COMPARATIVE PLANT VIROLOGY

SECOND EDITION
BSMV genome: The infectious genome (BSMV) is divided between 3 species of positive sense ssRNA that are designated α, β, and γ. Image courtesy of Roger Hull.

BSMV particles. Image courtesy of Roger Hull.

Diagram showing systemic spread of silencing signal: The signal is generated in the initially infected cell (bottom, left hand) and spreads to about 10–15 adjacent cells where it is amplified. It moves out of the initially infected leaf via the phloem sieve tubes and then spreads throughout systemic leaves being amplified at various times. Image courtesy of Roger Hull.
Preface xiii
List of Abbreviations xv

Section I
INTRODUCTION TO PLANT VIRUSES

Chapter 1. What Is a Virus?
I. Introduction 3
II. History 3
III. Definition of a Virus 9
A. How Viruses Differ from Other Plant Pathogens 9
B. Are Viruses Alive? 13
IV. Classification and Nomenclature of Viruses 13
A. Virus Classification 13
B. Families, Genera, and Species 14
C. Naming Viruses (Species) 15
D. Acronyms or Abbreviations 16
E. Plant Virus Classification 17
F. Virus Strains 17
G. Use of Virus Names 19
V. Viruses of Other Kingdoms 20
VI. Summary 21

Chapter 2. Overview of Plant Viruses
I. Introduction 23
II. Economic Losses Due to Plant Viruses 24
III. Virus Profiles 24
IV. Macroscopic Symptoms 25
A. Local Symptoms 25
B. Systemic Symptoms 26
1. Effects on Plant Size 26
2. Mosaic Patterns and Related Symptoms 26
3. Yellow Diseases 28
4. Leaf Rolling 28
5. Ring Spot Diseases 28
6. Necrotic Diseases 28
7. Developmental Abnormalities 28
8. Wilting 29
9. Recovery from Disease 29
10. Genetic Effects 29
C. The Cryptoviruses 29
D. Diseases Caused by Viral Complexes 29
E. Agents Inducing Virus-Like Symptoms 30
V. Histological Changes 30
A. Necrosis 30
B. Hypoplasia 30
C. Hyperplasia 32
1. Cell Size 32
2. Cell Division in Differentiated Cells 32
3. Abnormal Division in Cambial Cells 32
VI. Cytological Effects 32
A. Effects on Cell Structures 32
1. Nuclei 32
2. Mitochondria 33
3. Chloroplasts 33
4. Cell Walls 33
5. Cell Death 34
B. Virus-Induced Structures in the Cytoplasm 34
1. Accumulations of Virus Particles 34
2. Aggregates of Virus-Encoded Proteins 35
3. Caulimovirus Inclusions 35
C. Why Inclusion Bodies? 37
D. Cytological Structures 37
VII. The Host Range of Viruses 38
A. Limitations in Host Range Studies 38
B. Patterns of Host Range 39
Chapter 3. Agents That Resemble or Alter Plant Virus Diseases

I. Viroids 43
 A. Classification of Viroids 44
 B. Pathology of Viroids 44
 1. Macroscopic Disease Symptoms 44
 2. Cytopathic Effects 44
 3. Location of Viroids in Plants 45
 4. Movement in the Plant 45
 5. Transmission 45
 6. Epidemiology 45
 C. Properties of Viroid RNAs 45
 1. Sequence and Structure 45
 2. Replication 47
 3. Recombination Between Viroids 49
 4. Interference Between Viroids 49
 D. Molecular Basis for Biological Activity 50
 E. Diagnostic Procedures for Viroids 50
II. Phytoplasma 50
III. Satellite Viruses and Satellite RNAs 51
 A. Satellite Plant Viruses (A-type) 52
 B. Satellite RNAs (satRNAs) 53
 1. Large Satellite RNAs (B-type) 53
 2. Small Linear Satellite RNAs (C-type) 53
 3. Small Circular Satellite RNAs (D-type) 54
 4. Satellite-Like RNAs 55
 a. A Satellite RNA of Groundnut Rosette Virus (GRV) 55
 b. Ancillary RNAs of Beet Ncrotic Yellow Vein Virus (BNYVV) 56
 5. The Molecular Basis for Symptom Modulation 56
 C. Satellite DNAs 57
 D. Discussion 58
IV. Defective and Defective Interfering Nucleic Acids 58
 A. Group 1: Single Deletion D RNAs 60
 B. Group 2: Multiple Deletion D and DI RNAs 60
 C. Defective DNAs Associated with DNA Viruses 60
V.Viruses of Other Kingdoms 60
VI. Summary 61

