Ultrashort Laser Pulse Phenomena
Contents

Preface xv
Preface to the First Edition xvii

Chapter 1 Fundamentals 1
1.1. Characteristics of Femtosecond Light Pulses 1
 1.1.1. Complex Representation of the Electric Field 1
 1.1.2. Power, Energy, and Related Quantities 6
 1.1.3. Pulse Duration and Spectral Width 9
 1.1.4. Wigner Distribution, Second-Order Moments,
 Uncertainty Relations 12
1.2. Pulse Propagation 20
 1.2.1. The Reduced Wave Equation 21
 1.2.2. Retarded Frame of Reference 26
 1.2.3. Dispersion 30
 1.2.4. Gaussian Pulse Propagation 33
 1.2.5. Complex Dielectric Constant 38
1.3. Interaction of Light Pulses with Linear Optical Elements 42
1.4. Generation of Phase Modulation 44
1.5. Beam Propagation 46
 1.5.1. General 46
 1.5.2. Analogy between Pulse and Beam Propagation 49
 1.5.3. Analogy between Spatial and Temporal
 Imaging 50
1.6. Numerical Modeling of Pulse Propagation 53
1.7. Space–Time Effects 56
1.8. Problems 57
Bibliography 58

Chapter 2 Femtosecond Optics 61
2.1. Introduction 61
2.2. White Light and Short Pulse Interferometry 64
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3.</td>
<td>Dispersion of Interferometric Structures</td>
<td>70</td>
</tr>
<tr>
<td>2.3.1.</td>
<td>Mirror Dispersion</td>
<td>70</td>
</tr>
<tr>
<td>2.3.2.</td>
<td>Fabry–Perot and Gires–Tournois Interferometer</td>
<td>73</td>
</tr>
<tr>
<td>2.3.3.</td>
<td>Chirped Mirrors</td>
<td>80</td>
</tr>
<tr>
<td>2.4.</td>
<td>Focusing Elements</td>
<td>82</td>
</tr>
<tr>
<td>2.4.1.</td>
<td>Singlet Lenses</td>
<td>82</td>
</tr>
<tr>
<td>2.4.2.</td>
<td>Space–Time Distribution of the Pulse Intensity at the Focus of a Lens</td>
<td>86</td>
</tr>
<tr>
<td>2.4.3.</td>
<td>Achromatic Doublets</td>
<td>91</td>
</tr>
<tr>
<td>2.4.4.</td>
<td>Focusing Mirrors</td>
<td>92</td>
</tr>
<tr>
<td>2.5.</td>
<td>Elements with Angular Dispersion</td>
<td>94</td>
</tr>
<tr>
<td>2.5.1.</td>
<td>Introduction</td>
<td>94</td>
</tr>
<tr>
<td>2.5.2.</td>
<td>Tilting of Pulse Fronts</td>
<td>95</td>
</tr>
<tr>
<td>2.5.3.</td>
<td>GVD through Angular Dispersion—General</td>
<td>100</td>
</tr>
<tr>
<td>2.5.4.</td>
<td>GVD of a Cavity Containing a Single Prism</td>
<td>102</td>
</tr>
<tr>
<td>2.5.5.</td>
<td>Group Velocity Control with Pairs of Prisms</td>
<td>105</td>
</tr>
<tr>
<td>2.5.6.</td>
<td>GVD Introduced by Gratings</td>
<td>117</td>
</tr>
<tr>
<td>2.5.7.</td>
<td>Grating Pairs for Pulse Compressors</td>
<td>120</td>
</tr>
<tr>
<td>2.5.8.</td>
<td>Combination of Focusing and Angular Dispersive Elements</td>
<td>122</td>
</tr>
<tr>
<td>2.6.</td>
<td>Wave-Optical Description of Angular Dispersive Elements</td>
<td>124</td>
</tr>
<tr>
<td>2.7.</td>
<td>Optical Matrices for Dispersive Systems</td>
<td>130</td>
</tr>
<tr>
<td>2.8.</td>
<td>Numerical Approaches</td>
<td>136</td>
</tr>
<tr>
<td>2.9.</td>
<td>Problems</td>
<td>136</td>
</tr>
<tr>
<td></td>
<td>Bibliography</td>
<td>140</td>
</tr>
<tr>
<td>Chapter 3</td>
<td>Light–Matter Interaction</td>
<td>143</td>
</tr>
<tr>
<td>3.1.</td>
<td>Density Matrix Equations</td>
<td>144</td>
</tr>
<tr>
<td>3.2.</td>
<td>Pulse Shaping with Resonant Particles</td>
<td>154</td>
</tr>
<tr>
<td>3.2.1.</td>
<td>General</td>
<td>154</td>
</tr>
<tr>
<td>3.2.2.</td>
<td>Pulses Much Longer Than the Phase Relaxation Time ($t_p \gg T_2$)</td>
<td>156</td>
</tr>
<tr>
<td>3.2.3.</td>
<td>Phase Modulation by Quasi-Resonant Interactions</td>
<td>161</td>
</tr>
<tr>
<td>3.2.4.</td>
<td>Pulse Durations Comparable with or Longer Than the Phase Relaxation Time ($t_p \geq T_2$)</td>
<td>165</td>
</tr>
<tr>
<td>3.3.</td>
<td>Nonlinear, Nonresonant Optical Processes</td>
<td>166</td>
</tr>
<tr>
<td>3.3.1.</td>
<td>General</td>
<td>166</td>
</tr>
<tr>
<td>3.3.2.</td>
<td>Noninstantaneous Response</td>
<td>168</td>
</tr>
<tr>
<td>3.3.3.</td>
<td>Pulse Propagation</td>
<td>170</td>
</tr>
</tbody>
</table>
3.4. Second Harmonic Generation (SHG) 172
 3.4.1. Type I Second Harmonic Generation 173
 3.4.2. Second Harmonic Type II: Equations for Arbitrary Phase Mismatch and Conversion Efficiencies 180
 3.4.3. Pulse Shaping in Second Harmonic Generation (Type II) 183
 3.4.4. Group Velocity Control in SHG through Pulse Front Tilt 185
3.5. Optical Parametric Interaction 188
 3.5.1. Coupled Field Equations 188
 3.5.2. Synchronous Pumping 190
 3.5.3. Chirp Amplification 190
3.6. Third-Order Susceptibility 192
 3.6.1. Fundamentals 192
 3.6.2. Short Samples with Instantaneous Response 195
 3.6.3. Short Samples and Noninstantaneous Response 197
 3.6.4. Counter-Propagating Pulses and Third-Order Susceptibility 199
3.7. Continuum Generation 202
3.8. Self-Focusing 205
 3.8.1. Critical Power 205
 3.8.2. The Nonlinear Schrödinger Equation 208
3.9. Beam Trapping and Filaments 209
 3.9.1. Beam Trapping 209
 3.9.2. Ultrashort Pulse Self-Focusing 212
3.10. Problems 213
Bibliography 215

