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 1.1 Introduction

Welcome to this book! We’re delighted to have this opportunity to convey the 
excitement of the world of computer systems. This is not a dry and dreary fi eld, 
where progress is glacial and where new ideas atrophy from neglect. No! Comput-
ers are the product of the incredibly vibrant information technology industry, all 
aspects of which are responsible for almost 10% of the gross national product of 
the United States, and whose economy has become dependent in part on the rapid 
improvements in information technology promised by Moore’s law. This unusual 
industry embraces innovation at a breath taking rate. In the last 25 years, there have 
been a number of new computers whose introduction appeared to rev olutionize 
the computing industry; these revolutions were cut short only because someone 
else built an even better computer. 

This race to innovate has led to unprecedented progress since the inception of 
electronic computing in the late 1940s. Had the transportation industry kept pace 
with the computer industry, for example, today we could travel from New York 
to London in about a  second for roughly a few cents. Take just a moment to 
contemplate how such an improvement would change society—living in Tahiti 
while working in San Francisco, going to Moscow for an evening at the Bolshoi 
Ballet—and you can appreciate the implications of such a change. 
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4 Chapter 1 Computer Abstractions and Technology

Computers have led to a third revolution for civilization, with the information 
revolution taking its place alongside the agricultural and the industrial revolu-
tions. The resulting multiplication of humankind’s intellectual strength and reach 
naturally has affected our everyday lives profoundly and changed the ways in which 
the search for new knowledge is carried out. There is now a new vein of sci entifi c 
investigation, with computational scientists joining theoretical and experi mental 
scientists in the exploration of new frontiers in astronomy, biol ogy, chemistry, and 
physics, among others.

The computer revolution continues. Each time the cost of computing improves 
by another factor of 10, the opportunities for computers multiply. Applications 
that were economically infeasible suddenly become practical. In the recent past, the 
following applications were “computer science fi ction.”

 ■ Computers in automobiles: Until microprocessors improved dramatically in 
price and performance in the early 1980s, computer control of cars was ludi-
crous. Today, computers reduce pollution, improve fuel effi ciency via engine 
controls, and increase safety through the prevention of dangerous skids and 
through the infl ation of air bags to protect occupants in a crash. 

 ■ Cell phones: Who would have dreamed that advances in computer systems 
would lead to mobile phones, allowing person-to-person communication 
almost anywhere in the world?

 ■ Human genome project: The cost of computer equipment to map and ana-
lyze human DNA sequences is hundreds of millions of dollars. It’s unlikely 
that anyone would have considered this project had the computer costs been 
10 to 100 times higher, as they would have been 10 to 20 years ago. More-
over, costs continue to drop; you may be able to acquire your own genome, 
allowing medical care to be tailored to you.

 ■ World Wide Web: Not in existence at the time of the fi rst edition of this book, 
the World Wide Web has transformed our society. For many, the WWW has 
replaced libraries. 

 ■ Search engines: As the content of the WWW grew in size and in value, fi nd-
ing relevant information became increasingly important. Today, many peo-
ple rely on search engines for such a large part of their lives that it would be a 
hardship to go without them.

Clearly, advances in this technology now affect almost every aspect of our soci-
ety. Hardware advances have allowed programmers to create wonderfully useful 
software, which explains why computers are omnipresent. Today’s science fi ction 
suggests tomorrow’s killer applications: already on their way are virtual worlds, 
practical speech recognition, and personalized health care.
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 1.1 Introduction 5

Classes of Computing Applications and Their Characteristics

Although a common set of hardware technologies (see Sections 1.3 and 1.7) is used 
in computers ranging from smart home appliances to cell phones to the larg est 
supercomputers, these different applications have different design require ments 
and employ the core hardware technologies in different ways. Broadly speaking, 
computers are used in three different classes of applications. 

Desktop computers are possibly the best-known form of computing and are 
characterized by the personal computer, which readers of this book have likely used 
extensively. Desktop computers emphasize delivery of good performance to single 
users at low cost and usually execute third-party software. The evolution of many 
computing technologies is driven by this class of computing, which is only about 
30 years old!

Servers are the modern form of what were once mainframes, minicomputers, 
and supercomputers, and are usually accessed only via a network. Servers are ori-
ented to carrying large workloads, which may consist of either single complex 
applications—usually a scientifi c or engineering application—or handling many 
small jobs, such as would occur in building a large Web server. These applications 
are usually based on software from another source (such as a database or simula-
tion system), but are often modifi ed or customized for a particular function. Serv-
ers are built from the same basic technology as desktop computers, but provide for 
greater expandability of both computing and input/output capacity. In gen eral, 
servers also place a greater emphasis on dependability, since a crash is usually more 
costly than it would be on a single-user desktop computer. 

Servers span the widest range in cost and capability. At the low end, a server 
may be little more than a desktop computer without a screen or keyboard and 
cost a thousand dollars. These low-end servers are typically used for fi le storage, 
small business applications, or simple Web serving (see Section 6.10). At the other 
extreme are supercomputers, which at the present consist of hundreds to thou-
sands of processors and usually terabytes of memory and petabytes of storage, and 
cost millions to hundreds of millions of dollars. Supercomputers are usually used 
for high-end scientifi c and engineering calculations, such as weather fore casting, 
oil exploration, protein structure determination, and other large-scale problems. 
Although such supercomputers represent the peak of computing capa bility, they 
represent a relatively small fraction of the servers and a relatively small fraction of 
the overall computer market in terms of total revenue.

