
Chapter 1

The Nonlinear Optical Susceptibility

1.1. Introduction to Nonlinear Optics

Nonlinear optics is the study of phenomena that occur as a consequence of
the modification of the optical properties of a material system by the pres-
ence of light. Typically, only laser light is sufficiently intense to modify the
optical properties of a material system. The beginning of the field of nonlin-
ear optics is often taken to be the discovery of second-harmonic generation
by Franken et al. (1961), shortly after the demonstration of the first working
laser by Maiman in 1960.∗ Nonlinear optical phenomena are “nonlinear” in
the sense that they occur when the response of a material system to an ap-
plied optical field depends in a nonlinear manner on the strength of the optical
field. For example, second-harmonic generation occurs as a result of the part
of the atomic response that scales quadratically with the strength of the ap-
plied optical field. Consequently, the intensity of the light generated at the
second-harmonic frequency tends to increase as the square of the intensity of
the applied laser light.

In order to describe more precisely what we mean by an optical nonlinear-
ity, let us consider how the dipole moment per unit volume, or polarization
P̃ (t), of a material system depends on the strength Ẽ(t) of an applied optical

∗ It should be noted, however, that some nonlinear effects were discovered prior to the advent of

the laser. The earliest example known to the authors is the observation of saturation effects in the

luminescence of dye molecules reported by G.N. Lewis et al. (1941).
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2 1 ♦ The Nonlinear Optical Susceptibility

field.∗ In the case of conventional (i.e., linear) optics, the induced polarization
depends linearly on the electric field strength in a manner that can often be
described by the relationship

P̃ (t) = ε0χ
(1)Ẽ(t), (1.1.1)

where the constant of proportionality χ(1) is known as the linear suscepti-
bility and ε0 is the permittivity of free space. In nonlinear optics, the optical
response can often be described by generalizing Eq. (1.1.1) by expressing the
polarization P̃ (t) as a power series in the field strength Ẽ(t) as

P̃ (t) = ε0
[
χ(1)Ẽ(t) + χ(2)Ẽ2(t) + χ(3)Ẽ3(t) + · · · ]

≡ P̃ (1)(t) + P̃ (2)(t) + P̃ (3)(t) + · · · . (1.1.2)

The quantities χ(2) and χ(3) are known as the second- and third-order non-
linear optical susceptibilities, respectively. For simplicity, we have taken the
fields P̃ (t) and Ẽ(t) to be scalar quantities in writing Eqs. (1.1.1) and (1.1.2).
In Section 1.3 we show how to treat the vector nature of the fields; in such
a case χ(1) becomes a second-rank tensor, χ(2) becomes a third-rank tensor,
and so on. In writing Eqs. (1.1.1) and (1.1.2) in the forms shown, we have
also assumed that the polarization at time t depends only on the instantaneous
value of the electric field strength. The assumption that the medium responds
instantaneously also implies (through the Kramers–Kronig relations†) that the
medium must be lossless and dispersionless. We shall see in Section 1.3 how
to generalize these equations for the case of a medium with dispersion and
loss. In general, the nonlinear susceptibilities depend on the frequencies of the
applied fields, but under our present assumption of instantaneous response, we
take them to be constants.

We shall refer to P̃ (2)(t) = ε0χ
(2)Ẽ2(t) as the second-order nonlinear po-

larization and to P̃ (3)(t) = ε0χ
(3)Ẽ3(t) as the third-order nonlinear polariza-

tion. We shall see later in this section that physical processes that occur as
a result of the second-order polarization P̃ (2) tend to be distinct from those
that occur as a result of the third-order polarization P̃ (3). In addition, we shall
show in Section 1.5 that second-order nonlinear optical interactions can occur
only in noncentrosymmetric crystals—that is, in crystals that do not display
inversion symmetry. Since liquids, gases, amorphous solids (such as glass),

∗ Throughout the text, we use the tilde (˜) to denote a quantity that varies rapidly in time. Constant
quantities, slowly varying quantities, and Fourier amplitudes are written without the tilde. See, for
example, Eq. (1.2.1).

† See, for example, Loudon (1973, Chapter 4) or the discussion in Section 1.7 of this book for a
discussion of the Kramers–Kronig relations.
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and even many crystals display inversion symmetry, χ(2) vanishes identically
for such media, and consequently such materials cannot produce second-order
nonlinear optical interactions. On the other hand, third-order nonlinear optical
interactions (i.e., those described by a χ(3) susceptibility) can occur for both
centrosymmetric and noncentrosymmetric media.

We shall see in later sections of this book how to calculate the values of the
nonlinear susceptibilities for various physical mechanisms that lead to optical
nonlinearities. For the present, we shall make a simple order-of-magnitude
estimate of the size of these quantities for the common case in which the non-
linearity is electronic in origin (see, for instance, Armstrong et al., 1962). One
might expect that the lowest-order correction term P̃ (2) would be compara-
ble to the linear response P̃ (1) when the amplitude of the applied field Ẽ is of
the order of the characteristic atomic electric field strength Eat = e/(4πε0a

2
0 ),

where −e is the charge of the electron and a0 = 4πε0h̄
2/me2 is the Bohr ra-

dius of the hydrogen atom (here h̄ is Planck’s constant divided by 2π , and m is
the mass of the electron). Numerically, we find that Eat = 5.14 × 1011 V/m.∗
We thus expect that under conditions of nonresonant excitation the second-
order susceptibility χ(2) will be of the order of χ(1)/Eat. For condensed mat-
ter χ(1) is of the order of unity, and we hence expect that χ(2) will be of the
order of 1/Eat, or that

χ(2) � 1.94 × 10−12 m/V. (1.1.3)

Similarly, we expect χ(3) to be of the order of χ(1)/E2
at, which for condensed

matter is of the order of

χ(3) � 3.78 × 10−24 m2/V2. (1.1.4)

These predictions are in fact quite accurate, as one can see by comparing these
values with actual measured values of χ(2) (see, for instance, Table 1.5.3) and
χ(3) (see, for instance, Table 4.3.1).

For certain purposes, it is useful to express the second- and third-order
susceptibilities in terms of fundamental physical constants. As just noted,
for condensed matter χ(1) is of the order of unity. This result can be justi-
fied either as an empirical fact or can be justified more rigorously by noting
that χ(1) is the product of atomic number density and atomic polarizability.
The number density N of condensed matter is of the order of (a0)

−3, and
the nonresonant polarizability is of the order of (a0)

3. We thus deduce that
χ(1) is of the order of unity. We then find that χ(2) � (4πε0)

3h̄4/m2e5 and
χ(3) � (4πε0)

6h̄8/m4e10. See Boyd (1999) for further details.

∗ Except where otherwise noted, we use the SI (MKS) system of units throughout this book. The
appendix to this book presents a prescription for converting among systems of units.
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The most usual procedure for describing nonlinear optical phenomena is
based on expressing the polarization P̃ (t) in terms of the applied electric field
strength Ẽ(t), as we have done in Eq. (1.1.2). The reason why the polarization
plays a key role in the description of nonlinear optical phenomena is that a
time-varying polarization can act as the source of new components of the
electromagnetic field. For example, we shall see in Section 2.1 that the wave
equation in nonlinear optical media often has the form

∇2Ẽ − n2

c2

∂2Ẽ

∂t2
= 1

ε0c2

∂2P̃ NL

∂t2
, (1.1.5)

where n is the usual linear refractive index and c is the speed of light in vac-
uum. We can interpret this expression as an inhomogeneous wave equation
in which the polarization P̃ NL associated with the nonlinear response drives
the electric field Ẽ. Since ∂2P̃ NL/∂t2 is a measure of the acceleration of the
charges that constitute the medium, this equation is consistent with Larmor’s
theorem of electromagnetism which states that accelerated charges generate
electromagnetic radiation.

It should be noted that the power series expansion expressed by Eq. (1.1.2)
need not necessarily converge. In such circumstances the relationship between
the material response and the applied electric field amplitude must be ex-
pressed using different procedures. One such circumstance is that of resonant
excitation of an atomic system, in which case an appreciable fraction of the
atoms can be removed from the ground state. Saturation effects of this sort
can be described by procedures developed in Chapter 6. Even under nonreso-
nant conditions, Eq. (1.1.2) loses its validity if the applied laser field strength
becomes comparable to the characteristic atomic field strength Eat, because
of strong photoionization that can occur under these conditions. For future
reference, we note that the laser intensity associated with a peak field strength
of Eat is given by

Iat = 1

2
ε0cE

2
at = 3.5 × 1020 W/m2 = 3.5 × 1016 W/cm2. (1.1.6)

We shall see later in this book (see especially Chapter 13) how nonlinear
optical processes display qualitatively distinct features when excited by such
super-intense fields.

1.2. Descriptions of Nonlinear Optical Processes

In the present section, we present brief qualitative descriptions of a number
of nonlinear optical processes. In addition, for those processes that can oc-
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FIGURE 1.2.1 (a) Geometry of second-harmonic generation. (b) Energy-level dia-
gram describing second-harmonic generation.

cur in a lossless medium, we indicate how they can be described in terms of
the nonlinear contributions to the polarization described by Eq. (1.1.2).∗ Our
motivation is to provide an indication of the variety of nonlinear optical phe-
nomena that can occur. These interactions are described in greater detail in
later sections of this book. In this section we also introduce some notational
conventions and some of the basic concepts of nonlinear optics.

1.2.1. Second-Harmonic Generation

As an example of a nonlinear optical interaction, let us consider the process of
second-harmonic generation, which is illustrated schematically in Fig. 1.2.1.
Here a laser beam whose electric field strength is represented as

Ẽ(t) = Ee−iωt + c.c. (1.2.1)

is incident upon a crystal for which the second-order susceptibility χ(2) is
nonzero. The nonlinear polarization that is created in such a crystal is given
according to Eq. (1.1.2) as P̃ (2)(t) = ε0χ

(2)Ẽ2(t) or explicitly as

P̃ (2)(t) = 2ε0χ
(2)EE∗ + (

ε0χ
(2)E2e−i2ωt + c.c.

)
. (1.2.2)

We see that the second-order polarization consists of a contribution at zero fre-
quency (the first term) and a contribution at frequency 2ω (the second term).
According to the driven wave equation (1.1.5), this latter contribution can
lead to the generation of radiation at the second-harmonic frequency. Note
that the first contribution in Eq. (1.2.2) does not lead to the generation of elec-
tromagnetic radiation (because its second time derivative vanishes); it leads
to a process known as optical rectification, in which a static electric field is
created across the nonlinear crystal.

∗ Recall that Eq. (1.1.2) is valid only for a medium that is lossless and dispersionless.
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Under proper experimental conditions, the process of second-harmonic
generation can be so efficient that nearly all of the power in the incident
beam at frequency ω is converted to radiation at the second-harmonic fre-
quency 2ω. One common use of second-harmonic generation is to convert the
output of a fixed-frequency laser to a different spectral region. For example,
the Nd:YAG laser operates in the near infrared at a wavelength of 1.06 μm.
Second-harmonic generation is routinely used to convert the wavelength of
the radiation to 0.53 μm, in the middle of the visible spectrum.

Second-harmonic generation can be visualized by considering the interac-
tion in terms of the exchange of photons between the various frequency com-
ponents of the field. According to this picture, which is illustrated in part (b)
of Fig. 1.2.1, two photons of frequency ω are destroyed, and a photon of fre-
quency 2ω is simultaneously created in a single quantum-mechanical process.
The solid line in the figure represents the atomic ground state, and the dashed
lines represent what are known as virtual levels. These levels are not energy
eigenlevels of the free atom but rather represent the combined energy of one of
the energy eigenstates of the atom and of one or more photons of the radiation
field.

The theory of second-harmonic generation is developed more fully in Sec-
tion 2.6.

1.2.2. Sum- and Difference-Frequency Generation

Let us next consider the circumstance in which the optical field incident upon
a second-order nonlinear optical medium consists of two distinct frequency
components, which we represent in the form

Ẽ(t) = E1e
−iω1t + E2e

−iω2t + c.c. (1.2.3)

Then, assuming as in Eq. (1.1.2) that the second-order contribution to the
nonlinear polarization is of the form

P̃ (2)(t) = ε0χ
(2)Ẽ(t)2, (1.2.4)

we find that the nonlinear polarization is given by

P̃ (2)(t) = ε0χ
(2)

[
E2

1e−2iω1t + E2
2e−2iω2t + 2E1E2e

−i(ω1+ω2)t

+2E1E
∗
2e−i(ω1−ω2)t + c.c.

] + 2ε0χ
(2)

[
E1E

∗
1 + E2E

∗
2

]
.

(1.2.5)
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It is convenient to express this result using the notation

P̃ (2)(t) =
∑

n

P (ωn)e
−iωnt , (1.2.6)

where the summation extends over positive and negative frequencies ωn. The
complex amplitudes of the various frequency components of the nonlinear
polarization are hence given by

P(2ω1) = ε0χ
(2)E2

1 (SHG),

P (2ω2) = ε0χ
(2)E2

2 (SHG),

P (ω1 + ω2) = 2ε0χ
(2)E1E2 (SFG), (1.2.7)

P(ω1 − ω2) = 2ε0χ
(2)E1E

∗
2 (DFG),

P (0) = 2ε0χ
(2)(E1E

∗
1 + E2E

∗
2 ) (OR).

Here we have labeled each expression by the name of the physical process
that it describes, such as second-harmonic generation (SHG), sum-frequency
generation (SFG), difference-frequency generation (DFG), and optical rectifi-
cation (OR). Note that, in accordance with our complex notation, there is also
a response at the negative of each of the nonzero frequencies just given:

P(−2ω1) = ε0χ
(2)E∗

1
2, P (−2ω2) = ε0χ

(2)E∗
2

2,

P (−ω1 − ω2) = 2ε0χ
(2)E∗

1E∗
2 , P (ω2 − ω1) = 2ε0χ

(2)E2E
∗
1 .

(1.2.8)

However, since each of these quantities is simply the complex conjugate of
one of the quantities given in Eq. (1.2.7), it is not necessary to take explicit
account of both the positive and negative frequency components.∗

∗ Not all workers in nonlinear optics use our convention that the fields and polarizations are given
by Eqs. (1.2.3) and (1.2.6). Another common convention is to define the field amplitudes according to

Ẽ(t) = 1

2

(
E′

1e−iω1t + E′
2e−iω2t + c.c.

)
,

P̃ (t) = 1

2

∑

n

P ′(ωn)eiωnt ,

where in the second expression the summation extends over all positive and negative frequencies.
Using this convention, one finds that

P ′(2ω1) = 1

2
ε0χ(2)E′2

1 , P ′(2ω2) = 1

2
ε0χ(2)E′2

2 ,

P ′(ω1 + ω2) = ε0χ(2)E′
1E′

2, P ′(ω1 − ω2) = ε0χ(2)E′
1E′∗

2 ,

P ′(0) = ε0χ(2)
(
E′

1E′∗
1 + E′

2E′∗
2

)
.

Note that these expressions differ from Eqs. (1.2.7) by factors of 1
2 .
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We see from Eq. (1.2.7) that four different nonzero frequency components
are present in the nonlinear polarization. However, typically no more than one
of these frequency components will be present with any appreciable intensity
in the radiation generated by the nonlinear optical interaction. The reason for
this behavior is that the nonlinear polarization can efficiently produce an out-
put signal only if a certain phase-matching condition (which is discussed in
detail in Section 2.7) is satisfied, and usually this condition cannot be satisfied
for more than one frequency component of the nonlinear polarization. Oper-
ationally, one often chooses which frequency component will be radiated by
properly selecting the polarization of the input radiation and the orientation
of the nonlinear crystal.

