Building Intelligent Interactive Tutors
Student-centered strategies for revolutionizing e-learning

Beverly Park Woolf
Department of Computer Science,
University of Massachusetts, Amherst
For Tao Roa, Ora Ming, and Nessa Rose
Contents

Preface..x i

PART I INTRODUCTION TO ARTIFICIAL INTELLIGENCE
AND EDUCATION

CHAPTER 1 Introduction ... 3
 1.1 An inflection point in education .. 4
 1.2 Issues addressed by this book .. 6
 1.2.1 Computational issues .. 7
 1.2.2 Professional issues .. 9
 1.3 State of the art in Artificial Intelligence and education 10
 1.3.1 Foundations of the field ... 10
 1.3.2 Visions of the field .. 12
 1.3.3 Effective teaching methods .. 14
 1.3.4 Computers in education .. 16
 1.3.5 Intelligent tutors: The formative years .. 18
 1.4 Overview of the book ... 18
 Summary .. 19

CHAPTER 2 Issues and Features ... 21
 2.1 Examples of intelligent tutors ... 21
 2.1.1 AnimalWatch taught arithmetic .. 21
 2.1.2 PAT taught algebra .. 24
 2.1.3 Cardiac Tutor trained professionals to manage cardiac arrest 27
 2.2 Distinguishing features .. 28
 2.3 Learning theories ... 34
 2.3.1 Practical teaching theories .. 34
 2.3.2 Learning theories as the basis for tutor development 36
 2.3.3 Constructivist teaching methods ... 37
 2.4 Brief theoretical framework ... 39
 2.5 Computer science, psychology, and education .. 42
 2.6 Building intelligent tutors .. 44
 Summary .. 45

PART II REPRESENTATION, REASONING AND ASSESSMENT

CHAPTER 3 Student Knowledge ... 49
 3.1 Rationale for building a student model ... 50
3.2 Basic concepts of student models .. 50
 3.2.1 Domain models .. 51
 3.2.2 Overlay models .. 52
 3.2.3 Bug libraries ... 52
 3.2.4 Bandwidth .. 53
 3.2.5 Open user models ... 54
3.3 Issues in building student models .. 55
 3.3.1 Representing student knowledge .. 55
 3.3.2 Updating student knowledge ... 58
 3.3.3 Improving tutor performance .. 59
3.4 Examples of student models ... 60
 3.4.1 Modeling skills: PAT and AnimalWatch 61
 3.4.1.1 Pump Algebra Tutor ... 61
 3.4.1.2 AnimalWatch ... 65
 3.4.2 Modeling procedure: The Cardiac Tutor 67
 3.4.3 Modeling affect: Affective Learning companions and wayang outpost .. 69
 3.4.3.1 Hardware-based emotion recognition 71
 3.4.3.2 Software-based emotion recognition 72
 3.4.4 Modeling complex problems: Andes .. 75
3.5 Techniques to update student models .. 79
 3.5.1 Cognitive science techniques ... 80
 3.5.1.1 Model-tracing tutors .. 80
 3.5.1.2 Constraint-based student model 81
 3.5.2 Artificial intelligence techniques .. 86
 3.5.2.1 Formal logic .. 86
 3.5.2.2 Expert-system student models 89
 3.5.2.3 Planning and plan-recognition student models 90
 3.5.2.4 Bayesian belief networks .. 92
3.6 Future research issues .. 93
 Summary ... 94

CHAPTER 4 TEACHING KNOWLEDGE ... 95
4.1 Features of teaching knowledge .. 95
4.2 Teaching models based on human teaching 99
 4.2.1 Apprenticeship training .. 99
 4.2.1.1 SOPHIE: An example of apprenticeship training 100
 4.2.1.2 Sherlock: An example of an apprenticeship environment .. 101
 4.2.2 Problem solving ... 103
4.3 Teaching Models informed by learning theory 105
 4.3.1 Pragmatics of human learning theories 106
4.3.2 Socratic learning theory ... 107
 4.3.2.1 Basic principles of Socratic learning theory 107
 4.3.2.2 Building Socratic tutors ... 109
4.3.3 Cognitive learning theory ... 110
 4.3.3.1 Basic principles of cognitive learning theories 110
 4.3.3.2 Building cognitive learning tutors 110
 4.3.3.2.1 Adaptive control of thought (ACT) 111
 4.3.3.2.2 Building cognitive tutors 111
 4.3.3.2.3 Development and deployment of model-tracing tutors 112
 4.3.3.2.4 Advantages and limitations of model-tracing tutors 112
4.3.4 Constructivist theory .. 114
 4.3.4.1 Basic principles of constructivism 114
 4.3.4.2 Building constructivist tutors 115
4.3.5 Situated learning ... 117
 4.3.5.1 Basic principles of situated learning 117
 4.3.5.2 Building situated tutors ... 118
4.3.6 Social interaction and zone of proximal development 123
 4.3.6.1 Basic principles of social interaction and zone of proximal development 123
 4.3.6.2 Building social interaction and ZPD tutors 124
4.4 Teaching models facilitated by technology 126
 4.4.1 Features of animated pedagogical agents 127
 4.4.2 Building animated pedagogical agents 129
 4.4.2.1 Emotive agents .. 131
 4.4.2.2 Life quality .. 131
4.5 Industrial and Military Training .. 132
4.6 Encoding multiple teaching strategies .. 133
 Summary .. 134