Chapter 4. Plant Virus Origins and Evolution

I. Introduction 63
II. Virus Evolution 64
 A. Origins of Viruses 64
 B. Virus Variation 65
 C. Types of Evolution 65
 1. Microevolution and Macroevolution 65
 2. Sequence Divergence or Convergence 67
 3. Modular Evolution 67
 4. Sources of Viral Genes 67
 a. Replicas 67
 b. Proteinases 68
 c. Coat Proteins 70
 d. Cell-to-Cell Movement Proteins 71
 e. Suppressors of Gene Silencing 71
 D. Selection Pressures for Evolution 71
 1. Adaptation to Niches 71
 2. Maximising the Variation 71
 3. Controlling the Variation 72
 a. Muller's Ratchet 73
 b. Muller's Ratchet and Plant Viruses 73
 4. Role of Selection Pressure 73
 5. Selection Pressure by Host Plants 74
 E. Timeline for Evolution 74
 1. Nonconstant Rates of Evolution 74
 2. Estimated Rates of Evolution 74
III. Evidence for Virus Evolution 75
 A. Geminiviruses 75
 B. Closteroviruses 75
 C. Luteoviruses 75
IV. Coevolution of Viruses with Their Hosts and Vectors 80
 V. Viruses of Other Kingdoms 80
VI. Summary 80

Section II

WHAT IS A VIRUS MADE OF?

Chapter 5. Architecture and Assembly of Virus Particles

I. Introduction 85
II. Methods 86
A. Chemical and Biochemical Studies 86
B. Methods for Studying Size and Fine Structure of Viruses 86
1. Hydrodynamic Measurements 86
2. Electron Microscopy 87
3. X-Ray Crystallography 87
4. Neutron Small-Angle Scattering 87
5. Atomic Force Microscopy 87
6. Mass Spectrometry 88
7. Serological Methods 88
8. Stabilising Bonds 88

III. Architecture of Rod-Shaped Viruses 88
A. Introduction 88
B. Structure of TMV 89
1. General Features 89
2. Virus Structure 90
C. Assembly of TMV 92
1. Properties of the Coat Protein 92
2. Assembly of TMV Coat Protein 92
3. Assembly of the TMV Rod 92
 a. Assembly in vitro 92
 b. Assembly in vivo 94

IV. Architecture of Isometric Viruses 94
A. Introduction 94
B. Possible Icosahedra 94
C. Clustering of Subunits 97
D. Quasiequivalence 97

V. Small Icosahedral Viruses 97
A. Subunit Structure 97
B. Virion Structure 98
1. T = 1 Particles 98
2. Other Particles Based on T = 1 Symmetry 98
 a. Bacilliform Particles Based on T = 1 Symmetry 98
 b. Geminiviruses 99
3. T = 3 Particles 99
 a. Bacilliform Particles Based on T = 3 Symmetry 100
 b. Pseudo T = 3 Symmetry 100
4. T = 7 Particles 100
C. The Arrangement of Nucleic Acid Within Icosahedral Viruses 100
1. RNA Structure 100
2. Interactions Between RNA and Protein in Small Isometric Viruses 100
D. Stabilisation of Small Isometric Particles 101
1. Protein-RNA Stabilisation 101
2. Protein-Protein Stabilisation 101
3. Protein-Protein + Protein-RNA Stabilisation 101

VI. More Complex Isometric Viruses 101
VII. Enveloped Viruses 101
VIII. Assembly of Icosahedral Viruses 102
A. Bromoviruses 102
B. RNA Selection During Assembly of Plant Reoviruses 102
IX. General Considerations 103
X. Viruses of Other Kingdoms 104
XI. Summary 104