Chapter 4 Coherent Phenomena 221
4.1. From Coherent to Incoherent Interactions 221
4.2. Coherent Interactions with Two-Level Systems 225
 4.2.1. Maxwell–Bloch Equations 225
 4.2.2. Rate Equations 229
 4.2.3. Evolution Equations 230
 4.2.4. Steady-State Pulses 239
4.3. Multiphoton Coherent Interaction 243
 4.3.1. Introduction 243
 4.3.2. Multiphoton Multilevel Transitions 245
 4.3.3. Simplifying a N-Level System to a Two-Level Transition 258
Chapter 5 Ultrashort Sources I: Fundamentals 277

5.1. Introduction 277
5.1.1. Superposition of Cavity Modes 277
5.1.2. Cavity Modes and Modes of a Mode-Locked Laser 280
5.1.3. The “Perfect” Mode-Locked Laser 283
5.1.4. The “Common” Mode-Locked Laser 285
5.1.5. Basic Elements and Operation of a fs Laser 291

5.2. Circulating Pulse Model 293
5.2.1. General Round-Trip Model 293
5.2.2. Continuous Model 295
5.2.3. Elements of a Numerical Treatment 298
5.2.4. Elements of an Analytical Treatment 300

5.3. Evolution of the Pulse Energy 303
5.3.1. Rate Equations for the Evolution of the Pulse Energy 304
5.3.2. Connection of the Model to Microscopic Parameters 311

