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Abstract

Listeria monocytogenes is the causative agent of human listeriosis, a poten-

tially fatal foodborne infection. Clinical manifestations range from febrile gas-

troenteritis to more severe invasive forms including meningitis, encephalitis,

abortions, and perinatal infections. This Gram-positive facultative intracellular

pathogen has evolved multiple strategies to face extracellular innate defense

mechanisms of the host and to invade and multiply intracellularly within macro-

phages and nonphagocytic cells. This chapter provides an updated panorama

of recent advances in the characterization of L. monocytogenes virulence

determinants in the postgenomic era.

Key Words: Listeriosis, Listeria monocytogenes, Virulence, Genome, Cell

invasion, Immunity, Pathophysiology. � 2008 Elsevier Inc.

1. Introduction

TheListeria genus is composed of six species:L.monocytogenes,L. ivanovii,
L. innocua, L. seeligeri, L. welshimeri, and L. grayi (Vazquez-Boland et al.,
2001b). The pathogenic species L.monocytogenes causes disease in humans
and animals. The second pathogenic species, L. ivanovii, causes disease in
animals. L. innocua, L. seeligeri, L. welshimeri, and L. grayi are four nonpatho-
genic species. Listeria spp. are flagellated andmotile Gram-positive, nonspore-
forming, facultative anaerobic bacilli of low GC content (Seeliger and Jones,
1986). These ubiquitous bacteria are commonly isolated frommultiple sources
such as plants, soil, andwater.L.monocytogenes can contaminate the agricultural
environment, animal feed, and food at various stages of the production process
leading to recalls (Orndorff et al., 2006; Roberts and Wiedmann, 2003). It
is thus a major problem in the food industry. Ingestion of food contaminated
with L. monocytogenes is the primary route of transmission to humans.
L. monocytogenes is the causative agent of listeriosis. Although the incidence
of the disease is low (0.1 to 11.3/1,000,000), it is a public health concern
because of a high mortality rate (20–30%) and high occurrence of Listeria
in food (Swaminathan and Gerner-Smidt, 2007).

L. monocytogenes causes two forms of listeriosis depending on the immu-
nological status of the host, the pathogenic potential of the bacterial strain,
and the infectious dose: noninvasive gastrointestinal listeriosis and invasive
listeriosis (Vazquez-Boland et al., 2001b). In immunocompetent indivi-
duals, noninvasive listeriosis develops as a typical febrile gastroenteritis. In
immunocompromised adults such as the elderly, patients with genetic or
acquired defects in immunity and patients receiving immunosuppressive
agents, listeriosis can manifest as septicemia and/or meningoencephalitis.
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Invasive listeriosis can also be acquired by the fetus from the infected mother
by transplacental transmission. Perinatal listeriosis can lead to abortion, birth
of a stillborn fetus or a baby with generalized infection (granulomatosis
infanseptica), and meningitis in neonates. Clinical features of invasive liste-
riosis derive from the unique capacity of L. monocytogenes to cross three
barriers: the intestinal, blood–brain, and placental barriers (Lecuit, 2005).
The clinical outcome of listeriosis is influenced by the pathogenic potential
of the infecting strain. Among L. monocytogenes strains, those of the serovars
1/2a, 1/2b, and 4b are responsible for 95% of human infections and most
outbreaks are caused by strains of serovar 4b (Swaminathan and Gerner-
Smidt, 2007). The remarkable capacity of L. monocytogenes to invade and
multiply in epithelial cells and professional phagocytic cells is central to
listeriosis pathophysiology (Fig. 1.1). L. monocytogenes uses various receptors
to enter these cells. After internalization, the bacterium lyzes the vacuole,
escapes in the cytosol, and replicates. L. monocytogenes then exploits the actin
machinery to move within the cell and to neighboring cells where it is
internalized in a double-membrane vacuole that is lyzed, allowing the
bacterium to access the cytosol and start a new intracellular infection cycle
(Tilney and Portnoy, 1989).

For more than 40 years, L. monocytogenes and experimental listeriosis
have been used to study the immune response and the biology of the cell
leading to major discoveries (Cossart, 2007; Garifulin and Boyartchuk,
2005; Hamon et al., 2006; Mackaness, 1962; Pamer, 2004). More recently,
the extensive characterization of the mechanisms used by L. monocytogenes to
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Figure 1.1 Schematic representation of the infectious cycle of Listeria monocytogenes.
Bacteria first adhere to cells, induce entry, and are internalized in avacuole (1).The vacu-
ole is lyzed byL.monocytogenesvirulence factors (2).Once free in the cell cytoplasm, bac-
teria start to replicate (3). L. monocytogenes then exploits the actin polymerization
machinery of the cell to propel itself (4). When bacteria reach a neighboring cell,
they induce the formation of a protrusion characterized by a double membrane (5).This
secondary vacuole is finally lyzed (6), allowing a new infection cycle.
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manipulate the host cell contributed to the creation of the field of cellular
microbiology (Cossart et al., 1996). The advanced knowledge of the speci-
ficity of L. monocytogenes interactions with the host culminated in 2001, with
the creation of the first transgenic mouse to model human listeriosis in
animals (Lecuit, 2007; Lecuit and Cossart, 2002; Lecuit et al., 2001). The
same year, the first comparison of the genome sequences of a pathogenic
bacterium and a related nonpathogenic species, L. monocytogenes and L.
innocua, respectively, allowed to envision the identification of the complete
arsenal used by Listeria to cause disease (Dussurget et al., 2004; Glaser et al.,
2001). Here, we review L. monocytogenes major virulence determinants that
have been currently characterized.

2. Acquisition of Virulence Genes and

Their Expression

2.1. Acquisition of virulence genes

Acquisition and loss of genetic elements lead to bacterial speciation and
provide the properties necessary for a particular lifestyle. Cumulative acqui-
sition of virulence genes provides pathogenic bacteria the functions
required for survival, growth and damage in the infected host.

The genome organization is remarkably conserved between different
Listeria species (Hain et al., 2007; Schmid et al., 2005). However, compara-
tive genomic analysis of pathogenic and nonpathogenic Listeria species
reveals scattered genes specific to virulent strains that are isolated or form
pathogenicity islands (Glaser et al., 2001; Vazquez-Boland et al., 2001a).
The unusual base composition of some of these sequences could be the
consequence of horizontal transfer (Begley et al., 2005; Dussurget et al.,
2002). Interestingly, Listeria genomes contain open reading frames homol-
ogous to Bacillus subtilis competence genes (Buchrieser, 2007; Glaser et al.,
2001). Although the function of this putative DNA uptake system has not
been demonstrated yet, it could be hypothesized that competence may play
a role in acquisition of virulence genes by L. monocytogenes. Lysogenic
bacteriophages, plasmids, and transposons, which could play critical roles
in the evolution of pathogenicity, have been characterized in Listeria species
but they have not been associated to virulence (Hain et al., 2007). Non-
pathogenic species, including L. innocua appear to have evolved from a
L. monocytogenes ancestor after multiple deletions of virulence genes
(Buchrieser, 2007; Hain et al., 2006). Recently, analysis of the complete
genome sequence of the nonpathogenic L. welshimeri revealed deletions
of all the genes required for virulence and of some genes encoding
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transcription factors, surface proteins, and proteins involved in carbohydrate
transport and metabolism (Hain et al., 2006). Comparison of L. welshimeri
and L. innocua suggests similar evolutionary paths from an ancestor.

