Distributed Source Coding
Distributed Source Coding
Theory, Algorithms, and Applications

Pier Luigi Dragotti
Department of Electrical and Electronic Engineering
Imperial College London
London, UK

Michael Gastpar
Department of Electrical Engineering and Computer Sciences
University of California, Berkeley
Berkeley, CA

Academic Press is an imprint of Elsevier
Contents

List of Contributors .. xiii
Introduction ... xix

PART I THEORY

<table>
<thead>
<tr>
<th>CHAPTER 1</th>
<th>Foundations of Distributed Source Coding</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Introduction ...</td>
<td>4</td>
</tr>
<tr>
<td>1.2</td>
<td>Centralized Source Coding</td>
<td>4</td>
</tr>
<tr>
<td>1.2.1</td>
<td>Lossless Source Coding</td>
<td>4</td>
</tr>
<tr>
<td>1.2.2</td>
<td>Lossy Source Coding</td>
<td>5</td>
</tr>
<tr>
<td>1.2.3</td>
<td>Lossy Source Coding for Sources with Memory</td>
<td>8</td>
</tr>
<tr>
<td>1.2.4</td>
<td>Some Notes on Practical Considerations</td>
<td>9</td>
</tr>
<tr>
<td>1.3</td>
<td>Distributed Source Coding</td>
<td>9</td>
</tr>
<tr>
<td>1.3.1</td>
<td>Lossless Source Coding</td>
<td>10</td>
</tr>
<tr>
<td>1.3.2</td>
<td>Lossy Source Coding</td>
<td>11</td>
</tr>
<tr>
<td>1.3.3</td>
<td>Interaction ..</td>
<td>15</td>
</tr>
<tr>
<td>1.4</td>
<td>Remote Source Coding ..</td>
<td>16</td>
</tr>
<tr>
<td>1.4.1</td>
<td>Centralized ..</td>
<td>16</td>
</tr>
<tr>
<td>1.4.2</td>
<td>Distributed: The CEO Problem</td>
<td>19</td>
</tr>
<tr>
<td>1.5</td>
<td>Joint Source-channel Coding</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>Acknowledgments ...</td>
<td>23</td>
</tr>
</tbody>
</table>

Appendix A: Formal Definitions and Notations............. 23

A.1	Notation ..	23
A.1.1	Centralized Source Coding	25
A.1.2	Distributed Source Coding	26
A.1.3	Remote Source Coding	27
	References ...	28

<table>
<thead>
<tr>
<th>CHAPTER 2</th>
<th>Distributed Transform Coding</th>
<th>33</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Introduction ..</td>
<td>33</td>
</tr>
<tr>
<td>2.2</td>
<td>Foundations of Centralized Transform Coding</td>
<td>35</td>
</tr>
<tr>
<td>2.2.1</td>
<td>Transform Coding Overview</td>
<td>35</td>
</tr>
<tr>
<td>2.2.2</td>
<td>Lossless Compression</td>
<td>36</td>
</tr>
</tbody>
</table>
Contents

2.2.3 Quantizers ... 37
2.2.4 Bit Allocation .. 38
2.2.5 Transforms ... 39
2.2.6 Linear Approximation 41

2.3 The Distributed Karhunen–Loève Transform 42
2.3.1 Problem Statement and Notation 43
2.3.2 The Two-terminal Scenario 44
2.3.3 The Multiterminal Scenario and the Distributed KLT Algorithm .. 49

2.4 Alternative Transforms ... 49
2.4.1 Practical Distributed Transform Coding with Side Information .. 50
2.4.2 High-rate Analysis of Source Coding with Side Information at Decoder 50

2.5 New Approaches to Distributed Compression with FRI 51
2.5.1 Background on Sampling of 2D FRI Signals 52
2.5.2 Detailed Example: Coding Scheme for Translating a Bi-level Polygon ... 53

2.6 Conclusions .. 58
References ... 58

CHAPTER 3 Quantization for Distributed Source Coding 61

3.1 Introduction ... 62

3.2 Formulation of the Problem 64
3.2.1 Conventions ... 64
3.2.2 Network Distributed Source Coding 65
3.2.3 Cost, Distortion, and Rate Measures 66
3.2.4 Optimal Quantizers and Reconstruction Functions .. 67
3.2.5 Example: Quantization of Side Information 67

