Cover photos:
(left) Adenovirus, copyright Russell Kightley Media, with permission. (middle) A fluorescent in situ hybridization (FISH) image of bacterial colonization of a *Buchloe dactyloides* (buffalograss) root grown in mine tailings with 5% compost. The universal probe EUB338-mix labeled with Cy5 was used to label the bacteria and the image was taken with a Zeiss confocal scanning laser microscope. Image courtesy Sadie L. Iverson, University of Arizona, Tucson, AZ. (right) *Prosopis juliflora* (mesquite) root colonized by the mycorrhizal fungus *Glomus intraradices*, showing spores and hyphae. The sample was stained with trypan blue and imaged with at 40X. Image courtesy Fernando A. Solis-Dominguez

Academic Press is an imprint of Elsevier
30 Corporate Drive, Suite 400, Burlington, MA 01803, USA
525 B Street, Suite 1900, San Diego, California 92101-4495, USA
84 Theobald’s Road, London WC1X 8RR, UK

Copyright © 2009, Elsevier Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the publisher.

Permissions may be sought directly from Elsevier’s Science & Technology Rights Department in Oxford, UK; phone: (+44) 1865 843830, fax: (+44) 1865 853333, E-mail: permissions@elsevier.com. You may also complete your request online via the Elsevier homepage (http://elsevier.com), by selecting “Support & Contact” then “Copyright and Permission” and then “Obtaining Permissions.”

Library of Congress Cataloging-in-Publication Data
Application Submitted

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

ISBN: 978-0-12-370519-8

For information on all Academic Press publications visit our Web site at www.elsevierdirect.com

Typeset by Charon Tec Ltd., A Macmillan Company. (www.macmillansolutions.com)

Printed in China
08 09 10 9 8 7 6 5 4 3 2 1

Working together to grow libraries in developing countries

ELSEVIER BOOK AID International Sabre Foundation
It takes a village—thanks to my family, especially Mom, Dad and my daughter Claire.

This book is dedicated to microbes—they’re everywhere and I believe they are smarter than we think.

This book is dedicated to my wife and sons Peter and Phillip for all their support.

Raina M. Maier

Ian L. Pepper

Charles P. Gerba
8.1.2 Sampling Strategies and Methods for the Subsurface 139
8.1.3 Sample Processing and Storage 141

8.2 Water 144
8.2.1 Sampling Strategies and Methods for Water 144
8.2.2 Processing Water Samples for Virus Analysis 145
8.2.3 Processing Water Samples for Detection of Bacteria 147
8.2.4 Processing Water Samples for Detection of Protozoan Parasites 148

8.3 Air 149
8.3.1 Sampling Devices for the Collection of Air Samples 149

8.4 Detection of Microorganisms on Fomites 153
Questions and Problems 154
References and Recommended Readings 154

9. Microscopic Techniques
Timberley M. Roane, Ian L. Pepper and Raina M. Maier

9.1 History of Microscopy 157
9.2 Theory of Microscopy 157
9.3 Visible Light Microscopy 159
9.3.1 Types of Light Microscopy 159
9.3.2 Sample Preparation 162
9.4 Fluorescence Microscopy 163
9.4.1 Direct Counts 164
9.4.2 Fluorescent Immunolabeling 165
9.4.3 Fluorescent In Situ Hybridization 165
9.4.4 Confocal Laser Scanning Microscopy 167
9.4.5 Flow Cytometry 167
9.5 Electron Microscopy 167
9.5.1 Scanning Electron Microscopy 167
9.5.2 Transmission Electron Microscopy 169
9.5.3 Elemental Analysis 170
9.6 Scanning Probe Microscopy 171
9.6.1 Atomic Force Microscopy 171
9.7 Imaging 171
Questions and Problems 171
References 172

10. Cultural Methods
Ian L. Pepper and Charles P. Gerba

10.1 Cultural Methods for Isolation and Enumeration of Bacteria 173
10.1.1 Enumeration and Isolation Techniques 173
10.1.2 Plating Methods 174
10.1.3 Most Probable Number Technique 175
10.2 Culture Media for Bacteria 176
10.2.1 General Media Used for Culturing Bacteria 176
10.2.2 New Approaches to Enhanced Cultivation of Soil Bacteria 183
10.3 Cultural Methods for Fungi 184
10.4 Cultural Methods for Algae and Cyanobacteria 185
10.5 Cell Culture–Based Detection Methods for Viruses 186
Questions and Problems 188
References and Recommended Readings 188

