Fundamentals of Air Pollution

FOURTH EDITION

Authors of Third Edition

RICHARD W. BOUBEL

Department of Mechanical Engineering Oregon State University Corvallis, Oregon

DONALD L. FOX

Department of Environmental Science School of Public Health University of North Carolina Chapel Hill, North Carolina

D. BRUCE TURNER

Trinity Consultants, Inc. Chapel Hill, North Carolina

ARTHUR C. STERN

(14 March 1909-17 April 1992)

Fundamentals of Air Pollution

FOURTH EDITION

DANIEL A. VALLERO

Civil and Environmental Engineering Department Pratt School of Engineering Duke University Durham, North Carolina

AMSTERDAM • BOSTON • HEIDELBERG • LONDON • NEW YORK • OXFORD PARIS • SAN DIEGO • SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO Academic Press is an imprint of Elsevier

Academic Press is an imprint of Elsevier 30 Corporate Drive, Suite 400, Burlington, MA 01803, USA 525 B Street, Suite 1900, San Diego, California 92101-4495, USA 84 Theobald's Road, London WC1X 8RR, UK

◎ This book is printed on acid-free paper.

First Edition 1973 Second Edition 1984 Third Edition 1994 Fourth Edition 2008

Copyright © 2008, Elsevier Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the publisher.

Permissions may be sought directly from Elsevier's Science & Technology Rights Department in Oxford, UK: phone: (+44) 1865 843830, fax: (+44) 1865 853333; e-mail: permissions@elsevier.com. You may also complete your request online via the Elsevier homepage (http://elsevier.com), by selecting "Support & Contact" then "Copyright and Permission" and then "Obtaining Permissions."

Library of Congress Cataloging-in-Publication Data

Vallero, Daniel A.
Fundamentals of air pollution / Daniel A. Vallero — 4th ed. p. cm.
Includes index.
ISBN 978-0-12-373615-4 (alk. paper)
1. Air—Pollution. I. Title.
TD883.V25 2007
628.5'3—dc22
2007028062

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library

ISBN: 978-0-12-373615-4

For information on all Academic Press publications visit our website at www.books.elsevier.com

Typeset by Charon Tec Ltd (A Macmillan Company), Chennai, India www.charontec.com Printed and bound in the USA

07 08 09 10 9 8 7 6 5 4 3 2 1

Dedicated to the four authors of the previous edition. I am standing on the shoulders of giants.

Contents

Preface to the Third Edition Preface to the Fourth Edition

xvii xxi

Part I

Air Pollution Essentials

1	The Changing Face of Air Pollution	
	I. Defining Air Pollution	3
	II. The Emergence of Air Pollution Science, Engineering, and	
	Technology	7
	III. Air Pollution Before the Industrial Revolution	37
	IV. Air Pollution and the Industrial Revolution	40
	V. Recent Air Pollution	42
	VI. The 1980s	47
	VII. Recent History	48
	VIII. The Future	49
	Further Reading	49
	Suggested Reading	51
	Questions	51

Contents
Contents

2	The	Earth's	Atmos	phere
---	-----	---------	-------	-------

I. The Atmosphere	52
II. Baseline Conditions: Unpolluted Air	53
III. What is Air Pollution?	58
IV. Particulate Matter	59
V. Concepts	71
References	76
Suggested Reading	76
Questions	76

3 Scales of the Air Pollution Problem

I. Local	77
II. Urban	78
III. Regional	79
IV. Continental	80
V. Global	85
Suggested Reading	86
Questions	87

Part II

The Physics and Chemistry of Air Pollution

4	Air Pollution Physics	
	I. Mechanics of Air Pollution	93
	II. Fluid Properties	95
	Questions	122
5	The Physics of the Atmosphere	
	I. Energy	123
	II. Motion	131
	III. Energy-Motion Relationships	137
	IV. Local Wind Systems	141
	V. General Circulation	148
	References	152
	Suggested Reading	152
	Questions	153