3.3 Optimal Quantizer Design 68
3.3.1 Optimality Conditions 68
3.3.2 Lloyd Algorithm for Distributed Quantization 69

3.4 Experimental Results ... 70

3.5 High-rate Distributed Quantization 73
3.5.1 High-rate WZ Quantization of Clean Sources 74
3.5.2 High-rate WZ Quantization of Noisy Sources 76
3.5.3 High-rate Network Distributed Quantization 80

3.6 Experimental Results Revisited 84

3.7 Conclusions .. 85
References ... 86
CHAPTER 4 Zero-error Distributed Source Coding 89
 4.1 Introduction ... 89
 4.2 Graph Theoretic Connections 92
 4.2.1 VLZE Coding and Graphs 92
 4.2.2 Basic Definitions and Notation 95
 4.2.3 Graph Entropies .. 96
 4.2.4 Graph Capacity ... 98
 4.3 Complementary Graph Entropy and VLZE Coding 98
 4.4 Network Extensions ... 100
 4.4.1 Extension 1: VLZE Coding When Side Information
 May Be Absent 100
 4.4.2 Extension 2: VLZE Coding with Compound Side
 Information .. 102
 4.5 VLZE Code Design ... 104
 4.5.1 Hardness of Optimal Code Design 104
 4.5.2 Hardness of Coding with Length Constraints 107
 4.5.3 An Exponential-time Optimal VLZE Code Design
 Algorithm .. 108
 4.6 Conclusions ... 109
 References .. 110

CHAPTER 5 Distributed Coding of Sparse Signals 111
 5.1 Introduction ... 111
 5.1.1 Sparse Signals ... 112
 5.1.2 Signal Recovery with Compressive Sampling 113
 5.2 Compressive Sampling as Distributed Source Coding 114
 5.2.1 Modeling Assumptions 116
 5.2.2 Analyses .. 117
 5.2.3 Numerical Simulation 121
 5.3 Information Theory to the Rescue? 123
 5.4 Conclusions—Whither Compressive Sampling? 125
 5.5 Appendix: Quantizer Performance and Quantization Error ... 125
 Acknowledgments ... 126
 References .. 126

PART II ALGORITHMS AND APPLICATIONS

CHAPTER 6 Toward Constructive Slepian–Wolf Coding Schemes... 131
 6.1 Introduction ... 131
 6.2 Asymmetric SW Coding 132
 6.2.1 Principle of Asymmetric SW Coding 132
6.2.2 Practical Code Design Based on Channel Codes
6.2.3 Rate Adaptation ...
6.3 Nonasymmetric SW Coding
6.3.1 Time Sharing ..
6.3.2 The Parity Approach
6.3.3 The Syndrome Approach
6.3.4 Source Splitting ...
6.3.5 Rate Adaptation ...
6.4 Advanced Topics ...
6.4.1 Practical Code Design Based on Source Codes
6.4.2 Generalization to Nonbinary Sources
6.4.3 Generalization to M Sources
6.5 Conclusions ...
References ...

CHAPTER 7 Distributed Compression in Microphone Arrays
7.1 Introduction ..
7.2 Spatiotemporal Evolution of the Sound Field
7.2.1 Recording Setups ...
7.2.2 Spectral Characteristics
7.2.3 Spatiotemporal Sampling and Reconstruction
7.3 Huygens’s Configuration
7.3.1 Setup ...
7.3.2 Coding Strategies
7.3.3 Rate-distortion Trade-offs
7.4 Binaural Hearing Aid Configuration
7.4.1 Setup ...
7.4.2 Coding Strategies
7.4.3 Rate-distortion Trade-offs
7.5 Conclusions ..
Acknowledgment ..
References ...

CHAPTER 8 Distributed Video Coding: Basics, Codecs, and Performance
8.1 Introduction ..
8.2 Basics on Distributed Video Coding
8.3 The Early Wyner-Ziv Video Coding Architectures
8.3.1 The Stanford WZ Video Codec
8.3.2 The Berkeley WZ Video Codec
8.3.3 Comparing the Early WZ Video Codecs
Contents

8.4 Further Developments on Wyner–Ziv Video Coding 201
 8.4.1 Improving RD Performance 201
 8.4.2 Removing the Feedback Channel 204
 8.4.3 Improving Error Resilience 205
 8.4.4 Providing Scalability 206
8.5 The DISCOVER Wyner–Ziv Video Codec 207
 8.5.1 Transform and Quantization 210
 8.5.2 Slepian–Wolf Coding 211
 8.5.3 Side Information Creation 213
 8.5.4 Correlation Noise Modeling 214
 8.5.5 Reconstruction .. 215
8.6 The DISCOVER Codec Performance 216
 8.6.1 Performance Evaluation Conditions 216
 8.6.2 RD Performance Evaluation 219
 8.6.3 Complexity Performance Evaluation 232
8.7 Final Remarks .. 241
Acknowledgments ... 242
References ... 242