11. Physiological Methods
Todd R. Sandrin, David C. Herman and Raina M. Maier

11.1 Introduction 191
11.2 Measuring Microbial Activity in Pure Culture 192
11.2.1 Substrate Utilization 192
11.2.2 Terminal Electron Acceptors 195
11.2.3 Cell Mass 196
11.2.4 Carbon Dioxide Evolution 197
11.3 Choosing the Appropriate Activity Measurement for Environmental Samples 198
11.4 Carbon Respiration 198
11.4.1 Measurement of Respiratory Gases, CO2 and O2, in Laboratory and Field Studies 199
11.4.2 The Application of Respiration Measurements in Environmental Microbiology 202
11.4.3 Tracer Studies to Determine Heterotrophic Potential 207
11.4.4 Anaerobic Respiration as an Indicator of Microbial Activity 209
11.5 Incorporation of Radiolabelled Tracers into Cellular Macromolecules 209
11.5.1 Incorporation of Thymidine into DNA 210
11.5.2 Incorporation of Leucine into Protein 210
11.6 Adenylate Energy Charge 211
11.7 Enzyme Assays 212
11.7.1 Dehydrogenase Assay 212
11.8 Stable Isotope Probing 215
11.9 Functional Genomics and Proteomics-Based Approaches 215
11.9.1 Functional Genomics 215
11.9.2 Proteomics 217
Questions and Problems 219
References and Recommended Readings 221
12. Immunological Methods
Scot E. Dowd, Marilyn J. Halonen, and Raina M. Maier

12.1 Introduction 225
12.2 What Is an Antibody? 226
12.2.1 Antibody Diversity 227
12.2.2 Antibody Specificity 227
12.2.3 Antibody Affinity 227
12.2.4 Polyclonal and Monoclonal Antibodies 228
12.2.5 Antiglobulins 228
12.3 Immunoassays 230
12.3.1 Fluorescent Immunolabeling 232
12.3.2 Enzyme-Linked Immunosorbent Assays 233
12.3.3 Competitive ELISA 234
12.3.4 Immunomagnetic Separation Assays 235
12.3.5 Western Immunoblotting Assays 236
12.3.6 Immunoaffinity Chromatography Assays 237
12.3.7 Immunocytochemical Assays 238
12.3.8 Immunoprecipitation Assays 239

Questions and Problems 240
References and Recommended Readings 241

13. Nucleic Acid–Based Methods of Analysis
Deborah T. Newby, Elizabeth M. Marlowe, and Raina M. Maier

13.1 Structure and Complementarity of Nucleic Acids 243
13.2 Obtaining Microbial Nucleic Acids from the Environment 245
13.2.1 Extraction of Nucleic Acids from Environmental Samples 245
13.3 Gene Probes and Probing 246
13.3.1 Colony Hybridization or Lifts 248
13.3.2 Southern and Northern Hybridizations 248
13.3.3 Fluorescent In Situ Hybridization (FISH) 251
13.3.4 Microarrays 251
13.3.5 Phyloarrays 254
13.4 Polymerase Chain Reaction 254
13.4.1 The Steps of PCR 254
13.4.2 Design of Primers 258
13.4.3 PCR Detection of Specific and Universal Genes 258
13.4.4 RT-PCR 259
13.4.5 ICC-PCR 260
13.4.6 Seminested, Nested, and Multiplex PCR 261

Questions and Problems 281
References and Recommended Readings 281

Part IV
Microbial Communication, Activities, and Interactions with Environment and Nutrient Cycling

14. Biogeochemical Cycling
Raina M. Maier

14.1 Introduction 287
14.1.1 Biogeochemical Cycles 287
14.1.2 Gaia Hypothesis 287
14.2 Carbon Cycle 289
14.2.1 Carbon Reservoirs 289
14.2.2 Carbon Fixation and Energy Flow 290
14.2.3 Carbon Respiration 290
Contents