Chapter 6. Plant Viral Genomes
I. Introduction 105
II. General Properties of Plant Viral Genomes 105
A. Information Content 106
B. Economy in the Use of Genomic Nucleic Acids 106
C. The Functions of Viral Gene Products 107
1. Functional Proteins 107
 a. Proteins That Initiate Infection 107
 b. Proteins That Replicate the Viral Genome 108
 c. Proteins That Process Viral Gene Products 108
 d. Proteins That Facilitate Viral Movement Through the Host 109
 e. Overcoming Host Defence Systems 109
 f. Proteins That Facilitate the Host to Host Movement of Viruses 109
D. Nucleic Acids 109
1. Multipartite Genomes 109
2. Nucleic Acid Structures 109
3. Noncoding Regions 109
 a. End-Group Structures 109
 b. 5' and 3' Noncoding Regions 112
c. Intergenic Regions 112
III. Plant Viral Genome Organisation 112
A. Structure of the Genome 112
B. Recognising Activities of Viral Genes 114
1. Location of Spontaneous or Artificially Induced Mutations 114
2. Recombinant Viruses 115
3. Expression of the Gene in a Transgenic Plant 115
4. Hybrid Arrest and Hybrid Selection Procedures 115
5. Sequence Comparison with Genes of Known Function 116
6. Functional Regions Within a Gene 116
Chapter 7. Expression of Viral Genomes

I. Stages in Virus Infection Cycle 117
II. Virus Entry and Uncoating 119
A. Virus Entry 119
B. Uncoating 119
1. Uncoating of TMV 119
2. Uncoating of Brome Mosaic Virus and Southern Bean Mosaic Virus 119
3. Uncoating of Turnip Yellow Mosaic Virus 121
4. Uncoating Other Plant Viruses 122
III. Initial Translation of Viral Genome 122
IV. Synthesis of mRNAs 123
A. Negative-Sense Single-Stranded RNA Viruses 123
B. Double-Stranded RNA Viruses 123
C. DNA Viruses 124
1. Caulimoviridae 124
2. Geminiviridae 125
V. Plant Viral Genome Strategies 125
A. The Eukaryotic Translation System Constraints 125
B. Virus Strategies to Overcome Eukaryotic Translation Constraints 126
1. Strategy 1. Polyproteins 126
2. Strategy 2. Subgenomic RNAs 129
5. Strategy 5. Translation of Both Viral and Complementary Strands (Ambisense) 131
7. Strategy 7. Leaky Scanning 133
 a. Two Initiation Sites on One ORF (Two Start) 133
 b. Overlapping ORFs 133
c. Two or More Consecutive ORFs 133
10. Strategy 10. Translational (Ribosome) Shunt 134
C. Control of Translation 136
1. Cap but No Poly(A) Tail 136
2. Poly(A) Tail but No Cap 136
3. Neither Cap nor Poly(A) Tail 136
4. Cap Snatching 136
5. 5' UTR 137
D. Discussion 137
VI. Viruses of Other Kingdoms 137
VII. Summary 137

Chapter 8. Virus Replication

I. Host Functions Used by Plant Viruses 139
II. Methods for Studying Viral Replication 140
III. Replication of Plus-Sense Single-Stranded RNA Viruses 140
A. Viral Templates 140
B. Replicase 143
1. RNA-Dependent RNA Polymerase 143
2. Helicases 143
3. Methyl Transferase Activity 144
4. Organisation of Functional Domains in Viral ORFs 144
C. Sites of Replication 146
D. Mechanism of Replication 147
E. Discussion 147
IV. Replication of Negative-Sense Single-Stranded RNA Viruses 152
V. Replication of Double-Stranded RNA Viruses 152
VI. Replication of Reverse Transcribing Viruses 153
A. Introduction 153
B. Reverse Transcriptase 154
C. Replication of “Caulimoviruses” 154
1. Replication Pathway 154
2. Inclusion Bodies 155
VII. Replication of Single-Stranded DNA Viruses 156
A. Geminivirus Replication 156
B. Geminivirus Rep Proteins 156
VIII. Faults in Replication 158
A. Mutation 158
B. Recombination 159
1. DNA Virus Recombination 159
2. RNA Virus Recombination 159
3. Recombination and Integrated Viral Sequences 161
IX. Viruses of Other Kingdoms 161
X. Summary 163
Section III
HOW DO PLANT VIRUSES WORK?