CHAPTER 9 Model-based Multiview Video Compression Using
Distributed Source Coding Principles 247
 9.1 Introduction .. 247
 9.2 Model Tracking ... 249
 9.2.1 Image Appearance Model of a Rigid Object 250
 9.2.2 Inverse Compositional Estimation of 3D Motion and
 Illumination .. 251
 9.3 Distributed Compression Schemes 254
 9.3.1 Feature Extraction and Coding 255
 9.3.2 Types of Frames 256
 9.3.3 Types of Side Information 257
 9.4 Experimental Results .. 258
 9.5 Conclusions .. 263
References ... 266

CHAPTER 10 Distributed Compression of Hyperspectral Imagery ... 269
 10.1 Introduction .. 269
 10.1.1 Hyperspectral Imagery Compression: State of the Art.. 271
 10.1.2 Outline of This Chapter 273
 10.2 Hyperspectral Image Compression 273
 10.2.1 Dataset Characteristics 273
10.2.2 Intraband Redundancy and Cross-band Correlation 274
10.2.3 Limitations of Existing Hyperspectral Compression
Techniques .. 275
10.3 DSC-based Hyperspectral Image Compression 277
10.3.1 Potential Advantages of DSC-based Hyperspectral
Compression ... 278
10.3.2 Challenges in Applying DSC for Hyperspectral
Imaging .. 279
10.4 Example Designs .. 280
10.4.1 DSC Techniques for Lossless Compression of
Hyperspectral Images .. 280
10.4.2 Wavelet-based Slepian–Wolf Coding for Lossy-to-
lossless Compression of Hyperspectral Images 283
10.4.3 Distributed Compression of Multispectral Images
Using a Set Theoretic Approach 288
10.5 Conclusions ... 289
References .. 289

CHAPTER 11 Securing Biometric Data 293
11.1 Introduction ... 294
11.1.1 Motivation and Objectives 294
11.1.2 Architectures and System Security 295
11.1.3 Chapter Organization 296
11.2 Related Work .. 296
11.3 Overview of Secure Biometrics Using Syndromes 299
11.3.1 Notation .. 299
11.3.2 Enrollment and Authentication 299
11.3.3 Performance Measures: Security and Robustness 300
11.3.4 Quantifying Security 302
11.3.5 Implementation Using Syndrome Coding 305
11.4 Iris System ... 306
11.4.1 Enrollment and Authentication 306
11.4.2 Experimental Results 307
11.5 Fingerprint System: Modeling Approach 309
11.5.1 Minutiae Representation of Fingerprints 309
11.5.2 Modeling the Movement of Fingerprint Minutiae 310
11.5.3 Experimental Evaluation of Security and
Robustness ... 313
11.5.4 Remarks on the Modeling Approach 315
Contents

11.6 Fingerprint System: The Transformation Approach 315
 11.6.1 Desired Statistical Properties of Feature Vectors 316
 11.6.2 Feature Transformation Algorithm 317
 11.6.3 Experimental Evaluation of Security and Robustness .. 318
11.7 Summary ... 322
References .. 323

Index... 325
List of Contributors

Chapter 1. Foundations of Distributed Source Coding

Krishnan Eswaran
Department of Electrical Engineering and Computer Sciences
University of California, Berkeley
Berkeley, CA 94720

Michael Gastpar
Department of Electrical Engineering and Computer Sciences
University of California, Berkeley
Berkeley, CA 94720

Chapter 2. Distributed Transform Coding

Varit Chaisinthop
Department of Electrical and Electronic Engineering
Imperial College London
SW7 2AZ London, UK

Pier Luigi Dragotti
Department of Electrical and Electronic Engineering
Imperial College London
SW7 2AZ London, UK

Chapter 3. Quantization for Distributed Source Coding

David Rebollo-Monedero
Department of Telematics Engineering
Universitat Politècnica de Catalunya
08034 Barcelona, Spain

Bernd Girod
Department of Electrical Engineering
Stanford University
Palo Alto, CA 94305-9515
Chapter 4. Zero-error Distributed Source Coding

