Network Analysis,
Architecture, and Design

THIRD EDITION
The Morgan Kaufmann Series in Networking
Series Editor, David Clark, M.I.T.

Network Analysis, Architecture, and Design, 3e
James D. McCabe

Wireless Communications & Networking: An Introduction
Vijay K. Garg

Ethernet Networking for the Small Office and Professional Home Office
Jan L. Harrington

IPv6 Advanced Protocols Implementation
Qing Li, Tatuya Jinmei, and Keiichi Shima

Computer Networks: A Systems Approach, 4e
Larry L. Peterson and Bruce S. Davie

Network Routing: Algorithms, Protocols, and Architectures
Deepankar Medhi and Karthikeyan Ramaswami

Deploying IP and MPLS QoS for Multiservice Networks: Theory and Practice
John Evans and Clarence Filsfils

Traffic Engineering and QoS Optimization of Integrated Voice & Data Networks
Gerald R. Ash

IPv6 Core Protocols Implementation
Qing Li, Tatuya Jinmei, and Keiichi Shima

Smart Phone and Next-Generation Mobile Computing
Pei Zheng and Lionel Ni

GMPLS: Architecture and Applications
Adrian Farrel and Igor Bryskin

Network Security: A Practical Approach
Jan L. Harrington

Content Networking: Architecture, Protocols, and Practice
Markus Hofmann and Leland R. Beaumont

Network Algorithmics: An Interdisciplinary Approach to Designing Fast Networked Devices
George Varghese

Network Recovery: Protection and Restoration of Optical, SONET-SDH, IP, and MPLS
Jean Philippe Vasseur, Mario Pickavet, and Piet Demeester

Routing, Flow, and Capacity Design in Communication and Computer Networks
Michal Pioro and Deepankar Medhi

Wireless Sensor Networks: An Information Processing Approach
Feng Zhao and Leonidas Guibas

Virtual Private Networks: Making the Right Connection
Dennis Fowler

Networked Applications: A Guide to the New Computing Infrastructure
David G. Messerschmitt

Wide Area Network Design: Concepts and Tools for Optimization
Robert S. Cahn

Communication Networking: An Analytical Approach
Anurag Kumar, D. Manjunath, and Joy Kuri

The Internet and Its Protocols: A Comparative Approach
Adrian Farrel

Modern Cable Television Technology: Video, Voice, and Data Communications, 2e
Walter Cicora, James Farmer, David Large, and Michael Adams

Bluetooth Application Programming with the Java APIs
C. Balu Kumar, Paul J. Kline, and Timothy J. Thompson

Policy-Based Network Management: Solutions for the Next Generation
John Strassner

MPLS Network Management: MIBs, Tools, and Techniques
Thomas D. Nadeau

Developing IP-Based Services: Solutions for Service Providers and Vendors
Monique Morrow and Kateel Vijayananda

Telecommunications Law in the Internet Age
Sharon K. Black

Optical Networks: A Practical Perspective, 2e
Rajiv Ramaswami and Kumar N. Sivarajan

Internet QoS: Architectures and Mechanisms
Zheng Wang

TCP/IP Sockets in Java: Practical Guide for Programmers
Michael J. Donahoo and Kenneth L. Calvert

TCP/IP Sockets in C: Practical Guide for Programmers
Kenneth L. Calvert and Michael J. Donahoo

Multicast Communication: Protocols, Programming, and Applications
Ralph Wittmann and Martina Zitterbart

MPLS: Technology and Applications
Bruce Davie and Yakov Rekhter

High-Performance Communication Networks, 2e
Jean Walrand and Pravin Varaiya

Internetworking Multimedia
Jon Crowcroft, Mark Handley, and Ian Wakeman

Understanding Networked Applications: A First Course
David G. Messerschmitt

Heinz-Gerd Hegering, Sebastian Abeck, and Bernhard Neumair

For further information on these books and for a list of forthcoming titles, please visit our Web site at http://www.mkp.com.
Dedication

For Jean and Ruth, Ron and Pam, Seana and Riley. This is also for Shelby, whose artistic skill I endeavor to replicate in my writings.
Foreword

Jim McCabe’s third edition of *Network Analysis, Architecture, and Design* defines a disciplined approach to network architecture and design. Jim’s approach addresses the critical elements required to successfully design and deploy networks in an increasingly complex environment. There is constant pressure to deploy new features and services while increasing the quality of existing services and network security. In addition, market forces are pressing network operators to closely manage investment in new infrastructure and decrease operations and maintenance costs. In the three years since Jim released the second edition the landscape has fundamentally changed. It is no longer possible to overbuild the network and hope to “grow” into it. Converged services, Voice over IP, and emerging IPv6 deployments are forcing network architects to return to the fundamentals of engineering best practices.