1.2.3. Sum-Frequency Generation

Let us now consider the process of sum-frequency generation, which is illus-
trated in Fig. 1.2.2. According to Eq. (1.2.7), the complex amplitude of the
nonlinear polarization describing this process is given by the expression

P(ω1 + ω2) = 2ε0χ
(2)E1E2. (1.2.9)

In many ways the process of sum-frequency generation is analogous to that of
second-harmonic generation, except that in sum-frequency generation the two
input waves are at different frequencies. One application of sum-frequency
generation is to produce tunable radiation in the ultraviolet spectral region by
choosing one of the input waves to be the output of a fixed-frequency visible
laser and the other to be the output of a frequency-tunable visible laser. The
theory of sum-frequency generation is developed more fully in Sections 2.2
and 2.4.

FIGURE 1.2.2 Sum-frequency generation. (a) Geometry of the interaction.
(b) Energy-level description.
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1.2.4. Difference-Frequency Generation

The process of difference-frequency generation is described by a nonlinear
polarization of the form

P(ω1 − ω2) = 2ε0χ
(2)E1E

∗
2 (1.2.10)

and is illustrated in Fig. 1.2.3. Here the frequency of the generated wave is
the difference of those of the applied fields. Difference-frequency generation
can be used to produce tunable infrared radiation by mixing the output of a
frequency-tunable visible laser with that of a fixed-frequency visible laser.

Superficially, difference-frequency generation and sum-frequency gener-
ation appear to be very similar processes. However, an important differ-
ence between the two processes can be deduced from the description of
difference-frequency generation in terms of a photon energy-level diagram
(part (b) of Fig. 1.2.3). We see that conservation of energy requires that
for every photon that is created at the difference frequency ω3 = ω1 − ω2,
a photon at the higher input frequency (ω1) must be destroyed and a pho-
ton at the lower input frequency (ω2) must be created. Thus, the lower-
frequency input field is amplified by the process of difference-frequency
generation. For this reason, the process of difference-frequency generation
is also known as optical parametric amplification. According to the photon
energy-level description of difference-frequency generation, the atom first
absorbs a photon of frequency ω1 and jumps to the highest virtual level.
This level decays by a two-photon emission process that is stimulated by
the presence of the ω2 field, which is already present. Two-photon emission
can occur even if the ω2 field is not applied. The generated fields in such
a case are very much weaker, since they are created by spontaneous two-
photon emission from a virtual level. This process is known as parametric

FIGURE 1.2.3 Difference-frequency generation. (a) Geometry of the interaction.
(b) Energy-level description.
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fluorescence and has been observed experimentally (Byer and Harris, 1968;
Harris et al., 1967).

The theory of difference-frequency generation is developed more fully in
Section 2.5.

1.2.5. Optical Parametric Oscillation

We have just seen that in the process of difference-frequency generation the
presence of radiation at frequency ω2 or ω3 can stimulate the emission of
additional photons at these frequencies. If the nonlinear crystal used in this
process is placed inside an optical resonator, as shown in Fig. 1.2.4, the ω2

and/or ω3 fields can build up to large values. Such a device is known as an op-
tical parametric oscillator. Optical parametric oscillators are frequently used at
infrared wavelengths, where other sources of tunable radiation are not readily
available. Such a device is tunable because any frequency ω2 that is smaller
than ω1 can satisfy the condition ω2 + ω3 = ω1 for some frequency ω3. In
practice, one controls the output frequency of an optical parametric oscillator
by adjusting the phase-matching condition, as discussed in Section 2.7. The
applied field frequency ω1 is often called the pump frequency, the desired out-
put frequency is called the signal frequency, and the other, unwanted, output
frequency is called the idler frequency.

1.2.6. Third-Order Nonlinear Optical Processes

We next consider the third-order contribution to the nonlinear polarization

P̃ (3)(t) = ε0χ
(3)Ẽ(t)3. (1.2.11)

For the general case in which the field Ẽ(t) is made up of several different
frequency components, the expression for P̃ (3)(t) is very complicated. For
this reason, we first consider the simple case in which the applied field is

FIGURE 1.2.4 The optical parametric oscillator. The cavity end mirrors have high
reflectivities at frequencies ω2 and/or ω3. The output frequencies can be tuned by
means of the orientation of the crystal.
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monochromatic and is given by

Ẽ(t) = E cosωt. (1.2.12)

Then, through use of the identity cos3 ωt = 1
4 cos 3ωt + 3

4 cosωt , we can ex-
press the nonlinear polarization as

P̃ (3)(t) = 1

4
ε0χ

(3)E3 cos 3ωt + 3

4
ε0χ

(3)E 3 cosωt. (1.2.13)

The significance of each of the two terms in this expression is described briefly
below.

1.2.7. Third-Harmonic Generation

The first term in Eq. (1.2.13) describes a response at frequency 3ω that is
created by an applied field at frequency ω. This term leads to the process
of third-harmonic generation, which is illustrated in Fig. 1.2.5. According to
the photon description of this process, shown in part (b) of the figure, three
photons of frequency ω are destroyed and one photon of frequency 3ω is
created in the microscopic description of this process.

1.2.8. Intensity-Dependent Refractive Index

The second term in Eq. (1.2.13) describes a nonlinear contribution to the po-
larization at the frequency of the incident field; this term hence leads to a
nonlinear contribution to the refractive index experienced by a wave at fre-
quency ω. We shall see in Section 4.1 that the refractive index in the presence
of this type of nonlinearity can be represented as

n = n0 + n2I, (1.2.14a)

FIGURE 1.2.5 Third-harmonic generation. (a) Geometry of the interaction.
(b) Energy-level description.
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FIGURE 1.2.6 Self-focusing of light.

where n0 is the usual (i.e., linear or low-intensity) refractive index, where

n2 = 3

2n2
0ε0c

χ(3) (1.2.14b)

is an optical constant that characterizes the strength of the optical nonlinearity,
and where I = 1

2n0ε0cE2 is the intensity of the incident wave.

Self-Focusing One of the processes that can occur as a result of the intensity-
dependent refractive index is self-focusing, which is illustrated in Fig. 1.2.6.
This process can occur when a beam of light having a nonuniform transverse
intensity distribution propagates through a material for which n2 is positive.
Under these conditions, the material effectively acts as a positive lens, which
causes the rays to curve toward each other. This process is of great practical
importance because the intensity at the focal spot of the self-focused beam is
usually sufficiently large to lead to optical damage of the material. The process
of self-focusing is described in greater detail in Section 7.1.

1.2.9. Third-Order Interactions (General Case)

Let us next examine the form of the nonlinear polarization

P̃ (3)(t) = ε0χ
(3)Ẽ3(t) (1.2.15a)

induced by an applied field that consists of three frequency components:

Ẽ(t) = E1e
−iω1t + E2e

−iω2t + E3e
−iω3t + c.c. (1.2.15b)

When we calculate Ẽ3(t), we find that the resulting expression contains 44
different frequency components, if we consider positive and negative frequen-
cies to be distinct. Explicitly, these frequencies are

ω1,ω2,ω3,3ω1,3ω2,3ω3, (ω1 + ω2 + ω3), (ω1 + ω2 − ω3),

(ω1 + ω3 − ω2), (ω2 + ω3 − ω1), (2ω1 ± ω2), (2ω1 ± ω3), (2ω2 ± ω1),

(2ω2 ± ω3), (2ω3 ± ω1), (2ω3 ± ω2),
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and the negative of each. Again representing the nonlinear polarization as

P̃ (3)(t) =
∑

n

P (ωn)e
−iωnt , (1.2.16)

we can write the complex amplitudes of the nonlinear polarization for each of
the positive frequencies as

P(ω1) = ε0χ
(3)

(
3E1E

∗
1 + 6E2E

∗
2 + 6E3E

∗
3

)
E1,

P (ω2) = ε0χ
(3)

(
6E1E

∗
1 + 3E2E

∗
2 + 6E3E

∗
3

)
E2,

P (ω3) = ε0χ
(3)

(
6E1E

∗
1 + 6E2E

∗
2 + 3E3E

∗
3

)
E3,

P (3ω1) = ε0χ
(3)E3

1, P (3ω2) = ε0χ
(3)E3

2, P (3ω3) = ε0χ
(3)E3

3,

P (ω1 + ω2 + ω3) = 6ε0χ
(3)E1E2E3,

P (ω1 + ω2 − ω3) = 6ε0χ
(3)E1E2E

∗
3 ,

P (ω1 + ω3 − ω2) = 6ε0χ
(3)E1E3E

∗
2 ,

P (ω2 + ω3 − ω1) = 6ε0χ
(3)E2E3E

∗
1 ,

P (2ω1 + ω2) = 3ε0χ
(3)E2

1E2, P (2ω1 + ω3) = 3ε0χ
(3)E2

1E3,

P (2ω2 + ω1) = 3ε0χ
(3)E2

2E1, P (2ω2 + ω3) = 3ε0χ
(3)E2

2E3,

P (2ω3 + ω1) = 3ε0χ
(3)E2

3E1, P (2ω3 + ω2) = 3ε0χ
(3)E2

3E2,

P (2ω1 − ω2) = 3ε0χ
(3)E2

1E∗
2 , P (2ω1 − ω3) = 3ε0χ

(3)E2
1E∗

3 ,

P (2ω2 − ω1) = 3ε0χ
(3)E2

2E∗
1 , P (2ω2 − ω3) = 3ε0χ

(3)E2
2E∗

3 ,

P (2ω3 − ω1) = 3ε0χ
(3)E2

3E∗
1 , P (2ω3 − ω2) = 3ε0χ

(3)E2
3E∗

2

(1.2.17)

We have displayed these expressions in complete detail because it is very
instructive to study their form. In each case the frequency argument of P

is equal to the sum of the frequencies associated with the field amplitudes
appearing on the right-hand side of the equation, if we adopt the convention
that a negative frequency is to be associated with a field amplitude that appears
as a complex conjugate. Also, the numerical factor (1, 3, or 6) that appears in
each term on the right-hand side of each equation is equal to the number of
distinct permutations of the field frequencies that contribute to that term.

Some of the nonlinear optical mixing processes described by Eq. (1.2.17)
are illustrated in Fig. 1.2.7.

1.2.10. Parametric versus Nonparametric Processes

All of the processes described thus far in this chapter are examples of what
are known as parametric processes. The origin of this terminology is obscure,
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FIGURE 1.2.7 Two of the possible mixing processes described by Eq. (1.2.17) that
can occur when three input waves interact in a medium characterized by a χ(3) sus-
ceptibility.

but the word parametric has come to denote a process in which the initial and
final quantum-mechanical states of the system are identical. Consequently, in
a parametric process population can be removed from the ground state only
for those brief intervals of time when it resides in a virtual level. According
to the uncertainty principle, population can reside in a virtual level for a time
interval of the order of h̄/δE, where δE is the energy difference between the
virtual level and the nearest real level. Conversely, processes that do involve
the transfer of population from one real level to another are known as non-
parametric processes. The processes that we describe in the remainder of the
present section are all examples of nonparametric processes.

One difference between parametric and nonparametric processes is that
parametric processes can always be described by a real susceptibility; con-
versely, nonparametric processes are described by a complex susceptibility
by means of a procedure described in the following section. Another differ-
ence is that photon energy is always conserved in a parametric process; photon
energy need not be conserved in a nonparametric process, because energy can
be transferred to or from the material medium. For this reason, photon en-
ergy level diagrams of the sort shown in Figs. 1.2.1, 1.2.2, 1.2.3, 1.2.5, and
1.2.7 to describe parametric processes play a less definitive role in describing
nonparametric processes.
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As a simple example of the distinction between parametric and nonpara-
metric processes, we consider the case of the usual (linear) index of refrac-
tion. The real part of the refractive index describes a response that occurs as a
consequence of parametric processes, whereas the imaginary part occurs as a
consequence of nonparametric processes. This conclusion holds because the
imaginary part of the refractive index describes the absorption of radiation,
which results from the transfer of population from the atomic ground state to
an excited state.

1.2.11. Saturable Absorption

One example of a nonparametric nonlinear optical process is saturable absorp-
tion. Many material systems have the property that their absorption coefficient
decreases when measured using high laser intensity. Often the dependence of
the measured absorption coefficient α on the intensity I of the incident laser
radiation is given by the expression∗

α = α0

1 + I/Is

, (1.2.18)

where α0 is the low-intensity absorption coefficient, and Is is a parameter
known as the saturation intensity.

Optical Bistability One consequence of saturable absorption is optical bista-
bility. One way of constructing a bistable optical device is to place a saturable
absorber inside a Fabry–Perot resonator, as illustrated in Fig. 1.2.8. As the
input intensity is increased, the field inside the cavity also increases, lowering
the absorption that the field experiences and thus increasing the field inten-
sity still further. If the intensity of the incident field is subsequently lowered,
the field inside the cavity tends to remain large because the absorption of the
material system has already been reduced. A plot of the input-versus-output
characteristics thus looks qualitatively like that shown in Fig. 1.2.9. Note that

FIGURE 1.2.8 Bistable optical device.

∗ This form is valid, for instance, for the case of homogeneous broadening of a simple atomic
transition.
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FIGURE 1.2.9 Typical input-versus-output characteristics of a bistable optical device.

over some range of input intensities more than one output intensity is possible.
The process of optical bistability is described in greater detail in Section 7.3.

1.2.12. Two-Photon Absorption

In the process of two-photon absorption, which is illustrated in Fig. 1.2.10,
an atom makes a transition from its ground state to an excited state by the
simultaneous absorption of two laser photons. The absorption cross section σ

describing this process increases linearly with laser intensity according to the
relation

σ = σ (2)I, (1.2.19)

where σ (2) is a coefficient that describes strength of the two-photon-
absorption process. (Recall that in conventional, linear optics the absorption
cross section σ is a constant.) Consequently, the atomic transition rate R due
to two-photon absorption scales as the square of the laser intensity. To justify
this conclusion, we note that R = σI/h̄ω, and consequently that

R = σ (2)I 2

h̄ω
. (1.2.20)

FIGURE 1.2.10 Two-photon absorption.
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FIGURE 1.2.11 Stimulated Raman scattering.

Two-photon absorption is a useful spectroscopic tool for determining the po-
sitions of energy levels that are not connected to the atomic ground state by a
one-photon transition. Two-photon absorption was first observed experimen-
tally by Kaiser and Garrett (1961).

1.2.13. Stimulated Raman Scattering

In stimulated Raman scattering, which is illustrated in Fig. 1.2.11, a photon
of frequency ω is annihilated and a photon at the Stokes shifted frequency
ωs = ω−ωv is created, leaving the molecule (or atom) in an excited state with
energy h̄ωv. The excitation energy is referred to as ωv because stimulated Ra-
man scattering was first studied in molecular systems, where h̄ωv corresponds
to a vibrational energy. The efficiency of this process can be quite large, with
often 10% or more of the power of the incident light being converted to the
Stokes frequency. In contrast, the efficiency of normal or spontaneous Raman
scattering is typically many orders of magnitude smaller. Stimulated Raman
scattering is described more fully in Chapter 10.

Other stimulated scattering processes such as stimulated Brillouin scatter-
ing and stimulated Rayleigh scattering also occur and are described more fully
in Chapter 9.

1.3. Formal Definition of the Nonlinear Susceptibility

Nonlinear optical interactions can be described in terms of a nonlinear po-
larization given by Eq. (1.1.2) only for a material system that is lossless and
dispersionless. In the present section, we consider the more general case of a
material with dispersion and/or loss. In this more general case the nonlinear
susceptibility becomes a complex quantity relating the complex amplitudes of
the electric field and polarization.
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We assume that we can represent the electric field vector of the optical wave
as the discrete sum of a number of frequency components as

Ẽ(r, t) =
∑

n

′
Ẽn(r, t), (1.3.1)

where

Ẽn(r, t) = En(r)e−iωnt + c.c. (1.3.2)

The prime on the summation sign of Eq. (1.3.1) indicates that the summation
is to be taken over positive frequencies only. It is also convenient to define the
spatially slowly varying field amplitude An by means of the relation

En(r) = Ane
ikn·r, (1.3.3)

so that

Ẽ(r, t) =
∑

n

′
Ane

i(kn·r−ωnt) + c.c. (1.3.4)

On occasion, we shall express these field amplitudes using the alternative no-
tation

En = E(ωn) and An = A(ωn), (1.3.5)

where

E(−ωn) = E(ωn)
∗ and A(−ωn) = A(ωn)

∗. (1.3.6)

Using this new notation, we can write the total field in the more compact form

Ẽ(r, t) =
∑

n

E(ωn)e
−iωnt

=
∑

n

A(ωn)e
i(kn·r−ωnt), (1.3.7)

where the unprimed summation symbol denotes a summation over all fre-
quencies, both positive and negative.

