DIGITAL ELECTRONICS
AND DESIGN WITH VHDL
DIGITAL ELECTRONICS
AND DESIGN WITH VHDL

Volnei A. Pedroni
Dedicated to Claudia, Patricia, Bruno, and Ricardo, who are my north, my sun, and my soul.

To professors and students: This book resulted from years of hard work as a professor and designer in EE. My deepest wish is to have it help in making your own work a little easier, which shall indeed be the only real measure of its success.

“As the builders say, the larger stones do not lie well without the lesser.”
Plato (428–348 BC)
Contents

Preface xix

1 Introduction 1
 1.1 Historical Notes 1
 1.2 Analog versus Digital 4
 1.3 Bits, Bytes, and Words 5
 1.4 Digital Circuits 6
 1.5 Combinational Circuits versus Sequential Circuits 10
 1.6 Integrated Circuits 10
 1.7 Printed Circuit Boards 11
 1.8 Logic Values versus Physical Values 13
 1.9 Nonprogrammable, Programmable, and Hardware Programmable 15
 1.10 Binary Waveforms 15
 1.11 DC, AC, and Transient Responses 16
 1.12 Programmable Logic Devices 18
 1.13 Circuit Synthesis and Simulation with VHDL 19
 1.14 Circuit Simulation with SPICE 19
 1.15 Gate-Level versus Transistor-Level Analysis 20

2 Binary Representations 21
 2.1 Binary Code 21
 2.2 Octal and Hexadecimal Codes 24
 2.3 Gray Code 24
 2.4 BCD Code 25
 2.5 Codes for Negative Numbers 26
 2.5.1 Sign-Magnitude Code 26
 2.5.2 One’s Complement Code 26
viii Contents

2.5.3 Binary Addition 27
2.5.4 Two’s Complement Code 28

2.6 Floating-Point Representation 30
2.6.1 IEEE 754 Standard 30
2.6.2 Floating-Point versus Integer 33

2.7 ASCII Code 35
2.7.1 ASCII Code 35
2.7.2 Extended ASCII Code 36

2.8 Unicode 36
2.8.1 Unicode Characters 36
2.8.2 UTF-8 Encoding 36
2.8.3 UTF-16 Encoding 38
2.8.4 UTF-32 Encoding 39

2.9 Exercises 40

3 Binary Arithmetic 47
3.1 Unsigned Addition 47
3.2 Signed Addition and Subtraction 49
3.3 Shift Operations 52
3.4 Unsigned Multiplication 54
3.5 Signed Multiplication 56
3.6 Unsigned Division 57
3.7 Signed Division 58
3.8 Floating-Point Addition and Subtraction 59
3.9 Floating-Point Multiplication 61
3.10 Floating-Point Division 62
3.11 Exercises 63

4 Introduction to Digital Circuits 69
4.1 Introduction to MOS Transistors 69
4.2 Inverter and CMOS Logic 71
4.2.1 Inverter 71
4.2.2 CMOS Logic 72
4.2.3 Power Consumption 73
4.2.4 Power-Delay Product 74
4.2.5 Logic Voltages 75
4.2.6 Timing Diagrams for Combinational Circuits 75
4.3 AND and NAND Gates 77
4.4 OR and NOR Gates 79
4.5 XOR and XNOR Gates 81
4.6 Modulo-2 Adder 83
4.7 Buffer 84
4.8 Tri-State Buffer 85
4.9 Open-Drain Buffer 86
4.10 D-Type Flip-Flop 87
4.11 Shift Register 89
4.12 Counters 91
4.13 Pseudo-Random Sequence Generator 93
4.14 Exercises 94

5 Boolean Algebra 103
5.1 Boolean Algebra 103
5.2 Truth Tables 108
5.3 Minterms and SOP Equations 108
5.4 Maxterms and POS Equations 110
5.5 Standard Circuits for SOP and POS Equations 112
5.6 Karnaugh Maps 117
5.7 Large Karnaugh Maps 120
5.8 Other Function-Simplification Techniques 121
 5.8.1 The Quine-McCluskey Algorithm 121
 5.8.2 Other Simplification Algorithms 123
5.9 Propagation Delay and Glitches 123
5.10 Exercises 125