6 Air Pollution Systems and Processes

I. Chemical Processes in Air Pollution 154

viii

	Contents	ix
	II. Air Pollution Chemodynamics	160
	References	197
	Suggested Reading	197
	Questions	198
7	Characterizing Air Pollution	
	I. Relationship Between Physics and Chemistry	199
	II. Basic Chemical Concepts	200
	III. Expressions of Chemical Characteristics IV. Electromagnetic Radiation, Electron Density, Orbitals,	207
	and Valence	210
	V. Organic Chemistry	238
	VI. Introduction to Atmospheric Chemistry	248
	VII. Heterogeneous Reactions	259
	VIII. Scavenging and Removal from the Atmosphere	259
	References	260
	Suggested Reading	261
	Questions	261
8	Air Quality	
	I. Averaging Time	267
	II. Cycles	270
	III. Primary and Secondary Pollutants	273
	IV. Measurement Systems	275
	V. Air Quality Levels	277
	Keterences	295
	Suggested Reading	295
	Questions	293
9	The Philosophy of Air Pollution Control	
	I. Strategy and Tactics: The Air Pollution System	296
	II. Episode Control	301
	III. Air Quality Management Control Strategy	306
	IV. Alternative Control Strategies	309
	v. Economic Considerations	310 211
	Suggested Reading	211
	Questions	311
10	Sources of Air Pollution	
	I General	313
	II. Combustion	319
	III. Stationary Sources	325

Contents

IV. Mobile Sources	336
V. Air Toxics Sources	337
VI. Emission Inventory	343
VII. An International Perspective: Differences in	
Time and Space	346
VIII. ODORS: More than just a Nuisance	351
References	353
Suggested Reading	353
Questions	354

Part III

Risks from Air Pollution

11 Effects on Health and Human Welfare	
I. Air–Water–Soil Interactions II. Total Body Burden III. The Human Respiratory System IV. Impact of Air Pollution on Humans V. Impact of Odor on Humans References Suggested Reading Questions	359 365 378 381 394 395 395 395
12 Effects on Vegetation and Animals	
I. Injury versus Damage II. Effects on Vegetation and Crops III. Effects on Forests IV. Effects on Animals References Suggested Reading Questions	 397 399 403 408 411 412 412
 I3 Effects on Materials and Structures I. Effects on Metals II. Effects on Stone III. Effects on Fabrics and Dyes IV. Effects on Leather, Paper, Paint, and Glass V. Effects on Rubber References Suggested Reading Questions 	413 416 417 419 420 421 422 422

|--|

14 Effects on the Atmosphere, Soil, and Water Bodies

I. The Physics of Visibility	423
II. Formation of Atmospheric Haze	430
III. Effects of Atmospheric Haze	433
IV. Visibility	434
V. Acidic Deposition	435
VI. Effects of Acidic Deposition	438
References	439
Suggested Reading	440
Questions	441

15 Long-Term Effects on the Planet

I. Global Climate Change	442
II. Ozone Holes	451
References	453
Suggested Reading	454
Questions	454

Part IV

The Measurement and Monitoring of Air Pollution

16 Ambient Air Sampling

I. Elements of a Sampling System	457
II. Sampling Systems for Gaseous Pollutants	459
III. Sampling Systems for Particulate Pollutants	463
IV. Passive Sampling Systems	466
V. Sampler Siting Requirements	468
VI. Sampling for Air Toxics	469
References	470
Suggested Reading	470
Questions	470

17 Ambient Air Pollutants: Analysis and Measurement

I. Analysis and Measurement of Gaseous Pollutants	472
II. Analysis and Measurement of Particulate Pollutants	487
III. Analysis and Measurement of Odors	490
IV. Analysis and Measurement of Visibility	492
V. Analysis and Measurement of Acidic Deposition	496
References	497
Suggested Reading	498
Questions	498