Note that according to our definition of field amplitude, the field given by

Ẽ(r, t) = E cos(k · r − ωt) (1.3.8)

is represented by the complex field amplitudes

E(ω) = 1

2
Eeik·r, E(−ω) = 1

2
Ee−ik·r, (1.3.9)
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or alternatively, by the slowly varying amplitudes

A(ω) = 1

2
E, A(−ω) = 1

2
E . (1.3.10)

In either representation, factors of 1
2 appear because the physical field ampli-

tude E has been divided equally between the positive- and negative-frequency
field components.

Using a notation similar to that of Eq. (1.3.7), we can express the nonlinear
polarization as

P̃(r, t) =
∑

n

P(ωn)e
−iωnt , (1.3.11)

where, as before, the summation extends over all positive- and negative-
frequency field components.

We now define the components of the second-order susceptibility tensor
χ

(2)
ijk (ωn + ωm,ωn,ωm) as the constants of proportionality relating the ampli-

tude of the nonlinear polarization to the product of field amplitudes according
to

Pi(ωn + ωm) = ε0

∑

jk

∑

(nm)

χ
(2)
ijk (ωn + ωm,ωn,ωm)Ej (ωn)Ek(ωm). (1.3.12)

Here the indices ijk refer to the Cartesian components of the fields. The no-
tation (nm) indicates that, in performing the summation over n and m, the
sum ωn + ωm is to be held fixed, although ωn and ωm are each allowed
to vary. Since the amplitude E(ωn) is associated with the time dependence
exp(−iωnt), and the amplitude E(ωm) is associated with the time depen-
dence exp(−iωmt), their product E(ωn)E(ωm) is associated with the time de-
pendence exp[−i(ωn + ωm)t]. Hence the product E(ωn)E(ωm) does in fact
lead to a contribution to the nonlinear polarization oscillating at frequency
ωn + ωm, as the notation of Eq. (1.3.12) suggests. Following convention, we
have written χ(2) as a function of three frequency arguments. This is tech-
nically unnecessary in that the first argument is always the sum of the other
two. To emphasize this fact, the susceptibility χ(2)(ω3,ω2,ω1) is sometimes
written as χ(2)(ω3;ω2,ω1) as a reminder that the first argument is different
from the other two, or it may be written symbolically as χ(2)(ω3 = ω2 + ω1).

Let us examine some of the consequences of the definition of the nonlinear
susceptibility as given by Eq. (1.3.12) by considering two simple examples.

1. Sum-frequency generation. We let the input field frequencies be ω1 and
ω2 and the sum frequency be ω3, so that ω3 = ω1 + ω2. Then, by carrying
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out the summation over ωn and ωm in Eq. (1.3.12), we find that

Pi(ω3) = ε0

∑

jk

[
χ

(2)
ijk (ω3,ω1,ω2)Ej (ω1)Ek(ω2)

+ χ
(2)
ijk (ω3,ω2,ω1)Ej (ω2)Ek(ω1)

]
. (1.3.13)

We now note that j and k are dummy indices and thus can be interchanged
in the second term. We next assume that the nonlinear susceptibility pos-
sesses intrinsic permutation symmetry (this symmetry is discussed in more
detail in Eq. (1.5.6) below), which states that

χ
(2)
ijk (ωm + ωn,ωm,ωn) = χ

(2)
ikj (ωm + ωn,ωn,ωm). (1.3.14)

Through use of this relation, the expression for the nonlinear polarization
becomes

Pi(ω3) = 2ε0

∑

jk

χ
(2)
ijk (ω3,ω1,ω2)Ej (ω1)Ek(ω2), (1.3.15)

and for the special case in which both input fields are polarized in the x

direction the polarization becomes

Pi(ω3) = 2ε0χ
(2)
ixx(ω3,ω1,ω2)Ex(ω1)Ex(ω2). (1.3.16)

2. Second-harmonic generation. We take the input frequency as ω1 and the
generated frequency as ω3 = 2ω1. If we again perform the summation over
field frequencies in Eq. (1.3.12), we obtain

Pi(ω3) = ε0

∑

jk

χ
(2)
ijk (ω3,ω1,ω1)Ej (ω1)Ek(ω1). (1.3.17)

Again assuming the special case of an input field polarization along the x

direction, this result becomes

Pi(ω3) = ε0χ
(2)
ixx(ω3,ω1,ω1)Ex(ω1)

2. (1.3.18)

Note that a factor of two appears in Eqs. (1.3.15) and (1.3.16), which de-
scribe sum-frequency generation, but not in Eqs. (1.3.17) and (1.3.18), which
describe second-harmonic generation. The fact that these expressions re-
main different even as ω2 approaches ω1 is perhaps at first sight surprising,
but is a consequence of our convention that χ

(2)
ijk (ω3,ω1,ω2) must approach

χ
(2)
ijk (ω3,ω1,ω1) as ω1 approaches ω2. Note that the expressions for P(2ω2)

and P(ω1 +ω2) that apply for the case of a dispersionless nonlinear suscepti-
bility (Eq. (1.2.7)) also differ by a factor of two. Moreover, one should expect
the nonlinear polarization produced by two distinct fields to be larger than that
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produced by a single field (both of the same amplitude, say), because the total
light intensity is larger in the former case.

In general, the summation over field frequencies (
∑

(nm)) in Eq. (1.3.12)
can be performed formally to obtain the result

Pi(ωn + ωm) = ε0D
∑

jk

χ
(2)
ijk (ωn + ωm,ωn,ωm)Ej (ωn)Ek(ωm),

(1.3.19)

where D is known as the degeneracy factor and is equal to the number of
distinct permutations of the applied field frequencies ωn and ωm.

The expression (1.3.12) defining the second-order susceptibility can readily
be generalized to higher-order interactions. In particular, the components of
the third-order susceptibility are defined as the coefficients relating the ampli-
tudes according to the expression

Pi(ωo + ωn + ωm) = ε0

∑

jkl

∑

(mno)

χ
(3)
ijkl(ω0 + ωn + ωm,ωo,ωn,ωm)

×Ej(ωo)Ek(ωn)El(ωm). (1.3.20)

We can again perform the summation over m, n, and o to obtain the result

Pi(ωo + ωn + ωm) = ε0D
∑

jkl

χ
(3)
ijkl(ω0 + ωn + ωm,ωo,ωn,ωm)

× Ej(ω0)Ek(ωn)El(ωm), (1.3.21)

where the degeneracy factor D represents the number of distinct permutations
of the frequencies ωm, ωn, and ωo.

1.4. Nonlinear Susceptibility of a Classical Anharmonic Oscillator

The Lorentz model of the atom, which treats the atom as a harmonic oscillator,
is known to provide a very good description of the linear optical properties of
atomic vapors and of nonmetallic solids. In the present section, we extend the
Lorentz model by allowing the possibility of a nonlinearity in the restoring
force exerted on the electron. The details of the analysis differ depending
upon whether or not the medium possesses inversion symmetry.∗ We first treat
the case of a noncentrosymmetric medium, and we find that such a medium

∗ The role of symmetry in determining the nature of the nonlinear susceptibilty is discussed from a
more fundamental point of view in Section 1.5. See especially the treatment leading from Eq. (1.5.31)
to (1.5.35).
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can give rise to a second-order optical nonlinearity. We then treat the case of
a medium that possesses a center of symmetry and find that the lowest-order
nonlinearity that can occur in this case is a third-order nonlinear susceptibility.
Our treatment is similar to that of Owyoung (1971).

The primary shortcoming of the classical model of optical nonlinearities
presented here is that this model ascribes a single resonance frequency (ω0)

to each atom. In contrast, the quantum-mechanical theory of the nonlinear
optical susceptibility, to be developed in Chapter 3, allows each atom to pos-
sess many energy eigenvalues and hence more than one resonance frequency.
Since the present model allows for only one resonance frequency, it cannot
properly describe the complete resonance nature of the nonlinear susceptibil-
ity (such as, for example, the possibility of simultaneous one- and two-photon
resonances). However, it provides a good description for those cases in which
all of the optical frequencies are considerably smaller than the lowest elec-
tronic resonance frequency of the material system.

1.4.1. Noncentrosymmetric Media

For the case of noncentrosymmetric media, we take the equation of motion of
the electron position x̃ to be of the form

¨̃x + 2γ ˙̃x + ω2
0x̃ + ax̃2 = −eẼ(t)/m. (1.4.1)

In this equation we have assumed that the applied electric field is given by
Ẽ(t), that the charge of the electron is −e, that there is a damping force of the
form∗ −2mγ ˙̃x, and that the restoring force is given by

F̃restoring = −mω2
0x̃ − max̃2, (1.4.2)

where a is a parameter that characterizes the strength of the nonlinearity. We
obtain this form by assuming that the restoring force is a nonlinear function
of the displacement of the electron from its equilibrium position and retaining
the linear and quadratic terms in the Taylor series expansion of the restoring
force in the displacement x̃. We can understand the nature of this form of the
restoring force by noting that it corresponds to a potential energy function of
the form

U(x̃) = −
∫

F̃restoring dx̃ = 1

2
mω2

0x̃
2 + 1

3
max̃3. (1.4.3)

∗ The factor of two is introduced to make γ the dipole damping rate. 2γ is therefore the full width
at half maximum in angular frequency units of the atomic absorption profile in the limit of linear
response.
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FIGURE 1.4.1 Potential energy function for a noncentrosymmetric medium.

Here the first term corresponds to a harmonic potential and the second term
corresponds to an anharmonic correction term, as illustrated in Fig. 1.4.1.
This model corresponds to the physical situation of electrons in real mate-
rials, because the actual potential well that the atomic electron feels is not
perfectly parabolic. The present model can describe only noncentrosymmet-
ric media because we have assumed that the potential energy function U(x̃)

of Eq. (1.4.3) contains both even and odd powers of x̃; for a centrosymmetric
medium only even powers of x̃ could appear, because the potential function
U(x̃) must possess the symmetry U(x̃) = U(−x̃). For simplicity, we have
written Eq. (1.4.1) in the scalar-field approximation; note that we cannot treat
the tensor nature of the nonlinear susceptibility without making explicit as-
sumptions regarding the symmetry properties of the material.

We assume that the applied optical field is of the form

Ẽ(t) = E1e
−iω1t + E2e

−iω2t + c.c. (1.4.4)

No general solution to Eq. (1.4.1) for an applied field of the form (1.4.4) is
known. However, if the applied field is sufficiently weak, the nonlinear term
ax̃2 will be much smaller than the linear term ω2

0x̃ for any displacement x̃

that can be induced by the field. Under this circumstance, Eq. (1.4.1) can be
solved by means of a perturbation expansion. We use a procedure analogous
to that of Rayleigh–Schrödinger perturbation theory in quantum mechanics.
We replace Ẽ(t) in Eq. (1.4.1) by λẼ(t), where λ is a parameter that ranges
continuously between zero and one and that will be set equal to one at the end
of the calculation. The expansion parameter λ thus characterizes the strength
of the perturbation. Equation (1.4.1) then becomes

¨̃x + 2γ ˙̃x + ω2
0x̃ + ax̃2 = −λeẼ(t)/m. (1.4.5)



24 1 ♦ The Nonlinear Optical Susceptibility

We now seek a solution to Eq. (1.4.5) in the form of a power series expan-
sion in the strength λ of the perturbation, that is, a solution of the form

x̃ = λx̃(1) + λ2x̃(2) + λ3x̃(3) + · · · . (1.4.6)

In order for Eq. (1.4.6) to be a solution to Eq. (1.4.5) for any value of the
coupling strength λ, we require that the terms in Eq. (1.4.5) proportional to λ,
λ2, λ3, etc., each satisfy the equation separately. We find that these terms lead
respectively to the equations

¨̃x(1) + 2γ ˙̃x(1) + ω2
0x̃

(1) = −eẼ(t)/m, (1.4.7a)

¨̃x(2) + 2γ ˙̃x(2) + ω2
0x̃

(2) + a
[
x̃(1)

]2 = 0, (1.4.7b)

¨̃x(3) + 2γ ˙̃x(3) + ω2
0x̃

(3) + 2ax̃(1)x̃(2) = 0, etc. (1.4.7c)

We see from Eq. (1.4.7a) that the lowest-order contribution x̃(1) is governed
by the same equation as that of the conventional (i.e., linear) Lorentz model.
Its steady-state solution is thus given by

x̃(1)(t) = x(1)(ω1)e
−iω1t + x(1)(ω2)e

−iω2t + c.c., (1.4.8)

where the amplitudes x(1)(ωj ) have the form

x(1)(ωj ) = − e

m

Ej

D(ωj )
, (1.4.9)

where we have introduced the complex denominator function

D(ωj ) = ω2
0 − ω2

j − 2iωjγ. (1.4.10)

This expression for x̃(1)(t) is now squared and substituted into Eq. (1.4.7b),
which is solved to obtain the lowest-order correction term x̃(2). The square
of x̃(1)(t) contains the frequencies ±2ω1, ±2ω2, ±(ω1 + ω2), ±(ω1 − ω2),
and 0. To determine the response at frequency 2ω1, for instance, we must
solve the equation

¨̃x(2) + 2γ ˙̃x(2) + ω2
0x̃

(2) = −a(eE1/m)2e−2iω1t

D2(ω1)
. (1.4.11)

We seek a steady-state solution of the form

x̃(2)(t) = x(2)(2ω1)e
−2iω1t . (1.4.12)

Substitution of Eq. (1.4.12) into Eq. (1.4.11) leads to the result

x(2)(2ω1) = −a(e/m)2E2
1

D(2ω1)D2(ω1)
, (1.4.13)
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where we have made use of the definition (1.4.10) of the function D(ωj ).
Analogously, the amplitudes of the responses at the other frequencies are
found to be

x(2)(2ω2) = −a(e/m)2E2
2

D(2ω2)D2(ω2)
, (1.4.14a)

x(2)(ω1 + ω2) = −2a(e/m)2E1E2

D(ω1 + ω2)D(ω1)D(ω2)
, (1.4.14b)

x(2)(ω1 − ω2) = −2a(e/m)2E1E
∗
2

D(ω1 − ω2)D(ω1)D(−ω2)
, (1.4.14c)

x(2)(0) = −2a(e/m)2E1E
∗
1

D(0)D(ω1)D(−ω1)
+ −2a(e/m)2E2E

∗
2

D(0)D(ω2)D(−ω2)
.

(1.4.14d)

We next express these results in terms of the linear (χ(1)) and nonlinear
(χ(2)) susceptibilities. The linear susceptibility is defined through the relation

P (1)(ωj ) = ε0χ
(1)(ωj )E(ωj ). (1.4.15)

Since the linear contribution to the polarization is given by

P (1)(ωj ) = −Nex(1)(ωj ), (1.4.16)

where N is the number density of atoms, we find using Eqs. (1.4.8) and (1.4.9)
that the linear susceptibility is given by

χ(1)(ωj ) = N(e2/m)

ε0D(ωj )
. (1.4.17)

The nonlinear susceptibilities are calculated in an analogous manner. The
nonlinear susceptibility describing second-harmonic generation is defined by
the relation

P (2)(2ω1) = ε0χ
(2)(2ω1,ω1,ω1)E(ω1)

2, (1.4.18)

where P (2)(2ω1) is the amplitude of the component of the nonlinear polariza-
tion oscillating at frequency 2ω1 and is defined by the relation

P (2)(2ω1) = −Nex(2)(2ωi). (1.4.19)

Comparison of these equations with Eq. (1.4.13) gives

χ(2)(2ω1,ω1,ω1) = N(e3/m2)a

ε0D(2ω1)D2(ω1)
. (1.4.20)
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Through use of Eq. (1.4.17), this result can be written instead in terms of the
product of linear susceptibilities as

χ(2)(2ω1,ω1,ω1) = ε2
0ma

N2e3
χ(1)(2ω1)

[
χ(1)(ω1)

]2
. (1.4.21)

The nonlinear susceptibility for second-harmonic generation of the ω2 field
is obtained trivially from Eqs. (1.4.20) and (1.4.21) through the substitution
ω1 → ω2.