14.3 Nitrogen Cycle 299
 14.3.1 Nitrogen Reservoirs 300
 14.3.2 Nitrogen Fixation 300
 14.3.3 Ammonia Assimilation (Immobilization) and Ammonification (Mineralization) 302
 14.3.4 Nitrification 305
 14.3.5 Nitrate Reduction 306
14.4 Sulfur Cycle 309
 14.4.1 Sulfur Reservoirs 310
 14.4.2 Assimilatory Sulfate Reduction and Sulfur Mineralization 311
 14.4.3 Sulfur Oxidation 311
 14.4.4 Sulfur Reduction 313
14.5 Iron Cycle 314
 14.5.1 Iron Reservoirs 314
 14.5.2 Iron in Soils and Sediments 314
 14.5.3 Iron in Marine Environments 315
 14.5.4 Iron Oxidation 316
 14.5.5 Iron Reduction 317
Questions and Problems 317
References and Recommended Readings 318

15. Consequences of Biogeochemical Cycles Gone Wild
David C. Herman and Raina M. Maier 319
15.1 Introduction 319
15.2 Microbially Influenced Corrosion 320
 15.2.1 Metal Corrosion 320
 15.2.2 Microbially Induced Concrete Corrosion 322
15.3 Acid Mine Drainage and Metal Recovery 323
 15.3.1 Acid Mine Drainage 323
 15.3.2 Metal Recovery 325
 15.3.3 Desulfurization of Coal 326
15.4 Biomethylation of Metals and Metalloids 326
15.5 Nitrous Oxide and Earth’s Atmosphere 327
15.6 Nitrate Contamination of Groundwater 329
15.7 Composting 330
Questions and Problems 332
References and Recommended Readings 332

16. Microbial Communication: Bacteria–Bacteria and Bacteria–Host
Leland S. Pierson III, Raina M. Maier, and Ian L. Pepper 335
16.1 Introduction 335
16.2 Communication via Quorum Sensing in Gram-Negative Bacteria 336
 16.2.1 N-Acyl Homoserine Lactones (AHLs) 336
 16.2.2 Quorum Sensing in Agrobacterium tumefaciens, a Ubiquitous Plant Pathogen 337
16.2.3 Quorum Sensing and Cross-Talk 339
 16.3 Signaling in Gram-Positive Bacteria 340
 16.3.1 γ-Butyrolactones 341
 16.3.2 Peptide Signaling 341
16.4 Other Types of Signaling 342
 16.4.1 Autoinducers-2 and -3 342
 16.4.2 Eavesdropping on the Party Line 342
 16.4.3 Bacterial Communication Interference 343
 16.4.4 Interkingdom Communication 344
 16.4.5 Host–Bacterial Communication 345
16.5 Summary and Core Concepts 345
Questions and Problems 345
References and Recommended Readings 345

17. Bacterial Communities in Natural Ecosystems
Raina M. Maier and Ian L. Pepper 347
17.1 Bacterial Communities 347
17.2 Bacterial Diversity in Natural Systems 348
 17.2.1 What is a Species? 348
 17.2.2 Diversity in Soil 348
 17.2.3 Diversity in the Ocean 349
17.3 Functional Diversity and the Resilience of Bacterial Communities 350
 17.3.1 Soil Bacterial Communities 350
 17.3.2 Soil–Plant–Microbe Interactions 351
17.4 Microbial Diversity and Natural Products 353
Questions and Problems 355
References and Recommended Readings 355

18. Global Change and Microbial Infectious Disease
Ian L. Pepper and Charles P. Gerba 357
18.1 Environmental Human Pathogenic Microbes 357
 18.1.1 Indigenous Pathogens of Soilborne Origin 359
 18.1.2 Water-Based and Airborne Human Pathogenic Microbes 360
18.2 Routes of Exposure 360
 18.2.1 What We Breathe 360
 18.2.2 What We Eat 360
 18.2.3 What We Drink 361
18.3 Environmental Change and Microbial Infectious Diseases 362
 18.3.1 Global Climate Change and Microbial Infectious Disease 362
 18.3.2 Urbanization and Deforestation 363
Questions and Problems 363
References and Recommended Readings 363
19. Microbial Transport
Deborah T. Newby, Ian L. Pepper and Raina M. Maier