18 Air Pollution Monitoring and Surveillance

I Stationary Monitoring Networks	500
II. Mobile Monitoring and Surveillance	503
III. Remote Sensing	505
IV. Personal Monitoring	506
V. Quality Assurance	508
VI. Data Analysis and Display	510
References	513
Suggested Reading	513
Questions	513

19 Air Pathways from Hazardous Waste Sites

I. Introduction	515
II. Multimedia Transport	516
III. Contaminant Fate Analysis	516
IV. Modeling	524
V. Assessment of a Hazardous Waste Site	525
References	533
Suggested Reading	533
Questions	533

Part V

Air Pollution Modeling

20 The Meteorological Bases of Atmospheric Pollution

	537
	539
ns during Historic Pol	lution
-	540
e Atmosphere	546
-	547
	550
	551
	551
	ns during Historic Pol e Atmosphere

21 Transport and Dispersion of Air Pollutants

I.	Wind Velocity	552
II.	Turbulence	554
III.	Estimating Concentrations from Point Sources	557
IV.	Dispersion Instrumentation	566

	Contents	xiii
	V. Atmospheric Tracers	571
	VI. Concentration Variation with Averaging Time	576
	References	578
	Suggested Reading	579
	Questions	579
22	Air Pollution Modeling and Prediction	
	I. Plume Rise	582
	II. Modeling Techniques	585
	III. Modeling Nonreactive Pollutants	587
	IV. Modeling Pollutant Transformations	590
	V. Modeling Air Pollutants	593
	VI. Model Performance, Accuracy, and Utilization	627
	References	633
	Suggested Reading	636
	Questions	637
23	Air Pollution Climatology	
	I. Sources of Data	638
	II. Representativeness	641
	III. Frequency of Atmospheric Stagnations	646
	IV. Ventilation Climatology	647
	V. Wind and Pollution Roses	650
	References	654
	Suggested Reading	655
	Questions	655

Part VI

The Regulatory Control of Air Pollution

24 Air Quality Criteria and Standards

I. Air Quality Criteria	659
II. Conversion of Effects Data and Criteria to Standards	659
III. Conversion of Physical Data and Criteria to Standards	669
IV. Conversion of Biological Data and Criteria to Standards	671
V. Air Quality Standards	672
Suggested Reading	677
Questions	678
25 Indoor Air Quality	

I. Changing Times	679
II. Factors Influencing Indoor Air Quality	680

III. Indoor Air Pollutants	682
IV. Effects of Indoor Air Pollutants	685
V. Control of Indoor Air Pollutants	687
References	692
Suggested Reading	692
Questions	692

26 Regulating Air Pollution

I. Introduction	696
II. Titles	697
References	706
Suggested Reading	706
Questions	706

27 Emission Standards

I. Subjective Standards	707
II. Objective Standards	709
III. Types of Emission Standards	713
IV. Variant Forms of Emission Standards	713
V. Means for Implementing Emission Standards	715
References	721
Suggested Reading	721
Questions	722

28 The Elements of Regulatory Control

I. Control of New Stationary Sources	724
II. Control of Existing Stationary Sources	725
III. Control of Mobile Sources	726
IV. Air Quality Control Regions	727
V. Tall Stacks and Intermittent and Supplementary Control	
Systems	728
References	729
Suggested Reading	729
Questions	729

29 Organization for Air Pollution Control

I. Functions	730
II. Organization	733
III. Finance	736
IV. Advisory Groups	737
Suggested Readings	738
Questions	739
Questions	739

Part VII

Preventing and Controlling Air Pollution

30 Preventing Air Pollution

	I. Introduction	743
	II. Sustainability	743
	III. Green Engineering and Sustainability	744
	IV. Life Cycle Analysis	753
	V. Pollution Prevention	756
	VI. Motivations for Practicing Green Engineering	761
	VII. Future People	767
	References	770
	Suggested Reading	772
	Questions	772
31	Engineering Control Concepts	
	I. Introduction	774
	II. Process Change	776
	III. Fuel Change	777
	IV. Pollution Removal	778
	V. Disposal of Pollutants	780
	References	784
	Suggested Reading	784
	Questions	784