The nonlinear susceptibility describing sum-frequency generation is ob-
tained from the relations

P (2)(ω1 + ω2) = 2ε0χ
(2)(ω1 + ω2,ω1,ω2)E(ω1)E(ω2) (1.4.22)

and

P (2)(ω1 + ω2) = −Nex(2)(ω1 + ω2). (1.4.23)

Note that in this case the relation defining the nonlinear susceptibility con-
tains a factor of two because the two input fields are distinct, as discussed in
relation to Eq. (1.3.19). By comparison of these equations with (1.4.14b), the
nonlinear susceptibility is seen to be given by

χ(2)(ω1 + ω2,ω1,ω2) = N(e3/m2)a

ε0D(ω1 + ω2)D(ω1)D(ω2)
, (1.4.24)

which can be expressed in terms of the product of linear susceptibilities as

χ(2)(ω1 + ω2,ω1,ω2) = ε2
0ma

N2e3
χ(1)(ω1 + ω2)χ

(1)(ω1)χ
(1)(ω2). (1.4.25)

It can be seen by comparison of Eqs. (1.4.20) and (1.4.24) that, as ω2 ap-
proaches ω1, χ(2)(ω1 + ω2,ω1,ω2) approaches χ(2)(2ω1,ω1,ω1).

The nonlinear susceptibilities describing the other second-order processes
are obtained in an analogous manner. For difference-frequency generation we
find that

χ(2)(ω1 − ω2,ω1,−ω2) = N(e3/ε0m
2)a

D(ω1 − ω2)D(ω1)D(−ω2)

= ε2
0ma

N2e3
χ(1)(ω1 − ω2)χ

(1)(ω1)χ
(1)(−ω2),

(1.4.26)
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and for optical rectification we find that

χ(2)(0,ω1,−ω1) = N(e3/m2)a

ε0D(0)D(ω1)D(−ω1)

= ε2
0ma

N2e3
χ(1)(0)χ(1)(ω1)χ

(1)(−ω1). (1.4.27)

The analysis just presented shows that the lowest-order nonlinear contri-
bution to the polarization of a noncentrosymmetric material is second order
in the applied field strength. This analysis can readily be extended to include
higher-order effects. The solution to Eq. (1.4.7c), for example, leads to a third-
order or χ(3) susceptibility, and more generally terms proportional to λn in the
expansion described by Eq. (1.4.6) lead to a χ(n) susceptibility.

1.4.2. Miller’s Rule

An empirical rule due to Miller (Miller, 1964; see also Garrett and Robinson,
1966) can be understood in terms of the calculation just presented. Miller
noted that the quantity

χ(2)(ω1 + ω2, ω1, ω2)

χ(1)(ω1 + ω2)χ(1)(ω1)χ(1)(ω2)
(1.4.28)

is nearly constant for all noncentrosymmetric crystals. By comparison with
Eq. (1.4.25), we see this quantity will be constant only if the combination

maε2
0

N2e3
(1.4.29)

is nearly constant. In fact, the atomic number density N is nearly the same
(∼1022 cm−3) for all condensed matter, and the parameters m and e are fun-
damental constants. We can estimate the size of the nonlinear coefficient a by
noting that the linear and nonlinear contributions to the restoring force given
by Eq. (1.4.2) would be expected to become comparable when the displace-
ment x̃ of the electron from its equilibrium position is approximately equal to
the size of the atom. This distance is of the order of the separation between
atoms—that is, of the lattice constant d . This reasoning leads to the order-of-
magnitude estimate that mω2

0d = mad2 or that

a = ω2
0

d
. (1.4.30)

Since ω0 and d are roughly the same for most solids, the quantity a would
also be expected to be roughly the same for all materials where it does not
vanish by reasons of symmetry.
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We can also make use of the estimate of the nonlinear coefficient a given
by Eq. (1.4.30) to estimate of the size of the second-order susceptibility under
highly nonresonant conditions. If we replace D(ω) by ω2

0 in the denominator
of Eq. (1.4.24), set N equal to 1/d3, and set a equal to ω2

0/d , we find that χ(2)

is given approximately by

χ(2) = e3

ε0m2ω4
0d

4
. (1.4.31)

Using the values ω0 = 1 × 1016 rad/s, d = 3 Å, e = 1.6 × 10−19 C, and
m = 9.1 × 10−31 kg, we find that

χ(2) � 6.9 × 10−12 m/V, (1.4.32)

which is in good agreement with the measured values presented in Table 1.5.3
(see p. 50).

1.4.3. Centrosymmetric Media

For the case of a centrosymmetric medium, we assume that the electronic
restoring force is given not by Eq. (1.4.2) but rather by

F̃restoring = −mω2
0x̃ + mbx̃3, (1.4.33)

where b is a parameter that characterizes the strength of the nonlinearity. This
restoring force corresponds to the potential energy function

U(x̃) = −
∫

F̃restoringdx̃ = 1

2
mω2

0x̃
2 − 1

4
mbx̃4. (1.4.34)

This potential function is illustrated in the Fig. 1.4.2 (for the usual case in
which b is positive) and is seen to be symmetric under the operation x̃ → −x̃,
which it must be for a medium that possesses a center of inversion symmetry.
Note that −mbx̃4/4 is simply the lowest-order correction term to the parabolic
potential well described by the term 1

2mω2
0x̃

2. We assume that the electronic
displacement x̃ never becomes so large that it is necessary to include higher-
order terms in the potential function.

We shall see below that the lowest-order nonlinear response resulting from
the restoring force of Eq. (1.4.33) is a third-order contribution to the polar-
ization, which can be described by a χ(3) susceptibility. As in the case of
non-centrosymmetric media, the tensor properties of this susceptibility can-
not be specified unless the internal symmetries of the medium are completely
known. One of the most important cases is that of a material that is isotropic
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FIGURE 1.4.2 Potential energy function for a centrosymmetric medium.

(as well as being centrosymmetric). Examples of such materials are glasses
and liquids. In such a case, we can take the restoring force to have the form

F̃restoring = −mω2
0 r̃ + mb(r̃ · r̃)r̃. (1.4.35)

The second contribution to the restoring force must have the form shown be-
cause it is the only form that is third-order in the displacement r̃ and is di-
rected in the r̃ direction, which is the only possible direction for an isotropic
medium.

The equation of motion for the electron displacement from equilibrium is
thus

¨̃r + 2γ ˙̃r + ω2
0 r̃ − b(r̃ · r̃)r̃ = −eẼ(t)/m. (1.4.36)

We assume that the applied field is given by

Ẽ(t) = E1e
−iω1t + E2e

−iω2t + E3e
−iω3t + c.c.; (1.4.37)

we allow the field to have three distinct frequency components because this is
the most general possibility for a third-order interaction. However, the algebra
becomes very tedious if all three terms are written explicitly, and hence we
express the applied field as

Ẽ(t) =
∑

n

E(ωn)e
−iωnt . (1.4.38)

The method of solution is analogous to that used above for a noncentrosym-
metric medium. We replace Ẽ(t) in Eq. (1.4.36) by λẼ(t), where λ is a pa-
rameter that characterizes the strength of the perturbation and that is set equal
to unity at the end of the calculation. We seek a solution to Eq. (1.4.36) having
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the form of a power series in the parameter λ:

r̃(t) = λr̃(1)(t) + λ2r̃(2)(t) + λ3r̃(3)(t) + · · · . (1.4.39)

We insert Eq. (1.4.39) into Eq. (1.4.36) and require that the terms proportional
to λn vanish separately for each value of n. We thereby find that

¨̃r(1) + 2γ ˙̃r(1) + ω2
0 r̃(1) = −eẼ(t)/m, (1.4.40a)

¨̃r(2) + 2γ ˙̃r(2) + ω2
0 r̃(2) = 0, (1.4.40b)

¨̃r(3) + 2γ ˙̃r(3) + ω2
0 r̃(3) − b

(
r̃(1) · r̃(1)

)
r̃(1) = 0 (1.4.40c)

for n = 1, 2, and 3, respectively. Equation (1.4.40a) is simply the vector ver-
sion of Eq. (1.4.7a), encountered above. Its steady-state solution is

r̃(1)(t) =
∑

n

r(1)(ωn)e
−iωnt , (1.4.41a)

where

r(1)(ωn) = −eE(ωn)/m

D(ωn)
(1.4.41b)

with D(ωn) given as above by D(ωn) = ω2
0 − ω2

n − 2iωnγ . Since the polar-
ization at frequency ωn is given by

P(1)(ωn) = −Ner(1)(ωn), (1.4.42)

we can describe the Cartesian components of the polarization through the
relation

P
(1)
i (ωn) = ε0

∑

j

χ
(1)
ij (ωn)Ej (ωn). (1.4.43a)

Here the linear susceptibility is given by

χ
(1)
ij (ωn) = χ(1)(ωn)δij (1.4.43b)

with χ(1)(ωn) given as in Eq. (1.4.17) by

χ(1)(ωn) = Ne2/m

ε0D(ωn)
(1.4.43c)

and where δij is the Kronecker delta, which is defined such that δij = 1 for
i = j and δij = 0 for i 
= j .

The second-order response of the system is described by Eq. (1.4.40b).
Since this equation is damped but not driven, its steady-state solution
vanishes, that is,

r̃(2) = 0. (1.4.44)
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To calculate the third-order response, we substitute the expression for
r̃(1)(t) given by Eq. (1.4.41a) into Eq. (1.4.40c), which becomes

¨̃r(3) + 2γ ˙̃r(3) + ω2
0 r̃(3) = −

∑

mnp

be3[E(ωm) · E(ωn)]E(ωp)

m3D(ωm)D(ωn)D(ωp)

× e−i(ωm+ωn+ωp)t . (1.4.45)

Because of the summation over m, n, and p, the right-hand side of this equa-
tion contains many different frequencies. We denote one of these frequencies
by ωq = ωm + ωn + ωp . The solution to Eq. (1.4.45) can then be written in
the form

r̃(3)(t) =
∑

q

r(3)(ωq)e−iωq t . (1.4.46)

We substitute Eq. (1.4.46) into Eq. (1.4.45) and find that r(3)(ωq) is given by

(−ω2
q − iωq2γ + ω2

0

)
r(3)(ωq) = −

∑

(mnp)

be3[E(ωm) · E(ωn)]E(ωp)

m3D(ωm)D(ωn)D(ωp)
,

(1.4.47)

where the summation is to be carried out over frequencies ωm, ωn, and ωp

with the restriction that ωm +ωn +ωp must equal ωq . Since the coefficient of
r(3)(ωq) on the left-hand side is just D(ωq), we obtain

r(3)(ωq) = −
∑

(mnp)

be3[E(ωm) · E(ωn)]E(ωp)

m3D(ωq)D(ωm)D(ωn)D(ωp)
. (1.4.48)

The amplitude of the polarization component oscillating at frequency ωq then
is given in terms of this amplitude by

P(3)(ωq) = −Ner(3)(ωq). (1.4.49)

We next recall the definition of the third-order nonlinear susceptibility
Eq. (1.3.20),

P
(3)
i (ωq) = ε0

∑

jkl

∑

(mnp)

χ
(3)
ijkl(ωq,ωm,ωn,ωp)Ej (ωm)Ek(ωn)El(ωp).

(1.4.50)

Since this equation contains a summation over the dummy variables m, n,
and p, there is more than one possible choice for the expression for the nonlin-
ear susceptibility. An obvious choice for this expression for the susceptibility,
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based on the way in which Eqs. (1.4.48) and (1.4.49) are written, is

χ
(3)
ijkl(ωq,ωm,ωn,ωp) = Nbe4δjkδil

ε0m3D(ωq)D(ωm)D(ωn)D(ωp)
. (1.4.51)

While Eq. (1.4.51) is a perfectly adequate expression for the nonlinear sus-
ceptibility, it does not explicitly show the full symmetry of the interaction
in terms of the arbitrariness of which field we call Ej(ωm), which we call
Ek(ωn), and which we call El(ωp). It is conventional to define nonlinear
susceptibilities in a manner that displays this symmetry, which is known as
intrinsic permutation symmetry. Since there are six possible permutations of
the orders in which Ej(ωm), Ek(ωn), and El(ωp) may be taken, we define
the third-order susceptibility to be one-sixth of the sum of the six expressions
analogous to Eq. (1.4.51) with the input fields taken in all possible orders.
When we carry out this prescription, we find that only three distinct contribu-
tions occur and that the resulting form for the nonlinear susceptibility is given
by

χ
(3)
ijkl(ωq,ωm,ωn,ωp) = Nbe4[δij δkl + δikδjl + δilδjk]

3ε0m3D(ωq)D(ωm)D(ωn)D(ωp)
. (1.4.52)

This expression can be rewritten in terms of the linear susceptibilities at the
four different frequencies ωq,ωm,ωn, and ωp by using Eq. (1.4.43c) to elim-
inate the resonance denominator factors D(ω). We thereby obtain

χ
(3)
ijkl(ωq,ωm,ωn,ωp) = bmε3

0

3N3e4

[
χ(1)(ωq)χ(1)(ωm)χ(1)(ωn)χ

(1)(ωp)
]

× [δij δkl + δikδjl + δilδjk]. (1.4.53)

We can estimate the value of the phenomenological constant b that appears
in this result by means of an argument analogous to that used above (see
Eq. (1.4.30)) to estimate the value of the constant a that appears in the ex-
pression for χ(2). We assume that the linear and nonlinear contributions to the
restoring force given by Eq. (1.4.33) will become comparable in magnitude
when the displacement x̃ becomes comparable to the atomic dimension d , that
is, when mω2

0d = mbd3, which implies that

b = ω2
0

d2
. (1.4.54)

Using this expression for b, we can now estimate the value of the nonlinear
susceptibility. For the case of nonresonant excitation, D(ω) is approximately
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equal to ω2
0, and hence from Eq. (1.4.52) we obtain

χ(3) � Nbe4

ε0m3ω8
0

= e4

ε0m3ω6
0d

5
. (1.4.55)

Taking d = 3 Å and ω0 = 7 × 1015 rad/sec, we obtain

χ(3) � 344 pm2/V2 (1.4.56)

We shall see in Chapter 4 that this value is typical of the nonlinear suscepti-
bility of many materials.

1.5. Properties of the Nonlinear Susceptibility

In this section we study some of the formal symmetry properties of the non-
linear susceptibility. Let us first see why it is important that we understand
these symmetry properties. We consider the mutual interaction of three waves
of frequencies ω1, ω2, and ω3 = ω1 + ω2, as illustrated in Fig. 1.5.1. A com-
plete description of the interaction of these waves requires that we know the
nonlinear polarizations P(ωi) influencing each of them. Since these quantities
are given in general (see also Eq. (1.3.12)) by the expression

Pi(ωn + ωm) = ε0

∑

jk

∑

(nm)

χ
(2)
ijk (ωn + ωm,ωn,ωm)Ej (ωn)Ek(ωm), (1.5.1)

we therefore need to determine the six tensors

χ
(2)
ijk (ω1,ω3,−ω2), χ

(2)
ijk (ω1,−ω2,ω3), χ

(2)
ijk (ω2,ω3,−ω1),

χ
(2)
ijk (ω2,−ω1,ω3), χ

(2)
ijk (ω3,ω1,ω2), and χ

(2)
ijk (ω3,ω2,ω1)

and six additional tensors in which each frequency is replaced by its negative.
In these expressions, the indices i, j , and k can independently take on the
values x, y, and z. Since each of these 12 tensors thus consists of 27 Cartesian
components, as many as 324 different (complex) numbers need to be specified
in order to describe the interaction.

