
Preface

This book is intended to be used as a text for either undergraduate level (junior/senior) courses in probability or introductory graduate level courses in random processes that are commonly found in Electrical Engineering curricula. While the subject matter is primarily mathematical, it is presented for engineers. Mathematics is much like a well-crafted hammer. We can hang the tool on our wall and step back and admire the fine craftmanship used to construct the hammer, or we can pick it up and use it to pound a nail into the wall. Likewise, mathematics can be viewed as an art form or a tool. We can marvel at the elegance and rigor, or we can use it to solve problems. It is for this latter purpose that the mathematics is presented in this book. Instructors will note that there is no discussion of algebras, Borel fields, or measure theory in this text. It is our belief that the vast majority of engineering problems regarding probability and random processes do not require this level of rigor. Rather, we focus on providing the student with the tools and skills needed to solve problems. Throughout the text we have gone to great effort to strike a balance between readability and sophistication. While the book provides enough depth to equip students with the necessary tools to study modern communication systems, control systems, signal processing techniques, and many other applications, concepts are explained in a clear and simple manner that makes the text accessible as well.

It has been our experience that most engineering students need to see how the mathematics they are learning relates to engineering practice. Toward that end, we have included numerous engineering application sections throughout the text to help the instructor tie the probability theory to engineering practice. Many of these application sections focus on various aspects of telecommunications since this community is one of the major users of probability theory, but there are applications to

other fields as well. We feel that this aspect of the text can be very useful for accreditation purposes for many institutions. The Accreditation Board for Engineering and Technology (ABET) has stated that all electrical engineering programs should provide their graduates with a knowledge of probability and statistics including applications to electrical engineering. This text provides not only the probability theory, but also the applications to electrical engineering and a modest amount of statistics as applied to engineering.

A key feature of this text, not found in most texts on probability and random processes, is an entire chapter devoted to simulation techniques. With the advent of powerful, low-cost, computational facilities, simulations have become an integral part of both academic and industrial research and development. Yet, many students have major misconceptions about how to run simulations. Armed with the material presented in our chapter on simulation, we believe students can perform simulations with confidence.

It is assumed that the readers of this text have a background consistent with typical junior level electrical engineering curricula. In particular, the reader should have a knowledge of differential and integral calculus, differential equations, linear algebra, complex variables, discrete math (set theory), linear time-invariant systems, and Fourier transform theory. In addition, there are a few sections in the text that require the reader to have a background in analytic function theory (e.g., parts of Section 4.10), but these sections can be skipped without loss of continuity. While some appendices have been provided with a review of some of these topics, these presentations are intended to provide a refresher for those who need to "brush up" and are not meant to be a substitute for a good course.

For undergraduate courses in probability and random variables, we recommend instructors cover the following sections:

Chapters 1–3: all sections, Chapter 4: sections 1–6, Chapter 5: sections 1–7 and 9, Chapter 6: sections 1–3, Chapter 7: sections 1–5.

These sections, along with selected application sections, could easily be covered in a one semester course with a comfortable pace. For those using this text in graduate courses in random processes, we recommend that instructors briefly review Chapters 1–7 focussing on those concepts not typically taught in an undergraduate course (e.g., Sections 4.7–4.10, 5.8, 5.10, 6.4, and 7.6) and then cover selected topics of interest from Chapters 8–12.

Preface

We consider the contents of this text to be appropriate background material for such follow-on courses as Digital Communications, Information Theory, Coding Theory, Image Processing, Speech Analysis, Synthesis and Recognition, and similar courses that are commonly found in many undergraduate and graduate programs in Electrical Engineering. Where possible, we have included engineering application examples from some of these topics.