32 Control Devices, Technologies, and Systems

I. Introduction	786
II. Removal of Dry PM	794
III. Removal of Liquid Droplets and Mists	807
IV. Removal of Gaseous Pollutants	810
V. Removal of Odors	821
References	822
Suggested Reading	823
Questions	823

33 Control of Hazardous Air Pollutants

I.	Air Quality and Hazardous Wastes	825
II.	Pre-control Considerations	830
III.	Contaminant Treatment and Control Approaches	832
IV.	Thermal Treatment Processes	835
V.	Thermal Destruction Systems	839

VI. Destruction Removal	844
VII. Other Thermal Processes	845
VIII. Indirect Air Impacts	848
References	849
Suggested Reading	850
Questions	850

34 Control of Stationary Sources

II. Energy, Power, and Incineration85III. Chemical and Metallurgical Industries85IV. Agriculture and Forest Products Industries87	852
III. Chemical and Metallurgical Industries85IV. Agriculture and Forest Products Industries87	on 853
IV. Agriculture and Forest Products Industries87	dustries 859
	cts Industries 872
V. Other Industrial Processes 87	878
References 88	883
Suggested Reading 88	884
Questions 88	885

35 Control of Mobile Sources

I. Introduction	886
II. Gasoline-Powered Vehicles	886
III. Diesel-Powered Vehicles	889
IV. Gas Turbines and Jet Engines	889
V. Alternatives to Existing Mobile Sources	891
References	893
Suggested Reading	893
Questions	894

36 Source Sampling and Monitoring

I Introduction	895
	695
II. Source Sampling	895
III. Statistics of Sampling	897
IV. The Source Test	899
V. Source Monitoring	910
References	915
Suggested Reading	915
Questions	915

37 The Future of Air Pollution

I.	The Good News	917
II.	Stubborn Problems and Innovative Solutions	917

919

Preface to the Third Edition

The authors of this book include a chemist (Donald L. Fox), a meteorologist (D. Bruce Turner), and a mechanical engineer (Richard W. Boubel). This 1:1:1 ratio has some relevance in that it approximates the ratio of those professionally involved in the field of air pollution. In the environmental protection and management field, the experience of the recent past has been that physicists and electrical engineers have been most attracted to the radiation, nuclear, and noise areas; biologists and civil engineers to the aquatic and solid waste areas; chemists, meteorologists, and chemical and mechanical engineers to the area of air pollution and its control. These remarks are not intended to exclude all others from the party (or from this course). The control of air pollution requires the combined efforts of all the professions mentioned, in addition to the input of physicians, lawyers, and social scientists. However, the professional mix of the authors, and their expectation of a not-too-dissimilar mix of students using this book, forewarns the tenor of its contents and presentation.

Although this book consists of six parts and three authors, it is not to be considered six short books put together back-to-back to make one large one. By and large, the several parts are the work of more than one author. Obviously, the meteorologist member of the author team is principally responsible for the part of the book concerned with the meteorology of air pollution, the chemist author for the chapters on chemistry, and the engineer author for those on engineering. However, as you will see, no chapters are signed, and all authors accept responsibility for the strengths and weaknesses of the chapters and for the book as a whole.

In the 20 years since publication of the first edition of *Fundamentals of Air Pollution* (1973), and the 9 years since the second edition (1984), the fundamentals have not changed. The basic physics, chemistry, and engineering are still the same, but there is now a greater in-depth understanding of their application to air pollution. This edition has been edited, revised, and updated to include the new technology available to air pollution practitioners. Its contents are also influenced to a great extent by the passage of the US Clean Air Act Amendments of 1990 (CAAA90). These amendments have changed the health and risk-based regulations of the US Clean Air Act to technology-driven regulations with extensive penalty provisions for noncompliance.