FIGURE 1.5.1 Optical waves of frequencies ω1, ω2, and ω3 = ω1 + ω2 interact in a
lossless second-order nonlinear optical medium.
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Fortunately, there are a number of restrictions resulting from symmetries
that relate the various components of χ(2), and hence far fewer than 324 num-
bers are usually needed to describe the nonlinear coupling. In this section, we
study some of these formal properties of the nonlinear susceptibility. The dis-
cussion will deal primarily with the second-order χ(2) susceptibility, but can
readily be extended to χ(3) and higher-order susceptibilities.

1.5.1. Reality of the Fields

Recall that the nonlinear polarization describing the sum-frequency response
to input fields at frequencies ωn and ωm has been represented as

P̃i(r, t) = Pi(ωn + ωm)e−i(ωn+ωm)t + Pi(−ωn − ωm)ei(ωn+ωm)t . (1.5.2)

Since P̃i(r, t) is a physically measurable quantity, it must be purely real, and
hence its positive- and negative-frequency components must be related by

Pi(−ωn − ωm) = Pi(ωn + ωm)∗. (1.5.3)

The electric field must also be a real quantity, and its complex frequency com-
ponents must obey the analogous conditions:

Ej(−ωn) = Ej(ωn)
∗, (1.5.4a)

Ek(−ωm) = Ek(ωm)∗. (1.5.4b)

Since the fields and polarization are related to each other through the second-
order susceptibility of Eq. (1.5.1), we conclude that the positive- and negative-
frequency components of the susceptibility must be related according to

χ
(2)
ijk (−ωn − ωm,−ωn,−ωm) = χ

(2)
ijk (ωn + ωm,ωn,ωm)∗. (1.5.5)

1.5.2. Intrinsic Permutation Symmetry

Earlier we introduced the concept of intrinsic permutation symmetry when we
rewrote the expression (1.4.51) for the nonlinear susceptibility of a classical,
anharmonic oscillator in the conventional form of Eq. (1.4.52). In the present
section, we treat the concept of intrinsic permutation symmetry from a more
general point of view.

According to Eq. (1.5.1), one of the contributions to the nonlinear polar-
ization Pi(ωn + ωm) is the product χ

(2)
ijk (ωn + ωm,ωn,ωm)Ej (ωn)Ek(ωm).

However, since j , k, n, and m are dummy indices, we could just as well have
written this contribution with n interchanged with m and with j interchanged
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with k, that is, as χ
(2)
ikj (ωn + ωm,ωm,ωn)Ek(ωm)Ej (ωn). These two expres-

sions are numerically equal if we require that the nonlinear susceptibility be
unchanged by the simultaneous interchange of its last two frequency argu-
ments and its last two Cartesian indices:

χ
(2)
ijk (ωn + ωm,ωn,ωm) = χ

(2)
ikj (ωn + ωm,ωm,ωn). (1.5.6)

This property is known as intrinsic permutation symmetry. More physically,
this condition is simply a statement that it cannot matter which is the first field
and which is the second field in products such as Ej(ωn)Ek(ωm).

Note that this symmetry condition is introduced purely as a matter of conve-
nience. For example, we could set one member of the pair of elements shown
in Eq. (1.5.6) equal to zero and double the value of the other member. Then,
when the double summation of Eq. (1.5.1) was carried out, the result for the
physically meaningful quantity Pj (ωn + ωm) would be left unchanged.

This symmetry condition can also be derived from a more general point
of view using the concept of the nonlinear response function (Butcher, 1965;
Flytzanis, 1975).

1.5.3. Symmetries for Lossless Media

Two additional symmetries of the nonlinear susceptibility tensor occur for the
case of a lossless nonlinear medium.

The first of these conditions states that for a lossless medium all of the com-
ponents of χ

(2)
ijk (ωn +ωm,ωn,ωm) are real. This result is obeyed for the classi-

cal anharmonic oscillator described in Section 1.4, as can be verified by evalu-
ating the expression for χ(2) in the limit in which all of the applied frequencies
and their sums and differences are significantly different from the resonance
frequency. The general proof that χ(2) is real for a lossless medium is ob-
tained by verifying that the quantum-mechanical expression for χ(2) (which
is derived in Chapter 3) is also purely real in this limit.

The second of these new symmetries is full permutation symmetry. This
condition states that all of the frequency arguments of the nonlinear suscep-
tibility can be freely interchanged, as long as the corresponding Cartesian
indices are interchanged simultaneously. In permuting the frequency argu-
ments, it must be recalled that the first argument is always the sum of the
latter two, and thus that the signs of the frequencies must be inverted when
the first frequency is interchanged with either of the latter two. Full permuta-
tion symmetry implies, for instance, that

χ
(2)
ijk (ω3 = ω1 + ω2) = χ

(2)
jki(−ω1 = ω2 − ω3). (1.5.7)
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However, according to Eq. (1.5.5), the right-hand side of this equation is equal
to χ

(2)
jki(ω1 = −ω2 + ω3)

∗, which, due to the reality of χ(2) for a lossless

medium, is equal to χ
(2)
jki(ω1 = −ω2 + ω3). We hence conclude that

χ
(2)
ijk (ω3 = ω1 + ω2) = χ

(2)
jki(ω1 = −ω2 + ω3). (1.5.8)

By an analogous procedure, one can show that

χ
(2)
ijk (ω3 = ω1 + ω2) = χ

(2)
kij (ω2 = ω3 − ω1). (1.5.9)

A general proof of the validity of the condition of full permutation symme-
try entails verifying that the quantum-mechanical expression for χ(2) (which
is derived in Chapter 3) obeys this condition when all of the optical frequen-
cies are detuned many linewidths from the resonance frequencies of the op-
tical medium. Full permutation symmetry can also be deduced from a con-
sideration of the field energy density within a nonlinear medium, as shown
below.

1.5.4. Field Energy Density for a Nonlinear Medium

The condition that the nonlinear susceptibility must possess full permutation
symmetry for a lossless medium can be deduced from a consideration of the
form of the electromagnetic field energy within a nonlinear medium. For the
case of a linear medium, the energy density associated with the electric field

Ẽi(t) =
∑

n

Ei(ωn)e
−iωnt (1.5.10)

is given according to Poynting’s theorem as

U = 1

2

〈
D̃ · Ẽ

〉 = 1

2

∑

i

〈
D̃iẼi

〉
, (1.5.11)

where the angular brackets denote a time average. Since the displacement
vector is given by

D̃i(t) = ε0

∑

j

εij Ẽj (t) = ε0

∑

j

∑

n

εij (ωn)Ej (ωn)e
−iωnt , (1.5.12)

where the dielectric tensor is given by

εij (ωn) = δij + χ
(1)
ij (ωn), (1.5.13)
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we can write the energy density as

U = ε0

2

∑

i

∑

n

E∗
i (ωn)Ei(ωn) + ε0

2

∑

ij

∑

n

E∗
i (ωn)χ

(1)
ij (ωn)Ej (ωn).

(1.5.14)

Here the first term represents the energy density associated with the electric
field in vacuum and the second term represents the energy stored in the polar-
ization of the medium.

For the case of a nonlinear medium, the expression for the electric field
energy density (Armstrong et al., 1962; Kleinman, 1962; Pershan, 1963) as-
sociated with the polarization of the medium takes the more general form

U = ε0

2

∑

ij

∑

n

χ
(1)
ij (ωn)E

∗
i (ωn)Ej (ωn)

+ ε0

3

∑

ijk

∑

mn

χ
(2)′
ijk (−ωn − ωm,ωm,ωn)E

∗
i (ωm + ωn)Ej (ωm)Ek(ωn)

+ ε0

4

∑

ijkl

∑

mno

χ
(3)′
ijkl(−ωo − ωn − ωm,ωm,ωn,ωo) (1.5.15)

× E∗
i (ωm + ωn + ωo)Ej (ωm)Ek(ωn)El(ωo) + · · · .

For the present, the quantities χ(2)′ , χ(3)′ , . . . are to be thought of simply
as coefficients in the power series expansion of U in the amplitudes of the
applied field; later these quantities will be related to the nonlinear susceptibil-
ities. Since the order in which the fields are multiplied together in determining
U is immaterial, the quantities χ(n)′ clearly possess full permutation symme-
try, that is, their frequency arguments can be freely permuted as long as the
corresponding indices are also permuted.

In order to relate the expression (1.5.15) for the energy density to the non-
linear polarization, and subsequently to the nonlinear susceptibility, we use
the result that the polarization of a medium is given (Landau and Lifshitz,
1960; Pershan, 1963) by the expression

Pi(ωn) = ∂U

∂E∗
i (ωn)

. (1.5.16)

Thus, by differentiation of Eq. (1.5.15), we obtain an expression for the linear
polarization as

P
(1)
i (ωm) = ε0

∑

j

χ
(1)
ij (ωm)Ej (ωm), (1.5.17a)
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and for the nonlinear polarization as∗

P
(2)
i (ωm + ωn) = ε0

∑

jk

∑

(mn)

χ
(2)′
ijk (−ωm − ωn,ωm,ωn)Ej (ωm)Ek(ωn)

(1.5.17b)

P
(3)
i (ωm + ωn + ωo) = ε0

∑

jkl

∑

(mno)

χ
(3)′
ijkl(−ωm − ωn − ωo,ωm,ωn,ωo)

× Ej(ωm)Ek(ωn)El(ωo). (1.5.17c)

We note that these last two expressions are identical to Eqs. (1.3.12) and
(1.3.20), which define the nonlinear susceptibilities (except for the unimpor-
tant fact that the quantities χ(n) and χ(n)′ use opposite conventions regarding
the sign of the first frequency argument). Since the quantities χ(n)′ possess
full permutation symmetry, we conclude that the susceptibilities χ(n) do also.
Note that this demonstration is valid only for the case of a lossless medium,
because only in this case is the internal energy a function of state.

1.5.5. Kleinman’s Symmetry

Quite often nonlinear optical interactions involve optical waves whose fre-
quencies ωi are much smaller than the lowest resonance frequency of the
material system. Under these conditions, the nonlinear susceptibility is es-
sentially independent of frequency. For example, the expression (1.4.24) for
the second-order susceptibility of an anharmonic oscillator predicts a value of
the susceptibility that is essentially independent of the frequencies of the ap-
plied waves whenever these frequencies are much smaller than the resonance
frequency ω0. Furthermore, under conditions of low-frequency excitation the
system responds essentially instantaneously to the applied field, and we have
seen in Section 1.2 that under such conditions the nonlinear polarization can
be described in the time domain by the relation

P̃ (t) = ε0χ
(2)Ẽ2(t), (1.5.18)

where χ(2) can be taken to be a constant.
Since the medium is necessarily lossless whenever the applied field fre-

quencies ωi are very much smaller than the resonance frequency ω0, the con-
dition of full permutation symmetry (1.5.7) must be valid under these circum-
stances. This condition states that the indices can be permuted as long as the

∗ In performing the differentiation, the prefactors 1
2 , 1

3 , 1
4 , . . . of Eq. (1.5.15) disappear because 2,

3, 4, . . . equivalent terms appear as the result of the summations over the frequency arguments.
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frequencies are permuted simultaneously, and it leads to the conclusion that

χ
(2)
ijk (ω3 = ω1 + ω2) = χ

(2)
jki(ω1 = −ω2 + ω3) = χ

(2)
kij (ω2 = ω3 − ω1)

= χ
(2)
ikj (ω3 = ω2 + ω1) = χ

(2)
kj i (ω2 = −ω1 + ω3)

= χ
(2)
j ik(ω1 = ω3 − ω2).

However, under the present conditions χ(2) does not actually depend on the
frequencies, and we can therefore permute the indices without permuting the
frequencies, leading to the result

χ
(2)
ijk (ω3 = ω1 + ω2) = χ

(2)
jki(ω3 = ω1 + ω2) = χ

(2)
kij (ω3 = ω1 + ω2)

= χ
(2)
ikj (ω3 = ω1 +ω2) = χ

(2)
j ik(ω3 = ω1 +ω2)

= χ
(2)
kj i (ω3 = ω1 + ω2). (1.5.19)

This result is known as the Kleinman symmetry condition. It is valid whenever
dispersion of the susceptibility can be neglected.

1.5.6. Contracted Notation

We now introduce a notational device that is often used when the Kleinman
symmetry condition is valid. We introduce the tensor

dijk = 1

2
χ

(2)
ijk (1.5.20)

and for simplicity suppress the frequency arguments. The factor of 1
2 is a

consequence of historical convention. The nonlinear polarization can then be
written as

Pi(ωn + ωm) = ε0

∑

jk

∑

(nm)

2dijkEj (ωn)Ek(ωm). (1.5.21)

We now assume that dijk is symmetric in its last two indices. This assumption
is valid whenever Kleinman’s symmetry condition is valid and in addition is
valid in general for second-harmonic generation, since in this case ωn and ωm

are equal. We then simplify the notation by introducing a contracted matrix
dil according to the prescription

jk: 11 22 33 23,32 31,13 12,21
l: 1 2 3 4 5 6

(1.5.22)
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The nonlinear susceptibility tensor can then be represented as the 3×6 matrix

dil =
⎡

⎣
d11 d12 d13 d14 d15 d16

d21 d22 d23 d24 d25 d26

d31 d32 d33 d34 d35 d36

⎤

⎦ . (1.5.23)

If we now explicitly introduce the Kleinman symmetry condition—that is, we
assert that the indices dijk can be freely permuted, we find that not all of the
18 elements of dil are independent. For instance, we see that

d12 ≡ d122 = d212 ≡ d26 (1.5.24a)

and that

d14 ≡ d123 = d213 ≡ d25. (1.5.24b)

By applying this type of argument systematically, we find that dil has only 10
independent elements when the Kleinman symmetry condition is valid; the
form of dil under these conditions is

dil =
⎡

⎣
d11 d12 d13 d14 d15 d16

d16 d22 d23 d24 d14 d12

d15 d24 d33 d23 d13 d14

⎤

⎦ . (1.5.25)

We can describe the nonlinear polarization leading to second-harmonic gen-
eration in terms of dil by the matrix equation

⎡

⎣
Px(2ω)

Py(2ω)

Pz(2ω)

⎤

⎦ = 2ε0

⎡

⎣
d11 d12 d13 d14 d15 d16

d21 d22 d23 d24 d25 d26

d31 d32 d33 d34 d35 d36

⎤

⎦

⎡

⎢
⎢
⎢⎢
⎢
⎢
⎣

Ex(ω)2

Ey(ω)2

Ez(ω)2

2Ey(ω)Ez(ω)

2Ex(ω)Ez(ω)

2Ex(ω)Ey(ω)

⎤

⎥
⎥
⎥⎥
⎥
⎥
⎦

.

(1.5.26)

When the Kleinman symmetry condition is valid, we can describe the nonlin-
ear polarization leading to sum-frequency generation (with ω3 = ω1 + ω2) by
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the equation
⎡

⎣
Px(ω3)

Py(ω3)

Pz(ω3)

⎤

⎦ = 4ε0

⎡

⎣
d11 d12 d13 d14 d15 d16

d21 d22 d23 d24 d25 d26

d31 d32 d33 d34 d35 d36

⎤

⎦

×

⎡

⎢
⎢⎢
⎢
⎢⎢
⎣

Ex(ω1)Ex(ω2)

Ey(ω1)Ey(ω2)

Ez(ω1)Ez(ω2)

Ey(ω1)Ez(ω2) + Ez(ω1)Ey(ω2)

Ex(ω1)Ez(ω2) + Ez(ω1)Ex(ω2)

Ex(ω1)Ey(ω2) + Ey(ω1)Ex(ω2)

⎤

⎥
⎥⎥
⎥
⎥⎥
⎦

. (1.5.27)

As described above in relation to Eq. (1.3.16), the extra factor of 2 comes
from the summation over n and m in Eq. (1.5.21).