Jim’s focus on requirements analysis, design traceability, and design metrics is right on target. Jim has developed a mature, repeatable methodology, that when followed properly, produces well-engineered and scalable networks. This is not a book on the theory of network architecture and design, it is a practical guide based on Jim’s wealth of experience. The concepts have been proven in the successful deployment of numerous networks.

The timing of this edition could not be better. We are at the start of a major transition, deploying the next generation of networks. Jim provides the guidance to successfully architect and deploy them.

John McManus, US Department of Commerce
Contents

FOREWORD vii
PREFACE xvii
ACKNOWLEDGMENTS xix

1 Introduction
1.1 Objectives 3
1.2 Preparation 3
1.3 Background 3
1.4 Overview of Analysis, Architecture, and Design Processes 6
 1.4.1 Process Components 9
 1.4.2 Tactical and Strategic Significance 12
 1.4.3 Hierarchy and Diversity 14
 1.4.4 Importance of Network Analysis 18
 1.4.5 Model for Network Analysis, Architecture, and Design 24
1.5 A Systems Methodology 27
1.6 System Description 27
1.7 Service Description 31
1.8 Service Characteristics 33
 1.8.1 Service Levels 35
 1.8.2 System Components and Network Services 36
 1.8.3 Service Requests and Requirements 39
 1.8.4 Service Offerings 43
 1.8.5 Service Metrics 45
1.9 Performance Characteristics 47
 1.9.1 Capacity 47
 1.9.2 Delay 48
 1.9.3 RMA 48
 1.9.4 Performance Envelopes 50
1.10 Network Supportability 51
1.11 Conclusion 53
1.12 Exercises 54
Contents

2 Requirements Analysis: Concepts

2.1 Objectives 57
 2.1.1 Preparation 57

2.2 Background 58
 2.2.1 Requirements and Features 58
 2.2.2 The Need for Requirements Analysis 61

2.3 User Requirements 62

2.4 Application Requirements 66
 2.4.1 Application Types 67
 2.4.2 Application Groups 73
 2.4.3 Application Locations 75

2.5 Device Requirements 76
 2.5.1 Device Types 77
 2.5.2 Performance Characteristics 80
 2.5.3 Device Locations 81

2.6 Network Requirements 83
 2.6.1 Existing Networks and Migration 84
 2.6.2 Network Management and Security 85

2.7 Other Requirements 88
 2.7.1 Supplemental Performance Requirements 88
 2.7.2 Financial Requirements 89
 2.7.3 Enterprise Requirements 90

2.8 The Requirements Specification and Map 90

2.9 Conclusions 94

2.10 Exercises 95

3 Requirements Analysis: Process

3.1 Objectives 99
 3.1.1 Preparation 99

3.2 Gathering and Listing Requirements 100
 3.2.1 Determining Initial Conditions 100
 3.2.2 Setting Customer Expectations 104
 3.2.3 Working with Users 105
 3.2.4 Taking Performance Measurements 106
 3.2.5 Tracking and Managing Requirements 107
 3.2.6 Mapping Location Information 109
Contents

3.3 Developing Service Metrics 109
 3.3.1 Measurement Tools 111
 3.3.2 Where to Apply Service Metrics 112
3.4 Characterizing Behavior 113
 3.4.1 Modeling and Simulation 113
 3.4.2 User Behavior 115
 3.4.3 Application Behavior 116
3.5 Developing RMA Requirements 117
 3.5.1 Reliability 117
 3.5.2 Maintainability 118
 3.5.3 Availability 118
 3.5.4 Thresholds and Limits 124
3.6 Developing Delay Requirements 125
 3.6.1 End-to-End and Round-Trip Delays 128
 3.6.2 Delay Variation 130
3.7 Developing Capacity Requirements 130
 3.7.1 Estimating Data Rates 130
3.8 Developing Supplemental Performance Requirements 133
 3.8.1 Operational Suitability 134
 3.8.2 Supportability 137
 3.8.3 Confidence 143
3.9 Environment-Specific Thresholds and Limits 145
 3.9.1 Comparing Application Requirements 146
3.10 Requirements for Predictable and Guaranteed Performance 147
 3.10.1 Requirements for Predictable Performance 147
 3.10.2 Requirements for Guaranteed Performance 148
3.11 Requirements Mapping 149
3.12 Developing the Requirements Specification 151
3.13 Conclusions 155
3.14 Exercises 155