6 Line Codes 133
6.1 The Use of Line Codes 133
6.2 Parameters and Types of Line Codes 135
6.3 Unipolar Codes 137
6.4 Polar Codes 138
6.5 Bipolar Codes 139
6.6 Biphase/Manchester Codes 139
6.7 MLT Codes 140
6.8 mB/nB Codes 140
6.9 PAM Codes 143
6.10 Exercises 148

7 Error-Detecting/Correcting Codes 153
7.1 Codes for Error Detection and Error Correction 153
7.2 Single Parity Check (SPC) Codes 154
7.3 Cyclic Redundancy Check (CRC) Codes 155
7.4 Hamming Codes 156
7.5 Reed-Solomon (RS) Codes 159
7.6 Interleaving 161
7.7 Convolutional Codes 163
8 Bipolar Transistor 181

8.1 Semiconductors 181
8.2 The Bipolar Junction Transistor 183
8.3 I-V Characteristics 184
8.4 DC Response 185
8.5 Transient Response 189
8.6 AC Response 191
8.7 Modern BJTs 192
 8.7.1 Polysilicon-Emitter BJT 192
 8.7.2 Heterojunction Bipolar Transistor 193
8.8 Exercises 194

9 MOS Transistor 197

9.1 Semiconductors 197
9.2 The Field-Effect Transistor (MOSFET) 198
 9.2.1 MOSFET Construction 198
 9.2.2 MOSFET Operation 200
9.3 I-V Characteristics 201
9.4 DC Response 202
9.5 CMOS Inverter 205
9.6 Transient Response 207
9.7 AC Response 209
9.8 Modern MOSFETs 210
 9.8.1 Strained Si-SiGe MOSFETs 210
 9.8.2 SOI MOSFETs 211
 9.8.3 BiCMOS Technologies 211
9.9 Exercises 212

10 Logic Families and I/Os 219

10.1 BJT-Based Logic Families 219
10.2 Diode-Transistor Logic 220
10.3 Transistor-Transistor Logic (TTL) 221
 10.3.1 TTL Circuit 221
 10.3.2 Temperature Ranges 222
 10.3.3 TTL Versions 223
 10.3.4 Fan-In and Fan-Out 224
 10.3.5 Supply Voltage, Signal Voltages, and Noise Margin 224
10.4 Emitter-Coupled Logic 225
10.5 MOS-Based Logic Families 226
10.6 CMOS Logic 227
 10.6.1 CMOS Circuits 227
 10.6.2 HC and HCT CMOS Families 227
 10.6.3 CMOS-TTL Interface 228
 10.6.4 Fan-In and Fan-Out 229
 10.6.5 Supply Voltage, Signal Voltages, and Noise Margin 229
 10.6.6 Low-Voltage CMOS 229
 10.6.7 Power Consumption 230
 10.6.8 Power-Delay Product 230
10.7 Other Static MOS Architectures 230
 10.7.1 Pseudo-nMOS Logic 230
 10.7.2 Transmission-Gate Logic 231
 10.7.3 BiCMOS Logic 232
10.8 Dynamic MOS Architectures 232
 10.8.1 Dynamic Logic 232
 10.8.2 Domino Logic 233
 10.8.3 Clocked-CMOS (C^2MOS) Logic 234
10.9 Modern I/O Standards 235
 10.9.1 TTL and LVTTTL Standards 236
 10.9.2 CMOS and LVCMOS Standards 237
 10.9.3 SSTL Standards 240
 10.9.4 HSTL Standards 244
 10.9.5 LVDS Standard 244
 10.9.6 LVDS Example: PCI Express Bus 246
10.10 Exercises 248