2.2. Regulation of virulence gene expression

Adaptability of L. monocytogenes that is central to the infectious process is
determined by the genetic elements allowing bacteria to survive and multi-
ply within multiple tissues and by the mechanisms required for the tight and
coordinate regulation of their expression.

2.2.1. PrfA
PrfA is the master regulator of virulence gene expression in L. monocytogenes.
PrfA is a protein of 233 amino acids that binds to a 14-bp palindromic
sequence in the�41 region of the genes from the PrfA regulon and activates
their transcription. The activity of PrfA itself is tightly controlled by multi-
ple mechanisms (Vazquez-Boland et al., 2001b). Translation of PrfA is
regulated by temperature ( Johansson and Cossart, 2003; Johansson et al.,
2002). At a temperature lower than 30 �C, the untranslated region of prfA
mRNA adopts a stable secondary structure that prevents binding of the
ribosome and blocks translation. In the host, the temperature of 37 �C
induces melting of the secondary structure. Consequently, PrfA is translated
and activates virulence gene expression. Determination of L. monocytogenes
genome sequence allowed analysis of the transcriptome and identification of
the PrfA regulon (Milohanic et al., 2003). The transcriptomic analysis
identified a total of 73 genes regulated directly or indirectly by PrfA. This
study confirmed that the expression of important virulence genes such as
hly, actA, plcA, plcB, mpl, inlA, inlB, inlC, hpt, and prfA itself is activated by
PrfA. Interestingly, the expression of all these genes is increased intracellu-
larly after infection of macrophages and epithelial cells (Chatterjee et al.,
2006; Joseph et al., 2006).

2.2.2. Sigma B
Other regulatory elements have been demonstrated to be necessary for full
virulence of L. monocytogenes. The stress-responsive alternative sigma factor
encoded by sigB contributes to invasion (Kim et al., 2004) and virulence
(Garner et al., 2006; Nadon et al., 2002). The sigma B regulon contains stress
response and virulence genes such as gadB, opuCA, bsh, inlA, and inlB
(Kazmierczak et al., 2003; McGann et al., 2007; Sue et al., 2003) and stress
and virulence gene regulators Hfq (Christiansen et al., 2004; Nadon et al.,
2002) and PrfA (Nadon et al., 2002).
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2.2.3. MogR
Temperature-dependent expression of the flagellin gene flaA is controlled
by the transcriptional regulator DegU and by the antagonist activity of the
repressor MogR (Grundling et al., 2004). At 37 �C, flagellin synthesis is
repressed by the regulator MogR. At 30 �C and below, DegU activates
expression of GmaR that forms a complex with MogR and prevents
binding of the repressor to its target DNA sequences (Shen et al., 2006).
GmaR is a bifunctional protein that functions as an antirepressor and an
O-linkedN-acetylglucosamine transferase that glycosylates flagellin (Schirm
et al., 2005; Shen et al., 2006). The role of flagellin glycosylation remains to
be determined. MogR contributes to L. monocytogenes virulence (Grundling
et al., 2004; Shen and Higgins, 2006) and its expression is induced in
macrophages (Chatterjee et al., 2006). Overproduction of FlaA in mogR
mutants leads to defects in bacterial division, intracellular spread, and
virulence in mice.

2.2.4. CtsR
The class III stress gene repressor CtsR regulates the expression of class III
heat-shock genes encoding the Clp ATPases ClpB, ClpC, ClpE, and ClpP,
which are required for virulence (Chastanet et al., 2004; Gaillot et al., 2000;
Nair et al., 1999, 2000; Rouquette et al., 1998). Interestingly, the expression
of CtsR and the four ATPases is induced in infected macrophages
(Chatterjee et al., 2006).

2.2.5. PerR and Fur
The Fur family of regulators includes sensors of iron (Fur), zinc (Zur),
manganese (Mur), nickel (Nur), as well as metal-dependent reactive oxygen
species sensors such as the peroxide sensor PerR (Lee and Helmann, 2007).
The iron-responsive transcriptional regulator Fur is responsible for coordi-
nating the expression of genes involved in iron uptake and storage (Lee and
Helmann, 2007). The regulator PerR senses peroxides by metal-catalyzed
oxidation and regulates the expression of inducible genes involved in defense
against reactive oxygen species (Lee and Helmann, 2006). L. monocytogenes
perR and fur mutants are more sensitive to hydrogen peroxide and have a
significantly reduced virulence of in mice (Rea et al., 2004, 2005). Interest-
ingly, the PerR regulon includes the ferritin gene fri that contributes to
survival of L. monocytogenes in vivo (Dussurget et al., 2005; Mohamed et al.,
2006; Olsen et al., 2005). Thus, regulation of iron uptake and oxidative stress
response is an important determinant for the infectious process.

2.2.6. LisRK, AgrA, VirR, and DegU
Several two-component regulatory systems contribute to L. monocytogenes
survival in the infected host. LisRK is important for bacterial response to
acid and hydrogen peroxide stresses and for osmotolerance mediated by the

6 Olivier Dussurget



HtrA-like serine protease (Cotter et al., 1999; Stack et al., 2005). The
response regulators AgrA (Autret et al., 2003) and VirR (Mandin et al.,
2005) play a role in virulence, which was identified by signature-tagged
mutagenesis. A transcriptomic approach led to the identification of 12 genes
regulated by VirR, including the dlt operon, which is required for
L. monocytogenes full virulence. However, a dltA mutant is not as impaired
in virulence as a virR mutant, suggesting that the response regulator may
control the expression of other virulence determinants (Mandin et al.,
2005). Indeed, another member of the VirR regulon, the mprF gene, has
recently been shown to contribute to L. monocytogenes virulence (Thedieck
et al., 2006). The response regulator DegU is a transcriptional activator of
the expression of the flagellin gene flaA at low temperature and regulates
virulence-associated genes (Knudsen et al., 2004; Williams et al., 2005).

2.2.7. Stp
Analysis of L. monocytogenes genome sequence revealed 9 signal transduction
systems based on reversible phosphorylation in addition to the 16 two-
component systems: 4 putative tyrosine phosphatases, 3 putative serine-
threonine kinases, and 2 putative serine-threonine phosphatases
(Archambaud et al., 2005; Glaser et al., 2001). One of the latter enzyme is
an Mn2þ-dependent serine-threonine phosphatase that has an important
role in regulating the elongation factor EF-Tu and controlling bacterial
survival in the infected host (Archambaud et al., 2005). Stp was recently
shown to control L. monocytogenes manganese dependent-superoxide
dismutase (MnSOD) an enzyme that is required for full virulence
(Archambaud et al., 2006).

2.2.8. Hfq
The RNA-binding protein Hfq regulates multiple important processes such
as stress tolerance and virulence. Hfq contributes to virulence in mice
possibly by interacting with mRNA and/or small regulatory RNA, playing
a role in the survival and multiplication of L. monocytogenes in vivo
(Christiansen et al., 2004; Mandin et al., 2007).

3. Adaptation to Host Extracellular

Compartments

Following ingestion, the capacity of L. monocytogenes to survive and
multiply successfully under the multiple and dynamic environments found
in the host is an essential factor in the infectious process.
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3.1. GAD

The glutamate decarboxylase system GAD is essential for survival in the
stomach after ingestion (Cotter et al., 2001). Depending on the strain, it is
composed of two or three glutamate decarboxylases and one or two gluta-
mate/g-aminobutyrate antiporters (Cotter et al., 2005). The GAD system
transports and converts glutamate to g-aminobutyrate consuming a proton,
allowing L. monocytogenes to survive in acidic environments.