Chapter 9. Virus-Host Interactions — Plant Level

I. Movement and Final Distribution 167
 A. Intracellular Movement 168
 B. Intercellular Movement 168
 1. Plasmodesmata 168
 2. Movement Proteins (MPs) 169
 3. What Actually Moves 175
 4. Cell-to-Cell Movement of Viroids 175
 5. Complementation 176
 6. Rate of Cell-to-Cell Movement 176
 C. Systemic Movement 176
 1. Steps in Systemic Movement 176
 2. Form in Which Virus Is Transported 179
 3. Rate of Systemic Movement 179
 4. Movement in the Xylem 180
 D. Final Distribution in the Plant 180
 E. Outstanding Questions on Plant Virus Movement 181

II. Effects on Plant Metabolism 181
 A. Nucleic Acids and Proteins 181
 B. Lipids 182
 C. Carbohydrates 182
 D. Photosynthesis 184
 E. Respiration 184
 F. Transpiration 184
 G. Low-Molecular-Weight Compounds 184

III. Processes Involved in Symptom Production 185
 A. Sequestration of Raw Materials 185
 B. Effects on Growth 186
 C. Effects on Chloroplasts 186
 D. Mosaic Symptoms 186
 E. Role of Membranes 187

IV. Other Kingdoms 188
V. Summary 188

Chapter 10. Virus-Plant Interactions: 1. Molecular Level

I. Introduction 191
II. Host Responses to Inoculation 192
 A. Immunity 192
 B. Subliminal Infection 195
 C. Nonpermissive Infection 195
 1. Local Infection 195
 a. Host Protein Changes in the Hypersensitive Response 197
 b. Local Acquired Resistance 198
 2. Systemic Infection 198
 3. Systemic Acquired Resistance 198
 4. Programmed Cell Death 200
 D. Permissive Infection 200
 1. Systemic Host Response 200
 2. Virus Genes Involved 200
 E. Interactions Between Viruses 202
 A. Interactions Between Related Viruses 202
 B. Interactions Between Unrelated Viruses 203
 1. Complete Dependence for Disease 203
 2. Incomplete Dependence for Disease 203
 3. Synergistic Effects on Virus Replication 203
 4. Effects on Virus Movement 203
 C. Interactions Between Viruses and Other Plant Pathogens 203

III. Systemic Silencing 211
IV. Overcoming Silencing 211
 A. Suppression of Silencing 211
 B. Avoidance of Silencing 214
V. Silencing and Symptoms 214
 A. Recovery 215
 B. Dark Green Islands and Mosaics 216
 C. miRNA 216
 D. siRNA Effects 216
Section IV

PLANT VIRUSES IN AGRICULTURE AND INDUSTRY

Chapter 12. Plant-to-Plant Movement

I. Introduction 223
II. Transmission via Plant Material 223
 A. Mechanical Transmission 223
 B. Seed Transmission 224
 C. Pollen Transmission 225
 D. Vegetative Transmission 225
 E. Grafting 225
III. Transmission by Invertebrates 225
 A. Relationships Between Plant Viruses and Insects 228
 B. Nonpersistent Transmission by Insects 231
 1. Features of Nonpersistent Transmission 231
 2. Virus-Vector Relationships 231
 a. Direct Capsid Interaction 232
 b. Indirect Interaction Involving Helper Components 232
 C. Persistent Transmission by Insects 235
 1. Circulative Viruses 235
 a. Features of Circulative Virus: Vector Interaction 235
 2. Propagative Viruses 237
 3. Thrip Transmission of Tospoviruses 238
 D. Virus Transmission by Beetles 238
 E. Nematode Transmission of Viruses 239
 1. Features of Nematode Transmission 239
 2. Virus-Nematode Relationships 239
IV. Fungal Transmission of Viruses 240
V. Viruses of Other Kingdoms 242
VI. Summary 242