11 Combinational Logic Circuits 257
11.1 Combinational versus Sequential Logic 257
11.2 Logical versus Arithmetic Circuits 258
11.3 Fundamental Logic Gates 258
11.4 Compound Gates 259
 11.4.1 SOP-Based CMOS Circuit 260
 11.4.2 POS-Based CMOS Circuit 260
11.5 Encoders and Decoders 262
 11.5.1 Address Decoder 262
 11.5.2 Address Decoder with Enable 264
 11.5.3 Large Address Decoders 264
 11.5.4 Timing Diagrams 265
 11.5.5 Address Encoder 266
11.6 Multiplexer 268
 11.6.1 Basic Multiplexers 269
 11.6.2 Large Multiplexers 270
 11.6.3 Timing Diagrams 271
11.7 Parity Detector 272
11.8 Priority Encoder 272
11.9 Binary Sorter 274
11.10 Shifters 275
11.11 Nonoverlapping Clock Generators 277
11.12 Short-Pulse Generators 278
11.13 Schmitt Triggers 279
11.14 Memories 280
11.15 Exercises 281
11.16 Exercises with VHDL 287
11.17 Exercises with SPICE 287

12 Combinational Arithmetic Circuits 289

12.1 Arithmetic versus Logic Circuits 289
12.2 Basic Adders 290
 12.2.1 Full-Adder Unit 290
 12.2.2 Carry-Ripple Adder 291
12.3 Fast Adders 293
 12.3.1 Generate, Propagate, and Kill Signals 293
 12.3.2 Approaches for Fast Adders 294
 12.3.3 Manchester Carry-Chain Adder 295
 12.3.4 Carry-Skip Adder 296
 12.3.5 Carry-Select Adder 297
 12.3.6 Carry-Lookahead Adder 297
12.4 Bit-Serial Adder 300
12.5 Signed Adders/Subtracters 301
 12.5.1 Signed versus Unsigned Adders 301
 12.5.2 Subtracters 301
12.6 Incremener, Decrementer, and Two’s Complementer 303
 12.6.1 Incremener 303
 12.6.2 Decrementer 303
 12.6.3 Two’s Complementer 303
12.7 Comparators 304
12.8 Arithmetic-Logic Unit 306
12.9 Multipliers 307
 12.9.1 Parallel Unsigned Multiplier 308
 12.9.2 Parallel Signed Multiplier 309
 12.9.3 Parallel-Serial Unsigned Multiplier 309
 12.9.4 ALU-Based Unsigned and Signed Multipliers 311
12.10 Dividers 312
12.11 Exercises 312
12.12 Exercises with VHDL 317
12.13 Exercises with SPICE 317
13 Registers 319
13.1 Sequential versus Combinational Logic 319
13.2 SR Latch 320
13.3 D Latch 320
 13.3.1 DL Operation 320
 13.3.2 Time-Related Parameters 322
 13.3.3 DL Circuits 323
 13.3.4 Static Multiplexer-Based DLs 324
 13.3.5 Static RAM-Type DLs 326
 13.3.6 Static Current-Mode DLs 327
 13.3.7 Dynamic DLs 327
13.4 D Flip-Flop 329
 13.4.1 DFF Operation 329
 13.4.2 Time-Related Parameters 330
 13.4.3 DFF Construction Approaches 331
 13.4.4 DFF Circuits 332
13.5 Master-Slave D Flip-Flops 332
 13.5.1 Classical Master-Slave DFFs 332
 13.5.2 Clock Skew and Slow Clock Transitions 334
 13.5.3 Special Master-Slave DFFs 335
13.6 Pulse-Based D Flip-Flops 338
 13.6.1 Short-Pulse Generators 338
 13.6.2 Pulse-Based DFFs 339
13.7 Dual-Edge D Flip-Flops 342
13.8 Statistically Low-Power D Flip-Flops 343
13.9 D Flip-Flop Control Ports 344
 13.9.1 DFF with Reset and Preset 344
 13.9.2 DFF with Enable 345
 13.9.3 DFF with Clear 345
13.10 T Flip-Flop 345
13.11 Exercises 347
13.12 Exercises with SPICE 352