CHAPTER 5 Communication Knowledge ... 136
5.1 Communication and teaching .. 136
5.2 Graphic communication .. 138
 5.2.1 Synthetic humans ... 138
 5.2.2 Virtual reality environments ... 142
 5.2.3 Sophisticated graphics techniques 149
5.3 Social intelligence .. 150
 5.3.1 Visual recognition of emotion 151
 5.3.2 Metabolic indicators .. 153
 5.3.3 Speech cue recognition ... 155
5.4 Component interfaces .. 156
5.5 Natural language communication .. 158
 5.5.1 Classification of natural language-based intelligent tutors 158
 5.5.1.1 Mixed initiative dialogue ... 159
 5.5.1.2 Single-initiative dialogue ... 161
 5.5.1.3 Directed dialogue .. 164
 5.5.1.4 Finessed dialogue .. 165
 5.5.2 Building natural language tutors ... 167
 5.5.2.1 Basic principles in natural language processing 167
 5.5.2.2 Tools for building natural language tutors 169
5.6 Linguistic issues in natural language processing 172
 5.6.1 Speech understanding .. 172
 5.6.1.1 LISTEN: The Reading Tutor 173
 5.6.1.2 Building speech understanding systems 174
 5.6.2 Syntactic processing ... 175
 5.6.3 Semantic and pragmatic processing 177
 5.6.4 Discourse processing .. 179
Summary .. 181

CHAPTER 6 Evaluation ... 183
6.1 Principles of intelligent tutor evaluation 183
 6.1.1 Establish goals of the tutor ... 184
 6.1.2 Identify goals of the evaluation... 184
 6.1.3 Develop an evaluation design ... 188
 6.1.3.1 Build an evaluation methodology 188
 6.1.3.2 Consider alternative evaluation comparisons 191
 6.1.3.3 Outline the evaluation design 193
 6.1.4 Instantiate the evaluation design .. 196
 6.1.4.1 Consider the variables ... 196
 6.1.4.2 Select target populations .. 197
 6.1.4.3 Select control measures .. 197
 6.1.4.4 Measure usability .. 198
 6.1.5 Present results... 198
 6.1.6 Discuss the evaluation .. 200
6.2 Example of intelligent tutor evaluations .. 200
 6.2.1 Sherlock: A tutor for complex procedural skills 200
 6.2.2 Stat Lady: A statistics tutor .. 202
 6.2.3 LISP and PAT: Model tracing tutors 204
 6.2.4 Database tutors ... 209
 6.2.5 Andes: A physics tutor ... 212
 6.2.6 Reading Tutor: A tutor that listens ... 215
 6.2.7 AnimalWatch: An arithmetic tutor ... 217
Summary .. 220
PART III TECHNOLOGIES AND ENVIRONMENTS