Chapter 13. Plant Viruses in the Field: Diagnosis, Epidemiology, and Ecology

I. Diagnosis 245
 A. Introduction 245
 B. Methods Involving Biology of the Virus 246
 1. Indicator Hosts 246
 2. Host Range 246
 3. Methods of Transmission 247
 4. Cytological Effects 247
 5. Mixed Infections 247
 C. Methods That Depend on Physical Properties of the Virus Particle 247
 1. Stability and Physicochemical Properties 247
 2. Electron Microscopy 247
 D. Methods That Depend on Properties of Viral Proteins 249
 1. Serology 249
 2. Types of Antisera 249
 3. Methods for Detecting Antibody-Virus Combination 249
 a. ELISA Procedures 249
 b. Serologically Specific Electron Microscopy 255
 c. Electrophoretic Procedures 256
 d. Dot Blots 256
 E. Methods That Involve Properties of the Viral Nucleic Acid 256
 1. Type and Size of Nucleic Acid 256
 2. Cleavage Patterns of DNA 257
 3. Hybridization Procedures 257
 4. Dot Blots 257
 5. Polymerase Chain Reaction 257
 6. DNA Microarray 259
 F. Decision Making on Diagnosis 260
II. Epidemiology and Ecology 260
 A. Epidemiology of Viruses in Agriculture 261
 1. Primary Infections 261
 2. Secondary Spread 264
 B. Plant Viruses in the Natural Environment 267
 C. Emergence of New Viruses 267
III. Viruses of Other Kingdoms 268
IV. Summary 268

Chapter 14. Conventional Control

I. Introduction 269
II. Avoiding Infection 271
A. Removal of Sources of Infection 271
B. Virus-Free Seed 271
C. Virus-Free Vegetative Stocks 271
D. Modified Agronomic Practices 272
E. Quarantine Regulations 273

III. Stopping the Vector 274
A. Air-Borne Vectors 274
1. Insecticides 275
2. Insect Deterrents 275
3. Agronomic Techniques 275
B. Soil-Borne Vectors 277
1. Nematodes 277
2. Fungi 277

IV. Protecting the Plant 277
A. Protection by a Plant Pathogen 277
B. Antiviral Chemicals 278

V. Conventional Resistance to Plant Viruses 280
A. Introduction 280
B. Genetics of Resistance to Viruses 281
C. Tolerance 281
D. Use of Conventional Resistance for Control 282
1. Immunity 282
2. Field Resistance 282
3. Tolerance 282

VI. Strategies for Control 283
VII. Viruses of Other Kingdoms 283
VIII. Summary 283

Chapter 15. Transgenic Plants and Viruses

I. Transgenic Protection Against Plant Viruses 285
A. Introduction 285
B. Natural Resistance Genes 285
II. Pathogen-Derived Resistance 286
A. Protein-Based Protection 286
1. Transgenic Plants Expressing a Viral Coat Protein 286
2. Other Viral Proteins 286
B. Nucleic Acid-Based Protection 287
1. RNA-Mediated Protection 288
2. Molecular Basis of RNA-Mediated Protection 288
3. Sequences for RNA-Mediated Protection 289
4. Ribozymes 289
5. Relationship Between Natural Cross-Protection and Protection in Transgenic Plants 289
6. Transgenic Protection by Satellite and DI Nucleic Acids 290
C. Other Forms of Transgenic Protection 290
D. Field Releases of Transgenic Plants 290
1. Potential Risks 290
2. Field Performance 293

III. Possible Uses of Plant Viruses for Gene Technology 293
A. DNA Viruses as Gene Vectors 293
1. Caulimoviruses 294
2. Geminiviruses 294
B. RNA Viruses as Gene Vectors 294
C. Viruses as Sources of Control Elements for Transgenic Plants 295
1. DNA Promoters 295
2. RNA Promoters 295
3. Translation Enhancers 295
D. Viruses for Producing Vaccines 295
1. Vaccines Using Plant Virus Vectors 296
2. Viruses for Presenting Heterologous Peptides 296
 a. Cowpea Mosaic Virus (CPMV) 296
 b. Tobacco Mosaic Virus (TMV) 298
E. Viruses in Functional Genomics of Plants 298
F. Plant Viruses in Nanotechnology 298

