Contents

Preface to Fourth Edition ... xi
Preface to First Edition .. xii

Chapter 1 Introduction... 1
 1.1 Introduction .. 1
 1.2 History and Perspective .. 2
 1.3 Organization of the Book .. 6
 Further Reading... 9

Chapter 2 Transformation of Snow to Ice 11
 2.1 Introduction .. 11
 2.2 Snow, Firn, and Ice .. 11
 2.2.1 Density of Ice .. 12
 2.3 Zones in a Glacier .. 13
 2.3.1 Distribution of Zones ... 15
 2.4 Variation of Density with Depth in Firn 16
 2.5 Snow to Ice Transformation in a Dry-snow Zone 19
 2.5.1 Processes ... 19
 2.5.2 Models of Density Profiles in Dry Firn 22
 2.5.3 Reduction of Gas Mobility .. 25
 2.6 Hoar Layers .. 26
 2.7 Transformation When Meltwater Is Present 27
 Further Reading... 28

Chapter 3 Grain-Scale Structures and Deformation of Ice 29
 3.1 Introduction .. 29
 3.2 Properties of a Single Ice Crystal 30
 3.2.1 Structure ... 30
 3.2.2 Deformation of a Single Crystal 32
 3.3 Polycrystalline Ice: Grain-scale Forms and Processes 33
 3.3.1 Orientation Fabrics: Brief Description 33
 3.3.2 Impurities and Bubbles .. 33
 3.3.3 Texture and Recrystallization 35
 3.3.4 Formation of C-axis Orientation Fabrics 43
 3.3.5 Mechanisms of Polycrystalline Deformation 48
 3.4 Bulk Creep Properties of Polycrystalline Ice 51
 3.4.1 Strain Rate and Incompressibility 51
 3.4.2 Deviatoric Stress .. 52
 3.4.3 Bench-top Experiments: The Three Phases of Creep 52
 3.4.4 Isotropic Creep Behavior .. 54
 3.4.5 Controls on Creep Parameter A 64
Contents

3.4.6 Recommended Isotropic Creep Relation and Values for A................. 72
3.4.7 Anisotropic Creep of Ice .. 78
3.5 Elastic Deformation of Polycrystalline Ice ... 88
Appendix 3.1 .. 88
Appendix 3.2: Data for Figure 3.16 .. 89

Chapter 4 Mass Balance Processes: 1. Overview and Regimes............... 91
4.1 Introduction ... 91
4.1.1 Notes on Terminology ... 94
4.2 Surface Mass Balance ... 96
4.2.1 Surface Accumulation Processes ... 96
4.2.2 Surface Ablation Processes ... 99
4.2.3 Annual (Net) Balance and the Seasonal Cycle 100
4.2.4 Annual Glacier Balance and Average Specific Balances 102
4.2.5 Variation of Surface Balance with Altitude 102
4.2.6 Generalized Relation of Surface Balance to Temperature and Precipitation ... 104
4.2.7 Relation of Glacier-wide Balance to the Area-Altitude Distribution ... 108
4.3 Mass Balance Variations of Mountain Glaciers 109
4.3.1 Interannual Fluctuations of Balance 109
4.3.2 Cumulative Balance and Delayed Adjustments 111
4.3.3 Regional Variations of Mass Balance 113
4.4 Englacial Mass Balance ... 115
4.4.1 Internal Accumulation ... 115
4.4.2 Internal Ablation ... 115
4.5 Basal Mass Balance ... 116
4.5.1 Basal Accumulation ... 116
4.5.2 Basal Ablation ... 118
4.6 Mass Loss by Calving ... 121
4.6.1 The Calving Spectrum ... 122
4.6.2 Calving from Tidewater Glaciers ... 123
4.6.3 Calving from Ice Shelves ... 124
4.6.4 Calving Relations for Ice Sheet Models 127
4.7 Methods for Determining Glacier Mass Balance 127
4.8 Mass Balance Regimes of the Ice Sheets 131
4.8.1 Greenland Ice Sheet ... 131
4.8.2 Antarctic Ice Sheet ... 134
Further Reading .. 136

