 0. Thus the
functions

give rise to a surface of revolution Ma with constant Gaussian curvature

As mentioned above, the conditions h > 0 and |h¢| < 1 determine the largest
interval I on which the procedure works. The constant c is fixed, but the con-
stant a is at our disposal, and it distinguishes three cases.

Case 1. a = c. Here

(4)

Thus the maximum interval I is and the profile curve
(g(u), h(u)) is a semicircle. Revolution about the x axis produces a sphere 
S of radius c—except for its two points on the axis.

Case 2. 0 < a < c. Here h is positive on the same interval as above and 
|h¢| < 1 is always true, so g is well defined. The profile curve has the same
length , but it now forms a shallower arch, which rests on the x axis at
±a*, where (Fig. 5.39). As c shrinks down from c to 0, one 
can check that a* increases from c to . The resulting surface of
revolution, round when a = c, first becomes football-shaped and then grows
ever thinner, becoming, for a small, a needle of length just less than .

By contrast with Case 1, the intercepts (±a*, 0, 0) cannot be added to M
now since this surface is actually pointed at each end (Fig. 5.39).
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5.7 Surfaces of Revolution 259

The differential equation has delicately adjusted the shape
of Ma so that its principal curvatures are no longer equal but still give

Case 3. a > c. Here the maximum interval is shorter than in Case 1. The
formula for g(u) in (4) shows that the endpoints now are ±a*, where a* < c is
determined by . Thus,

As a increases from a = c, the resulting surface of revolution Ma is at first
somewhat like the outer half of a torus. But when a is very large, it becomes
a huge circular band (Fig. 5.40), whose very short profile curve is sharply
curved (km must be large since ).

A corresponding analysis for constant negative curvature leads to an 
infinite family of surfaces of revolution with (Exercises 7 and 8).
The simplest of these surfaces is

7.6 Example The bugle surface B. The profile curve of B (in the xy plane)
is characterized by this geometric condition: It starts at the point (0, c) and
moves so that its tangent line reaches the x axis after running for distance
exactly c. This curve, a tractrix, can be described analytically as

a(u) = (u, h(u)), u > 0,

K c= -1 2

k a k k cp m pª =1 1 2  and

h a a a c a c* cos * .( ) = = -2 2

sin *a c c a= < 1

K k k
c

= =m p
1

2
.

¢¢ + =h c h1 02

FIG. 5.40

FIG. 5.39
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260 5. Shape Operators

where h is the solution of the differential equation

such that h(u) Æ c as u Æ 0. The resulting surface of revolution B is called
a bugle surface or tractroid (Fig. 5.41). Using the differential equation above,
we deduce from the earlier formulas (3) that the principal curvatures of B are

Thus the bugle surface has constant negative curvature

This surface cannot be extended across its rim—not part of B—to form a
larger surface in R3 since km(u) Æ • as u Æ 0. ◆

When this surface was first discovered, it seemed to be the analogue, for K
a negative constant, of the sphere; it was thus called a pseudosphere. However,
as we shall see later on, the true analogue of the sphere is quite a different
surface and cannot be found in R3.

Exercises

1. Find the Gaussian curvature of the surface obtained by revolving the
curve around the x axis. Sketch this surface and indicate the regions
where K > 0 and K < 0.

y e x= - 2 2

K
c

= -
1

2
.

k
h

c
k

ch
m p=

- ¢
=

¢
,

1
.

¢ =
-

-
h

h

c h2 2

FIG. 5.41
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5.7 Surfaces of Revolution 261

2. (a) Show that when y = f(x) is revolved around the x axis, the Gaussian
curvature K(x) has the same sign (-, 0, +) as -f ≤(x) for all x.

(b) Deduce that for a surface of revolution with arbitrary axis, the Gauss-
ian curvature K is positive on parallels through convex intervals on the
profile curve (where the curve bulges away from the axis) and negative on
parallels through concave intervals (where the curve sags toward the axis).

3. Prove that a flat surface of revolution is part of a plane, cone, or 
cylinder.

4. (Computer.)
(a) Write computer commands that, given a profile curve u Æ (g(u), h(u)),
(i) plot the resulting surface of revolution for a � u � b, and (ii) return its
Gaussian curvature K(u).
(b) Test (a) on the torus and catenoid in Example 7.1.

5. If is the usual polar coordinate function on the xy plane,
and f is a differentiable function, show the M: z = f(r) is a surface of revo-
lution and that its Gaussian curvature K is given by

6. Find the Gaussian curvature of that surface M: . Sketch this
surface, indicating the regions where K > 0 and K < 0.

7. (Surfaces of revolution with negative curvature ) As in the cor-
responding positive case, there is a family of such surfaces, separated into
two subfamilies by a special surface. Essentially all these surfaces are given,
using canonical parametrization, by solutions of as follows:

(a) If 0 < a < c, let Ma be the surface given by h(u) = a sinh , u > 0.
Show that its profile curve (g(u), h(u)) leaves the origin with slope

and rises to a maximum height of .
(b) If a = c, let B

–
be the surface given by h(u) = ceu/c, u < 0. Show that 

its mirror image B, given by h(u) = ce-u/c, u > 0, is the bugle surface in
Example 7.6.

c a2 2-a c a2 2-

u c

¢¢ - =h c h1 02

K c= -1 2

z e r= - 2 2

K r
f r f r

r f r
( ) =

¢( ) ¢¢( )
+ ¢( )( )1 2 2 .

r x y= +2 2

FIG. 5.42
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(c) If b > c, let Mb be the surface given by . Show that as
|u| increases from 0, its profile curve rises symmetrically from height b to 

height .

Sample profile curves of all three types are shown in Fig. 5.42, where Ma and
Mb have been translated along the axis of revolution. Explicit formulas for
the profile curves in (a) and (b) involve elliptic integrals (see [G]).

8. (a) Taking c = 1 for simplicity, show that the tractrix has a parame-
trization (g, h) with

(b) (Computer graphics.) Plot a view of the resulting bugle surface similar
to that in Fig. 5.41.

9. In a twisted surface of revolution, as points rotate around the axis they
also move evenly in the axis direction. Explicitly, if the original surface has
a usual parametrization in terms of functions g(u) and h(u), then the twisted
surface has parametrization

where p is a constant.
(a) Find a parametrization of the twisted bugle surface D (Dini’s surface) 
with data as in the preceding exercise and .
(b) (Computer.) Plot the surface D in (b) for 0.01 � u � 2 and 0 � v � 6p.
(Impose smoothness and view the surface from a point with x < 0.)
(c) Show that D has constant negative curvature.

5.8 Summary

The shape operator S of a surface M in R3 measures the rate of change of a
unit normal U in any direction on M and thus describes the way the shape
of M is changing in that direction. If we imagine U as the “first derivative”
of M, then S is the “second derivative.” But the shape operator is an alge-
braic object consisting of linear operators on the tangent planes of M. And
it is by an algebraic analysis of S that we have been led to the main geomet-
ric invariants of a surface in R3: its principal curvatures and directions, and
its Gaussian and mean curvatures.

p = 1 5

x u v g u pv h u v h u v, cos sin .( ) = ( ) ( ) ( )( )+ , ,

g u e h u e eu u u( ) = ( ) = - - + -- - -,  h1 12 2arctan .

c b2 2+

h u b u c( ) = cosh
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