14 Sequential Circuits 353
14.1 Shift Registers 353
14.2 Synchronous Counters 355
14.3 Asynchronous Counters 368
14.4 Signal Generators 371
14.5 Frequency Dividers 374
14.6 PLL and Prescalers 377
 14.6.1 Basic PLL 378
 14.6.2 Prescaler 379
 14.6.3 Programmable PLL 381
14.7 Pseudo-Random Sequence Generators 381
14.8 Scramblers and Descramblers 383
 14.8.1 Additive Scrambler-Descrambler 383
 14.8.2 Multiplicative Scrambler-Descrambler 384
14.9 Exercises 386
14.10 Exercises with VHDL 395
14.11 Exercises with SPICE 395

15 Finite State Machines 397
 15.1 Finite State Machine Model 397
 15.2 Design of Finite State Machines 399
 15.3 System Resolution and Glitches 410
 15.4 Design of Large Finite State Machines 411
 15.5 Design of Finite State Machines with Complex
 Combinational Logic 414
 15.6 Multi-Machine Designs 417
 15.7 Generic Signal Generator Design Technique 419
 15.8 Design of Symmetric-Phase Frequency Dividers 421
 15.9 Finite State Machine Encoding Styles 423
 15.10 Exercises 426
 15.11 Exercises with VHDL 432

16 Volatile Memories 433
 16.1 Memory Types 433
 16.2 Static Random Access Memory (SRAM) 434
 16.3 Dual and Quad Data Rate (DDR, QDR) SRAMs 438
 16.4 Dynamic Random Access Memory (DRAM) 439
 16.5 Synchronous DRAM (SDRAM) 442
 16.6 Dual Data Rate (DDR, DDR2, DDR3) SDRAMs 444
 16.7 Content-Addressable Memory (CAM) for Cache Memories 446
 16.8 Exercises 447

17 Nonvolatile Memories 451
 17.1 Memory Types 451
 17.2 Mask-Programmed ROM (MP-ROM) 452
 17.3 One-Time-Programmable ROM (OTP-ROM) 453
 17.4 Electrically Programmable ROM (EPROM) 453
 17.5 Electrically Erasable Programmable ROM (EEPROM) 455
 17.6 Flash Memory 456
 17.7 Next-Generation Nonvolatile Memories 461
 17.7.1 Ferroelectric RAM (FRAM) 462
18 Programmable Logic Devices 467
18.1 The Concept of Programmable Logic Devices 467
18.2 SPLDs 468
 18.2.1 PAL Devices 468
 18.2.2 PLA Devices 470
 18.2.3 GAL Devices 471
18.3 CPLDs 471
 18.3.1 Architecture 471
 18.3.2 Xilinx CPLDs 475
 18.3.3 Altera CPLDs 477
18.4 FPGAs 478
 18.4.1 FPGA Technology 478
 18.4.2 FPGA Architecture 479
 18.4.3 Virtex CLB and Slice 480
 18.4.4 Stratix LAB and ALM 481
 18.4.5 RAM Blocks 481
 18.4.6 DSP Blocks 482
 18.4.7 Clock Management 483
 18.4.8 I/O Standards 485
 18.4.9 Additional Features 485
 18.4.10 Summary and Comparison 485
18.5 Exercises 486

19 VHDL Summary 491
19.1 About VHDL 492
19.2 Code Structure 492
19.3 Fundamental VHDL Packages 495
19.4 Predefined Data Types 496
19.5 User Defined Data Types 498
19.6 Operators 498
19.7 Attributes 500
19.8 Concurrent versus Sequential Code 501
19.9 Concurrent Code (WHEN, GENERATE) 502
19.10 Sequential Code (IF, CASE, LOOP, WAIT) 503
19.11 Objects (CONSTANT, SIGNAL, VARIABLE) 506
19.12 Packages 509
19.13 Components 510
19.14 Functions 513
19.15 Procedures 514
19.16 VHDL Template for FSMs 516
19.17 Exercises 520