19.1 Factors Affecting Microbial Transport 365
19.1.1 Microbial Filtration 366
19.1.2 Physiological State 366
19.1.3 Microbial Adhesion—The Influence of Cell Surface Properties 367
19.1.4 Impact of pH on Microbial Transport 371
19.1.5 Impact of Ionic Strength on Transport 371
19.1.6 Cellular Appendages 372
19.1.7 Hydrogeological Factors 373
19.1.8 Persistence and Activity of Introduced Microbes 375

19.2 Factors Affecting Transport of DNA 375
19.3 Novel Approaches to Facilitate Microbial Transport 376
19.3.1 Ultramicrobacteria 376
19.3.2 Surfactants 376
19.3.3 Gene Transfer 377

19.4 Microbial Transport Studies 377
19.4.1 Column Studies 377
19.4.2 Field Studies 378
19.4.3 Tracers 379

19.5 Models for Microbial Transport 380
19.5.1 Advection–Dispersion Models 380
19.5.2 Filtration Models 381

Questions and Problems 381

References and Recommended Readings 382

20. Microorganisms and Organic Pollutants
Raina M. Maier

20.1 Introduction 387
20.2 Environmental Law 388
20.3 The Overall Process of Biodegradation 390
20.4 Contaminant Structure, Toxicity, and Biodegradability 393
20.4.1 Genetic Potential 393
20.4.2 Toxicity 394
20.4.3 Bioavailability 394
20.4.4 Contaminant Structure 396
20.5 Environmental Factors Affecting Biodegradation 397
20.5.1 Redox Conditions 397
20.5.2 Organic Matter Content 398
20.5.3 Nitrogen 398
20.5.4 Other Environmental Factors 398
20.6 Biodegradation of Organic Pollutants 399

20.6.1 Pollutant Sources and Types 399
20.6.2 Aliphatics 402

20.7 Bioremediation 414
20.7.1 Addition of Oxygen or Other Gases 416
20.7.2 Nutrient Addition 417
20.7.3 Sequential Anaerobic–Aerobic Degradation 418
20.7.4 Addition of Surfactants 418
20.7.5 Addition of Microorganisms or DNA 418

Questions and Problems 419
References and Recommended Readings 419

21. Microorganisms and Metal Pollutants
Timberley M. Roane, Christopher Rensing, Ian L. Pepper and Raina M. Maier

21.1 Metals in the Environment 421
21.2 Cause for Concern 422
21.3 Metals Defined 422
21.3.1 The Essential Metals 423
21.3.2 The Toxic Metals 423
21.3.3 The Nontoxic Nonessential Metals 423

21.4 Metal Sources 424
21.4.1 Anthropogenic Sources 424
21.4.2 Natural Sources 424

21.5 Metal Solubility, Bioavailability and Speciation 425
21.5.1 Metal Chemistry 426
21.5.2 Cation-Exchange Capacity 427
21.5.3 Redox Potential 427
21.5.4 pH 427

21.6 Metal Toxicity Effects on the Microbial Cell 427

21.7 Mechanisms of Microbial Metal Resistance and Detoxification 429
21.7.1 General Mechanisms of Metal Resistance 430
21.7.2 Metal-Dependent Mechanisms of Resistance 430

21.8 Methods for Studying Metal–Microbial Interactions 432
21.8.1 Culture Medium 432
21.8.2 Measurement of Total, Soluble, and Bioavailable Metal 433

21.9 Microbial Metal Transformations 434
21.9.1 Oxidation–Reduction 434
21.9.2 Methylation 435

21.10 Physicochemical Methods of Metal Remediation 435
21.11 Microbial Approaches in the Remediation of Metal-Contaminated Soils and Sediments 437
21.12 Microbial Approaches in the Remediation of Metal-Contaminated Aquatic Systems 438
Part VI
Water- and Foodborne Pathogens