Chapter 5 Mass Balance Processes: 2. Surface Ablation and Energy Budget 137
5.1 Introduction ... 137
5.1.1 Radiation .. 138
5.1.2 Energy Budget of Earth’s Atmosphere and Surface 138
5.2 Statement of the Surface Energy Budget 140
5.2.1 Driving and Responding Factors in the Energy Budget 141
5.2.2 Melt and Warming Driven by Net Energy Flux 141
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.3 Components of the Net Energy Flux</td>
<td>142</td>
</tr>
<tr>
<td>5.3.1 Downward Shortwave Radiation</td>
<td>143</td>
</tr>
<tr>
<td>5.3.2 Reflected Shortwave Radiation</td>
<td>145</td>
</tr>
<tr>
<td>5.3.3 Longwave Radiation</td>
<td>148</td>
</tr>
<tr>
<td>5.3.4 Field Example, Net Radiation Budget</td>
<td>148</td>
</tr>
<tr>
<td>5.3.5 Subsurface Conduction and Radiation</td>
<td>150</td>
</tr>
<tr>
<td>5.3.6 Turbulent Fluxes</td>
<td>152</td>
</tr>
<tr>
<td>5.4 Relation of Ablation to Climate</td>
<td>160</td>
</tr>
<tr>
<td>5.4.1 Calculating Melt from Energy Budget Measurements</td>
<td>160</td>
</tr>
<tr>
<td>5.4.2 Simple Approaches to Modelling Melt</td>
<td>162</td>
</tr>
<tr>
<td>5.4.3 Increase of Ablation with Warming</td>
<td>165</td>
</tr>
<tr>
<td>5.4.4 Importance of the Frequency of Different Weather Conditions</td>
<td>168</td>
</tr>
<tr>
<td>5.4.5 Energy Budget Regimes</td>
<td>169</td>
</tr>
<tr>
<td>Further Reading</td>
<td>173</td>
</tr>
</tbody>
</table>

Chapter 6 Glacial Hydrology

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1 Introduction</td>
<td>175</td>
</tr>
<tr>
<td>6.1.1 Permeability of Glacier Ice</td>
<td>176</td>
</tr>
<tr>
<td>6.1.2 Effective Pressure</td>
<td>177</td>
</tr>
<tr>
<td>6.2 Features of the Hydrologic System</td>
<td>177</td>
</tr>
<tr>
<td>6.2.1 Surface (Supraglacial) Hydrology</td>
<td>178</td>
</tr>
<tr>
<td>6.2.2 Englacial Hydrology</td>
<td>179</td>
</tr>
<tr>
<td>6.2.3 Subglacial Hydrology</td>
<td>181</td>
</tr>
<tr>
<td>6.2.4 Runoff from Glaciers</td>
<td>185</td>
</tr>
<tr>
<td>6.3 The Water System within Temperate Glaciers</td>
<td>194</td>
</tr>
<tr>
<td>6.3.1 Direction of Flow</td>
<td>194</td>
</tr>
<tr>
<td>6.3.2 Drainage in Conduits</td>
<td>197</td>
</tr>
<tr>
<td>6.3.3 Drainage in Linked Cavities</td>
<td>205</td>
</tr>
<tr>
<td>6.3.4 Subglacial Drainage on a Soft Bed</td>
<td>209</td>
</tr>
<tr>
<td>6.3.5 Summary of Water Systems at the Glacier Bed</td>
<td>212</td>
</tr>
<tr>
<td>6.3.6 System Behavior</td>
<td>214</td>
</tr>
<tr>
<td>6.4 Glacial Hydrological Phenomena</td>
<td>216</td>
</tr>
<tr>
<td>6.4.1 Jökulhlaups</td>
<td>216</td>
</tr>
<tr>
<td>6.4.2 Antarctic Subglacial Lakes</td>
<td>220</td>
</tr>
<tr>
<td>Further Reading</td>
<td>222</td>
</tr>
</tbody>
</table>