We have added more detailed discussion of areas that have been under intensive study during the past decade. There has been a similar need to add discussion of CAAA90 and its regulatory concepts, such as control of air toxics, indoor air pollution, pollution prevention, and trading and banking of emission rights. Ten more years of new data on air quality have required the updating of the tables and figures presenting these data.

We have expanded some subject areas, which previously were of concern to only a few scientists, but which have been popularized by the media to the point where they are common discussion subjects. These include "Global Warming," "The Ozone Hole," "Energy Conservation," "Renewable Resources," and "Quality of Life."

With each passing decade, more and more pollution sources of earlier decades become obsolete and are replaced by processes and equipment that produce less pollution. At the same time, population and the demand for products and services increase. Students must keep these concepts in mind as they study from this text, knowing that the world in which they will practice their profession will be different from the world today.

The viewpoint of this book is first that most of the students who elect to receive some training in air pollution will have previously taken courses in chemistry at the high school or university level, and that those few who have not would be well advised to defer the study of air pollution until they catch up on their chemistry.

The second point of view is that the engineering design of control systems for stationary and mobile sources requires a command of the principles of chemical and mechanical engineering beyond that which can be included in a one-volume textbook on air pollution. Before venturing into the field of engineering control of air pollution, a student should, as a minimum, master courses in internal combustion engines, power plant engineering, the unit processes of chemical engineering, engineering thermodynamics, and kinetics. However, this does not have to be accomplished before taking a course based on this book but can well be done simultaneously with or after doing so.

The third point of view is that *no one*, regardless of their professional background, should be in the field of air pollution control unless they sufficiently understand the behavior of the atmosphere, which is the feature that differentiates *air* pollution from the other aspects of environmental protection and management. This requires a knowledge of some basic atmospheric chemistry in addition to some rather specialized air pollution meteorology. The viewpoint presented in the textbook is that very few students using it will have previously studied basic meteorology. It is hoped that exposure to air pollution meteorology at this stage will excite a handful of students to delve deeper into the subject. Therefore, a relatively large proportion of this book has been devoted to meteorology because of its projected importance to the student.

The authors have tried to maintain a universal point of view so that the material presented would be equally applicable in all the countries of the world. Although a deliberate attempt has been made to keep American provincialism out of the book, it has inevitably crept in through the exclusive use of English language references and suggested reading lists, and the preponderant use of American data for the examples, tables, and figures. The saving grace in this respect is that the principles of chemistry, meteorology, and engineering are universal.

As persons who have dedicated all or significant parts of their professional careers to the field of air pollution, the authors believe in its importance and relevance. We believe that as the world's population increases, it will become increasingly important to have an adequate number of welltrained professions engaged in air pollution control. If we did not believe this, it would have been pointless for us to have written this textbook.

We recognize that, in terms of short-term urgency, many nations and communities may rightly assign a lower priority to air pollution control than to problems of population, poverty, nutrition, housing, education, water supply, communicable disease control, civil rights, mental health, aging, or crime. Air pollution control is more likely to have a higher priority for a person or a community already reaping the benefits of society in the form of adequate income, food, housing, education, and health care than for persons who have not and may never reap these benefits.

However, in terms of long-term needs, nations and communities can ignore air pollution control only at their peril. A population can subsist, albeit poorly, with inadequate housing, schools, police, and care of the ill, insane, and aged; it can also subsist with a primitive water supply. The ultimate determinants for survival are its food and air supplies. Conversely, even were society to succeed in providing in a completely adequate manner all of its other needs, it would be of no avail if the result were an atmosphere so befouled as not to sustain life. The long-term objective of air pollution control is to allow the world's population to meet all its needs for energy, goods, and services without sullying its air supply.