CHAPTER 7 Machine Learning .. 223
 7.1 Motivation for machine learning ... 223
 7.2 Building machine learning techniques into intelligent tutors 228
 7.2.1 Machine learning components ... 228
 7.2.2 Supervised and unsupervised learning............................... 230
 7.3 Features learned by intelligent tutors using machine learning techniques .. 232
 7.3.1 Expand student and domain models 232
 7.3.2 Identify student learning strategies 234
 7.3.3 Detect student affect .. 235
 7.3.4 Predict student performance .. 235
 7.3.5 Make teaching decisions... 236
 7.4 Machine learning techniques... 239
 7.4.1 Uncertainty in tutoring systems ... 239
 7.4.1.1 Basic probability notation ... 241
 7.4.1.2 Belief networks in tutors ... 242
 7.4.2 Bayesian belief networks .. 244
 7.4.2.1 Bayesian belief networks in intelligent tutors 247
 7.4.2.2 Examples of Bayesian student models 248
 7.4.2.2.1 Expert-centric Bayesian models 249
 7.4.2.2.2 Data-centric Bayesian models 253
 7.4.2.2.3 Efficiency-centric Bayesian models 254
 7.4.2.3 Building Bayesian belief networks 255
 7.4.2.3.1 Define the structure of the Bayesian network 255
 7.4.2.3.2 Initialize values in a Bayesian network...... 257
 7.4.2.3.3 Update probabilities in a Bayesian network 258
 7.4.2.4 Advantages of Bayesian networks and comparison with model-based tutors .. 263
 7.4.3 Reinforcement learning .. 264
 7.4.3.1 Examples of reinforcement learning............................. 265
 7.4.3.2 Building reinforcement learners 266
 7.4.3.3 Reinforcement learning in intelligent tutors 267
 7.4.3.4 Animal learning and reinforcement learning 268
 7.4.4 Hidden Markov models ... 269
 7.4.5 Decision theoretic reasoning .. 274
 7.4.6 Fuzzy logic .. 279
 7.5 Examples of intelligent tutors that employ machine learning techniques .. 281
 7.5.1 Andes: Bayesian belief networks to reason about student knowledge ... 281
Contents ix

7.5.1.1 Sources of uncertainty and structure of the Andes-Bayesian network ... 281
7.5.1.2 Infer student knowledge ... 283
7.5.1.3 Self-Explain Tutor .. 286
7.5.1.4 Limitations of the Andes Bayesian networks 289
7.5.2 AnimalWatch: Reinforcement learning to predict student actions.. 289
7.5.2.1 Reinforcement learning in AnimalWatch 290
7.5.2.2 Gather training data for the machine learner............ 292
7.5.2.3 Induction techniques used by the learning mechanism .. 293
7.5.2.4 Evaluation of the reinforcement learning tutor 293
7.5.2.5 Limitations of the AnimalWatch reinforcement learner .. 296
Summary .. 297

CHAPTER 8 Collaborative Inquiry Tutors .. 298
8.1 Motivation and research issues ... 298
8.2 Inquiry Learning ... 299
8.2.1 Benefits and challenges of inquiry-based learning 300
8.2.2 Three levels of inquiry support 302
8.2.2.1 Tools that structure inquiry 302
8.2.2.2 Tools that monitor inquiry 305
8.2.2.3 Tools that offer advice .. 307
8.2.2.3.1 Belvedere .. 308
8.2.2.3.2 Rashi ... 310
8.2.3 Phases of the inquiry cycle .. 315
8.3 Collaborative Learning ... 316
8.3.1 Benefits and challenges of collaboration 317
8.3.2 Four levels of collaboration support.......................... 319
8.3.2.1 Tools that structure collaboration 320
8.3.2.2 Tools that mirror collaboration 321
8.3.2.3 Tools that provide metacognitive support 324
8.3.2.4 Tools that coach students in collaboration 330
8.3.3 Phases of Collaboration ... 333
Summary and discussion ... 335

CHAPTER 9 WEB-BASED LEARNING ENVIRONMENTS 337
9.1 Educational inflection point ... 337
9.2 Conceptual framework for Web-based learning 340
9.3 Limitation of Web-based instruction 343
9.4 Variety of Web-based resources 344
9.4.1 Adaptive systems .. 345
9.4.1.1 Example of an adaptive system 346
9.4.1.2 Building iMANIC ... 347
9.4.1.3 Building adaptive systems ... 351
 9.4.1.3.1 Adaptive navigation: Customize travel to new pages 351
 9.4.1.3.2 Adaptive Presentation: Customize page content .. 354
9.4.2 Tutors ported to the Web .. 355
9.5 Building the Internet ... 356
9.6 Standards for Web-based resources ... 359
9.7 Education Space .. 361
 9.7.1 Education Space: Services description ... 363
 9.7.2 Education Space: Nuts and bolts ... 365
 9.7.2.1 Semantic Web .. 366
 9.7.2.2 Ontologies ... 369
 9.7.2.3 Agents and networking issues .. 372
 9.7.2.4 Teaching Grid ... 375
9.8 Challenges and technical issues ... 374
9.9 Vision of the Internet ... 377
Summary .. 378