Chapter 7 Basal Slip

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1 Introduction</td>
<td>223</td>
</tr>
<tr>
<td>7.1.1 Measurements of Basal Velocity</td>
<td>224</td>
</tr>
<tr>
<td>7.1.2 Local vs. Global Control of Basal Velocity</td>
<td>226</td>
</tr>
<tr>
<td>7.2 Hard Beds</td>
<td>229</td>
</tr>
<tr>
<td>7.2.1 Weertman’s Theory of Sliding</td>
<td>229</td>
</tr>
<tr>
<td>7.2.2 Observations at the Glacier Sole</td>
<td>233</td>
</tr>
<tr>
<td>7.2.3 Improvements to Weertman’s Analysis</td>
<td>234</td>
</tr>
<tr>
<td>7.2.4 Discussion of Assumptions</td>
<td>236</td>
</tr>
<tr>
<td>7.2.5 Comparison of Predictions with Observations</td>
<td>237</td>
</tr>
<tr>
<td>7.2.6 How Water Changes Sliding Velocity on Hard Beds</td>
<td>238</td>
</tr>
</tbody>
</table>
Contents

7.2.7 Sliding of Debris-laden Ice .. 250
7.2.8 Sliding at Sub-Freezing Temperatures 253
7.2.9 Hard-bed Sliding: Summary and Outlook 254
7.3 Deformable Beds ... 255
7.3.1 Key Observations .. 256
7.3.2 Till Properties and Processes ... 257
7.3.3 Constitutive Behaviors .. 264
7.3.4 Slip Rate u_b on a Deformable Bed 269
7.3.5 Large-scale Behavior of Soft Beds 273
7.3.6 Continuity of Till .. 277
7.3.7 Additional Geological Information 279
7.4 Practical Relations for Basal Slip and Drag 280
Further Reading .. 283

Chapter 8 The Flow of Ice Masses ... 285
8.1 Introduction ... 285
8.1.1 Ice Flux ... 286
8.1.2 Balance Velocities .. 288
8.1.3 Actual Velocities ... 289
8.1.4 How Surface Velocities Are Measured 293
8.2 Driving and Resisting Stresses .. 295
8.2.1 Driving Stress and Basal Shear Stress 295
8.2.2 Additional Resisting Forces and the Force Balance 299
8.2.3 Factors Controlling Resistance and Flow 301
8.2.4 Effective Driving Force of a Vertical Cliff 307
8.3 Vertical Profiles of Flow ... 309
8.3.1 Parallel Flow .. 309
8.3.2 Observed Complications in Shear Profiles 311
8.4 Fundamental Properties of Extending and Compressing Flows 315
8.4.1 General Concepts ... 315
8.4.2 Uniform Extension or Compression 317
8.5 General Governing Relations .. 319
8.5.1 Local Stress-equilibrium Relations 320
8.5.2 General Solutions for Stress and Velocity 321
8.5.3 Vertically Integrated Force Balance 322
8.5.4 General Mass Conservation Relation (Equation of Continuity) 330
8.5.5 Vertically Integrated Continuity Equations 331
8.6 Effects of Valley Walls and Shear Margins 338
8.6.1 Transverse Velocity Profile Where Basal Resistance Is Small 339
8.6.2 Combined Effects of Side and Basal Resistances 340
8.7 Variations Along a Flow Line .. 346
8.7.1 Factors Controlling Longitudinal Strain Rate 346
8.7.2 Local-scale Variation: Longitudinal Stress-gradient Coupling 347
8.7.3 Large-Scale Variation ... 351
8.8 Flow at Tidewater Margins ... 353
8.8.1 Theory ... 353
8.8.2 Observations: Columbia Glacier 355
Chapter 11 Reaction of Glaciers to Environmental Changes