1.5.7. Effective Value of d (deff )

For a fixed geometry (i.e., for fixed propagation and polarization directions) it
is possible to express the nonlinear polarization giving rise to sum-frequency
generation by means of the scalar relationship

P(ω3) = 4ε0deffE(ω1)E(ω2), (1.5.28)

and analogously for second-harmonic generation by

P(2ω) = 2ε0deffE(ω)2, (1.5.29)

where

E(ω) = ∣
∣E(ω)

∣
∣ and P(ω) = ∣

∣P(ω)
∣
∣.

In each case, deff is obtained by first determining P explicitly through use of
Eq. (1.5.26) or (1.5.27).

A general prescription for calculating deff for each of the crystal classes
has been presented by Midwinter and Warner (1965); see also Table 3.1 of
Zernike and Midwinter (1973). They show, for example, that for a negative
uniaxial crystal of crystal class 3m the effective value of d is given by the
expression

deff = d31 sin θ − d22 cos θ sin 3φ (1.5.30a)

under conditions (known as type I conditions) such that the two lower-
frequency waves have the same polarization, and by

deff = d22 cos2 θ cos 3φ (1.5.30b)
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under conditions (known as type II conditions) such that the polarizations are
orthogonal. In these equations, θ is the angle between the propagation vector
and the crystalline z axis (the optic axis), and φ is the azimuthal angle between
the propagation vector and the xz crystalline plane.

1.5.8. Spatial Symmetry of the Nonlinear Medium

The forms of the linear and nonlinear susceptibility tensors are constrained by
the symmetry properties of the optical medium. To see why this should be so,
let us consider a crystal for which the x and y directions are equivalent but
for which the z direction is different. By saying that the x and y directions are
equivalent, we mean that if the crystal were rotated by 90 degrees about the
z axis, the crystal structure would look identical after the rotation. The z axis
is then said to be a fourfold axis of symmetry. For such a crystal, we would
expect that the optical response would be the same for an applied optical field
polarized in either the x or the y direction, and thus, for example, that the
second-order susceptibility components χ

(2)
zxx and χ

(2)
zyy would be equal.

For any particular crystal, the form of the linear and nonlinear optical sus-
ceptibilities can be determined by considering the consequences of all of the
symmetry properties for that particular crystal. For this reason, it is necessary
to determine what types of symmetry properties can occur in a crystalline
medium. By means of the mathematical method known as group theory, crys-
tallographers have found that all crystals can be classified as belonging to one
of 32 possible crystal classes depending on what is called the point group
symmetry of the crystal. The details of this classification scheme lie outside
of the subject matter of the present text.∗ However, by way of examples, a
crystal is said to belong to point group 4 if it possesses only a fourfold axis
of symmetry, to point group 3 if it possesses only a threefold axis of sym-
metry, and to belong to point group 3m if it possesses a threefold axis of
symmetry and in addition a plane of mirror symmetry perpendicular to this
axis.

1.5.9. Influence of Spatial Symmetry on the Linear Optical
Properties of a Material Medium

As an illustration of the consequences of spatial symmetry on the optical
properties of a material system, let us first consider the restrictions that this

∗ The reader who is interested in the details should consult Buerger (1963) or any of the other
books on group theory and crystal symmetry listed in the bibliography at the end of this chapter.
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symmetry imposes on the form of the linear susceptibility tensor χ(1). The
results of a group theoretical analysis shows that five different cases are pos-
sible depending on the symmetry properties of the material system. These
possibilities are summarized in Table 1.5.1. Each entry is labeled by the crys-
tal system to which the material belongs. By convention, crystals are cate-
gorized in terms of seven possible crystal systems on the basis of the form
of the crystal lattice. (Table 1.5.2 on p. 47 gives the correspondence be-
tween crystal system and each of the 32 point groups.) For completeness,
isotropic materials (such as liquids and gases) are also included in Table
1.5.1. We see from this table that cubic and isotropic materials are isotropic
in their linear optical properties, because χ(1) is diagonal with equal diag-
onal components. All of the other crystal systems are anisotropic in their
linear optical properties (in the sense that the polarization P need not be
parallel to the applied electric field E) and consequently display the prop-
erty of birefringence. Tetragonal, trigonal, and hexagonal crystals are said
to be uniaxial crystals because there is one particular direction (the z axis)
for which the linear optical properties display rotational symmetry. Crystals
of the triclinic, monoclinic, and orthorhombic systems are said to be biax-
ial.

TABLE 1.5.1 Form of the linear susceptibility tensor χ() as determined by the
symmetry properties of the optical medium, for each of the seven crystal classes
and for isotropic materials. Each nonvanishing element is denoted by its cartesian
indices

Triclinic

⎡

⎢
⎣

xx xy xz

yx yy yz

zx zy zz

⎤

⎥
⎦

Monoclinic

⎡

⎢
⎣

xx 0 xz

0 yy 0
zx 0 zz

⎤

⎥
⎦

Orthorhombic

⎡

⎢
⎣

xx 0 0
0 yy 0
0 0 zz

⎤

⎥
⎦

Tetragonal
Trigonal
Hexagonal

⎡

⎢
⎣

xx 0 0
0 xx 0
0 0 zz

⎤

⎥
⎦

Cubic
Isotropic

⎡

⎢
⎣

xx 0 0
0 xx 0
0 0 xx

⎤

⎥
⎦
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1.5.10. Influence of Inversion Symmetry on the Second-Order
Nonlinear Response

One of the symmetry properties that some but not all crystals possess is cen-
trosymmetry, also known as inversion symmetry. For a material system that is
centrosymmetric (i.e., possesses a center of inversion) the χ(2) nonlinear sus-
ceptibility must vanish identically. Since 11 of the 32 crystal classes possess
inversion symmetry, this rule is very powerful, as it immediately eliminates
all crystals belonging to these classes from consideration for second-order
nonlinear optical interactions.

Although the result that χ(2) vanishes for a centrosymmetric medium is
general in nature, we shall demonstrate this fact only for the special case of
second-harmonic generation in a medium that responds instantaneously to the
applied optical field. We assume that the nonlinear polarization is given by

P̃ (t) = ε0χ
(2)Ẽ2(t), (1.5.31)

where the applied field is given by

Ẽ(t) = E cosωt. (1.5.32)

If we now change the sign of the applied electric field Ẽ(t), the sign of the
induced polarization P̃ (t) must also change, because we have assumed that
the medium possesses inversion symmetry. Hence the relation (1.5.31) must
be replaced by

−P̃ (t) = ε0χ
(2)

[−Ẽ(t)
]2

, (1.5.33)

which shows that

−P̃ (t) = ε0χ
(2)Ẽ2(t). (1.5.34)

By comparison of this result with Eq. (1.5.31), we see that P̃ (t) must equal
−P̃ (t), which can occur only if P̃ (t) vanishes identically. This result shows
that

χ(2) = 0. (1.5.35)

This result can be understood intuitively by considering the motion of an
electron in a nonparabolic potential well. Because of the nonlinearity of the
associated restoring force, the atomic response will show significant harmonic
distortion. Part (a) of Fig. 1.5.2 shows the waveform of the incident mono-
chromatic electromagnetic wave of frequency ω. For the case of a medium
with linear response (part (b)), there is no distortion of the waveform asso-
ciated with the polarization of the medium. Part (c) shows the induced po-
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FIGURE 1.5.2 Waveforms associated with the atomic response.

larization for the case of a nonlinear medium that possesses a center of sym-
metry and whose potential energy function has the form shown in Fig. 1.4.2.
Although significant waveform distortion is evident, only odd harmonics of
the fundamental frequency are present. For the case (part (d)) of a nonlinear,
noncentrosymmetric medium having a potential energy function of the form
shown in Fig. 1.4.1, both even and odd harmonics are present in the wave-
form associated with the atomic response. Note also the qualitative difference
between the waveforms shown in parts (c) and (d). For the centrosymmet-
ric medium (part (c)), the time-averaged response is zero, whereas for the
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noncentrosymmetric medium (part (d)) the time-average response is nonzero,
because the medium responds differently to an electric field pointing, say, in
the upward direction than to one pointing downward.∗

1.5.11. Influence of Spatial Symmetry on the Second-Order
Susceptibility

We have just seen how inversion symmetry when present requires that the
second-order vanish identically. Any additional symmetry property of a non-
linear optical medium can impose additional restrictions on the form of the
nonlinear susceptibility tensor. By explicit consideration of the symmetries
of each of the 32 crystal classes, one can determine the allowed form of the
susceptibility tensor for crystals of that class. The results of such a calculation
for the second-order nonlinear optical response, which was performed origi-
nally by Butcher (1965), are presented in Table 1.5.2. Under those conditions
(described following Eq. (1.5.21)) where the second-order susceptibility can
be described using contracted notation, the results presented in Table 1.5.2
can usefully be displayed graphically. These results, as adapted from Zernike
and Midwinter (1973), are presented in Fig. 1.5.3. Note that the influence of
Kleinman symmetry is also described in the figure. As an example of how to
use the table, the diagram for a crystal of class 3m is meant to imply that the
form of the dil matrix is

dil =
⎡

⎣
0 0 0 0 d31 −d22

−d22 d22 0 d31 0 0
d31 d31 d33 0 0 0

⎤

⎦

The second-order nonlinear optical susceptibilities of a number of crystals
are summarized in Table 1.5.3. This table should be used only with some cau-
tion. There is considerable spread in the values of the nonlinear coefficients
quoted in the literature, both because of the wavelength dependence of the
nonlinear susceptibility and because of measurement inaccuracies. A detailed
analysis of the measurement of nonlinear coefficients has been presented by
Shoji et al. (1997). The references cited in the footnote to the table provide
more detailed tabulations of nonlinear coefficients.

∗ Parts (a) and (b) of Fig. 1.5.2 are plots of the function sinωt , part (c) is a plot of the function

sinωt − 0.25 sin 3ωt , and part (d) is a plot of −0.2 + sinωt + 0.2 cos 2ωt .
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TABLE 1.5.2 Form of the second-order susceptibility tensor for each of the 32
crystal classes. Each element is denoted by its Cartesian indices

Crystal System Crystal Class Nonvanishing Tensor Elements

Triclinic 1 = C1 All elements are independent and nonzero
1̄ = S2 Each element vanishes

Monoclinic 2 = C2 xyz, xzy, xxy, xyx, yxx, yyy, yzz, yzx, yxz, zyz,

zzy, zxy, zyx (twofold axis parallel to ŷ)
m = C1h xxx, xyy, xzz, xzx, xxz, yyz, yzy, yxy, yyx, zxx,

zyy, zzz, zzx, zxz (mirror plane perpendicular to ŷ)
2/m = C2h Each element vanishes

Orthorhombic 222 = D2 xyz, xzy, yzx, yxz, zxy, zyx

mm2 = C2v xzx, xxz, yyz, yzy, zxx, zyy, zzz

mmm = D2h Each element vanishes

Tetragonal 4 = C4 xyz = −yxz, xzy = −yzx, xzx = yzy, xxz = yyz,

zxx = zyy, zzz, zxy = −zyx

4̄ = S4 xyz = yxz, xzy = yzx, xzx = −yzy, xxz = −yyz,

zxx = −zyy, zxy = zyx

422 = D4 xyz = −yxz, xzy = −yzx, zxy = −zyx

4mm = C4v xzx = yzy, xxz = yyz, zxx = zyy, zzz

4̄2m = D2d xyz = yxz, xzy = yzx, zxy = zyx

4/m = C4h Each element vanishes
4/mmm = D4h Each element vanishes

Cubic 432 = O xyz = −xzy = yzx = −yxz = zxy = −zyx

4̄3m = Td xyz = xzy = yzx = yxz = zxy = zyx

23 = T xyz = yzx = zxy, xzy = yxz = zyx

m3 = Th, m3m = Oh Each element vanishes

Trigonal 3 = C3 xxx = −xyy = −yyz = −yxy, xyz = −yxz, xzy = −yzx,

xzx = yzy, xxz = yyz, yyy = −yxx = −xxy = −xyx,

zxx = zyy, zzz, zxy = −zyx

32 = D3 xxx = −xyy = −yyx = −yxy, xyz = −yxz,

xzy = −yzx, zxy = −zyx

3m = C3v xzx = yzy, xxz = yyz, zxx = zyy, zzz, yyy = −yxx =
−xxy = −xyx (mirror plane perpendicular to x̂)

3̄ = S6, 3̄m = D3d Each element vanishes

Hexagonal 6 = C6 xyz = −yxz, xzy = −yzx, xzx = yzy, xxz = yyz,

zxx = zyy, zzz, zxy = −zyx

6̄ = C3h xxx = −xyy = −yxy = −yyx,

yyy = −yxx = −xyx = −xxy

622 = D6 xyz = −yxz, xzy = −yxz, zxy = −zyx

6mm = C6v xzx = yzy, xxz = yyz, zxx = zyy, zzz

6̄m2 = D3h yyy = −yxx = −xxy = −xyx

6/m = C6h Each element vanishes
6/mmm = D6h Each element vanishes
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1.5.12. Number of Independent Elements of χ
(2)
ijk (ω3, ω2, ω1)

We remarked in relation to Eq. (1.5.1) that as many as 324 complex numbers
must be specified in order to describe the general interaction of three optical
waves. In practice, this number is often greatly reduced.

Because of the reality of the physical fields, only half of these numbers are
independent (see Eq. (1.5.5)). Furthermore, the intrinsic permutation symme-
try of χ(2) (Eq. (1.5.6)) shows that there are only 81 independent parameters.

FIGURE 1.5.3 Form of the dil matrix for the 21 crystal classes that lack inversion
symmetry. Small dot: zero coefficient; large dot: nonzero coefficient; square: coeffi-
cient that is zero when Kleinman’s symmetry condition is valid; connected symbols:
numerically equal coefficients, but the open-symbol coefficient is opposite in sign
to the closed symbol to which it is joined. Dashed connections are valid only under
Kleinman’s symmetry conditions. (After Zernike and Midwinter, 1973.)
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FIGURE 1.5.3 (continued)

For a lossless medium, all elements of χ(2) are real and the condition of full
permutation symmetry is valid, implying that only 27 of these numbers are in-
dependent. For second-harmonic generation, contracted notation can be used,
and only 18 independent elements exist. When Kleinman’s symmetry is valid,
only 10 of these elements are independent. Furthermore, any crystalline sym-
metries of the nonlinear material can reduce this number further.

1.5.13. Distinction between Noncentrosymmetric and
Cubic Crystal Classes

It is worth noting that a material can possess a cubic lattice and yet be non-
centrosymmetric. In fact, gallium arsenide is an example of a material with
just these properties. Gallium arsenide crystallizes in what is known as the
zincblende structure (named after the well-known mineral form of zinc sul-
fide), which has crystal point group 4̄3m. As can be seen from Table 1.5.2
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TABLE 1.5.3 Second-order nonlinear optical susceptibilities for several crystals

Material Point Group dil (pm/V)

Ag3AsS3 3m = C3v d22 = 18
(proustite) d15 = 11

AgGaSe2 4̄2m = D2d d36 = 33

AgSbS3 3m = C3v d15 = 8
(pyrargyrite) d22 = 9

beta-BaB2O4 (BBO) 3m = C3v d22 = 2.2
(beta barium borate)

CdGeAs2 4̄2m = D2d d36 = 235

CdS 6mm = C6v d33 = 78
d31 = −40

GaAs 4̄3m d36 = 370

KH2PO4 2m d36 = 0.43
(KDP)

KD2PO4 2m d36 = 0.42
(KD*P)

LiIO3 6 = C6 d15 = −5.5
d31 = −7

LiNbO3 3m = C3v d32 = −30
d31 = −5.9

Quartz 32 = D3 d11 = 0.3
d14 = 0.008

Notes: Values are obtained from a variety of sources. Some of the more complete tabulations are
those of R.L. Sutherland (1996), that of A.V. Smith, and the data sheets of Cleveland Crystals, Inc.