3.2. BSH

Bile is essential to emulsify lipids and has important antimicrobial properties.
L. monocytogenes is well equipped to tolerate high concentration of bile (Begley
et al., 2002, 2003, 2005; Dussurget et al., 2002; Sleator et al., 2005). Analysis of
L. monocytogenes genome sequence revealed the presence of a gene encoding a
bile salt hydrolase (BSH) that was absent from the genome of the nonpatho-
genic species L. innocua (Dussurget et al., 2002). BSH is produced by com-
mensal enteric bacteria and lactic bacteria. Deconjugation of conjugated bile
salts by BSH could be a protective mechanism against bile toxicity. L.
monocytogenes BSH is controlled by sigma B (Kazmierczak et al., 2003; Sue
et al., 2003) and activated by PrfA (Dussurget et al., 2002). Its activity is
induced at low oxygen tension that could be a signal sensed by bacteria after
ingestion to express the bsh as well as other virulence genes (Dussurget et al.,
2002). L. monocytogenes BSH confers resistance to bile (Begley et al., 2005;
Dussurget et al., 2002). Deletion of the bsh gene results in dramatically reduced
fecal carriage in guinea pigs after intragastric inoculation and decreased sur-
vival in the liver of mice after intravenous injection (Dussurget et al., 2002).
BSH is therefore a new type of virulence determinant that is important for
both intestinal persistence and hepatic colonization.

3.3. BilE

Analysis of L. monocytogenes genome revealed a two-gene operon, bilEA–
bilEB, which is critical for bile tolerance (Sleator et al., 2005). The expres-
sion of the operon is controlled by sigma B and PrfA. The operon encodes a
bile exclusion system providing a protection against bile and contributing to
L. monocytogenes virulence in mice infected orally.

3.4. BtlB

A third locus, btlB, has been shown to contribute to bile tolerance and
L. monocytogenes virulence in mice (Begley et al., 2005). BtlA and Pva that
encode a putative transporter and a penicillin V amidase, respectively, are
other important determinants conferring tolerance to bile but do not
contribute significantly to virulence in mice (Begley et al., 2003, 2005).
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3.5. OpuC

Once in the intestinal lumen, L. monocytogenes has to cope not only with the
presence of bile salts but also with an increased osmolarity. L. monocytogenes
produces several osmolyte uptake systems increasing osmotolerance, such as
the glycine betaine transporters BetL and Gbu and the carnitine transporter
OpuC (Ko and Smith, 1999; Sleator et al., 1999, 2001; Wemekamp-
Kamphuis et al., 2002). While deletion of betL and gbu does not affect
virulence, OpuC is required for full virulence in mice infected orally
(Sleator et al., 2001; Wemekamp-Kamphuis et al., 2002).

3.6. OppA

Uptake of oligopeptides by the OppA transporter could also contribute to
osmotolerance and is required for intracellular survival in macrophages and
bacterial growth in mice (Borezee et al., 2000).

4. Adhesion, Cell Invasion, and Intracellular

Multiplication

Following gastrointestinal passage of L. monocytogenes, some of the
bacteria that survived nonspecific defense mechanisms of the host in
the stomach and intestinal lumen invade the intestinal tissue. Crossing of
the intestinal barrier prevents their mechanical elimination by peristalsis and
competition with the commensal flora. L. monocytogenes has the capacity to
invade both intestinal epithelial cells and M cells of Peyer’s patches. After
intestinal translocation, bacteria reach the liver, spleen, and mesenteric
lymph nodes by the blood and lymph. In the liver, the major site of
L. monocytogenes multiplication is the hepatocyte. If the multiplication is
not controlled by the host immune response, bacteria access the blood-
stream and infect secondary target organs. Although L. monocytogenes has a
strong neurotropism, it can infect a wide range of tissues (Vazquez-Boland
et al., 2001b). L. monocytogenes has an exceptional repertoire of virulence
determinants involved in cellular adhesion, entry, and survival (Bierne and
Cossart, 2007; Hamon et al., 2006; Seveau et al., 2007).

4.1. Adhesion

4.1.1. Ami
Ami is a 102-kDa autolytic amidase of 917 amino acids that is involved in
adhesion to cells and virulence (Milohanic et al., 2000, 2001). It was
identified by transposon mutagenesis in an inlAB deletion mutant

Listeria Virulence Determinants 9



(Milohanic et al., 2000, 2001). One of the mutants severely defective in
adhesion to eukaryotic cells had five insertions, one of which was upstream
from the ami gene. Construction of an ami null mutant demonstrated that
Ami significantly contributed to L. monocytogenes adhesion capacity
(Milohanic et al., 2000, 2001). Ami has an N-terminal region containing
the amidase domain and C-terminal cell wall-anchoring domain composed
of eight modules containing the dipeptide GW (Milohanic et al., 2004).
Adhesion to cells is promoted by the cell wall-anchoring domain
(Milohanic et al., 2000, 2001). L. monocytogenes attachment mediated by
Ami may contribute to colonization of host tissues.

4.1.2. DltA
Lipoteichoic acids are highly anionic cell wall-associated polymers. The
dltABCD operon is responsible for D-alanine esterification of lipoteichoic
acids. Inactivation of the D-alanine-polyphosphoribitol ligase gene dltA,
leading to synthesis of D-alanine-deficient lipoteichoic acids, attenuates
L. monocytogenes virulence in mice (Abachin et al., 2002; Mandin et al.,
2005). DltA deficiency decreases adherence of bacteria to macrophages,
hepatocytes, and epithelial cells, possibly by modulation of the charge of the
bacterial surface and/or by alteration of adhesin-binding activity (Abachin
et al., 2002).

4.1.3. FbpA
FbpA is an adhesin that is important for L. monocytogenes pathogenesis. FbpA
has been identified using signature-tagged mutagenesis (Dramsi et al., 2004).
It was shown to be required for liver colonization of mice inoculated
intravenously as well as intestinal and liver colonization of mice expressing
human E-cadherin after intragastric inoculation. FbpA is a protein of 570
amino acids homologous to atypical fibronectin-binding proteins. It binds
to human fibronectin and increases L. monocytogenes adhesion to eukaryotic
cells in the presence of exogenous fibronectin. FbpA is secreted by the
SecA2 pathway and exposed on the bacterial surface. In addition to its
fibronectin-binding capacity, FbpA coprecipitates with the virulence factors
listeriolysin O (LLO) and InlB. Expression of FbpA modulates the protein
levels of LLO and InlB, suggesting that it could function as a chaperone to
prevent the degradation of virulence factors (Dramsi et al., 2004).