Ertem Tuncel
Department of Electrical Engineering
University of California, Riverside
Riverside, CA 92521

Jayanth Nayak
Mayachitra, Inc.
Santa Barbara, CA 93111

Prashant Koulgi
Department of Electrical and Computer Engineering
University of California, Santa Barbara
Santa Barbara, CA 93106

Kenneth Rose
Department of Electrical and Computer Engineering
University of California, Santa Barbara
Santa Barbara, CA 93106

Chapter 5. Distributed Coding of Sparse Signals

Vivek K Goyal
Department of Electrical Engineering and Computer Science
Massachusetts Institute of Technology
Cambridge, MA 02139

Alyson K. Fletcher
Department of Electrical Engineering and Computer Sciences
University of California, Berkeley
Berkeley, CA 94720

Sundeep Rangan
Qualcomm Flarion Technologies
Bridgewater, NJ 08807-2856

Chapter 6. Toward Constructive Slepian–Wolf Coding Schemes

Christine Guillemot
INRIA Rennes-Bretagne Atlantique
Campus Universitaire de Beaulieu
35042 Rennes Cédex, France
List of Contributors

Aline Roumy
INRIA Rennes-Bretagne Atlantique
Campus Universitaire de Beaulieu
35042 Rennes Cédex, France

Chapter 7. Distributed Compression in Microphone Arrays

Olivier Roy
Audiovisual Communications Laboratory
School of Computer and Communication Sciences
Ecole Polytechnique Fédérale de Lausanne
CH-1015 Lausanne, Switzerland

Thibaut Ajdler
Audiovisual Communications Laboratory
School of Computer and Communication Sciences
Ecole Polytechnique Fédérale de Lausanne
CH-1015 Lausanne, Switzerland

Robert L. Konsbruck
Audiovisual Communications Laboratory
School of Computer and Communication Sciences
Ecole Polytechnique Fédérale de Lausanne
CH-1015 Lausanne, Switzerland

Martin Vetterli
Audiovisual Communications Laboratory
School of Computer and Communication Sciences
Ecole Polytechnique Fédérale de Lausanne
CH-1015 Lausanne, Switzerland
and
Department of Electrical Engineering and Computer Sciences
University of California, Berkeley
Berkeley, CA 94720

Chapter 8. Distributed Video Coding: Basics, Codecs, and Performance

Fernando Pereira
Instituto Superior Técnico—Instituto de Telecomunicações
1049-001 Lisbon, Portugal
List of Contributors

Catarina Brites
Instituto Superior Técnico—Instituto de Telecomunicações
1049-001 Lisbon, Portugal

João Ascenso
Instituto Superior Técnico—Instituto de Telecomunicações
1049-001 Lisbon, Portugal

Chapter 9. Model-based Multiview Video Compression Using Distributed Source Coding Principles

Jayanth Nayak
Mayachitra, Inc.
Santa Barbara, CA 93111

Bi Song
Department of Electrical Engineering
University of California, Riverside
Riverside, CA 92521

Ertem Tuncel
Department of Electrical Engineering
University of California, Riverside
Riverside, CA 92521

Amit K. Roy-Chowdhury
Department of Electrical Engineering
University of California, Riverside
Riverside, CA 92521

Chapter 10. Distributed Compression of Hyperspectral Imagery

Ngai-Man Cheung
Signal and Image Processing Institute
Department of Electrical Engineering
University of Southern California
Los Angeles, CA 90089-2564

Antonio Ortega
Signal and Image Processing Institute
Department of Electrical Engineering
University of Southern California
Los Angeles, CA 90089-2564
Chapter 11. Securing Biometric Data

Anthony Vetro
Mitsubishi Electric Research Laboratories
Cambridge, MA 02139

Shantanu Rane
Mitsubishi Electric Research Laboratories
Cambridge, MA 02139

Jonathan S. Yedidia
Mitsubishi Electric Research Laboratories
Cambridge, MA 02139

Stark C. Draper
Department of Electrical and Computer Engineering
University of Wisconsin, Madison
Madison, WI 53706
Introduction

In conventional source coding, a single encoder exploits the redundancy of the source in order to perform compression. Applications such as wireless sensor and camera networks, however, involve multiple sources often separated in space that need to be compressed independently. In such applications, it is not usually feasible to first transport all the data to a central location and compress (or further process) it there. The resulting source coding problem is often referred to as distributed source coding (DSC). Its foundations were laid in the 1970s, but it is only in the current decade that practical techniques have been developed, along with advances in the theoretical underpinnings. The practical advances were, in part, due to the rediscovery of the close connection between distributed source codes and (standard) error-correction codes for noisy channels. The latter area underwent a dramatic shift in the 1990s, following the discovery of turbo and low-density parity-check (LDPC) codes. Both constructions have been used to obtain good distributed source codes.