20 VHDL Design of Combinational Logic Circuits 523
 20.1 Generic Address Decoder 523
 20.2 BCD-to-SSD Conversion Function 525
 20.3 Generic Multiplexer 527
 20.4 Generic Priority Encoder 529
 20.5 Design of ROM Memory 530
 20.6 Design of Synchronous RAM Memories 532
 20.7 Exercises 536

21 VHDL Design of Combinational Arithmetic Circuits 539
 21.1 Carry-Ripple Adder 539
 21.2 Carry-Lookahead Adder 540
 21.3 Signed and Unsigned Adders/Subtracters 543
 21.4 Signed and Unsigned Multipliers/Dividers 545
 21.5 ALU 547
 21.6 Exercises 550

22 VHDL Design of Sequential Circuits 553
 22.1 Shift Register with Load 553
 22.2 Switch Debouncer 556
 22.3 Timer 558
 22.4 Fibonacci Series Generator 561
 22.5 Frequency Meters 562
 22.6 Neural Networks 565
 22.7 Exercises 571

23 VHDL Design of State Machines 573
 23.1 String Detector 573
 23.2 “Universal” Signal Generator 575
 23.3 Car Alarm 578
 23.4 LCD Driver 588
 23.5 Exercises 597

24 Simulation with VHDL Testbenches 601
 24.1 Synthesis versus Simulation 601
 24.2 Testbench Types 602
 24.3 Stimulus Generation 603
24.4 Testing the Stimuli 605
24.5 Testbench Template 607
24.6 Writing Type I Testbenches 607
24.7 Writing Type II Testbenches 612
24.8 Writing Type III Testbenches 615
24.9 Writing Type IV Testbenches 615
24.10 Exercises 618

25 Simulation with SPICE 621
25.1 About SPICE 621
25.2 Types of Analysis 622
25.3 Basic Structure of SPICE Code 623
25.4 Declarations of Electronic Devices 625
25.5 Declarations of Independent DC Sources 630
25.6 Declarations of Independent AC Sources 631
25.7 Declarations of Dependent Sources 635
25.8 SPICE Inputs and Outputs 636
25.9 DC Response Examples 638
25.10 Transient Response Examples 641
25.11 AC Response Example 644
25.12 Monte Carlo Analysis 645
25.13 Subcircuits 648
25.14 Exercises Involving Combinational Logic Circuits 650
25.15 Exercises Involving Combinational Arithmetic Circuits 652
25.16 Exercises Involving Registers 654
25.17 Exercises Involving Sequential Circuits 655

APPENDIX A ModelSim Tutorial 657

APPENDIX B PSpice Tutorial 667

References 673

Index 679
Preface

The book carefully and diligently covers all three aspects related to the teaching of digital circuits: digital principles, digital electronics, and digital design. The starting point was the adoption of some fundamental premises, which led to a detailed and coherent sequence of contents. Such premises are summarized below.

Book Premises

- The text is divided into two parts, with the theory in Chapters 1–18 and the lab components in Chapters 19–25 plus Appendices A and B. These parts can be taught in parallel if it is a course with lectures and lab, or they can be used separately if it is a lecture-only or lab-only course.

- The book provides a clear and rigorous distinction between combinational circuits and sequential circuits. In the case of combinational circuits, further distinction between logic circuits and arithmetic circuits is provided. In the case of sequential circuits, further distinction between regular designs and state-machine-based designs is made.

- The book includes new, modern digital techniques, related, for example, to code types and data protection used in data storage and data transmission, with emphasis especially on Internet-based applications.

- The circuit analysis also includes transistor-level descriptions (not only gate-level), thus providing an introduction to VLSI design, indispensable in modern digital courses.

- A description of new, modern technologies employed in the fabrication of transistors (both bipolar and MOSFET) is provided. The fabrication of memory chips, including promising new approaches under investigation, is also presented.

- The book describes programmable logic devices, including a historical review and also details regarding state of the art CPLD/FPGA chips.