11.1 Introduction ... 453
11.2 Reaction to Changes of Mass Balance: Scales ... 454
11.2.1 Net Change of Glacier Length ... 455
11.2.2 Simple Models for Response ... 456
11.2.3 Simple Models for Different Zones ... 461
11.3 Reaction to Changes of Mass Balance: Dynamics ... 464
11.3.1 Theoretical Framework ... 464
11.3.2 Ice Thickness Changes ... 469
11.3.3 Relative Importance of Diffusion and Kinematic Waves 476
11.3.4 Numerical Models of Glacier Variation ... 477
11.4 Reactions to Additional Forcings ... 483
11.4.1 Response of Glaciers to Ice and Bed Changes ... 483
11.4.2 Factors Influencing the Reaction of an Ice Sheet to the End of an Ice Age ... 485
11.4.3 Ice Flow Increased by Water Input ... 490
11.5 Changes at a Marine Margin ... 494
11.5.1 Conceptual Framework ... 495
11.5.2 The Tidewater Glacier Cycle ... 500
11.5.3 Interactions of Ice Shelves and Inland Ice ... 503
11.5.4 Forcing by Sea-level Rise ... 508
Further Reading ... 510

Chapter 12 Glacier Surges

12.1 Introduction ... 511
12.2 Characteristics of Surging Glaciers ... 513
12.2.1 Spatial Distribution and Relation to Geological Setting 513
12.2.2 Distribution in Time ... 514
12.2.3 Temperature Characteristics ... 515
12.2.4 Characteristics of Form and Velocity ... 516
12.3 Detailed Observations of Surges ... 517
12.3.1 Surges of Temperate Glaciers ... 517
12.3.2 The Role of Water: Variegated Glacier ... 520
12.3.3 Surges Where the Bed Is Partly Frozen ... 523
12.3.4 Surges of Polythermal Tidewater Glaciers ... 526
12.4 Surge Mechanisms ... 528
12.4.1 General Evidence Relevant to the Mechanism ... 528
12.4.2 The Mechanism for Temperate Glaciers ... 532
12.4.3 Polythermal Glaciers ... 536
12.5 Surging of Ice Sheets? ... 537
12.6 Ice Avalanches ... 538
Contents

Chapter 13 Ice Sheets and the Earth System ... 541

13.1 Introduction .. 541
13.2 Interaction of Ice Sheets with the Earth System .. 542
 13.2.1 Processes Driving Ice Sheet Change .. 543
 13.2.2 Feedback Processes ... 548
13.3 Growth and Decay of Quaternary Ice Sheets ... 555
 13.3.1 Relation to Milankovitch Forcings .. 557
 13.3.2 Climate Forcings at the LGM .. 561
 13.3.3 Onset of Quaternary Cycles ... 563
 13.3.4 Heinrich Events .. 563
13.4 Ice Sheet Evolution Models ... 565
 13.4.1 Model Components ... 565
 13.4.2 Model Calibration .. 569
 13.4.3 Simulations of Quaternary Ice Sheets ... 569
 Further Reading .. 574

Chapter 14 Ice, Sea Level, and Contemporary Climate Change 575

14.1 Introduction ... 575
 14.1.1 Equivalent Sea Level ... 576
 14.1.2 Recent Climate and Sea-level Change .. 577
14.2 Global Warming and Mountain Glaciers ... 578
 14.2.1 History of Glacier Lengths ... 579
 14.2.2 Worldwide Mass Balance of Mountain Glaciers and Small Ice Caps 582
 14.2.3 Sea-level Forecasts: Mountain Glaciers and Small Ice Caps 586
14.3 The Ice Sheets and Global Warming ... 590
 14.3.1 Greenland ... 590
 14.3.2 Antarctica .. 595
 14.3.3 Model Forecasts of Ice Sheet Contributions to Sea-level Change 601
 14.3.4 Simple Approaches to Forecasts for the Century Ahead 604
14.4 Summary ... 607
 14.4.1 Recent Sea-level Rise ... 607
 14.4.2 The Twentieth Century ... 608
 14.4.3 This Century ... 608