4.1.4. Flagella
L. monocytogenes produces up to six peritrichous flagella (Leifson and Palen,
1955). Flagella are composed of a basal body, hook/junction proteins,
a flagellar motor/switch, a flagella export apparatus, and a flagellar filament
containing mostly the flagellin protein FlaA. Flagellin is a potent proin-
flammatory protein that activates Toll-like receptor (TLR) 5 (Hayashi et al.,
2001). Moreover, flagellin has been reported to have peptidoglycan
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hydrolyzing activity (Popowska and Markiewicz, 2004). While many fla-
gella are produced at 20 �C, the expression of flagellar motility genes is
repressed at 37 �C (Griffin and Robbins, 1944; Grundling et al., 2004; Peel
et al., 1988; Way et al., 2004). However, the temperature control of flagellar
motility is less stringent in some L. monocytogenes strains (Grundling et al.,
2004; Way et al., 2004). Flagellin expression at 37 �C is maintained in 20%
of clinical isolates (Bigot et al., 2005;Way et al., 2004). Flagella contribute to
L. monocytogenes adhesion and invasion of epithelial cells. Indeed, the
nonmotile flaA mutant, fliF and fliI mutants, lacking the basal body and
the ATPase of the flagellar export apparatus, and the cheYA chemotaxis
mutant are strongly impaired in adhesion and invasion (Bigot et al., 2005;
Dons et al., 2004). It has recently been demonstrated that flagella do not
function as adhesins but that flagella-dependent motility promotes L. mono-
cytogenes invasion of epithelial cells (O’Neil and Marquis, 2006). The
specific role of flagellar motility and flagellin in the infectious process is
not completely understood. Liver and spleen colonization of a flaA deletion
mutant has been shown to be similar to that of a parental strain expressing
flagellin constitutively, after intravenous infection of mice (Way et al.,
2004). However, survival of the parental strain producing flagellin seemed
to be decreased compared with that of the flaA mutant, 7 days after
intragastric inoculation of mice. The LD50 of fliF and fliI mutants was
very modestly affected compared with that of the EGDe wild-type strain
after intravenous infection of Swiss mice (Bigot et al., 2005). Interestingly,
the survival of the wild-type strain was lower than that of the fliF mutant in
the spleen of BALB/c mice, 3 days after intragastric infection. A similar
observation was reported with a flaA mutant that was recovered in higher
numbers than the wild-type strain from the spleen of BALB/c mice, 3 days
after intragastric inoculation (Dons et al., 2004). However, the fact that this
difference was not detected at 1 or 7 days postinfection is puzzling.
Recently, flagellin was shown to be required for intestinal and liver coloni-
zation in the early phase of murine listeriosis, between 4 and 18 h after
intragastric inoculation (O’Neil and Marquis, 2006). It could be hypothe-
sized that L. monocytogenes regulates flagella synthesis in time and space,
producing flagella to colonize the gastrointestinal tract after ingestion and
repressing their synthesis as a means of innate immune evasion at later stages
of the infectious process.

4.2. Internalization

4.2.1. Internalin
The internalin is a protein of 800 amino acids encoded by the inlA gene. It is
composed of a typical N-terminal signal sequence followed by 15 leucine-
rich repeats (LRRs) of 22 amino acids, a conserved interrepeat region and a
second repeat region, the B repeat region. The C-terminus displays the
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sequence LPTTG, which is recognized by the sortase A, a transamidase that
covalently links LPXTG-containing proteins to the peptidoglycan. This
surface protein is an invasin that mediates internalization of L. monocytogenes
in epithelial cells. It was identified by screening a bank of transposon mutants
for reduced entry in Caco-2 cells (Gaillard et al., 1991). The intercellular
adhesion glycoprotein E-cadherin was subsequently identified as the
internalin ligand using affinity chromatography (Mengaud et al., 1996).
If E-cadherin ectodomain is sufficient for adherence of L. monocytogenes to
cells, the intracytoplasmic b-catenin-binding domain is required for entry
(Lecuit et al., 2000). Bacterial interaction with E-cadherin triggers actin
polymerization mediated by b-catenin and a-catenin interaction, leading
to membrane extension and internalization. Recently, ARHGAP10, a
Rho-GAP domain protein that interacts with the small GTP-binding pro-
tein Arf6 and is a new ligand of a-catenin identified by a two-hybrid screen,
has been shown to be critical for recruitment of a-catenin and bacterial entry
(Sousa et al., 2005). The internalin-dependent entry pathway requires several
other proteins including myosin VIIA, Src, cortactin, and Arp2/3. The
myosin VIIA, a molecular motor recruited at adherens junctions by the
transmembrane protein vezatin, could contribute to the contractile force
necessary for internalization of L. monocytogenes (Sousa et al., 2004). The
tyrosine kinase Src and the small GTPase Rac1 promote the recruitment of
cortactin leading to activation of the actin nucleator Arp2/3 necessary for
E-cadherin-mediated bacterial entry (Sousa et al., 2007).

Although internalin plays a major role in bacterial internalization into
specific cell lines, the protein had a minor contribution to virulence in the
murine models that were first used, irrespective of the route of infection,
that is intravenous or intragastric inoculations (Gaillard et al., 1996). It was
later shown that the mouse E-cadherin does not interact efficiently with
InlA (Lecuit et al., 1999). Indeed, the interaction requires recognition of the
proline 16 of the first extracellular domain of E-cadherin as found in human
or guinea pig E-cadherins. However, the murine E-cadherin has a glutamic
acid at position 16. A transgenic mouse expressing the human E-cadherin in
the intestine was created and used to demonstrate the major role of inter-
nalin in the specific crossing of the intestinal barrier by L. monocytogenes
(Lecuit et al., 2001). Recently, a strain of L. monocytogenes expressing an
internalin with two amino acid substitutions allowing efficient binding
to murine E-cadherine was created (Wollert et al., 2007). This new
strain could be a powerful tool to study listeriosis in nontransgenic mice,
circumventing limitations, and problems inherent to humanized mice.

In addition to its established role in crossing of the intestinal barrier, InlA
is involved in the crossing of the maternofetal barrier (Lecuit et al., 2004).
Internalin is required for L. monocytogenes entry into E-cadherin-expressing
syncytiotrophoblasts and crossing of the trophoblastic barrier in human
placental explants (Lecuit et al., 2004). Interestingly, the InlA protein is
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truncated in some L. monocytogenes isolates. Truncation of InlA has been
involved in defective invasion capacity of L. monocytogenes isolates from
healthy carriers (Olier et al., 2003). An epidemiological survey demon-
strated that a full-length InlA was produced by 96% of L. monocytogenes
clinical isolates and only 65% of the strains isolated from food products
( Jacquet et al., 2004). Another study confirmed that inlA mutations leading
to premature stop codons were common in food isolates but rare in clinical
isolates (Nightingale et al., 2005). These results strongly suggest that a
functional internalin is a key determinant in the pathogenesis of human
listeriosis.