22. Environmentally Transmitted Pathogens
Charles P. Gerba

- 22.1 Environmentally Transmitted Pathogens
 - 445
- 22.2 Bacteria
 - 447
 - 22.2.1 *Salmonella*
 - 447
 - 22.2.2 *Escherichia coli* and *Shigella*
 - 448
 - 22.2.3 *Campylobacter*
 - 449
 - 22.2.4 *Yersinia*
 - 450
 - 22.2.5 *Vibrio*
 - 451
 - 22.2.6 *Helicobacter*
 - 452
 - 22.2.7 *Legionella*
 - 453
 - 22.2.8 Opportunistic Bacterial Pathogens
 - 454
 - 22.2.9 Blue-Green Algae
 - 455
- 22.3 Parasitology
 - 457
 - 22.3.1 Protozoa
 - 458
 - 22.3.2 Nematodes
 - 465
 - 22.3.3 Cestodes (*Taenia saginata*)
 - 467
 - 22.3.4 Trematodes (*Schistosoma mansoni*)
 - 467
- 22.4 Viruses
 - 469
 - 22.4.1 Enteric Viruses
 - 469
 - 22.4.2 Respiratory Viruses
 - 475
- 22.5 Fate and Transport of Pathogens in the Environment
 - 479

Questions and Problems
References and Recommended Readings
- 480
- 481

23. Indicator Microorganisms
Charles P. Gerba

- 23.1 The Concept of Indicator Organisms
 - 485
- 23.2 Total Coliforms
 - 486
 - 23.2.1 The Most Probable Number (MPN) Test
 - 487
 - 23.2.2 The Membrane Filter (MF) Test
 - 487
 - 23.2.3 The Presence–Absence (P–A) Test
 - 487
- 23.3 Fecal Coliforms and *Escherichia coli*
 - 490
- 23.4 Fecal Streptococci
 - 490
- 23.5 *Clostridium Perfringens*
 - 491
- 23.6 Heterotrophic Plate Count
 - 491
- 23.7 Bacteriophage
 - 492
- 23.8 Other Potential Indicator Organisms
 - 493
- 23.9 Standards and Criteria for Indicators
 - 494
- 23.10 Microbial Source Tracking
 - 496

Questions and Problems
References and Recommended Readings
- 498

Part VII
Wastewater Treatment and Disinfection

24. Wastewater Treatment and Biosolids Reuse
Charles P. Gerba and Ian L. Pepper

- 24.1 The Nature of Wastewater (Sewage)
 - 503
- 24.2 Modern Wastewater Treatment
 - 506
 - 24.2.1 Primary Treatment
 - 506
 - 24.2.2 Secondary Treatment
 - 506
 - 24.2.3 Tertiary Treatment
 - 511
 - 24.2.4 Removal of Pathogens by Sewage Treatment Processes
 - 511
 - 24.2.5 Removal of Organics and Inorganics by Sewage Treatment Processes
 - 513
- 24.3 Oxidation Ponds
 - 513
- 24.4 Septic Tanks
 - 515
- 24.5 Land Application of Wastewater
 - 516
- 24.6 Wetlands and Aquaculture Systems
 - 518
- 24.7 Sludge Processing
 - 521
 - 24.7.1 Stabilization Technologies
 - 521
 - 24.7.2 Sludge Processing to Produce Class A Biosolids
 - 522
- 24.8 Land Application of Biosolids and Animal Wastes: An Historical Perspective and Current Outlook
 - 523
 - 24.8.1 Class A versus Class B Biosolids
 - 523
- 24.9 Methods of Land Application of Biosolids
 - 524
- 24.10 Pathogens of Concern in Class B Biosolids
 - 524
 - 24.10.1 Other Biological Concerns with Biosolids
 - 525
 - 24.10.2 Risks from Pathogens in Biosolids
 - 527
- 24.11 Pathogens in Animal Manures
 - 528

Questions and Problems
References and Additional Readings
- 529

25. Drinking Water Treatment
Charles P. Gerba

- 25.1 Water Treatment Processes
 - 531
- 25.2 Water Treatment Requirements
 - 533
- 25.3 Water Distribution Systems
 - 534
- 25.4 Organic Carbon and Microbial Growth in Distribution Systems
 - 536

Questions and Problems
References and Recommended Readings
- 498
- 498
26. Disinfection