4 Flow Analysis

 4.1 Objectives 161
 4.1.1 Preparation 161
 4.2 Background 162
 4.3 Flows 162
xii Contents

4.3.1 Individual and Composite Flows 164
4.3.2 Critical Flows 166
4.4 Identifying and Developing Flows 167
 4.4.1 Focusing on a Particular Application 169
 4.4.2 Developing a Profile 172
 4.4.3 Choosing the Top \(N \) Applications 173
4.5 Data Sources and Sinks 175
4.6 Flow Models 180
 4.6.1 Peer-to-Peer 181
 4.6.2 Client–Server 183
 4.6.3 Hierarchical Client–Server 185
 4.6.4 Distributed-Computing 188
4.7 Flow Prioritization 191
4.8 The Flow Specification 193
 4.8.1 Flowspec Algorithm 195
 4.8.2 Capacity and Service Planning 197
4.9 Example Application of Flow Analysis 197
4.10 Conclusions 205
4.11 Exercises 206

5 Network Architecture

 5.1 Objectives 211
 5.1.1 Preparation 211
 5.2 Background 211
 5.2.1 Architecture and Design 213
 5.3 Component Architectures 215
 5.3.1 Addressing/Routing Component Architecture 220
 5.3.2 Network Management Component Architecture 222
 5.3.3 Performance Component Architecture 223
 5.3.4 Security Component Architecture 225
 5.3.5 Optimizing Component Architectures 226
 5.4 Reference Architecture 227
 5.4.1 External Relationships 229
 5.4.2 Optimizing the Reference Architecture 230
 5.5 Architectural Models 232
 5.5.1 Topological Models 232
 5.5.2 Flow-Based Models 234
Contents xiii

5.5.3 Functional Models 237
5.5.4 Using the Architectural Models 238
5.6 Systems and Network Architectures 244
5.7 Conclusions 245
5.8 Exercises 246

6 Addressing and Routing Architecture
6.1 Objectives 249
 6.1.1 Preparation 249
6.2 Background 250
 6.2.1 Addressing Fundamentals 251
 6.2.2 Routing Fundamentals 253
6.3 Addressing Mechanisms 257
 6.3.1 Classful Addressing 257
 6.3.2 Subnetting 259
 6.3.3 Variable-Length Subnetting 262
 6.3.4 Supernetting 264
 6.3.5 Private Addressing and NAT 268
6.4 Routing Mechanisms 269
 6.4.1 Establishing Routing Flows 269
 6.4.2 Identifying and Classifying Routing Boundaries 270
 6.4.3 Manipulating Routing Flows 273
6.5 Addressing Strategies 278
6.6 Routing Strategies 280
 6.6.1 Evaluating Routing Protocols 282
 6.6.2 Choosing and Applying Routing Protocols 287
6.7 Architectural Considerations 291
 6.7.1 Internal Relationships 291
 6.7.2 External Relationships 292
6.8 Conclusions 293
6.9 Exercises 293

7 Network Management Architecture
7.1 Objectives 299
 7.1.1 Preparation 299
7.2 Background 300
Contents

7.3 Defining Network Management 300
 7.3.1 Network Devices and Characteristics 302

7.4 Network Management Mechanisms 303
 7.4.1 Monitoring Mechanisms 304
 7.4.2 Instrumentation Mechanisms 308
 7.4.3 Configuration Mechanisms 310

7.5 Architectural Considerations 311
 7.5.1 In-Band and Out-of-Band Management 312
 7.5.2 Centralized, Distributed, and Hierarchical Management 315
 7.5.3 Scaling Network Management Traffic 318
 7.5.4 Checks and Balances 319
 7.5.5 Managing Network Management Data 319
 7.5.6 MIB Selection 322
 7.5.7 Integration into OSS 323
 7.5.8 Internal Relationships 323
 7.5.9 External Relationships 326