4.2.2. InlB
InlB is a 630-amino acid protein encoded by the gene inlB, which is located
directly downstream of inlA in a two-gene operon (Gaillard et al., 1991).
The operon is regulated by PrfA and absent from L. innocua (Dramsi et al.,
1993; Glaser et al., 2001; Lingnau et al., 1995; Milohanic et al., 2003). In
contrast to internalin, InlB is required for L. monocytogenes internalization
into a wide range of cells including epithelial cells, endothelial cells, hepa-
tocytes, and fibroblasts (Braun et al., 1998; Dramsi et al., 1995; Greiffenberg
et al., 1998; Parida et al., 1998). The InlB protein displays a signal sequence
followed by seven LRRs, a B repeat, and three C-terminal GW modules.
The GW modules interact noncovalently with lipoteichoic acids mediating
loose attachment of InlB to the bacterial cell wall ( Jonquieres et al., 1999).
The LRR region of the protein is sufficient to allow entry of noninvasive
L. innocua or latex beads into cells (Braun et al., 1999). However, the GW
modules enhance internalization triggered by the LRR region. Binding of
InlB to cellular glycosaminoglycans by its GW modules is required for
efficient invasion (Banerjee et al., 2004; Jonquieres et al., 2001; Marino
et al., 2000, 2002, 2004). The GW modules of InlB also interact with the
receptor for the globular head domain of the complement component C1q,
gC1qR (Braun et al., 2000). This interaction is not sufficient to allow entry
but cooperates with the hepatocyte growth factor, also known as the
tyrosine kinase receptor Met, for invasion (Khelef et al., 2006). Met has
been identified as the main receptor of InlB (Shen et al., 2000). Interaction
of InlB and Met results in transient phosphorylation of Met (Shen et al.,
2000), and recruitment and phosphorylation of the adaptor proteins Cbl,
Gab1, and Shc leading to activation of the PI3-kinase (Ireton et al., 1996,
1999). The PI3-kinase converts PI(4,5)P2 into PI(3,4,5)P3, which results in
successive activation of Rac and LIM kinase. The LIM kinase regulates the
actin depolymerizing factor cofilin and thus internalization of L. monocyto-
genes (Bierne et al., 2001). The WAVE complex, N-WASP, Ena/VASP,
and the Arp2/3 complex are other key effectors of the Met signaling
pathway that are important for cytoskeletal rearrangements necessary for
InlB-mediated entry (Bierne et al., 2005). It has been demonstrated that
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InlB induces monoubiquitination of Met by the ubiquitin ligase Cbl result-
ing in endocytosis of Met (Veiga and Cossart, 2005). L. monocytogenes
exploits the endocytic machinery to invade the cell (Bonazzi and Cossart,
2006; Veiga and Cossart, 2006). Indeed, bacterial internalization was shown
to be dependent on major components of the endocytic machinery such as
clathrin, dynamin, eps15, Grb2, CIN85, cortactin, and Hrs (Veiga and
Cossart, 2005, 2006; Veiga et al., 2007).

Activation of Met by InlB is species-specific (Khelef et al., 2006). InlB
activates human and murine Met but not guinea pig and rabbit Met. In
mice, InlB contributes slightly to colonization of the liver and spleen. In
contrast, a role for InlB in L. monocytogenes virulence could not be detected
in guinea pigs and rabbits (Khelef et al., 2006).

4.2.3. SrtA and SrtB
Surface proteins displaying a C-terminal LPXTG motif are covalently
linked to the bacterial cell wall peptidoglycan by sortases. Analysis of
L. monocytogenes genome sequence revealed the presence of two genes
encoding sortases, srtA and srtB (Bierne et al., 2002). SrtA anchors InlA
and several other LPXTG proteins to the peptidoglycane (Bierne et al.,
2002; Garandeau et al., 2002; Pucciarelli et al., 2005). Consequently, the
sortase A is necessary for efficient entry into epithelial cells (Bierne et al.,
2002; Garandeau et al., 2002). Interestingly, it has been shown that in
contrast to deletion of inlA, inactivation of srtA leads to impaired coloniza-
tion of the liver and spleen of mice after intragastric inoculation (Bierne
et al., 2002). Thus, the sortase A could be required for the anchoring of
additional LPXTG proteins involved in virulence.

In L. monocytogenes, SrtB anchors a small group of proteins and may
recognize two different sorting motifs, NXZTN and NPKXZ (Pucciarelli
et al., 2005). Inactivation of L. monocytogenes SrtB does not affect virulence
in mice after intravenous inoculation (Bierne et al., 2004). One of SrtB
substrate is SvpA (Bierne et al., 2004), a surface protein first reported to be
involved in bacterial escape from the phagosome of macrophages and in
virulence (Borezee et al., 2001). It was later shown that the svpA-srtB locus
does not contribute to virulence in mice after intravenous inoculation, but
is required for efficient colonization of the liver, spleen, and intestine of
mice infected by the oral route (Newton et al., 2005).

4.2.4. Auto
The gene aut was identified by a comparative genomic approach (Cabanes
et al., 2002, 2004; Glaser et al., 2001). It is absent from the genome of the
nonpathogenic species L. innocua. It encodes Auto, a surface protein of 572
amino acids. The N-terminus of the protein contains a signal sequence and
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an autolysin domain. The C-terminus displays a cell wall attachment
domain composed of four GW modules. Inactivation of Auto decreases
bacterial entry into cells. However, expression of the autolysin in L. innocua
does not confer invasivity. Thus, Auto is necessary but not sufficient for
entry. The decreased invasive potential of the aut deletion mutant correlates
with its attenuation in vivo. Indeed, Auto is required for L. monocytogenes
virulence in mice infected intravenously and in guinea pigs after intragastric
inoculation (Cabanes et al., 2004). The precise function of Auto remains to
be determined. The autolytic activity of the protein could possibly play a
role in pathogenicity, for example, by controlling the composition and
structure of the bacterial surface during the infectious process.

4.2.5. Vip
The gene encoding the surface protein Vip was also identified by compara-
tive genomics of Listeria species (Cabanes et al., 2002, 2005; Glaser et al.,
2001). PrfA regulates the expression of the gene vip, which is absent from
the genome of L. innocua (Cabanes et al., 2005). The Vip protein contains a
C-terminal LPXTG motif and is anchored to the peptidoglycane by the
sortase A (Cabanes et al., 2005). Vip is required for invasion of several cell
lines and contributes to virulence in mice infected intravenously. In contrast
to InlA, it is required for virulence in mice after intragastric inoculation
independently of the expression of human E-cadherin at the intestinal level.
It is also an important determinant of virulence in the guinea pig. The
endoplasmic reticulum resident chaperone Gp96 has been identified as a
ligand of Vip (Cabanes et al., 2005). Recently, the creation of a
macrophage-specific gp96-deficient mouse allowed to establish that Gp96
is an important chaperone for all TLRs that have been tested (Yang et al.,
2007). Interestingly, these gp96-deficient mice were highly susceptible to
listeriosis. In wild-type mice, interaction of Vip with Gp96 could possibly
interfere with TLRs trafficking resulting in the control of the innate
immune response by L. monocytogenes.

4.2.6. LpeA
The lpeA gene encoding a 35-kDa lipoprotein was identified by analysis of
L. monocytogenes genome sequence (Glaser et al., 2001; Reglier-Poupet
et al., 2003b). The LpeA (for lipoprotein promoting entry) protein is
homologous to PsaA, a lipoprotein involved in Streptococcus pneumoniae
adherence to cells. LpeA is not involved in adherence but is required for
entry of L. monocytogenes into nonprofessional phagocytic cells. However,
the impaired invasion of an lpeA mutant is not correlated with a decrease in
virulence in mice (Reglier-Poupet et al., 2003b).
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4.3. Vacuolar escape, intracellular survival and multiplication

4.3.1. Listeriolysin O
Listeriolysin O (LLO) is one of the major virulence determinants of
L. monocytogenes (Kayal and Charbit, 2006; Schnupf and Portnoy, 2007;
Vazquez-Boland et al., 2001b). The hly gene encoding LLO was the first
virulence gene identified in Listeria. Identification was based on transposon
mutagenesis. Characterization of the hly genomic locus led to identification
of the L. monocytogenes main virulence gene cluster composed of prfA, plcA,
hly, mpl, actA, plcB, and orfX. LLO is a secreted protein that belongs to the
cholesterol-dependent cytolysin (CDC) toxin family. It is responsible for
bacterial escape from primary and secondary vacuoles (Gedde et al., 2000;
Portnoy et al., 1988). L. monocytogenesmutants lacking LLO fail to reach the
cytoplasm and are nonvirulent (Cossart et al., 1989; Gaillard et al., 1986,
1987; Kathariou et al., 1987; Portnoy et al., 1988). The activity of LLO is
optimal at the acidic pH of the phagosome. It is less active at the neutral pH
of the cytoplasm, preventing excessive cell damage. LLO binds to the cell
plasma membrane as monomers that oligomerize into large complexes that
penetrate the membrane and contribute to pore formation. As other CDCs,
LLO is a potent signaling protein that can activate important signaling
pathways such as NF-kB (Kayal et al., 1999), MAP kinase (Tang et al.,
1996), and protein kinase C (Wadsworth and Goldfine, 2002) and induce
proinflammatory cytokine secretion (Kayal et al., 1999). Interestingly, LLO
is also required for L. monocytogenes entry into cells (Dramsi and Cossart,
2003). The specific functions of LLO in the signaling and entry processes
remain to be elucidated.