Chapter 15 Ice Core Studies ... 611

15.1 Introduction ... 611
 15.1.1 Some Essential Terms and Concepts ... 612
 15.1.2 Delta Notation .. 612
15.2 Relation Between Depth and Age ... 614
 15.2.1 Theoretical Relations ... 614
 15.2.2 Determination of Ages .. 622
 15.2.3 Difference of Gas and Ice Ages .. 630
15.3 Fractionation of Gases in Polar Firn ... 630
15.4 Total Air Content ... 634
15.5 Stable Isotopes of Ice ... 636
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.5.1 Conceptual Model</td>
<td>636</td>
</tr>
<tr>
<td>15.5.2 Interpretation of Records</td>
<td>644</td>
</tr>
<tr>
<td>15.6 Additional Techniques of Temperature Reconstruction</td>
<td>650</td>
</tr>
<tr>
<td>15.6.1 Borehole Temperatures</td>
<td>650</td>
</tr>
<tr>
<td>15.6.2 Melt Layers</td>
<td>651</td>
</tr>
<tr>
<td>15.6.3 Thermal and Gravitational Fractionation of Gases</td>
<td>652</td>
</tr>
<tr>
<td>15.7 Estimation of Past Accumulation Rates</td>
<td>652</td>
</tr>
<tr>
<td>15.8 Greenhouse Gas Records</td>
<td>654</td>
</tr>
<tr>
<td>15.8.1 Histories of Atmospheric Concentration</td>
<td>654</td>
</tr>
<tr>
<td>15.8.2 Isotopic Compositions of Greenhouse Gases</td>
<td>659</td>
</tr>
<tr>
<td>15.9 Gas Indicators of Global Parameters</td>
<td>659</td>
</tr>
<tr>
<td>15.9.1 Global Mean Ocean Temperature</td>
<td>659</td>
</tr>
<tr>
<td>15.9.2 Global Biological Productivity</td>
<td>660</td>
</tr>
<tr>
<td>15.10 Particulate and Soluble Impurities</td>
<td>660</td>
</tr>
<tr>
<td>15.10.1 Electrical Conductivity Measurement (ECM)</td>
<td>662</td>
</tr>
<tr>
<td>15.10.2 Primary Aerosols</td>
<td>662</td>
</tr>
<tr>
<td>15.10.3 Secondary Aerosols</td>
<td>664</td>
</tr>
<tr>
<td>15.11 Examples of Multiparameter Records from Ice Sheets</td>
<td>667</td>
</tr>
<tr>
<td>15.11.1 Deglacial Climate Change</td>
<td>667</td>
</tr>
<tr>
<td>15.11.2 A Long Record of Climate Cycling</td>
<td>667</td>
</tr>
<tr>
<td>15.12 Low-latitude Ice Cores</td>
<td>670</td>
</tr>
<tr>
<td>15.13 Surface Exposures in Ablation Zones</td>
<td>672</td>
</tr>
<tr>
<td>Further Reading</td>
<td>674</td>
</tr>
</tbody>
</table>

Appendix: A Primer on Stress and Strain ... 675

Index .. 683

References and other supplemental materials can be found on
The Physics of Glaciers companion website at:

Preface to Fourth Edition

Current concerns about global warming have produced widespread scientific interest in the behavior of glaciers in general and the polar ice sheets in particular. This increased interest, coming at a time of unprecedented advances in observational capabilities, has fueled a major expansion of the literature since the third edition went to press. A new edition to update the content and assess the current state of research was therefore overdue.