IV. Viruses of Other Kingdoms 300
V. Summary 301

Appendix: Profiles 303
Index 363
This book has been developed from and is a revision to *Fundamentals of Plant Virology* written by R. E. F. Matthews in 1992. Since then major advances have been made in the understanding of the molecular biology of viruses, how they function and how they interact with their hosts. This has revealed similarities and differences between viruses infecting members of the different kingdoms of living organisms, plants, animals, fungi, and bacteria. In this changing environment of teaching virology, this book does not just deal with plant viruses alone but places them in context in relation to viruses of members of other kingdoms.

This book has been written for students of plant virology, plant pathology, virology, and microbiology who have no previous knowledge of plant viruses or of virology in general. An elementary knowledge of molecular biology is assumed, especially of the basic structures of DNAs, RNAs, and proteins, of the genetic code, and of the processes involved in protein synthesis. As some of these students may not have a grounding in the structure and function in plants including the main subcellular structures found in typical plant cells, these features which are important to the understanding of how viruses interact with plants are illustrated. In each chapter there is a list of further reading to enable the student to explore specific topics in depth.

The fifteen chapters in this book can be divided into four major sections that form a logical progression in gaining an understanding of the subject. The first four chapters introduce plant viruses describing: what is a virus, giving an overview of plant viruses, discussing other agents that cause diseases that resemble plant virus diseases, and considering factors that are involved in virus evolution. The points raised in this latter chapter are equally relevant to viruses of other kingdoms. The next four chapters deal with what viruses are made of. The chapter on virus architecture and assembly is also very relevant to viruses of other kingdoms as are the major points raised in chapters on plant virus genome organization, genome expression, and genome replication. The next section on how do plant viruses work is more specific to plant viruses and highlights differences and similarities between virus interactions with plant, animal, and bacterial hosts.
These interactions are described at the plant level (movement of the virus within the plant and effects on plant metabolism) and at the molecular level including a chapter devoted to the newly understood host defence system of RNA silencing. The last four chapters deal with plant viruses and agriculture and industry. The description of how plant viruses move between hosts which often involves specific molecular interactions leads into discussion of the epidemiology of viruses in the field and how they are controlled. The last chapter is on the use of recombinant DNA technology in controlling viruses and also in using them commercially in, for instance, the pharmaceutical and nanotechnology industries.

A unique feature of this book is a series of “profiles” on 32 plant viruses that feature in the text. These profiles describe briefly the major properties of the viruses including their taxonomic position, their biology, their particles, and their genomes. References are given to enable students to acquire even more information on these targeted viruses.

I am very grateful to a large number of colleagues for their helpful discussion on various topics and in providing material prior to publication. I am especially indebted to John Carr, Andy Jackson, Mark Stevens, and Peter Waterhouse for their helpful comments on various sections of the book and on providing illustrative material. My eternal gratitude goes to my wife who has tolerated “piles of paper” around the house and who has given me continuous encouragement.