7.6 Conclusions 328

7.7 Exercises 328

8 Performance Architecture

8.1 Objectives 333
 8.1.1 Preparation 333

8.2 Background 334

8.3 Developing Goals for Performance 335

8.4 Performance Mechanisms 338
 8.4.1 Quality of Service 338
 8.4.2 Prioritization, Traffic Management, Scheduling, and Queuing 342
 8.4.3 Service-Level Agreements 348
 8.4.4 Policies 351

8.5 Architectural Considerations 351
 8.5.1 Evaluation of Performance Mechanisms 352
 8.5.2 Internal Relationships 354
 8.5.3 External Relationships 354

8.6 Conclusions 355

8.7 Exercises 356
9 Security and Privacy Architecture

9.1 Objectives 359
 9.1.1 Preparation 359
9.2 Background 360
9.3 Developing a Security and Privacy Plan 361
9.4 Security and Privacy Administration 362
 9.4.1 Threat Analysis 362
 9.4.2 Policies and Procedures 365
9.5 Security and Privacy Mechanisms 367
 9.5.1 Physical Security and Awareness 368
 9.5.2 Protocol and Application Security 369
 9.5.3 Encryption/Decryption 371
 9.5.4 Network Perimeter Security 373
 9.5.5 Remote Access Security 374
9.6 Architectural Considerations 377
 9.6.1 Evaluation of Security Mechanisms 377
 9.6.2 Internal Relationships 380
 9.6.3 External Relationships 380
9.7 Conclusions 381
9.8 Exercises 382

10 Network Design

10.1 Objectives 386
 10.1.1 Preparation 386
10.2 Design Concepts 386
 10.2.1 Analogy to a Building Design 389
 10.2.2 Design Products 390
 10.2.3 Input to the Design 393
10.3 Design Process 394
10.4 Vendor, Equipment, and Service-Provider Evaluations 395
 10.4.1 Seeding the Evaluation Process 397
 10.4.2 Candidate Discussions 398
 10.4.3 Data Gathering 399
 10.4.4 Criteria Refinement and Ratings Development 401
 10.4.5 Ratings and Prioritization 403
xvi Contents

10.4.6 Modifying the Set of Candidates 405
10.4.7 Determining the Order of Evaluations 407
10.5 Network Layout 408
10.5.1 Logical Diagrams 408
10.5.2 Network Blueprints 409
10.5.3 Component Plans 419
10.6 Design Traceability 422
10.7 Design Metrics 428
10.8 Conclusions 429
10.9 Exercises 431

GLOSSARY OF TERMS 433
GLOSSARY OF ACRONYMS 451
INDEX 462
Preface

Network Analysis, Architecture, and Design, Third Edition is about making intelligent, informed network engineering decisions. This includes processes to develop and validate requirements for your project, and applying them in making architecture and design decisions. These processes have been adopted by corporations, universities, and government agencies around the world.

Although this book focuses on networking, the decision-making processes can be applied to any IT engineering project, from developing a national network to a small enterprise LAN, from an overall network upgrade to focusing on particular capabilities such as VPNs, QoS, or MPLS. For example, the processes in this book have recently been applied to projects to develop an external security perimeter (as part of a defense-in-depth strategy) and an IPv6 addressing architecture.

During the ten years that span the publications of the first and second editions of *Network Analysis, Architecture, and Design*, several concepts in this book have entered the mainstream of network engineering. Traffic flow analysis, and the coupling of requirements to traffic flows, is increasingly important in providing security and performance across the network. Developing and validating requirements to formally prepare for the network design are essential to ensure accuracy and consistency within the design.

Network Analysis, Architecture, and Design, Third Edition provides an updated design section that includes how to evaluate and select vendors, vendor products, and service providers, as well as diagramming the design. The analysis sections have also been updated to couple requirements to the architecture and design, including requirements validation and traceability.