To convert to the gaussian system, multiply each entry by (3×10−8)/4π = 2.386×10−9 to obtain
d in esu units of cm/statvolt.

In any system of units, χ(2) = 2d by convention.

or from Fig. 1.5.3, materials of the 4̄3m crystal class possess a nonvanish-
ing second-order nonlinear optical response. In fact, as can be seen from
Table 1.5.3, gallium arsenide has an unusually large second-order nonlinear
susceptibility. However, as the zincblende crystal structure possesses a cu-
bic lattice, gallium arsenide does not display birefringence. We shall see in
Chapter 2 that it is necessary that a material possess adequate birefringence
in order that the phase matching condition of nonlinear optics be satisfied.
Because gallium arsenide does not possess birefringence, it cannot normally
participate in phase-matched second-order interactions.
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FIGURE 1.5.4 Illustration of (a) the diamond structure and (b) the zincblende struc-
ture. Both possess a cubic lattice and thus cannot display birefringence, but the car-
bon structure is centrosymmetric, whereas the zincblende structure is noncentrosym-
metric.

It is perhaps surprising that a material can possess the highly regular
spatial arrangement of atoms characteristic of the cubic lattice and yet be
noncentrosymmetric. This distinction can be appreciated by examination of
Fig. 1.5.4, which shows both the diamond structure (point group m3m) and
the zincblende structure (point group 4̄3m). One sees that the crystal lattice
is the same in the two cases, but that the arrangement of atoms within the
lattice allows carbon but not zincblende to possess a center of inversion sym-
metry. In detail, a point of inversion symmetry for the diamond structure is
located midway between any two nearest-neighbor carbon atoms. This sym-
metry does not occur in the zincblende structure because the nearest neighbors
are of different species.

1.5.14. Distinction between Noncentrosymmetric and Polar
Crystal Classes

As noted above, of the 32 crystal point groups, only 21 are noncentrosymmet-
ric and consequently can possess a nonzero second-order susceptibility χ(2).
A more restrictive condition is that certain crystal possess a permanent dipole
moment. Crystals of this sort are known as polar crystals, or as ferroelectric
crystals.∗ This property has important technological consequences, because
crystals of this sort can display the pyroelectric effect (a change of perma-
nent dipole moment with temperature, which can be used to construct optical

∗ The subtle distinctions among polar, pyroelectric, piezoelectric, and ferroelectric crystals are
described by Nye (1985, pp. 78–81).
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detectors)∗ or the photorefractive effect, which is described in greater detail
in Chapter 11. Group theoretical arguments (see, for instance, Nye, 1985)
demonstrate that the polar crystal classes are

1 2 3 4 6
m mm2 3m 4mm 6mm

Clearly, all polar crystal classes are noncentrosymmetric, but not all noncen-
trosymmetric crystal classes are polar. This distinction can be seen straightfor-
wardly by means of an example from molecular physics. Consider a molecule
with tetrahedral symmetry such as CCl4. In this molecule the four chlorine
ions are arranged on the vertices of a regular tetrahedron, which is centered
on the carbon ion. Clearly this arrangement cannot possess a permanent dipole
moment, but this structure is nonetheless noncentrosymmetric.

1.5.15. Influence of Spatial Symmetry on the Third-Order
Nonlinear Response

The spatial symmetry of the nonlinear optical medium also restricts the form
of the third-order nonlinear optical susceptibility. The allowed form of the sus-
ceptibility has been calculated by Butcher (1965) and has been summarized
by Hellwarth (1977); a minor correction to these results was later pointed out
by Shang and Hsu (1987). These results are presented in Table 1.5.4. Note that
for the important special case of an isotropic optical material, the results pre-
sented in Table 1.5.4 agree with the result derived explicitly in the discussion
of the nonlinear refractive index in Section 4.2.

1.6. Time-Domain Description of Optical Nonlinearities

In the preceding sections, we described optical nonlinearities in terms of the
response of an optical material to one or more essentially monochromatic
applied fields. We found that the induced nonlinear polarization consists of
a discrete summation of frequency components at the harmonics of and the
sums and differences of the frequencies present in the applied field. In partic-
ular, we described the nonlinear response in the frequency domain by relating
the frequency components P(ω) of the nonlinear polarization to those of the
applied optical field, E(ω′).

It is also possible to describe optical nonlinearities directly in the time do-
main by considering the polarization P̃ (t) that is produced by some arbitrary

∗ The operation of pyroelectric detectors is described, for instance, in Section 13.3 of Boyd (1983).
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TABLE 1.5.4 Form of the third-order susceptibility tensor χ(3) for each of the
crystal classes and for isotropic materials. Each element is denoted by its Carte-
sian indices
Isotropic

There are 21 nonzero elements, of which only 3 are independent. They are:

yyzz = zzyy = zzxx = xxzz = xxyy = yyxx,

yzyz = zyzy = zxzx = xzxz = xyxy = yxyx,

yzzy = zyyz = zxxz = xzzx = xyyx = yxxy;
and

xxxx = yyyy = zzzz = xxyy + xyxy + xyyx.

Cubic

For the two classes 23 and m3, there are 21 nonzero elements, of which only 7 are independent.
They are:

xxxx = yyyy = zzzz,

yyzz = zzxx = xxyy,

zzyy = xxzz = yyxx,

yzyz = zxzx = xyxy,

zyzy = xzxz = yxyx,

yzzy = zxxz = xyyx,

zyyz = xzzx = yxxy.

For the three classes 432, 4̄3m, and m3m, there are 21 nonzero elements, of which only 4 are indepen-
dent. They are:

xxxx = yyyy = zzzz,

yyzz = zzyy = zzxx = xxzz = xxyy = yyxx,

yzyz = zyzy = zxzx = xzxz = xyxy = yxyx,

yzzy = zyyz = zxxz = xzzx = xyyx = yxxy.

Hexagonal

For the three classes 6, 6̄, and 6/m, there are 41 nonzero elements, of which only 19 are independent.
They are:

zzzz,

xxxx = yyyy = xxyy + xyyx + xyxy,

⎧
⎪⎨

⎪⎩

xxyy = yyxx,

xyyx = yxxy,

xyxy = yxyx,

yyzz = xxzz, xyzz = −yxzz,

zzyy = zzxx, zzxy = −zzyx,

zyyz = zxxz, zxyz = −zyxz,

yzzy = xzzx, xzzy = −yzzx,

yzyz = xzxz, xzyz = −yzxz,

zyzy = zxzx, zxzy = −zyzx,

xxxy = −yyyx = yyxy + yxyy + xyyy,

⎧
⎨

⎩

yyxy = −xxyx,

yxyy = −xyxx,

xyyy = −yxxx.

(continued)
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TABLE 1.5.4 (continued)

For the four classes 622, 6mm, 6/mmm, and 6̄m2, there are 21 nonzero elements, of which only 10
are independent. They are:

zzzz,

xxxx = yyyy = xxyy + xyyx + xyxy,

⎧
⎪⎨

⎪⎩

xxyy = yyxx,

xyyx = yxxy,

xyxy = yxyx,

yyzz = xxzz,

zzyy = zzxx,

zyyz = zxxz,

yzzy = xzzx,

yzyz = xzxz,

zyzy = zxzx.

Trigonal

For the two classes 3 and 3̄, there are 73 nonzero elements, of which only 27 are independent. They
are:

zzzz,

xxxx = yyyy = xxyy + xyyx + xyxy,

⎧
⎪⎨

⎪⎩

xxyy = yyxx,

xyyx = yxxy,

xyxy = yxyx,

yyzz = xxzz, xyzz = −yxzz,

zzyy = zzxx, zzxy = −zzyx,

zyyz = zxxz, zxyz = −zyxz,

yzzy = xzzx, xzzy = −yzzx,

yzyz = xzxz, xzyz = −yzxz,

zyzy = zxzx, zxzy = −zyzx,

xxxy = −yyyx = yyxy + yxyy + xyyy,

⎧
⎪⎨

⎪⎩

yyxy = −xxyx,

yxyy = −xyxx,

xyyy = −yxxx.

yyyz = −yxxz = −xyxz = −xxyz,

yyzy = −yxzx = −xyzx = −xxzy,

yzyy = −yzxx = −xzyx = −xzxy,

zyyy = −zyxx = −zxyx = −zxxy,

xxxz = −xyyz = −yxyz = −yyxz,

xxzx = −xyzy = −yxzy = −yyzx,

xzxx = −yzxy = −yzyx = −xzyy,

zxxx = −zxyy = −zyxy = −zyyx.

For the three classes 3m, 3̄m, and 32, there are 37 nonzero elements, of which only 14 are independent.
They are:

zzzz,

xxxx = yyyy = xxyy + xyyx + xyxy,

⎧
⎪⎨

⎪⎩

xxyy = yyxx,

xyyx = yxxy,

xyxy = yxyx,
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TABLE 1.5.4 (continued)

yyzz = xxzz, xxxz = −xyyz = −yxyz = −yyxz,

zzyy = zzxx, xxzx = −xyzy = −yxzy = −yyzx,

zyyz = zxxz, xzxx = −xzyy = −yzxy = −yzyx,

yzzy = xzzx, zxxx = −zxyy = −zyxy = −zyyx,

yzyz = xzxz,

zyzy = zxzx.

Tetragonal

For the three classes 4, 4̄, and 4/m, there are 41 nonzero elements, of which only 21 are independent.
They are:

xxxx = yyyy, zzzz,

zzxx = zzyy, xyzz = −yxzz, xxyy = yyxx, xxxy = −yyyx,

xxzz = zzyy, zzxy = −zzyx, xyxy = yxyx, xxyx = −yyxy,

zxzx = zyzy, xzyz = −yzxz, xyyx = yxxy, xyxx = −yxyy,

xzxz = yzyz, zxzy = −zyzx, yxxx = −xyyy,

zxxz = zyyz, zxyz = −zyxz,

xzzx = yzzy, xzzy = −yzzx.

For the four classes 422, 4mm, 4/mmm, and 4̄2m, there are 21 nonzero elements, of which only 11
are independent. They are:

xxxx = yyyy, zzzz,

yyzz = xxzz, yzzy = xzzx xxyy = yyxx,

zzyy = zzxx, yzyz = xzxz xyxy = yxyx,

zyyz = zxxz, zyzy = zxzx xyyx = yxxy.

Monoclinic

For the three classes 2, m, and 2/m, there are 41 independent nonzero elements, consisting of:

3 elements with indices all equal,
18 elements with indices equal in pairs,
12 elements with indices having two y’s one x, and one z,

4 elements with indices having three x’s and one z,

4 elements with indices having three z’s and one x.

Orthorhombic

For all three classes, 222, mm2, and mmm, there are 21 independent nonzero elements, consisting of:

3 elements with indices all equal,
18 elements with indices equal in pairs.

Triclinic

For both classes, 1 and 1̄, there are 81 independent nonzero elements.

applied field Ẽ(t). These two methods of description are entirely equivalent,
although description in the time domain is more convenient for certain types
of problems, such as those involving applied fields in the form of short pulses;
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conversely, description in the frequency domain is more convenient when each
input field is nearly monochromatic.

Let us first consider the special case of a material that displays a purely
linear response. We can describe the polarization induced in such a material
by

P̃ (1)(t) = ε0

∫ ∞

0
R(1)(τ )Ẽ(t − τ ) dτ. (1.6.1)

Here R(1)(τ ) is the linear response function, which gives the contribution to
the polarization produced at time t by an electric field applied at the earlier
time t −τ . The total polarization is obtained by integrating these contributions
over all previous times τ . In writing Eq. (1.6.1) as shown, with the lower limit
of integration set equal to zero and not to −∞, we have assumed that R(1)(τ )

obeys the causality condition R(1)(τ ) = 0 for τ < 0. This condition expresses
the fact that P̃ (1)(t) depends only on past and not on future values of Ẽ(t).

Equation (1.6.1) can be transformed to the frequency domain by introduc-
ing the Fourier transforms of the various quantities that appear in this equa-
tion. We adopt the following definition of the Fourier transform:

E(ω) =
∫ ∞

−∞
Ẽ(t)eiωt dt (1.6.2a)

Ẽ(t) = 1

2π

∫ ∞

−∞
E(ω)e−iωt dω (1.6.2b)

with analogous definitions for other quantities. By introducing Eq. (1.6.2b)
into Eq. (1.6.1), we obtain

P̃ (1)(t) = ε0

∫ ∞

0
dτ

∫ ∞

−∞
dω

2π
R(1)(τ )E(ω)e−iω(t−τ)

= ε0

∫ ∞

−∞
dω

2π

∫ ∞

0
dτR(1)(τ )eiωτE(ω)e−iωt (1.6.3)

or

P̃ (1)(t) = ε0

∫ ∞

−∞
dω

2π
χ(1)(ω;ω)E(ω)e−iωt , (1.6.4)

where we have introduced an explicit expression for the linear susceptibility

χ(1)(ω;ω) =
∫ ∞

0
dτ R(1)(τ )eiωτ . (1.6.5)

Equation (1.6.4) gives the time-varying polarization in terms of the frequency
components of the applied field and the frequency dependent susceptibility.
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By replacing the left-hand side of this equation with
∫

P (1)(ω) exp(−iωt) dω/

2π and noting that the equality must be maintained for each frequency ω, we
recover the usual frequency domain description of linear response:

P (1)(ω) = ε0χ
(1)(ω;ω)E(ω). (1.6.6)

The nonlinear response can be described by analogous procedures. The
contribution to the polarization second-order in the applied field strength is
represented as

P̃ (2)(t) = ε0

∫ ∞

0
dτ1

∫ ∞

0
dτ2 R(2)(τ1, τ2)E(t − τ1)E(t − τ2), (1.6.7)

where the causality condition requires that R(2)(τ1, τ2) = 0 if either τ1 or τ2

is negative. As above, we write E(t − τ1) and E(t − τ2) in terms of their
Fourier transforms using Eq. (1.6.2b) so that the expression for the second-
order polarization becomes

P̃ (2)(t) = ε0

∫ ∞

−∞
dω1

2π

∫ ∞

−∞
dω2

2π

∫ ∞

0
dτ1

∫ ∞

0
dτ2R

(2)(τ1, τ2)

× E(ω1)e
−iω1(t−τ1)E(ω2)e

−iω2(t−τ2)

= ε0

∫ ∞

−∞
dω1

2π

∫ ∞

−∞
dω2

2π
χ(2)(ωσ ;ω1,ω2)E(ω1)E(ω2)e

−iωσ t ,

(1.6.8)

where we have defined ωσ = ω1 + ω2 and have introduced the second-order
susceptibility

χ(2)(ωσ ;ω1,ω2) =
∫ ∞

0
dτ1

∫ ∞

0
dτ2 R(2)(τ1, τ2)e

i(ω1τ1+ω2τ2). (1.6.9)

This procedure can readily be generalized to higher-order susceptibilities. In
particular, we can express the third-order polarization as

P̃ (3)(t) = ε0

∫ ∞

−∞
dω1

2π

∫ ∞

−∞
dω2

2π

∫ ∞

−∞
dω3

2π
χ(3)(ωσ ;ω1,ω2,ω3)

× E(ω1)E(ω2)E(ω3)e
−iωσ t , (1.6.10)
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where ωσ = ω1 + ω2 + ω3 and where

χ(3)(ωσ ;ω1,ω2,ω3) =
∫ ∞

0
dτ1

∫ ∞

0
dτ2

∫ ∞

0
dτ3

× R(3)(τ1, τ2, τ3) ei(ω1τ1+ω2τ2+ω3τ3).

(1.6.11)

1.7. Kramers–Kronig Relations in Linear and Nonlinear Optics

Kramers–Kronig relations are often encountered in linear optics. These con-
ditions relate the real and imaginary parts of frequency-dependent quantities
such as the linear susceptibility. They are useful because, for instance, they al-
low one to determine the real part of the susceptibility at some particular fre-
quency from a knowledge of the frequency dependence of the imaginary part
of the susceptibility. Since it is often easier to measure an absorption spec-
trum than to measure the frequency dependence of the refractive index, this
result is of considerable practical importance. In this section, we review the
derivation of the Kramers–Kronig relations as they are usually formulated for
a system with linear response, and then show how Kramers–Kronig relations
can be formulated to apply to some (but not all) nonlinear optical interactions.