Preface to the Fourth Edition

In the Preface to the Third Edition of this book, Donald L. Fox, D. Bruce Turner, and Richard W. Boubel expressed the importance of a multidisciplinary approach to air pollution. I wholeheartedly agree. Nothing has changed in this regard, making it a daunting challenge to update the impressive work of these renowned experts (as well as the late Arthur C. Stern in previous editions). It was easier to add new material than to remove old material. A new edition is an optimization exercise. The book must not change so much that professors using it have to change the course structure so severely that it constitutes a completely new text. On the other hand, a text must be up to date in terms of current technologies and programs, as well as in addressing threats on the horizon.

Over a decade has passed since the publication of previous version. From a regulatory perspective, this is a very long time. By conventional measures, such as the National Ambient Air Quality Standards, the past decade has been very successful. But, science marches on. I recall that in the 1970s, detection in the parts per million (ppm) was impossible for most compounds. During the 1980s detection limits continued to decrease. Now, detections have improved to allow for measurements below parts per billion for many compounds. We have also witnessed sea changes in risk assessment and management. For example, the US Environmental Protection Agency laboratories were realigned to address risks, with separate laboratories to conduct research exposure, effects, risk characterization, and risk reduction.

Indeed, the previous authors were quite prescient in predicting the effects of the then newly amended Clean Air Act. The major changes started to kick in as the focus moved from technology-based approaches (best available and maximum achievable control technologies) to risk-based decision-making (residual risks remaining even after the required control technologies).

The fundamentals of the science underlying air pollution have not changed, but their applications and the appreciation of their impacts have. For example, I have endeavored to enhance the discussion and explanation of the physical and chemical processes at work, particularly those related to air toxics. This has been a tendency through all four editions. New technologies must be explained, better models and computational methods have become available, analytical procedures have evolved and improved, and acute and chronic effects have become better understood. All of these have enhanced the science and engineering knowledge available to practitioners, teachers, and students. And, the savvy of the lay public about air pollution has grown substantially during the previous decade.

I am indebted to my fellow scientists and engineers for their insights and comments on how to incorporate the new trends. I particularly want to note Alan Huber, who shared his work in atmospheric dispersion modeling, especially computational fluid dynamics. Others include Russ Bullock (mercury fate and transport), Paul Lioy and Panos Georgopoulos (modeling), Mark Wiesner (nanotechnology), John Kominsky and Mike Beard (asbestos), and Aarne Vesilind (history).

As in previous editions, my expectation is that the reader has received some formal background in chemistry. I agree with the previous authors that anyone interested in air pollution must have a solid grounding in chemistry and the physical sciences. Without it, there is no way of knowing whether a rule or policy is plausible. I have seen too many instances of "junk science" in environmental decision-making. Often, these are underlain with good intentions. But, so-called "advocacy" does not obviate the need for sound science. That said, with a bit of effort, much of this edition can be a useful tool to any audience who is motivated to understand the what, how and why of air pollution.

Another trend that I have hoped to capture is the comprehensiveness needed to address air quality. A problem need not occur if the processes leading to air pollution are approached from a life cycle or "green" perspective. This goes beyond pollution prevention and calls for an integrated and sustainable view. I have dedicated an entire chapter to this emergent environmental expectation.

The authors of the previous edition introduced discussions about some emerging continental and global threats to the atmosphere. Since then, the urgency of some has abated (e.g. acid rain and some threats to the ozone layer), some have increased in concern (e.g. global warming), and others have continued but the contaminants of concern have varied (long-range transport of persistent chemicals). The scientific credibility of arguments for and against regulatory and other actions has been uneven. The best defense against bad policy decisions is a strong foundation in the physical sciences.

Let me rephrase that a bit more proactively and optimistically:

My overall objective of this book is to give you, the reader, the ability to design and apply the tools needed to improve and sustain the quality of the air we breathe for many decades. These tools can only be trusted if they are thoroughly grounded in the *Fundamentals of Air Pollution*.

DAV