Approach

Network Analysis, Architecture, and Design, Third Edition will help you to understand and define your network architecture and design. It examines the entire system, from users and their applications, to the devices and networks that support them.
Preface

This book is designed to be applied to undergraduate and graduate programs in network engineering, architecture, and design, as well as for professional study for IT engineers and management (including CTOs and CIOs). It is structured to follow the logical progression of analyzing, developing, and validating requirements, which form the basis for making decisions regarding the network architecture, which in turn forms the basis for making network design decisions. When I teach network analysis, architecture, and design at universities, corporations, or conferences, I find that students readily adapt the material in this book as part of their engineering process.

In this book, I provide you with step-by-step procedures for doing network analysis, architecture, and design. I have refined this process through years of architecting and designing large-scale networks for government agencies, universities, and corporations, and have incorporated the ideas and experiences of expert designers throughout the book. Like an open standard for a technology or protocol, the procedures in this book are the result of several contributions, and offer you the cumulative experience of many network architects and designers.

I tackle some of the hard problems in network analysis, architecture, and design, and address real architecture and design challenges, including how to:

- Gather, derive, define, and validate real requirements for your network
- Determine how and where addressing and routing, security, network management, and performance are implemented in the network, and how they interact with each other
- Evaluate and select vendors, vendor products, and service providers for your project
- Developing traceability between requirements, architecture decisions, and design decisions
- Determine where to apply routing protocols (RIP/RIPv2, OSPF, BGP-4, MPLS), as well as classful and classless IP addressing mechanisms
- Determine where to apply performance mechanisms, including quality of service, service-level agreements, and policies in your network

In addressing challenges such as these, I provide guidelines, examples, and general principles to help you in making the tough decisions. You may find some or all of them to be useful, and I encourage you to modify them to fit your architecture and design needs.
For those using this book in a class or for self-study, there are a number of exercises at the end of each chapter. In addition, the Web page for this book at the publisher's Web site (www.mkp.com) contains additional material useful in your progress through the book, as well as a password-protected solutions manual to the exercises available to instructors.

Roadmap

The first four chapters are based on the systems approach, requirements analysis, and flow analysis from the first edition. They have been updated to include changes and improvements in network analysis since the release of the second edition. Chapter 1 introduces network analysis, including the systems approach, and provides definitions and concepts that will be used throughout the book. Chapters 2 and 3 focus on the concepts and process of determining requirements for your network, and Chapter 4 discusses how traffic flow analysis can be used to couple performance requirements to various traffic flows.

Chapters 5 through 9 cover the network architecture process. Chapter 5 provides an introduction to network architecture, developing internal and external relationships within and between major functions (addressing and routing, security, network management, and performance) in the network. Chapters 6 through 9 detail each of these major functions, developing component and reference architectures that describe their internal and external relationships.

Chapter 10 discusses the design process. This takes the results of the previous chapters and applies them toward making design decisions, including how to evaluate and select vendors, vendor products, and service providers, and diagramming the design.

For appropriate chapters, I have provided a list of recommended reading that will be useful to you in understanding the concepts of that chapter. Since this book introduces a fair number of new concepts, I also provide an extensive glossary of acronyms and terms that are used throughout the book.

Acknowledgments

First of all, many thanks to Pat Dunnington (NASA) and John McManus (Department of Commerce) for giving me the opportunity to refine the latest design
Preface

concepts during my time at NASA. I would also like to thank Havi Hoffman for use of her photo “Teaching Space to Curve” as the front cover of this book.

Also, thanks to Tony Arviola and Bessie Whitaker of NASA for their help in adopting the concepts of this book and applying them to several engineering projects across NASA.

The material presented in this book is based on a compilation of my own professional experiences and those of other members of the networking community. As always, I am solely responsible for any errors in this book. The analysis, architecture, and design processes are continually evolving, and any feedback from you on how to improve these processes is most welcome. Questions, comments, and suggestions can be sent to me at doowah_1@yahoo.com or through Morgan Kaufmann Publishing.

The people at Morgan Kaufmann Publishing have been a wonderful influence on the development of this edition. Many thanks to Dr. David Clark (Series Editor), Rick Adams (Senior Acquisitions Editor), Rachel Roumeliotis (Associate Editor), and Kathryn Liston (Project Manager).

The chapters on requirements and flow analyses are based on early work on data flow analysis done while I was at the Numerical Aerodynamic Simulation (NAS) facility at NASA Ames Research Center in Mountain View, CA. I owe much thanks to Bruce Blaylock, who had the foresight to encourage this work, as well as the tenacity to help me through the process.