4.3.2. Phospholipases
L. monocytogenes secretes two phospholipases C (PLC), PlcA and PlcB,
involved in the bacterial escape from the vacuoles (Goldfine et al., 1998).
PlcA is a secreted phosphatidylinositol-specific PLC (PI-PLC) encoded by
the plcA gene (Leimeister-Wachter et al., 1991; Mengaud et al., 1991). PlcB
is a secreted phosphatidylcholine PLC (PC-PLC) of broad substrate range
encoded by the plcB gene (Geoffroy et al., 1991; Vazquez-Boland et al.,
1992). PlcB is expressed as a proenzyme. The zinc metalloprotease encoded
by the gene mpl is required for maturation of PlcB (Domann et al., 1991;
Raveneau et al., 1992). The two phospholipases act in synergy with LLO to
lyze primary and secondary vacuoles allowing L. monocytogenes to escape
into the cytoplasm (Camilli et al., 1993; Grundling et al., 2003; Smith et al.,
1995). PlcB can also promote lysis of the primary vacuole in the absence of
LLO (Grundling et al., 2003; Marquis et al., 1995). Both phospholipases are
required for virulence in mice (Camilli et al., 1991, 1993; Raveneau et al.,
1992; Schluter et al., 1998; Smith et al., 1995).
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Recently, it has been demonstrated that L. monocytogenes phospholipases
are necessary for evasion of autophagy (Birmingham et al., 2007; Py et al.,
2007). Cellular invasion by L. monocytogenes first induces autophagy, a host
degradative pathway important for both cell physiology and innate immu-
nity. Expression of LLO is necessary for the induction of the autophagic
response at the early time points after infection, suggesting a role for
permeabilization of the vacuole in the induction of the degradative path-
way. The expression PlcA and PlcB is then required for L. monocytogenes
escape from autophagic degradation in nonprofessional phagocytic cells and
macrophages (Birmingham et al., 2007; Py et al., 2007). The phospholipases
may prevent autophagic killing by mediating escape from the double-
membrane autophagosome or by inhibiting recognition of the target of
the degradative pathway.

4.3.3. Lsp
The signal peptidase II Lsp is responsible for the maturation of lipoproteins
in L. monocytogenes (Desvaux and Hebraud, 2006; Reglier-Poupet et al.,
2003a). A deletion mutant of the lsp gene fails to process lipoproteins and
has a reduced virulence. Interestingly, the expression of lsp is strongly
induced in the phagosome of infected macrophages. This induction corre-
lates with the important role of Lsp, and thus lipoprotein maturation, in
L. monocytogenes escape from the phagosome (Reglier-Poupet et al., 2003a).

4.3.4. SipX and SipZ
L. monocytogenes genome contains three contiguous type I signal peptidase
genes, sipX, sipY, and sipZ, for cleavage of signal peptides proteins exported
and secreted by the general secretory pathway (Bonnemain et al., 2004;
Desvaux and Hebraud, 2006). The expression of the three genes is induced
in the phagosome of infected cells (Raynaud and Charbit, 2005). The signal
peptidases SipX and SipZ are required for full virulence (Bonnemain et al.,
2004). In contrast, inactivation of SipY did not impaired L. monocytogenes
virulence. In addition, SipZ is required for efficient secretion of LLO and
PC-PLC. Consequently, inactivation of SipZ restricts bacterial intracellular
multiplication (Bonnemain et al., 2004).

4.3.5. Hpt
Once free in the cytoplasm, L. monocytogenes expresses specific determinants
to acquire nutrients necessary for intracellular multiplication. Uptake of
glucose-1-phosphate, a source of carbon and energy available in the cytosol,
depends on the PrfA-regulated hexose phosphate transporter Hpt (Chico-
Calero et al., 2002). Interestingly, Hpt is a structural and functional
homologue of the eukaryotic glucose-6-phosphate translocase required
for transport of glucose-6-phosphate from the cytosol into the endoplasmic
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reticulum. Hpt has been shown to be required for intracellular replication of
L. monocytogenes and for virulence in mice (Chico-Calero et al., 2002).

4.3.6. LplA1
L. monocytogenes is a lipoate auxotroph. In order to scavenge this important
cofactor, bacteria produce lipoate ligases to lipoylate specific metabolic
enzymes. Analysis of L. monocytogenes genome sequence reveals two genes
encoding putative lipoate ligases, lplA1 and lplA2 (Keeney et al., 2007).
However, only lplA1 is required for intracellular replication and virulence
(Keeney et al., 2007; O’Riordan et al., 2003). LplA1 is critical for utilization
of host lipoyl peptides as a source of lipoate by L. monocytogenes.

4.3.7. Fri
L. monocytogenes genome encodes a single ferritin, Fri, which is involved in
iron storage. Expression of the fri gene is controlled by the hydrogen
peroxide regulator PerR and sigma B (Olsen et al., 2005). The ferritin is
required for protection against reactive oxygen species and contributes to
L. monocytogenes survival and replication in macrophages and nonprofes-
sional phagocytic cells (Dussurget et al., 2005; Mohamed et al., 2006; Olsen
et al., 2005). The impaired survival of a fri deletion mutant in macrophages
correlates with decreased virulence of the mutant in mice (Dussurget et al.,
2005; Mohamed et al., 2006; Olsen et al., 2005). The capacity to prevent
excessive production of reactive oxygen species and control the level of iron
is an important component of L. monocytogenes intracellular survival strategy.

4.3.8. HupC
L. monocytogenes does not secrete siderophores but can use siderophores
from other microorganisms or transferrin, hemin, and hemoglobin to obtain
iron ( Jin et al., 2006; Newton et al., 2005; Simon et al., 1995). The permease
HupC is an ABC transporter required for hemin and hemoglobin
uptake ( Jin et al., 2006; Newton et al., 2005). The LD50 of a mutant
L. monocytogenes lacking hupC was strongly increased in Swiss mice infected
intravenously, suggesting that acquisition of iron from blood or other
infected sites facilitates L. monocytogenes host colonization.

4.3.9. MnSOD
SOD plays an important role in protection against oxidative stress and has
been shown to contribute to the pathogenic potential of many bacterial
species. L. monocytogenes produces a single MnSOD encoded by the gene sod
(Archambaud et al., 2006; Brehm et al., 1992; Glaser et al., 2001). A sod
deletion mutant is impaired in survival within macrophages and in virulence
in mice (Archambaud et al., 2006). Cytoplasmic MnSOD is phosphorylated
on serine and threonine residues and can be dephosphorylated by the
serine/threonine phosphatase Stp resulting in an increased SOD activity
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(Archambaud et al., 2006). L. monocytogenes MnSOD is the first bacterial
SOD shown to be regulated by phosphorylation. The most active nonpho-
sphorylated form of MnSOD is secreted via the SecA2 pathway in infected
cells where it can protect L. monocytogenes from reactive oxygen species.
Interestingly, the MnSOD becomes phosphorylated in the host cell by a
putative host kinase that could control the enzyme activity (Archambaud
et al., 2006), suggesting a new innate mechanism of the cell to counteract an
important bacterial determinant of the infectious process.