5.4. Pulse Shaping in Intracavity Elements 314
5.4.1. Saturation 315
5.4.2. Nonlinear Nonresonant Elements 317
5.4.3. Self-Lensing 320
5.4.4. Summary of Compression Mechanisms 323
5.4.5. Dispersion 323

5.5. Cavities 325
5.5.1. Cavity Modes and ABCD Matrix Analysis 325
5.5.2. Astigmatism and Its Compensation 328
5.5.3. Cavity with a Kerr Lens 332

5.6. Problems 335
Bibliography 337

Chapter 6 Ultrashort Sources II: Examples 341

6.1. Synchronous Mode-Locking 341
6.2. Hybrid Mode-Locking 345
6.3. Additive Pulse Mode-Locking 346
6.3.1. Generalities 346
6.3.2. Analysis of APML 348
Contents

6.4. Mode-Locking Based on Nonresonant Nonlinearity 349
 6.4.1. Nonlinear Mirror 349
 6.4.2. Polarization Rotation 351
6.5. Negative Feedback 352
6.6. Semiconductor-Based Saturable Absorbers 356
6.7. Solid-State Lasers 358
 6.7.1. Generalities 358
 6.7.2. Ti:sapphire Laser 360
 6.7.3. Cr:LiSAF, Cr:LiGAF, Cr:LiSGAF, and Alexandrite 364
 6.7.4. Cr:Forsterite and Cr:Cunyite Lasers 366
 6.7.5. YAG Lasers 367
 6.7.6. Nd:YVO₄ and Nd:YLF 370
6.8. Semiconductor and Dye Lasers 371
 6.8.1. Dye Lasers 371
 6.8.2. Semiconductor Lasers 374
6.9. Fiber Lasers 378
 6.9.1. Introduction 378
 6.9.2. Raman Soliton Fiber Lasers 379
 6.9.3. Doped Fiber Lasers 380
 6.9.4. Mode-Locking through Polarization Rotation 381
 6.9.5. Figure-Eight Laser 384
Bibliography 386

Chapter 7 Femtosecond Pulse Amplification 395
7.1. Introduction 395
7.2. Fundamentals 396
 7.2.1. Gain Factor and Saturation 396
 7.2.2. Shaping in Amplifiers 400
 7.2.3. Amplified Spontaneous Emission (ASE) 404
7.3. Nonlinear Refractive Index Effects 406
 7.3.1. General 406
 7.3.2. Self-Focusing 409
 7.3.3. Thermal Noise 410
 7.3.4. Combined Pulse Amplification and Chirping 411
7.4. Chirped Pulse Amplification (CPA) 412
7.5. Amplifier Design 414
 7.5.1. Gain Media and Pump Pulses 414
 7.5.2. Amplifier Configurations 416
 7.5.3. Single-Stage, Multipass Amplifiers 418
 7.5.4. Regenerative Amplifiers 421
 7.5.5. Traveling Wave Amplification 422
Chapter 8 Pulse Shaping

8.1. Pulse Compression 433
 8.1.1. General 433
 8.1.2. The Fiber Compressor 437
 8.1.3. Pulse Compression Using Bulk Materials 450

8.2. Shaping through Spectral Filtering 451

8.3. Problems 454

Bibliography 455

Chapter 9 Diagnostic Techniques

9.1. Intensity Correlations 458
 9.1.1. General Properties 458
 9.1.2. The Intensity Autocorrelation 458
 9.1.3. Intensity Correlations of Higher Order 459

9.2. Interferometric Correlations 459
 9.2.1. General Expression 459
 9.2.2. Interferometric Autocorrelation 462

9.3. Measurement Techniques 466
 9.3.1. Nonlinear Optical Processes for Measuring Femtosecond Pulse Correlations 466
 9.3.2. Recurrent Signals 466
 9.3.3. Single Shot Measurements 468

9.4. Pulse Amplitude and Phase Reconstruction 473
 9.4.1. Introduction 473
 9.4.2. Methods for Full-Field Characterization of Ultrashort Light Pulses 474
 9.4.3. Retrieval from Correlation and Spectrum 477
 9.4.4. Frequency Resolved Optical Gating (FROG) 480
 9.4.5. Spectral Phase Interferometry for Direct Electric Field Reconstruction (SPIDER) 484