CHAPTER 10 Future View ... 380
10.1 Perspectives on educational futures ... 380
 10.1.1 Political and social viewpoint .. 381
 10.1.2 Psychological perspective .. 383
 10.1.3 Classroom teachers' perspective 384
10.2 Computational vision for education ... 386
 10.2.1 Hardware and software development 386
 10.2.2 Artificial intelligence .. 388
 10.2.3 Networking, mobile, and ubiquitous computing 389
 10.2.4 Databases .. 392
 10.2.5 Human-computer interfaces .. 393
10.3 Where are all the intelligent tutors? .. 394
 10.3.1 Example authoring tools .. 395
 10.3.2 Design tradeoffs ... 398
 10.3.3 Requirements for building intelligent tutor authoring tools 399
10.4 Where are we going? ... 401
References .. 405
Index ... 451
Preface

These are exciting and challenging times for education. The demands of a global society have changed the requirements for educated people; we now need to learn new skills continuously during our lifetimes, analyze quickly, make clear judgments, and exercise great creativity. We need to work both independently and in collaboration and to create engaging learning communities. Yet the current educational establishment is not up to these challenge; students work in isolation on repetitive assignments, in classes and schedules fixed in place and time. Technologic and scientific innovations promise to dramatically enhance exiting learning methods.

This book describes the use of artificial intelligence in education, a young field that explores theories about learning and builds software that delivers differential teaching, systems that adapt their teaching response after reasoning about student needs and domain knowledge. These systems support people who work alone or in collaborative inquiry. They support students to question their own knowledge, and to rapidly access and integrate global information. This book describes how to build these tutors and how to produce the best possible learning environment, whether for classroom instruction or lifelong learning.

I had two goals in writing this book. The first was to provide a readable introduction and sound foundation to the discipline so people can extract theoretical and practical knowledge from the large body of scientific journals, proceedings, and conferences in the field. The second goal was to describe a broad range of issues, ideas, and practical know-how technology to help move these systems into the industrial and commercial world. Thanks to advances in technology (computers, Internet, networks), advances in scientific progress (artificial intelligence, psychology), and improved understanding of how people learn (cognitive science, human learning), basic research in the field has expanded, and the impact of these tools on education is beginning to be felt. The field now has a supply of techniques for assessing student knowledge and adapting instruction to learning needs. Software can reason about its own teaching process, know what it is teaching, and individualize instruction.

This book is appropriate for students, researchers, and practitioners from academia, industry, and government. It is written for advanced undergraduates or graduate students from several disciplines and backgrounds, specifically computer science, linguistics, education, and psychology. Students should be able to read and critique descriptions of tools, methods, and ideas; to understand how artificial intelligence is applied (e.g., vision, natural language), and to appreciate the complexity of human learning and advances in cognitive science. Plentiful references to source literature are provided to explicate not just one approach, but as many as possible for each new concept. In a semester course, chapters might be presented weekly in parallel with recent research articles from the literature. Weekly assignments might invite students to critique the literature or laboratory activities and a final project require teams of students to develop detailed specifications for a tutor about a topic chosen by the team.
This book owes a debt of gratitude to many people. The content of the chapters has benefited from comments by reviewers and colleagues, including Ivon Arroyo, Joseph Beck, Glenn Blank, Chung Heong Gooi, Neil Heffernan, Lewis Johnson, Tanja Mitrovic, William Murray, Jeff Rickel, Amy Soller, Mia Stern, Richard Stottler, and Dan Suthers. I owe an intellectual debt to my advisors and teachers, including Michael Arbib, Paul Cohen, David McDonald, Howard Peelle, Edwina Rissland, Klaus Schultz, Elliot Soloway, and Pearl and Irving Park. Tanja Mitrovic at the University of Canterbury in Christchurch, New Zealand, provided an ideal environment and respite in which to work on this book.

Special thanks go to Gwyn Mitchell for consistent care and dedication in all her work, for organizing our research and this book, and for help that is always above and beyond expectation. I thank Rachel Lavery who worked tirelessly and consistently to keep many projects going under the most chaotic situations. I also thank my colleagues, particularly Andy Barto, Carole Beal, Don Fisher, Victor Lesser, Tom Murray and Win Burleson, for creating an exciting research environment that continues to demonstrate the compelling nature of this field. I thank my family, especially Stephen Woolf for his encouragement and patience while I worked on this book and for helping me with graphics and diagrams. Carol Foster and Claire Baldwin provided outstanding editing support. I acknowledge Mary James and Denise Penrose at Elsevier for keeping me on time and making design suggestions.

The work of the readers of this book (students, teachers, researchers, and developers) is key to the success of the field and its future development. I want to know how this book does or does not contribute to your goals. I welcome your comments and questions, and suggestions for additions and deletions. Please write to me at the e-mail below (its@cs.umass.edu) or use the e-mail link at the web site. I will carefully consider all your comments and suggestions.

Beverly Park Woolf
Department of Computer Science
University of Massachusetts
Amherst, MA 01003