- Examples and exercises are named to ease the identification of the circuit/design under analysis.

- Not only are VHDL synthesis examples included in the experimental part, but it also includes a summary of the VHDL language, a chapter on simulation with VHDL testbenches, and also a chapter on simulation with SPICE.

- Finally, a large number of complete experimental examples are included, constructed in a rigorous, detailed fashion, including real-world applications, complete code (not only partial sketches), synthesis of all circuits onto CPLD/FPGA chips, simulation results, and general explanatory comments.

Book Contents

The book can be divided into two parts, with the theory (lectures) in Chapters 1–18 and experimentations (laboratory) in Chapters 19–25 plus Appendices A and B. Each of these parts can be further divided as follows.

- Part I Theory (Lectures)
 - Fundamentals: Chapters 1–5
 - Advanced fundamentals: Chapters 6–7
xx Preface

- Technology: Chapters 8–10
- Circuit design: Chapters 11–15
- Additional technology: Chapters 16–18

- Part II Experiments (Laboratory)
 - VHDL summary: Chapter 19
 - VHDL synthesis: Chapters 20–23
 - VHDL simulation: Chapter 24 and Appendix A
 - SPICE simulation: Chapter 25 and Appendix B

The book contains 163 enumerated examples, 622 figures, and 545 exercises.

Audience

This book addresses the specific needs of undergraduate and graduate students in electrical engineering, computer engineering, and computer science.

Suggestions on How to Use the Book

The tables below present suggestions for the lecture and lab sections. If it is a lecture-only course, then any of the three compositions in the first table can be employed, depending on the desired course level. Likewise, if it is a lab-only course, then any of the three options suggested in the second table can be used. In the more general case (lectures plus lab), the two parts should be taught in parallel. In the tables an ‘x’ means full content, a slash ‘/’ indicates a partial (introductory sections only) content, and a blank means that the chapter should be skipped. These, however, are just suggestions based on the author’s own experience, so they should serve only as a general reference.

<table>
<thead>
<tr>
<th>Theory</th>
<th>Chapters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture Level</td>
<td>1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18</td>
</tr>
<tr>
<td>Fundamental</td>
<td>x x x x x / / x x x x x / / x</td>
</tr>
<tr>
<td>Intermediate</td>
<td>x x x x x / / x x x x x x x x</td>
</tr>
<tr>
<td>Advanced</td>
<td>x x x x x x x x x x x x x x</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Practice</th>
<th>Chapters and Appendices</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lab Level</td>
<td>19 20 21 22 23 24 25 A B</td>
</tr>
<tr>
<td>Fundamental</td>
<td>x x x x x</td>
</tr>
<tr>
<td>Intermediate</td>
<td>x x x x x x</td>
</tr>
<tr>
<td>Advanced</td>
<td>x x x x x x x x</td>
</tr>
</tbody>
</table>
Companion Web Site and Contacts
Author’s email: Please consult the Web site above.

Acknowledgments
I would like to express my gratitude to the reviewers Don Bouldin, of University of Tennessee, Robert J. Mikel, of Cleveland State University, Mark Faust, of Portland State University, Joanne E. DeGroat, of Ohio State University, and also to the several anonymous reviewers for their insightful comments and suggestions, which where instrumental in shaping the book’s final form.

I am also grateful to Gert Cauwenberghs, of University of California at San Diego, and David M. Harris, of Harvey Mudd College, for advice in the early stages of this project. I am further indebted to Bruno U. Pedroni and Ricardo U. Pedroni for helping with some of the exercises.

I wish to extend my appreciation to the people at Elsevier for their outstanding work. In particular, I would like to recognize the following persons: Charles B. Glaser, acquisitions editor, for trusting me and providing wise and at the same time friendly guidance during the whole review process and final assembly/production of the manuscript; Dawnmarie E. Simpson, production editor, for patiently and competently leading the production process; and Jeanne Hansen, copy editor, who so diligently revised my writings.