9.5. Problems 485

Bibliography 486

Chapter 10 Measurement Techniques of Femtosecond Spectroscopy 491

10.1. Introduction 491
10.2. Data Deconvolutions 493
Contents

10.3. Beam Geometry and Temporal Resolution 494
10.4. Transient Absorption Spectroscopy 497
10.5. Transient Polarization Rotation 500
10.6. Transient Grating Techniques 503
 10.6.1. General Technique 503
 10.6.2. Degenerate Four Wave Mixing (DFWM) 506
10.7. Femtosecond Resolved Fluorescence 509
10.8. Photon Echoes 512
10.9. Zero Area Pulse Propagation 515
10.10. Impulsive Stimulated Raman Scattering 518
 10.10.1. General Description 518
 10.10.2. Detection 520
 10.10.3. Theoretical Framework 522
 10.10.4. Single Pulse Shaping Versus Mode-Locked Train 524
10.11. Self-Action Experiments 526
10.12. Problems 528
Bibliography 529

Chapter 11 Examples of Ultrafast Processes in Matter 531
11.1. Introduction 531
11.2. Ultrafast Transients in Atoms 532
 11.2.1. The Classical Limit of the Quantum Mechanical Atom 532
 11.2.2. The Radial Wave Packet 532
 11.2.3. The Angularly Localized Wave Packet 534
11.3. Ultrafast Processes in Molecules 536
 11.3.1. Observation of Molecular Vibrations 536
 11.3.2. Chemical Reactions 540
 11.3.3. Molecules in Solution 543
11.4. Ultrafast Processes in Solid-State Materials 544
 11.4.1. Excitation across the Band Gap 544
 11.4.2. Excitons 545
 11.4.3. Intraband Relaxation 545
 11.4.4. Phonon Dynamics 547
 11.4.5. Laser-Induced Surface Disordering 549
11.5. Primary Steps in Photo–Biological Reactions 550
 11.5.1. Femtosecond Isomerization of Rhodopsin 550
 11.5.2. Photosynthesis 551
Bibliography 553
Chapter 12 Generation of Extreme Wavelengths 557
 12.1. Generation of Terahertz (THz) Radiation 558
 12.2. Generation of Ultrafast X-Ray Pulses 565
 12.2.1. Incoherent Bursts of X-Rays 565
 12.2.2. High Harmonics (HH) and Attosecond Pulse Generation 566
 12.3. Generation of Ultrashort Acoustic Pulses 568
 12.4. Generation of Ultrafast Electric Pulses 571
Bibliography 575

Chapter 13 Selected Applications 579
 13.1. Imaging 579
 13.1.1. Introduction 579
 13.1.2. Range Gating with Ultrashort Pulses 580
 13.1.3. Imaging through Scatterers 583
 13.1.4. Prospects for Four-Dimensional Imaging 585
 13.1.5. Microscopy 586
 13.2. Solitons 590
 13.2.1. Temporal Solitons 590
 13.2.2. Spatial Solitons and Filaments 592
 13.2.3. Spatial and Temporal Solitons 597
 13.3. Sensors Based on fs Lasers 598
 13.3.1. Description of the Operation 598
 13.3.2. Inertial Measurements (Rotation and Acceleration) 601
 13.3.3. Measurement of Changes in Index 603
 13.4. Stabilized Mode-Locked Lasers for Metrology 609
 13.4.1. Measurement of the Carrier to Envelope Offset (CEO) 610
 13.4.2. Locking of fs Lasers to Stable Reference Cavities 614
 13.5. Problem 616
Bibliography 617

Appendix A The Uncertainty Principle 623

Appendix B Phase Shifts on Transmission and Reflection 625
 B.1. The Symmetrical Interface 625
 B.2. Coated Interface between Two Different Dielectrics 626

Appendix C Slowly Evolving Wave Approximation 629
Contents

Appendix D Four-Photon Coherent Interaction 633

Appendix E Kerr Lensing in a Cavity 637
 E.1. Elementary Kerr Lensing Model 637
 E.2. Example of a Nonlinear Cavity and Gaussian Beam Analysis 638

Appendix F Abbreviations for Dyes 643

List of Symbols 645

Index 647
Preface

Almost 10 years have passed since the first edition of Ultrashort Laser Pulse Phenomena. The field of ultrafast optics and spectroscopy has evolved and matured tremendously; tools and techniques available only in research laboratories 10 years ago are now common in many laboratories outside physics and engineering and have been commercialized. During the same period the field has progressed at an astonishing speed, opening new directions, constantly challenging the frontiers of high field science and ultrafast spectroscopy. Our provocative statement from the first edition predicting attosecond pulses at the end of the 1990s materialized. To properly account for the developments of the past decade each chapter of the first edition would need to be expanded into a whole book.