Reflecting the increased engagement of glacier studies with broad themes in environmental geophysics, the updated edition features new chapters on “Ice Sheets and the Earth System” and “Ice, Sea Level, and Contemporary Climate Change.” The chapter on ice core studies is significantly expanded from the previous version and much of it is new material. The content and arrangement of chapters on glaciological fundamentals broadly follow the outline of the third edition, although many discussions have been revised extensively. All the material about flow of mountain glaciers, ice sheets, ice streams, and ice shelves has been amalgamated into a single lengthy chapter entitled “Flow of Ice Masses.” Material about iceberg calving and basal melt now find their place in a chapter that reviews together all of the mass balance processes. In general the level of treatment remains unchanged, but several key topics are illuminated at a higher level of detail than in previous editions.

Many acknowledgments are due. We first must thank Shawn Marshall for conducting a first round of research and synthesis of topics presented in Chapters 4, 5, and 6. We gratefully acknowledge the scientists who reviewed individual chapters: Richard Alley, Bob Bindschadler, Jason Box, Roland Burgmann, Garry Clarke, Tim Creyts, Paul Duval, Andrew Fountain, Inez Fung, Hilmar Gudmundsson, Michael Hambrey, Will Harrison, Neal Iverson, Jo Jacka, Georg Kaser, Thomas Mölg, Tavi Murray, Tad Pfeffer, Eric Rignot, Jeff Severinghaus, Throstur Thorsteinsson, Françoise Vimeux, Ed Waddington, Joe Walder, Ian Willis, and Eric Wolff. Charlie Raymond deserves special thanks for commenting on the whole manuscript. Jeff Kavanaugh contributed helpful suggestions and graciously provided the cover photograph. Yosuke Adachi proofread the final manuscript. Mark Carey, glacier historian, suggested several of the chapter-head quotes. All of the reviewers offered excellent suggestions, some of which could not be accommodated for lack of space. We, of course, take full responsibility for the content and for the tough choices about what material to include.

Completion of the project would not have been possible without assistance from Delores Dillard and Darin Jensen of U.C. Berkeley’s Department of Geography. Delores worked on digitization and manuscript acquisition while Darin took on the nearly unthinkable task of drafting more than 200 figures. KC gives additional thanks to Jean Lave and Michael Johns for their wise counsel, and to the Division of Geological and Planetary Sciences at the California Institute of Technology, and especially Jess Adkins and John Eiler, who hosted a sabbatical visit at the start of this project. Finally, we express our deepest gratitude to Lyn Paterson and Pete Lombard for their many years of support and encouragement.

Kurt M. Cuffey
Berkeley, California

W. S. B. Paterson
Quadra Island, British Columbia

February, 2010
Preface to First Edition

The aim of this book is to explain the physical principles underlying the behaviour of glaciers and ice sheets, as far as these are understood at the present time.

Glaciers have been studied scientifically for more than a century. During this period, interest in glaciers has, like the glaciers themselves, waxed and waned. Periods of activity and advance have alternated with periods of stagnation and even of retrogression when erroneous ideas have become part of conventional wisdom. The past 20 years, however, have seen a major advance in our knowledge. Theories have been developed which have explained many facts previously obscure; improved observational techniques have enabled these theories to be tested and have produced new results still to be explained.

This seems an appropriate time to review these recent developments. At present there is, to my knowledge, no book in English which does this. The present book is a modest attempt to fill the gap. To cover the whole field in a short book is impossible. I have tried to select those topics which I feel to be of most significance, but there is undoubtedly some bias towards my own particular interests.

While this book is intended primarily for those starting research in the subject, I hope that established workers in glacier studies, and in related fields, will find it useful. The treatment is at about the graduate student level. The standard varies, however, and most chapters should be intelligible to senior undergraduates.

I am much indebted to Dr. J. F. Nye for reading the whole manuscript and making many helpful suggestions. I am grateful to Drs. S. J. Jones, G. de Q. Robin and J. Weertman for reviewing individual chapters. I should also like to thank Drs. J. A. Jacobs and J. Tuzo Wilson for general comments and encouragement. The responsibility for the final form and contents of the book of course remains my own.

W. S. B. Paterson
Ottawa, Canada
March, 1968