4.3.10. RelA
The relA gene encodes a (p)ppGpp synthetase. An L. monocytogenes relA
transposon insertion mutant was unable to accumulate (p)ppGpp in
response to amino acid starvation (Taylor et al., 2002). The virulence of
the mutant was strongly attenuated in mice, indicating an essential role of
the stringent response in the survival and multiplication of L. monocytogenes
in the host. Recently, RelA has been shown to be important for bacterial
growth in macrophages and nonprofessional phagocytic cells, suggesting
that the ability of L. monocytogenes to mount a stringent response is required
for efficient intracellular multiplication (Bennett et al., 2007).

4.3.11. Lgt
The lipoprotein diacylglyceryl transferase Lgt catalyzes transfer of an N-acyl
diglyceride group from a glycerophospholipid to the sulfhydryl moiety of a
cysteine residue conserved in the signal peptides of lipoprotein precursors.
The product of the reaction is then cleaved by the signal peptidase Lsp.
Deletion of lgt impairs intracellular growth of L. monocytogenes
(Baumgartner et al., 2007), confirming the importance of lipoprotein
processing for pathogenicity (Reglier-Poupet et al., 2003a).

4.4. Cell–cell spread

4.4.1. ActA
After synthesis of the determinants responsible for entry, intracellular sur-
vival, lysis of the vacuole, and cytosolic replication, L. monocytogenes induces
polymerization of actin filaments to move in the cytoplasm and to spread
from cell to cell (Mounier et al., 1990; Theriot et al., 1992; Tilney and
Portnoy, 1989; Tilney et al., 1990). The surface protein ActA is the only
bacterial determinant necessary for actin-based motility of L. monocytogenes
(Fig. 1.2) (Domann et al., 1992; Kocks et al., 1992). Indeed, L. innocua
expressing ActA and latex beads coated with ActA acquire the capacity to
polymerize actin and move (Cameron et al., 1999; Kocks et al., 1995). ActA
is one of the major virulence determinants of L. monocytogenes (Domann
et al., 1992). ActA is a protein of 639 amino acids containing an N-terminal
signal sequence and a C-terminal transmembrane domain (Domann et al.,
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1992; Kocks et al., 1992). The central part of the protein presents a domain
composed of four proline-rich repeats that binds proteins of the Ena/VASP
family, which modulate speed and directionality of bacterial movement
(Auerbuch et al., 2003; Chakraborty et al., 1995; Geese et al., 2002; Lasa
et al., 1995; Laurent et al., 1999; Niebuhr et al., 1997). The N-terminal
region of ActA is sufficient to induce motility (Lasa et al., 1997). It binds and
activates the Arp2/3 complex inducing actin polymerization, mimicking
proteins of the WASP family (Boujemaa-Paterski et al., 2001; Skoble et al.,
2000, 2001). Actin tails induced by L. monocytogenes are composed of
branched filaments similar to those of Shigella flexneri, in contrast toRickettsia
conorii actin tails which contain long and unbranched filaments (Gouin et al.,
1999, 2004, 2005).

ActA is also involved in cell attachment and entry by recognition of
heparan sulfate (Alvarez-Dominguez et al., 1997). Inactivation of ActA
impairs L. monocytogenes invasion in macrophages and epithelial cells
(Alvarez-Dominguez et al., 1997; Suarez et al., 2001). In addition, expres-
sion of ActA in L. innocua is sufficient to confer the capacity to enter
epithelial cells (Suarez et al., 2001).

A third role has been assigned to ActA in preventing bacterial autophagy
in the cytosol of macrophages (Birmingham et al., 2007; Rich et al., 2003).
Some L. monocytogenes are targeted by autophagy during early stages of
infection by an LLO-dependent process. ActA expression is sufficient to
promote autophagy evasion in the cytosol at later stages of infection
(Birmingham et al., 2007). ActA could possibly lead to escape from
autophagy by actin-based movement or by actin masking of the bacteria,
inhibiting recognition of autophagy targets.

Figure 1.2 Vero cells infected with L. monocytogenes EGD (left panel) or its isogenic
actAmutant (right panel). Cells were processed for triple fluorescence microscopy 5 h
after infection. Bacteria were labeled with a polyclonal anti-Listeria antibody (black),
actinwith FITC-phalloidin (dark gray), and nuclei with DAPI (light gray). Actin accu-
mulates around the parental strain EGD, leading to the formation of typical comet tails.
Incells infectedwith the actAmutant, bacteria are unable to induce actinpolymerization
andmultiply in the cytoplasm forming perinuclearmicrocolonies. (SeeColor Insert.)
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4.4.2. SecA2
The auxiliary SecA paralogue protein SecA2 was identified by analysis of
spontaneous rough variants of L. monocytogenes, which grew in chains (Lenz
and Portnoy, 2002). In contrast to SecA, SecA2 is not essential for cell
viability. SecA2 is required for virulence in mice and cell–cell spread in
cultured cells (Lenz and Portnoy, 2002; Lenz et al., 2003). Using a proteo-
mic approach, 17 SecA2-dependent secreted and surface proteins were
identified including the autolysin p60 and the N-acetylmuramidase NamA
(Lenz et al., 2003). These two peptidoglycane hydrolases and other SecA2
targets, such FbpA (Dramsi et al., 2004) and MnSOD (Archambaud et al.,
2006), are important determinants of the infectious process. Thus, SecA2
could have evolved in part to mediate secretion of a subset of proteins
contributing to virulence.

5. Immunomodulation and Persistence

5.1. Evasion and manipulation of host immune response

5.1.1. PgdA
Bacterial cell wall peptidoglycan is the pathogen-associated molecular pat-
tern detected by the nucleotide-binding oligomerization domain (NOD)
protein family of pattern-recognition receptors, resulting in activation of
the NF-kB pathway (Chamaillard et al., 2003; Girardin et al., 2003a,b,
Inohara et al., 2003). Analysis of L. monocytogenes peptidoglycan revealed
deacetylation of N-acetylglucosamine residues (Boneca et al., 2007;
Kamisango et al., 1982). L. monocytogenes genome contains a single pepti-
doglycane N-deacetylase gene, pgdA (Boneca et al., 2007; Glaser et al.,
2001). Inactivation of pgdA dramatically increases L. monocytogenes sensitiv-
ity to lyzozyme in vitro and strongly attenuates virulence in mice infected
intravenously and in transgenic mice expressing human E-cadherin after
intragastric inoculation (Boneca et al., 2007). PgdA is required for survival
within macrophage vacuoles (Fig. 1.3) and prevents proinflammatory cyto-
kine and interferon-b secretion (Boneca et al., 2007). Thus, peptidoglycan
N-deacetylation is critical for evasion of host innate defenses.

5.1.2. p60
The autolysin p60, also known as the invasion-associated protein Iap or the
cell wall hydrolase A CwhA, is a 60-kDa protein secreted by the SecA2
pathway. This peptidoglycan hydrolase promotes L. monocytogenes infection
in vivo (Faith et al., 2007; Lenz et al., 2003). The mechanism of virulence
attenuation of p60-deficient mutants is not completely understood.
Recently, the reduced capacity of a p60 mutant to cause systemic infection
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of mice after intragastric inoculation was correlated to a diminished ability
to enter and multiply within epithelial cells (Faith et al., 2007). Interestingly,
p60 has also been shown to indirectly increase NK cell activation and
interferon-g production (Humann et al., 2007). It was suggested that p60
could promote early bacterial multiplication by subversion of interferon-g-
mediated immune responses and manipulation of deleterious and protective
effects of interferon-g production. The bacterial components that are
released by the catalytic activity of p60 and directly modulate host innate
response remain to be identified.