Having said this it is clear that this second edition, like the first edition, cannot be an attempt to review and summarize the latest developments in the field. Periodic updates can be found in the proceedings of the conferences on ultrafast phenomena and on ultrafast optics held alternately every other year. However, as is typical for a mature scientific area, despite the dramatic progress a number of fundamental subjects have emerged. These topics, not much different from the material covered in the first edition, are what students and researchers entering the field need to learn.

In line with the scope of the first edition, the second edition is also intended to bridge the gap between a textbook and a monograph. Written at the level of senior undergraduate students from physics, chemistry, or engineering it represents a mix of tutorial sections and more advanced writings motivating further study of the original literature.

Compared to the first edition, changes have been made in particular in Chapters 1, 2, 3, 5, 9, and 13. The tutorial aspect was emphasized more, and material useful for the researcher was added. The original Chapter 5 on “Ultrafast Sources” has been expanded and split into two chapters, Chapter 5 on “Fundamentals” and Chapter 6 on “Examples.” Some newer developments were added to Chapter 9 on “Diagnostic Techniques” and to Chapter 13 on “Selected Applications.” Except for some updates and corrections, Chapters 7, 8, 10, 11, and 12 are essentially unchanged.

We would like to express our gratitude to all our colleagues and students who have supported us with numerous suggestions and corrections. In particular, we are indebted to current and former students L. Arissian, J. Biegert, M. Dennis, S. Diddams, P. Dorn, J. Jasapara, J. Jones, M. Kempe, A. Knorr, M. Mero,

We are grateful also to the contributions of all the students who took courses in the development stage of the first and second editions of this book and proofread individual sections.

Last but not least, we are grateful to our wives, who watched the years go by as our lives became hostage to this endeavor.

Our apologies again to anyone whose work has not been adequately recognized, as we could not possibly cover completely the macrocosm of the temporal microcosm.

Albuquerque, December 2005
Preface to the First Edition

What do we understand about “ultrashort laser pulse phenomena”? It really takes a whole book to define the term. By ultrashort we mean femtosecond (fs), which is a unit of time equal to 10^{-15} s. This time scale becomes accessible because of progress in the generation, amplification, and measurement of ultrashort light pulses. Ultrashort phenomena involve more than just the study of ultrashort lived events. Because of the large energy concentration in a fs optical pulse, this topic encompasses the study of the interaction of intense laser light with matter, as well as the transient response of atoms and molecules and basic properties of the fs radiation itself.

This book is intended as an introduction to ultrashort phenomena to researchers and graduate and senior undergraduate students in optics, physics, chemistry, and engineering. A preliminary version of this book has been used at the University of New Mexico, Jena and Pavia, as a course for graduate and advanced undergraduate students. The femtosecond light gives a different illumination to some classical problems in electromagnetism, optics, quantum mechanics, and electrical engineering. We believe therefore that this book can provide useful illustrations for instructors in these fields.

It is not the goal of this book to represent a complete overview of the latest progress in the field. We wish to apologize in advance for all the important and pioneering fs work that we failed to cite. For space limitation, we have chosen to present only a few examples of application in the various fields. We are not offering different theoretical aspects of any particular phenomenon, but rather choose to select a description that is consistent throughout the book. Our aim is to cover the basic techniques and applications rather than enter into details of the most fashionable topic of the day. We have attempted to use simple notations and to remain within the MKS system of units.

Consistent with the instructional goal of this book, the first chapter is an extensive review of propagation properties of light in time and frequency domains. Classical optics is reviewed in the next chapter, in light of the particular propagation properties of fs pulses. Some aspects of white light optics—such as coherence and focusing—can be explained in the simplest manner by picturing incoherent radiation as a random sequence of fs pulses. Femtosecond pulses are generally meant to interact with matter. Therefore, a review of this aspect is given in Chapter 3. The latter serves as introduction to the most startling, unexpected, complex properties of transient interaction of coherent fs pulses with resonant...
physical and chemical systems (Chapter 4). This is a subfield of which the basic foundations are well understood, but it is still open to numerous experimental demonstrations and applications. Chapters 5 through 9 review practical aspects of femtosecond physics, such as sources, amplifiers, pulse shapers, diagnostic techniques, and measurement techniques.