In a related effort, ideas from distributed coding have also had considerable impact on video compression, which is basically a centralized compression problem. In this scenario, one can consider a compression technique under which each video frame must be compressed separately, thus mimicking a distributed coding problem. The resulting algorithms are among the best-performing and have many additional features, including, for example, a shift of complexity from the encoder to the decoder.

This book summarizes the main contributions of the current decade. The chapters are subdivided into two parts. The first part is devoted to the theoretical foundations, and the second part to algorithms and applications.

Chapter 1, by Eswaran and Gastpar, summarizes the state of the art of the theory of distributed source coding, starting with classical results. It emphasizes an important distinction between direct source coding and indirect (or noisy) source coding: In the distributed setting, these two are fundamentally different. This difference is best appreciated by considering the scaling laws in the number of encoders: In the indirect case, those scaling laws are dramatically different. Historically, compression is tightly linked to transforms and thus to transform coding. It is therefore natural to investigate extensions of the traditional centralized transform coding paradigm to the distributed case. This is done by Chaisinthop and Dragotti in Chapter 2, which presents an overview of existing distributed transform coders. Rebollo-Monedero and Girod, in Chapter 3, address the important question of quantization in a distributed setting. A new set of tools is necessary to optimize quantizers, and the chapter gives a partial account of the results available to date. In the standard perspective, efficient distributed source coding always involves an error probability, even though it vanishes as the coding block length is increased. In Chapter 4, Tuncel, Nayak, Koulgi, and Rose take a more restrictive view: The error probability must be exactly zero. This is shown to lead to a strict rate penalty for many instances. Chapter 5, by Goyal, Fletcher, and Rangan, connects ideas from distributed source coding with the sparse signal models.
that have recently received considerable attention under the heading of compressed (or compressive) sensing.

The second part of the book focuses on algorithms and applications, where the developments of the past decades have been even more pronounced than in the theoretical foundations. The first chapter, by Guillemot and Roumy, presents an overview of practical DSC techniques based on turbo and LDPC codes, along with ample experimental illustration. Chapter 7, by Roy, Ajdler, Konsbruck, and Vetterli, specializes and applies DSC techniques to a system of multiple microphones, using an explicit spatial model to derive sampling conditions and source correlation structures. Chapter 8, by Pereira, Brites, and Ascenso, overviews the application of ideas from DSC to video coding: A single video stream is encoded, frame by frame, and the encoder treats past and future frames as side information when encoding the current frame. The chapter starts with an overview of the original distributed video coders from Berkeley (PRISM) and Stanford, and provides a detailed description of an enhanced video coder developed by the authors (and referred to as DISCOVER). The case of the multiple multiview video stream is considered by Nayak, Song, Tuncel, and Roy-Chowdhury in Chapter 9, where they show how DSC techniques can be applied to the problem of multiview video compression. Chapter 10, by Cheung and Ortega, applies DSC techniques to the problem of distributed compression of hyperspectral imagery. Finally, Chapter 11, by Vetro, Draper, Rane, and Yedidia, is an innovative application of DSC techniques to securing biometric data. The problem is that if a fingerprint, iris scan, or genetic code is used as a user password, then the password cannot be changed since users are stuck with their fingers (or irises, or genes). Therefore, biometric information should not be stored in the clear anywhere. This chapter discusses one approach to this problematic issue, using ideas from DSC.

One of the main objectives of this book is to provide a comprehensive reference for engineers, researchers, and students interested in distributed source coding. Results on this topic have so far appeared in different journals and conferences. We hope that the book will finally provide an integrated view of this active and ever evolving research area.

Edited books would not exist without the enthusiasm and hard work of the contributors. It has been a great pleasure for us to interact with some of the very best researchers in this area who have enthusiastically embarked in this project and have contributed these wonderful chapters. We have learned a lot from them. We would also like to thank the reviewers of the chapters for their time and for their constructive comments. Finally we would like to thank the staff at Academic Press—in particular Tim Pitts, Senior Commissioning Editor, and Melanie Benson—for their continuous help.

Pier Luigi Dragotti, London, UK

Michael Gastpar, Berkeley, California, USA