Charles P. Gerba

- 26.1 Thermal Destruction 540
- 26.2 Kinetics of Disinfection 541
- 26.3 Factors Affecting Disinfectants 542
- 26.4 Halogens
 - 26.4.1 Chlorine 545
 - 26.4.2 Chloramines 545
 - 26.4.3 Chlorine Dioxide 546
 - 26.4.4 Bromine and Iodine 546
- 26.5 Ozone 547
- 26.6 Metal Ions 547
- 26.7 Ultraviolet Disinfection 548
- 26.8 Photodynamic Inactivation 550
- 26.9 Gamma and High-Energy Irradiation 550

Questions and Problems 550

References and Recommended Readings 551

28. Microorganisms and Bioterrorism

Ian L. Pepper, Christopher Y. Choi and Charles P. Gerba

- 28.1 Microbial Agents of Concern as Weapons of Bioterrorism 566
- 28.2 Bioterrorism and Potable Water 568
 - 28.2.1 Real-Time Monitoring in Water Distribution Systems 568
 - 28.2.2 Real-Time Monitoring 569
 - 28.2.3 Contaminant Transport Mechanisms and Water Quality Modeling 569
- 28.3 Bioterrorism and Agriculture 571
 - 28.3.1 Contamination via Airborne Microbial Agents 571
 - 28.3.2 Foot-and-Mouth Disease 574
- 28.4 Transmission by Fomites 574

Questions and Problems 574

References and Recommended Readings 574

29. Risk Assessment

Charles P. Gerba

- 29.1 The Concept of Risk Assessment 575
- 29.2 Elements of Risk Assessment 575
- 29.3 The Process of Risk Assessment 577
 - 29.3.1 Hazard Identification 577
 - 29.3.2 Exposure Assessment 578
 - 29.3.3 Dose–Response Assessment 579
 - 29.3.4 Risk Characterization 580
- 29.4 Microbial Risk Assessment 581

Questions and Problems 586

References and Recommended Readings 587

Index 589
Historically, environmental microbiology can be traced to studies of municipal waste treatment and disposal. In the first Edition of Environmental Microbiology, we recognized that this field had expanded to the study of earth, water, and air systems, including the interaction of indigenous microbes with organic and inorganic pollutants, behavior of pathogens introduced into these systems, and the discovery and application of new microbes and their products to benefit human health and welfare. In the intervening years since, there has been a virtual explosion of knowledge on microbial diversity and communities in various environments. As a result, in the second edition of Environmental Microbiology we have added chapters on extreme environments, as well as microbial communities and communication among microorganisms. Similarly, in recognition of ever-increasing human population pressures and climate change, we have added chapters on domestic microbiology, bioterrorism, and the impact of global change on microbial infectious disease.

Microbes are everywhere, all over the world and in every imaginable environment. For example in soil, just one gram contains billions of microorganisms and all their associated activities. Imagine the challenge of studying all the major groups of microbes found in each of earth’s biomes given the magnitude of their immense diversity. Imagine then the challenge of developing strategies to harness and manipulate their activities. That is what environmental microbiology is about. We invite you to use this text to begin the exciting adventure of understanding microorganisms in their many environments.

This text has eight subject areas presented in a logical progression: (i) foundation chapters to provide an adequate background for the advanced material presented in subsequent chapters; (ii) chapters on microbial environments, including earth, aquatic, and atmospheric; (iii) chapters on detection and quantitation of microbial activity, including cultural, microscopic, physiological, molecular, and immunological approaches; (iv) chapters on microbial interactions with their environment from element cycling to microbial communication to development and movement of bacterial communities; (v) chapters on microbial remediation of organic and metal pollutants; (vi) chapters on water and food-borne pathogens; (vii) chapters on waste treatment and drinking water; and finally, (viii) chapters on urban issues including domestic and indoor microbiology, bioterrorism, and risk assessment. This textbook is designed for a senior-level undergraduate class or a graduate-level class in environmental microbiology and to serve as a reference for scientists and engineers interested in this field. The overall objectives of the text are to define the important microbes involved in environmental microbiology, the nature of the different environments in which the microbes are situated, and the methodologies used to monitor the microbes and their activities and, finally, to evaluate the effects of these microbes on human activities.