The last three chapters are examples of application of ultrafast techniques. In Chapter 10, the frontier between quantum mechanics and classical mechanics is being probed with fs pulses. New techniques make it possible to “visualize” electrons in Rydberg orbits or the motion of atoms in molecules. The examples of ultrafast processes in matter are presented in this chapter by order of increasing system complexity (from the orbiting electron to the biological complex).

Femtosecond pulses of high peak powers lead to the generation of extremely short wavelength electron and X-ray pulses, as well as to extremely long wavelengths. Some of these techniques are reviewed in Chapter 11. On the long wavelength end of the spectrum, fs pulses are used as Dirac delta function on antennas for submillimeter radiation (frequencies in the THz range). This is a recent application of ultrafast solid-state photoconductive switches.

A few applications that exploit the short duration (range gating imaging), the high coherence, or the high intensity (solitons or filamentation in air) have been selected for the final Chapter 13.

Problems are given at the end of most chapters. Some are typical textbook problems with a straightforward solution. Other problems are designed to put the student in a realistic research situation.

Why Ultrashort Pulse Phenomena?

Yes, you are right! You can be happy without femtosecond pulses and, maybe, consider yourself lucky enough not to be involved with it too deeply. Nevertheless it is a fascinating as well as challenging task to observe and to control processes in nature on a time scale of several femtoseconds. Note, one femtosecond (1 fs) is the 10^{15}th part of a second and corresponds to about half a period of red light. The ratio of one fs to one second is about the ratio of 5 minutes to the age of the earth. During one fs, visible light travels over a distance of several hundred nanometers, which is hardly of any concern to us in our daily routine. However, this pathlength corresponds to several thousand elementary cells in a solid which is quite a remarkable number of atomic distances. This suggests the importance the fs time scale might have in the microcosm. Indeed, various essential processes in atoms and molecules, as well as interactions among them, proceed faster than what can be resolved on a picosecond time scale ($1 \text{ ps} = 10^{-12}\text{s}$). Their relevance results simply from the fact that
these events are the primary steps for most (macroscopic) reactions in physics, chemistry, and biology.

To illustrate the latter point, let us have a look at the simplest atom—the hydrogen atom—consisting of a positively charged nucleus and a negatively charged electron. Quantum mechanics tells us that an atomic system exists in discrete energy states described by a quantum number \(n \). In the classical picture this corresponds to an electron (wave packet) circulating around the proton on paths with radius \(R \propto n^2 \). From simple textbook physics, the time \(T_R \) necessary for one round-trip can be estimated with \(T_R = 4n^2\hbar^3\varepsilon_0^2/(/e^4m_e) \), where \(\hbar \) is Planck’s constant, \(\varepsilon_0 \) is the permittivity of free space, and \(m_e, e \) are the electron mass and charge \([1, 2]\). For \(n = 26 \), for instance, we obtain a period of about 100 fs. Consequently, an (hydrogen) atom excited to a high Rydberg state is expected to show some macroscopic properties changing periodically on a fs time scale.

Let us next consider atoms bound in a molecule. Apart from translation, the isolated molecule has various internal degrees of freedom for periodical motion—rotation and vibration as well as for conformation changes. Depending on the binding forces, potentials, and masses of the constituents, the corresponding periods may range from the ps to the fs scale. Another example of ultrafast dynamics in the molecular world is the chemical reaction, for instance, the simple dissociation \((AB)^* \rightarrow A + B\). Here the breaking of the bond is accompanied by a geometrical separation of the two components caused by a repulsive potential. Typical recoil velocities are of the order of 1 km/s, which implies that the transition from the bound state to the isolated complexes proceeds within 100 fs. Similar time intervals, of course, can be expected if separated particles undergo a chemical reaction.