1.7.1. Kramers–Kronig Relations in Linear Optics

We saw in the previous section that the linear susceptibility can be represented
as

χ(1)(ω) ≡ χ(1)(ω;ω) =
∫ ∞

0
R(1)(τ )eiωτ dτ, (1.7.1)

where the lower limit of integration has been set equal to zero to reflect the
fact that R(1)(τ ) obeys the causality condition R(1)(τ ) = 0 for τ < 0. Note
also (e.g., from Eq. (1.6.1)) that R(1)(τ ) is necessarily real, since it relates
two inherently real quantities P̃ (t) and Ẽ(t). We thus deduce immediately
from Eq. (1.7.1) that

χ(1)(−ω) = χ(1)(ω)∗. (1.7.2)

Let us examine some of the other mathematical properties of the linear sus-
ceptibility. In doing so, it is useful, as a purely mathematical artifact, to treat
the frequency ω as a complex quantity ω = Re ω + i Im ω. An important
mathematical property of χ(ω) is the fact that it is analytic (i.e., single-valued



1.7. Kramers–Kronig Relations in Linear and Nonlinear Optics 59

and possessing continuous derivatives) in the upper half of the complex plane,
that is, for Im ω ≥ 0. In order to demonstrate that χ(ω) is analytic in the up-
per half plane, it is adequate to show that the integral in Eq. (1.7.1) converges
everywhere in that region. We first note that the integrand in Eq. (1.7.1) is of
the form R(1)(τ ) exp[i(Re ω)τ ] exp[−(Im ω)τ ], and since R(1)(τ ) is every-
where finite, the presence of the factor exp[−(Im ω)τ ] is adequate to ensure
convergence of the integral for Im ω > 0. For Im ω = 0 (that is, along the
real axis) the integral can be shown to converge, either from a mathematical
argument based on the fact the R(1)(τ ) must be square integrable or from the
physical statement that χ(ω) for ω real is a physically measurable quantity
and hence must be finite.

To establish the Kramers–Kronig relations, we next consider the integral

Int =
∫ ∞

−∞
χ(1)(ω′) dω′

ω′ − ω
. (1.7.3)

We adopt the convention that in expressions such as (1.7.3) we are to take the
Cauchy principal value of the integral—that is,

∫ ∞

−∞
χ(1)(ω′) dω′

ω′ − ω
≡ lim

δ→0

[∫ ω−δ

−∞
χ(1)(ω′) dω′

ω′ − ω
+

∫ ∞

ω+δ

χ(1)(ω′) dω′

ω′ − ω

]
.

(1.7.4)

We evaluate expression (1.7.3) using the techniques of contour integration,
noting that the desired integral is given by Int = Int(A) − Int(B) − Int(C)

where Int(A), Int(B), and Int(C) are the path integrals of χ(1)(ω′)/(ω′ − ω)

over the paths shown in Fig. 1.7.1. Since χ(1)(ω′) is analytic in the upper half
plane, the only singularity of the integrand χ(ω′)/(ω′ − ω) in the upper half-
plane is a simple pole along the real axis at ω′ = ω. We thus find that Int(A) =
0 by Cauchy’s theorem since its closed path of integration contains no poles.
Furthermore, Int(B) = 0 since the integration path increases as |ω′|, whereas
for large |ω′| the integrand scales as χ(ω′)/|ω′|, and thus the product will tend
toward zero so long as χ(ω′) approaches zero for sufficiently large ω′. Finally,
by the residue theorem Int(C) = −πiχ(ω). By introducing these values into
Eq. (1.7.3), we obtain the result

χ(1)(ω) = −i

π

∫ ∞

−∞
χ(1)(ω′) dω′

ω′ − ω
. (1.7.5)

By separating χ(1)(ω) into its real and imaginary parts as χ(1)(ω) =
Reχ(1)(ω) + i Imχ(1)(ω), we obtain one form of the Kramers–Kronig re-
lations:
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FIGURE 1.7.1 Diagrams used in the contour integration of Eq. (1.7.3). (a) shows
the complex ω′ plane, (b) shows the desired path of integration, and (c), (d), and (e)
show paths over which the integral can be evaluated using the techniques of contour
integration. In performing the integration the limits r1 → ∞ and r2 → 0 are taken.

Reχ(1)(ω) = 1

π

∫ ∞

−∞
Imχ(1)(ω′) dω′

ω′ − ω
, (1.7.6a)

Imχ(1)(ω) = − 1

π

∫ ∞

−∞
Reχ(1)(ω′) dω′

ω′ − ω
. (1.7.6b)

These integrals show how the real part of χ(1) can be deduced from a knowl-
edge of the frequency dependence of the imaginary part of χ(1), and vice
versa. Since it is usually easier to measure absorption spectra than the fre-
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quency dependence of the refractive index, it can be quite useful to make use
of Eq. (1.7.6a) as a means of predicting the frequency dependence of the real
part of χ(1).

The Kramers–Kronig relations can be rewritten to involve integration over
only (physically meaningful) positive frequencies. From Eq. (1.7.2), we see
that

Reχ(1)(−ω) = Reχ(1)(ω), Imχ(1)(−ω) = − Imχ(1)(ω). (1.7.7)

We can thus rewrite Eq. (1.7.6b) as follows:

Imχ(1)(ω) = − 1

π

∫ 0

−∞
Reχ(1)(ω′) dω′

ω′ − ω
− 1

π

∫ ∞

0

Reχ(1)(ω′) dω′

ω′ − ω

= 1

π

∫ ∞

0

Reχ(1)(ω′) dω′

ω′ + ω
− 1

π

∫ ∞

0

Reχ(1)(ω′) dω′

ω′ − ω

(1.7.8)

and hence

Imχ(1)(ω) = −2ω

π

∫ ∞

0

Reχ(1)(ω′)
ω′2 − ω2

dω′. (1.7.9a)

We similarly find that

Reχ(1)(ω) = 2

π

∫ ∞

0

ω′ Imχ(1)(ω′)
ω′2 − ω2

dω′. (1.7.9b)

1.7.2. Kramers–Kronig Relations in Nonlinear Optics

Relations analogous to the usual Kramers–Kronig relations for the linear re-
sponse can be deduced for some but not all nonlinear optical interactions. Let
us first consider a nonlinear susceptibility of the form χ(3)(ωσ ;ω1,ω2,ω3)

with ωσ = ω1 + ω2 + ω3 and with ω1,ω2, and ω3 all positive and distinct.
Such a susceptibility obeys a Kramers–Kronig relation in each of the three
input frequencies, for example,

χ(3)(ωσ ;ω1,ω2,ω3) = 1

iπ

∫ ∞

−∞
χ(3)(ω′

σ ;ω1,ω
′
2,ω3)

ω′
2 − ω2

dω′
2, (1.7.10)

where ω′
σ = ω1 + ω′

2 + ω3. Similar results hold for integrals involving ω′
1

and ω′
3. The proof of this result proceeds in a manner strictly analogous to that

of the linear Kramers–Kronig relation. In particular, we note from Eq. (1.6.11)
that χ(3)(ωσ ;ω1,ω2,ω3) is the Fourier transform of a causal response func-
tion, and hence χ(3)(ωσ ;ω1,ω2,ω3) considered as a function of its three
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independent variables ω1,ω2, and ω3, is analytic in the region Imω1 ≥ 0,
Imω2 ≥ 0, and Imω3 ≥ 0. We can then perform the integration indicated on
the right-hand side of Eq. (1.7.10) as a contour integration closed in the up-
per part of the complex ω2 plane, and obtain the indicated result. In fact, it
is not at all surprising that a Kramers–Kronig-like relation should exist for
the present situation; the expression χ(3)(ωσ ;ω1,ω2,ω3)E(ω1)E(ω2)E(ω3)

is linear in the field E(ω2) and the physical system is causal, and thus the rea-
soning leading to the usual linear Kramers–Kronig relation is directly relevant
to the present situation.

Note that in Eq. (1.7.10) all but one of the input frequencies are held fixed.
Kramers–Kronig relations can also be formulated under more general circum-
stances. It can be shown (see, for instance, Section 6.2 of Hutchings et al.,
1992) by means of a somewhat intricate argument that

χ(n)(ωσ ;ω1 + p1ω,ω2 + p2ω, . . . ,ωn + pnω)

= 1

iπ

∫ ∞

−∞
χ(n)(ω′

σ ;ω1 + p1ω
′,ω2 + p2ω

′, . . . ,ωn + pnω
′)

ω′ − ω
dω′

(1.7.11)

where pi ≥ 0 for all i and where at least one pi must be nonzero. Among the
many special cases included in Eq. (1.7.11) are those involving the suscepti-
bility for second-harmonic generation

χ(2)(2ω;ω,ω) = 1

iπ

∫ ∞

−∞
χ(2)(2ω′;ω′,ω′)

ω′ − ω
dω′ (1.7.12)

and for third-harmonic generation

χ(3)(3ω;ω,ω,ω) = 1

iπ

∫ ∞

−∞
χ(3)(3ω′;ω′,ω′,ω′)

ω′ − ω
dω′. (1.7.13)

Kramers–Kronig relations can also be formulated for the change in refrac-
tive index induced by an auxiliary beam, which is described by a susceptibility
of the sort χ(3)(ω;ω,ω1,−ω1). In particular, one can show (Hutchings et al.,
1992) that

χ(3)(ω;ω,ω1,−ω1) = 1

iπ

∫ ∞

−∞
χ(3)(ω′;ω′,ω1,−ω1) dω′

ω′ − ω
. (1.7.14)

Probably the most important process for which it is not possible to
form a Kramers–Kronig relation is for the self-induced change in re-
fractive index, that is, for processes described by the nonlinear suscepti-
bility χ(3)(ω;ω,ω,−ω). Note that this susceptibility is not of the form
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of Eq. (1.7.10) or of (1.7.11), because the first two applied frequencies are
equal and because the third frequency is negative. Moreover, one can show
by explicit calculation (see the problems at the end of this chapter) that for
specific model systems the real and imaginary parts of χ(3) are not related in
the proper manner to satisfy the Kramers–Kronig relations.

To summarize the results of this section, we have seen that Kramers–Kronig
relations, which are always valid in linear optics, are valid for some but not
all nonlinear optical processes.

Problems

1. Conversion from Gaussian to SI units. For proustite χ
(2)
yyy has the value

1.3×10−7 cm/statvolt in Gaussian units. What is its value in MKS units?
[Ans: 5.4 × 10−11 m/V.]

2. Numerical estimate of nonlinear optical quantities. A laser beam of fre-
quency ω carrying 1 W of power is focused to a spot size of 30-μm di-
ameter in a crystal having a refractive index of n = 2 and a second-order
susceptibility of χ(2) = 4 × 10−11 m/V. Calculate numerically the ampli-
tude P(2ω) of the component of the nonlinear polarization oscillating at
frequency 2ω. Estimate numerically the amplitude of the dipole moment
per atom μ(2ω) oscillating at frequency 2ω. Compare this value with the
atomic unit of dipole moment (ea0, where a0 is the Bohr radius) and with
the linear response of the atom, that is, with the component μ(ω) of the
dipole moment oscillating at frequency ω. We shall see in the next chapter
that, under the conditions stated above, nearly all of the incident power
can be converted to the second harmonic for a 1-cm-long crystal.

[Ans: P(2ω) = 4.7×10−11 C/m3. Assuming that N = 1028 atoms/m3,
μ(2ω) = 4.7 × 10−39 Cm = 5.56 × 10−10ea0, where ea0 = 8.5 ×
10−30 Cm. By comparison, P(ω) = 9.7 × 10−6 C/m3 and μ(ω) =
9.7 × 10−34 Cm = 1.14 × 10−4ea0, which shows that μ(2ω)/μ(ω) =
4.9 × 10−6.]

3. Perturbation expansion. Explain why it is unnecessary to include the term
λ0x̃(0) in the power series of Eq. (1.4.6).

4. Tensor properties of the anharmonic oscillator model. Starting from
Eq. (1.4.52), relevant to a collection of isotropic, centrosymmetric, an-
harmonic oscillators, show that the nonlinear susceptibility possesses the
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following tensor properties:

χ1122 = χ1212 = χ1221 = χ1133 = χ1313 = χ1331 = χ2233 = χ2323

= χ2332 = χ2211 = χ2121 = χ2112 = χ3311 = χ3131 = χ3113

= χ3322 = χ3232 = χ3223 = 1
3χ1111 = 1

3χ2222 = 1
3χ3333,

with all other elements vanishing. Give a simple physical argument that
explains why the vanishing elements do vanish. Also, give a simple phys-
ical argument that explains why χijhl possesses off-diagonal tensor com-
ponents, even though the medium is isotropic.

5. Comparison of the centrosymmetric and noncentrosymmetric models. For
the noncentrosymmetric anharmonic oscillator described by Eq. (1.4.1),
derive an expression for the third-order displacement x̃(3) and conse-
quently for the third-order susceptibility χ

(3)
1111(ωq,ωm,ωn,ωp). Com-

pare this result to that given by Eq. (1.4.52) for a purely centrosymmetric
medium. Note that for a noncentrosymmetric medium both of these con-
tributions can be present. Estimate the size of each of these contributions
to see which is larger.

6. Determination of deff. Verify Eqs. (1.5.30a) and (1.5.30b).
7. Formal properties of the third-order response. Section 1.5 contains a de-

scription of some of the formal mathematical properties of the second-
order susceptibility. For the present problem, you are to determine the
analogous symmetry properties of the third-order susceptibility χ(3). In
your response, be sure to include the equations analogous to Eqs. (1.5.1),
(1.5.2), (1.5.5), (1.5.6), (1.5.8), (1.5.9), and (1.5.19).

8. Consequences of crystalline symmetry. Through explicit consideration of
the symmetry properties of each of the 32 point groups, verify the results
presented in Tables 1.5.2 and 1.5.4 and in Fig. 1.5.3.

[Notes: This problem is lengthy and requires a more detailed knowl-
edge of group theory and crystal symmetry than that presented in this
text. For a list of recommended readings on these subjects, see the refer-
ence list to the present chapter. For a discussion of this problem, see also
Butcher (1965).]

9. Subtlety regarding crystal class 432. According to Table 1.5.2, χ(2) pos-
sesses nonvanishing tensor elements for crystal class 432, but according
to Fig. 1.5.3 dil for this crystal class vanishes identically. Justify these two
statements by taking explicit account of the additional constraints that are
implicit in the definition of the dil matrix.

10. Kramers–Kronig relations. Show by explicit calculation that the linear
susceptibility of an optical transition modeled in the two-level approx-
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imation obeys the Kramers–Kronig relations, but that neither the total
susceptibility χ nor the third-order susceptibility χ(3) obeys these rela-
tions. Explain this result by finding the location of the poles of χ and
of χ(3).

[Hints: χ(1) and χ(3) are given by Eqs. (6.3.33) and χ is given by
Eq. (6.3.23).]

11. Kramers–Kronig relations. For the classical anharmonic oscillator model
of Eq. (1.4.20) show by explicit calculation that χ(2)(2ω;ω,ω) obeys
the Kramers–Kronig relations in the form (1.7.12). Show also that
χ(2)(ω1;ω3,−ω2) does not satisfy Kramers–Kronig relations.

12. Example of the third-order response. The third-order polarization in-
cludes a term oscillating at the fundamental frequency and given by

P (3)(ω) = 3ε0χ
(3)

∣∣E(ω)
∣∣2

E(ω).

Assume that the field at frequency ω includes two contributions that prop-
agate in the directions given by wave vectors k1 and k2. Assume also that
the second contribution is sufficiently weak that it can be treated linearly.
Calculate the nonlinear polarization at the fundamental frequency and
give the physical interpretation of its different terms.
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