5.1.3. LLO
L. monocytogenes infection leads to modulation of expression of host genes.
Posttranslational modifications of histones play an essential role in chroma-
tin remodeling and gene expression regulation. It has been shown that
infection of human endothelial cells by L. monocytogenes induces a p38
MAPK and MEK1-dependent acetylation of histone H4 and phosphoryla-
tion and acetylation of histone H3 globally as well as specifically at the
promoter of IL8 (Schmeck et al., 2005). LLO is required for upregulation of
adhesion molecules and chemokines in endothelial cells infected by
L. monocytogenes (Kayal et al., 1999). Recently, LLOwas shown to be critical
for dephosphorylation of histone H3 and deacetylation of histone H4
during early phase of infection (Hamon et al., 2007). Indeed, decreased
LLO-mediated histone modifications were associated to modulation of host
cell gene expression (Hamon et al., 2007). Interestingly, transcription of the
chemokine gene cxcl2 and of other specific immunity genes was decreased,
suggesting that LLO genetic reprogramming of the host cell could be an
additional mechanism by which L. monocytogenes manipulate the host
immune response.

Figure 1.3 RAW264.7 macrophages infected with L. monocytogenes EGDe (left panel)
or the pgdAdeletion mutant (right panel). Cells were processed for electron microscopy
4 h after infection. Impaired survival of the pgdA mutant was correlated with delay in
escape from the phagosome compared with the parental strain that was free in the
cytoplasm.
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5.1.4. MprF
L. monocytogenes multiple peptide resistance factor MprF is a membrane
protein of 98 kDa regulated by the response regulator VirR (Mandin et al.,
2005; Thedieck et al., 2006). MprF is required for synthesis of lysylpho-
sphatidylglycerol and for lysinylation of diphosphatidylglycerol, two-
membrane phospholipids (Thedieck et al., 2006). Inactivation of MprF
results in a decreased invasivity in both epithelial cells and macrophages
and in attenuation of the virulence in mice. MprF is critical for resistance
to cationic antimicrobial peptides and could be another mechanism of L.
monocytogenes to escape host innate immune response.

5.2. Persistence

L. monocytogenes is a common transient colonizer of the human gastrointes-
tinal tract that does not cause invasive disease unless a combination of host
susceptibility factors, bacterial virulence determinants, and a high infective
dose is met. Asymptomatic fecal carriage in healthy individuals has a preva-
lence of 2–10% (Schlech, 2000). The mechanisms used by L. monocytogenes
to persist in the host are not fully understood.

L. monocytogenes infection of the gallbladder has been documented in
humans (Allerberger et al., 1989; Gluck et al., 2002; Gordon and Singer,
1986; Loupa et al., 2007). In addition, L. monocytogenes was isolated from
liver, bile, and feces of mice inoculated subcutaneously, suggesting that
bacteria reached the intestine by biliary excretion (Briones et al., 1992).
L. monocytogenes can replicate extracellularly in the gallbladder of mice after
oral or intravenous inoculation (Hardy et al., 2004). Bacteria growing in the
lumen of the gallbladder can transit through the bile duct into the intestine
as soon as 5 min after induction of gallbladder contraction by food or
cholecystokinin (Hardy et al., 2006). Bacteria then move through the
intestinal lumen, are excreted in the environment, and possibly
reinfect mice. L. monocytogenes strains causing human disease express a
BSH conferring resistance to bile antimicrobial activity and the capacity to
colonize the gastrointestinal tract (Dussurget et al., 2002). L. monocytogenes is
particularly well equipped to survive in presence of bile as several other
important genetic loci involved in bile resistance have been identified
(Begley et al., 2002, 2003, 2005; Sleator et al., 2005). Thus, gallbladder
could represent a niche where L. monocytogenes grows in the absence of
commensal competitors and specific immune response. Dissemination of L.
monocytogenes from the gallbladder to the intestine and the environment
could play an important role in transient or chronic shedding and in
transmission.
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6. Virulence Determinants of Unknown

Function

6.1. InlC

InlC (also designated internalin-related protein A, IrpA) is a secreted protein
of 297 amino acids containing a central region composed of 6 LRRs
followed by a C-terminal Ig-like domain (Domann et al., 1997;
Engelbrecht et al., 1996; Ooi et al., 2006). The inlC gene, which is absent
from the genome of L. innocua, is transcribed by PrfA-dependent and -
independent mechanisms (Domann et al., 1997; Luo et al., 2004). InlC
contributes to L. monocytogenes virulence in mice (Domann et al., 1997;
Engelbrecht et al., 1996). The expression of inlC is strongly induced in the
cytoplasm of infected macrophages (Engelbrecht et al., 1996). However,
deletion of inlC does not affect invasion, intracellular survival, or cell spread
(Domann et al., 1997; Engelbrecht et al., 1996; Greiffenberg et al., 1998).
The function and binding partners of InlC have yet to be discovered.

6.2. InlGHE

A gene cluster encoding the three internalins InlG, InlH, and InlE has been
identified in some L. monocytogenes strains (Raffelsbauer et al., 1998). An
in-frame deletion of the inlGHE operon had no effect on cellular invasion
and its function remains unknown. However, the mutant showed reduced
colonization of the spleen and liver after infection of mice by the oral route
(Raffelsbauer et al., 1998). A specific role for InlH in virulence was later
demonstrated in mice infected intravenously (Schubert et al., 2001).

6.3. InlJ

Another internalin encoding gene, inlJ, was identified by analyzing
L. monocytogenes genome sequence (Cabanes et al., 2002; Glaser et al., 2001;
Sabet et al., 2005). InlJ is required for full virulence of L. monocytogenes in
mice infected intravenously and after intragastric inoculation in transgenic
mice expressing the human E-cadherin at the level of the intestine (Sabet
et al., 2005). However, inactivation of inlJ does not affect L. monocytogenes
capacity to infect cells. The function of this internalin remains to be
determined.

7. Conclusion

The advent of comparative genomics and transcriptomic technologies
allowing analysis of host cell and bacterial gene expression during the
infectious cycle coupled to the development of new animal models of
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infection have greatly improved our knowledge of L. monocytogenes patho-
genesis. Here, we have highlighted some of the important bacterial deter-
minants that have been involved in the infectious process. However, our
understanding of listeriosis is still far from complete. As more virulence
determinants are identified, determination of their specific function, their
host partners, and where and when they are expressed during the infectious
process will become the next challenge. Identification of the key compo-
nents of host immune response involved in listeriosis and how they can be
manipulated by L. monocytogenes should benefit from the recent advances in
the field of innate immunity. Dynamic gene profiling in vivo, noninvasive
imaging in relevant animal models (Fig. 1.4), and real-time imaging in
living cells will surely help to address the complexity of L. monocytogenes
interactions with the host and bring us a step closer to a comprehensive
understanding of the disease.
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Figure 1.4 Noninvasive bioluminescence imaging of listeriosis in BALB/c mice.
Bioluminescent splenic signals corresponding to bacterial replication foci were detected
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from left to right. (SeeColor Insert.)
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