Additional processes come into play if the particle we look at is not isolated but under the influence of surrounding atoms or molecules, which happens in a gas (mixture) or solution. Strong effects are expected as a result of collisions. Moreover, even a simple translation or rotation that alters the relative position of the molecule to the neighboring particles may lead to a variation of the molecular properties because of a changed local field. The characteristic time constants depend on the particle density and the translation–rotation velocity, which in turn is determined by the temperature and strength of interaction with the neighbors. The characteristic times can be comparatively long in diluted gases (ns to \(\mu \)s) and can be short in solutions at room temperature (fs).

Finally, let us have a look at a solid where the atomic particles are usually trapped at a relatively well-defined position in the lattice. Their motion is restricted usually to lattice vibrations (phonons) with possible periods in the order of 100 fs, which corresponds to phonon energies of several tens of milli-electronvolts (for instance, the longitudinal optical or LO phonon in GaAs has an energy of about 35 meV).
The fundamental problem to be solved is to find tools and techniques that allow us to observe and manipulate on a fs time scale. At present, speaking about tools and techniques for fs physics means dealing with laser physics, in particular with ultrashort light pulses produced in lasers. Shortly after the invention of the laser in 1960, methods were developed to use them for the generation of light pulses. In the sixties, the microsecond (µs) and nanosecond (ns) range were extensively studied. In the seventies, progress in laser physics opened up the ps range, and the eighties were characterized by the broad introduction of fs techniques (extrapolating this dramatic development we may expect the attosecond physics in the late nineties). Optical methods have taken precedence over electronics in time resolving fast events ever since light pulses shorter than a few ps have become available. It should also be mentioned that the shortest electrical and X-ray pulses are now being produced by means of fs light pulses, which in turn enlarges the application field of ultrafast techniques.

Femtosecond technology opens up new fascinating possibilities based on the unique properties of femtosecond light pulses:

- Energy can be concentrated in a temporal interval as short as several 10^{-15} s, which corresponds to only a few optical cycles in the visible range.
- The pulse peak power can be extremely large even at moderate pulse energies. For instance, a 50-fs pulse with an energy of 1 mJ ($\approx 3 \times 10^{15}$ “red” photons) exhibits an average power of 20 Gigawatt. Focusing this pulse to a 100-µm2 spot yields an intensity of 20 Petawatt/cm2 (20×10^{15} W/cm2!), which means an electric field strength of about 3 GV/cm. This value is larger than a typical inner-atomic field of 1 GV/cm.
- The geometrical length of a fs pulse amounts only to several micrometers (10 fs corresponds to 3 µm in vacuum). Such a coherence length is usually associated with incoherent light. The essential difference is that incoherent light is generally spread over a much longer distance.

The attractiveness of fs light pulses not only lies in the possibility to trace processes in their ultrafast dynamics, but also in the fact that one simply can do things faster. Of course only a few, but essential, parts in modern technology can be accelerated by using ultrashort (fs) light pulses. Of primary importance are data transfer and data processing utilizing the high carrier frequency of light and the subsequent large possible bandwidths. In this respect one of the most spectacular goals is to create an optical computer. Moreover, techniques are being developed that allow distortionless propagation of ultrashort light pulses over long distances (several thousand kilometers) through optical fibers, a precondition for a future Terahertz information transfer.

A variety of nonlinear processes, reversible as well as irreversible ones, become accessible thanks to the large intensities of fs pulses. There are proposals
to use such pulses for laser fusion. To reach TW intensities, tabletop devices are replacing the building size high energy facilities previously required. First attempts to generate short X-ray pulses by using fs pulse–induced plasmas have already proven successful.

The short geometrical lengths of fs light pulses suggest interesting applications for optical ranging with micrometer resolution, as well as for combinations of micrometer spatial resolution with femtosecond temporal resolution.

The ultrashort phenomena to which this book refers are created by *light pulses*, which are wave packets of electromagnetic waves oscillating at optical frequencies. The emphasis of this book is not on the optical frequency range but on physical phenomena associated with *ultrafast* electromagnetic pulses. The latter will be ephemeral when consisting of only a small number of optical periods and spatially confined when made up of a small number of wavelengths. Another criterion for short is that the length of the pulse be small compared with the distance over which it propagates, particularly when large changes of shape and modulation take place. In the particular area of light–matter interaction, a pulse is generally considered as a δ function excitation when its duration is small compared to that of all atomic or molecular relaxations.

BIBLIOGRAPHY