Roger Hull
Norwich, UK
July, 2008
List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3’OH</td>
<td>3’ hydroxyl group</td>
<td>HR</td>
<td>Hypersensitive response</td>
</tr>
<tr>
<td>Å</td>
<td>Angström (10⁻¹⁰ meter)</td>
<td>HSP</td>
<td>Heat-shock protein</td>
</tr>
<tr>
<td>AAB</td>
<td>Association of Applied Biologists</td>
<td>ICR</td>
<td>Inter-cistronic region</td>
</tr>
<tr>
<td>DPV</td>
<td>Descriptions of Plant Viruses</td>
<td>ICTV</td>
<td>International Committee on the Taxonomy of Viruses</td>
</tr>
<tr>
<td>ADP</td>
<td>Adenosine diphosphate</td>
<td>IRES</td>
<td>Internal ribosome entry site</td>
</tr>
<tr>
<td>AR</td>
<td>Aberrante ratio</td>
<td>ISEM</td>
<td>Immunoabsorbent electron microscopy</td>
</tr>
<tr>
<td>ATP</td>
<td>Adenosine triphosphate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cDNA</td>
<td>Complentary (or copy) DNA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CI</td>
<td>Cylindrical inclusion</td>
<td>kb</td>
<td>Kilobase</td>
</tr>
<tr>
<td>DdDp</td>
<td>DNA-dependent DNA polymerase</td>
<td>kDa</td>
<td>Kilodalton</td>
</tr>
<tr>
<td>D RNA/DNA</td>
<td>Defective RNA or DNA</td>
<td>LRR</td>
<td>Leucine-rich repeat</td>
</tr>
<tr>
<td>DdRNA</td>
<td>Double-stranded DNA</td>
<td>Mab</td>
<td>Monoclonal antibody</td>
</tr>
<tr>
<td>dsDNA</td>
<td>Double-stranded DNA</td>
<td>MP</td>
<td>Movement protein</td>
</tr>
<tr>
<td>dsRNA</td>
<td>Double-stranded RNA</td>
<td>mRNA</td>
<td>Messenger RNA</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylene diamino tetra-acetic acid</td>
<td>mRNA</td>
<td>MicroRNA</td>
</tr>
<tr>
<td>ELISA</td>
<td>Enzyme-linked immuno-sorbent assay</td>
<td>MiRNA</td>
<td></td>
</tr>
<tr>
<td>EM</td>
<td>Electron Microscope</td>
<td>MTR</td>
<td>Methyl transferase</td>
</tr>
<tr>
<td>ER</td>
<td>Endoplasmic reticulum</td>
<td>MW</td>
<td>Molecular weight</td>
</tr>
<tr>
<td>GTP</td>
<td>Guanosine triphosphate</td>
<td>NBS</td>
<td>Nucleotide binding site</td>
</tr>
<tr>
<td>GM</td>
<td>Genetically modified</td>
<td>NI</td>
<td>Nuclear inclusion</td>
</tr>
<tr>
<td>HC-Pro</td>
<td>Helper component protease</td>
<td>nm</td>
<td>Nanometer</td>
</tr>
<tr>
<td>HEL</td>
<td>Helicase</td>
<td>ORF</td>
<td>Open reading frame</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PCD</td>
<td>Programmed cell death</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PCR</td>
<td>Polymerase chain reaction (IC-PCR, immune-capturePCR; RT-PCR, reverse transcriptionPCR)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PDR</td>
<td>Pathogen-derived resistance</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>----------------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pol</td>
<td>Polymerase</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PR</td>
<td>Pathogenesis-related (protein)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRO</td>
<td>Protease</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PTGS</td>
<td>Post-transcriptional gene silencing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rb</td>
<td>Retinoblastoma (protein)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RdRp</td>
<td>RNA-directed RNA Polymerase</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RF</td>
<td>Replicative form</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RFLP</td>
<td>Restriction fragment length polymorphism</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RI</td>
<td>Replicative intermediate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RISC</td>
<td>RNA-induced silencing complex</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RNAi</td>
<td>RNA interfering</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RT</td>
<td>Reverse transcriptase</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SA</td>
<td>Salicylic acid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAR</td>
<td>Systemic acquired resistance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SDS-PAGE</td>
<td>Sodium dodecyl sulphate polyacrylamide gel electrophoresis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEL</td>
<td>Size exclusion limit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sg RNA</td>
<td>Subgenomic RNA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Si RNA</td>
<td>Small interfering RNA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ssDNA</td>
<td>Single-stranded DNA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSEM</td>
<td>Serologically-specific electron microscopy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ssRNA</td>
<td>Single-stranded RNA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TAV</td>
<td>Transactivator</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TGB</td>
<td>Triple gene block</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TGS</td>
<td>Transcriptional gene silencing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tRNA</td>
<td>Transfer RNA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UTR</td>
<td>Untranslated region</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VIGS</td>
<td>Virus-induced gene silencing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VPg</td>
<td>Virus protein genome-linked</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>