This book represents a joint effort led by three authors who have diverse yet complementary backgrounds in environmental microbiology. The authors are close colleagues at the University of Arizona and all have large and active research programs. They have worked together extensively on a variety of practical problems using advanced, interdisciplinary approaches. Examples include microbiology of extreme environments, biotechnology applications of microbial surfactants, molecular detection of emerging pathogens, transport of microbes and DNA through soil, and microbial risk assessment. Their extensive research programs have provided a number of the examples used in this text to illustrate important learning points. Key contributions to this text were also made by eleven colleagues who collaborate with the authors at the University of Arizona. This group has worked closely together, resulting in a textbook that has continuity in depth and style, and that is state-of-the-art at the time of press.

Raina Maier, Ian Pepper and Charles Gerba
Textbook development: We would like to acknowledge various federal funding agencies that have supported our research throughout the years providing rich and varied perspectives to bring to bear on the topic of Environmental Microbiology. These include the National Science Foundation, the National Institute of Environmental Health Sciences, the Environmental Protection Agency, the US Department of Agriculture and the Department of Homeland Security.
All three authors are professors in the Department of Soil, Water and Environmental Science at the University of Arizona.

Raina M. Maier Ph.D., Rutgers University, 1988. Currently, Professor of Environmental Microbiology and Associate Director of the University of Arizona NIEHS Superfund Basic Research Program. Dr. Maier’s research is focused on developing a basic understanding of how to evaluate and control microbial activity in disturbed and extreme environments ranging from mine tailings to cave environments to the Atacama Desert, Chile. She is known for using an interdisciplinary approach to study the interaction microorganisms with both biotic and the abiotic components of their environment. Dr. Maier has earned an international reputation for her work on microbial surfactants (biosurfactants) a class of fascinating secondary metabolites with possible uses in remediation, biological control, surface coatings, and the cosmetic and pharmaceutical industries.

“Environmental microbiology remains one of the relatively unexplored and extremely exciting frontiers of science. So little is yet known about environmental microbes—partially because they quickly become lab rats when taken out of their environment—that the possibilities for new discoveries are limitless.”

Ian L. Pepper Ph.D., The Ohio State University, 1975. Currently, Professor of Environmental Microbiology. Dr. Pepper’s diverse research interests are reflected in the fact that he is Fellow of The American Association for the Advancement of Science, the American Academy of Microbiology, the Soil Science Society of America, and the American Society of Agronomy. He is also Director of the National Science Foundation Water Quality Center at the University of Arizona. Dr. Pepper has been active in the area of soil molecular ecology as well as waste utilization including biosolids and effluent reuse. More recently he pursues research on real-time monitoring of microbial contaminants in potable water, and “smart water distribution systems.”

“Microbes are in the air we breathe, the water we drink and the food we eat. In fact there are more microbes within our bodies than mammalian cells. On this basis alone, microbes are fascinating, and when you study environmental microbes, it takes your breath away.”

Charles P. Gerba Ph.D., University of Miami, 1973. Currently, Professor of Microbiology. Dr. Gerba is a Fellow of the American Academy of Microbiology. He is recipient of the A. P. Black Award from the American Water Works Association for outstanding contributions to Water Science, and the McKee Award from the Water Environment Federation for outstanding contributions to groundwater protection. He has an international reputation for his methodologies for pathogen detection in water and food, pathogen occurrence in households, and risk assessment.

“My interest in microbiology was sparked by Paul DeKruif’s inspiring tales of the scientific achievements of early microbiologists in the book *The Microbe Hunters* and my mother’s error in giving me a microscope for Christmas instead of the chemistry set I wanted. In my first summer job out of college, I was introduced to environmental microbiology by studying sewage disposal. Later, I examined the fate of viruses in sewage discharged into the ocean. These beginnings led me to an exciting and adventurous career in environmental microbiology where every day brings a new problem to be addressed.”
Contributing Authors

Edition 2

Scot E. Dowd Ph.D. Microbiologist, USDA ARS Livestock Issues Research Unit, Lubbock, TX.

Christopher Y. Choi, Professor of Agricultural and Biosystems Engineering, University of Arizona

Marilyn J. Halonen, Professor of Pharmacology, University of Arizona

David C. Herman Ph.D. in Microbiology, University of Arizona

Elizabeth M. Marlowe Ph.D. Assistant Director of Microbiology-Molecular Testing, Southern California Permanente Medical Group

Deborah T. Newby Ph.D. Idaho National Laboratory