Although not called supercomputers, Internet datacenters used by companies 
like eBay and Google also contain thousands of processors, terabytes of memory, 
and petabytes of storage. These are usually considered as large clusters of comput-
ers (see Chapter 7).

Embedded computers are the largest class of computers and span the wid-
est range of applications and performance. Embedded computers include the 

desktop computer 
A com puter designed 
for use by an individual, 
usually incorporat ing a 
graphics display, a key-
board, and a mouse.

server A computer 
used for running larger 
programs for multiple 
users, often simulta neously, 
and typically accessed only 
via a network.

supercomputer A class 
of computers with the 
highest per formance and 
cost; they are con fi gured 
as servers and typically 
cost millions of dollars.

terabyte Originally 
1,099,511,627,776 (240) 
bytes,  although some 
communica tions and 
secondary  storage sys tems 
have redefi ned it to mean 
1,000,000,000,000 (1012) 
bytes.

petabyte Depending 
on the situation, either 
1000 or 1024 terabytes.

datacenter A room or 
building designed to 
handle the power, cooling, 
and networking needs of 
a large number of servers.

embedded computer 
A com puter inside 
another device used 
for running one 
predetermined application 
or collection of  software.
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6 Chapter 1 Computer Abstractions and Technology

 microprocessors found in your car, the computers in a cell phone, the computers 
in a video game or television, and the networks of processors that control a mod-
ern airplane or cargo ship. Embedded computing systems are designed to run one 
application or one set of related applications, that are normally integrated with 
the hardware and delivered as a single system; thus, despite the large number of 
embedded computers, most users never really see that they are using a computer! 

Figure 1.1 shows that during the last several years, the growth in cell phones that 
rely on embedded computers has been much faster than the growth rate of desktop 
computers. Note that the embedded computers are also found in digital TVs and 
set-top boxes, automobiles, digital cameras, music players, video games, and a 
variety of other such consumer devices, which further increases the gap between 
the number of embedded computers and desktop computers.
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FIGURE 1.1 The number of cell phones, personal computers, and televisions manufactured 
per year between 1997 and 2007. (We have television data only from 2004.) More than a billion new 
cell phones were shipped in 2006. Cell phones sales exceeded PCs by only a factor of 1.4 in 1997, but the 
ratio grew to 4.5 in 2007. The total number in use in 2004 is estimated to be about 2.0B televisions, 1.8B cell 
phones, and 0.8B PCs. As the world population was about 6.4B in 2004, there were approximately one PC, 
2.2 cell phones, and 2.5 televisions for every eight people on the planet. A 2006 survey of U.S. families found 
that they owned on average 12 gadgets, including three TVs, 2 PCs, and other devices such as game consoles, 
MP3 players, and cell phones. 
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 1.1 Introduction 7

Embedded applications often have unique application requirements that 
 combine a minimum performance with stringent limitations on cost or power. For 
example, consider a music player: the processor need only be as fast as necessary to 
handle its limited function, and beyond that, minimizing cost and power are the 
most important objectives. Despite their low cost, embedded computers often have 
lower tolerance for failure, since the results can vary from upsetting (when your 
new television crashes) to devastating (such as might occur when the com puter in 
a plane or cargo ship crashes). In consumer-oriented embedded applica tions, such 
as a digital home appliance, dependability is achieved primarily through simplic-
ity—the emphasis is on doing one function as perfectly as possi ble. In large embed-
ded systems, techniques of redundancy from the server world are often employed 
(see Section 6.9). Although this book focuses on general-pur pose computers, most 
concepts apply directly, or with slight modifi cations, to embedded computers. 

Elaboration: Elaborations are short sections used throughout the text to provide more 
detail on a particular subject that may be of interest. Disinterested readers may skip 
over an elabo ration, since the subsequent material will never depend on the contents 
of the elaboration.

Many embedded processors are designed using processor cores, a version of a proces-
sor written in a hardware description language, such as Verilog or VHDL (see Chapter 4). 
The core allows a designer to integrate other application-specifi c hardware with the pro-
cessor core for fabrication on a single chip.

What You Can Learn in This Book

Successful programmers have always been concerned about the performance of 
their programs, because getting results to the user quickly is critical in creating 
successful software. In the 1960s and 1970s, a primary constraint on computer 
performance was the size of the computer’s memory. Thus, programmers often 
followed a simple credo: minimize memory space to make  programs fast. In the 
last decade, advances in computer design and memory technology have greatly 
reduced the importance of small memory size in most applications other than 
those in embedded computing systems. 

Programmers interested in performance now need to understand the issues 
that have replaced the simple memory model of the 1960s: the parallel nature of 
processors and the hierarchical nature of memories. Programmers who seek to build 
competitive versions of compilers, operating systems, databases, and even applications 
will therefore need to increase their knowledge of computer organization.

We are honored to have the opportunity to explain what’s inside this revolution-
ary machine, unraveling the software below your program and the hard ware under 
the covers of your computer. By the time you complete this book, we believe you 
will be able to answer the following questions:
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8 Chapter 1 Computer Abstractions and Technology

 ■ How are programs written in a high-level language, such as C or Java, trans-
lated into the language of the hardware, and how does the hardware execute 
the resulting program? Comprehending these concepts forms the basis of 
understanding the aspects of both the hardware and software that affect 
program performance.

 ■ What is the interface between the software and the hardware, and how does 
software instruct the hardware to perform needed functions? These con cepts 
are vital to understanding how to write many kinds of software.

 ■ What determines the performance of a program, and how can a program-
mer improve the performance? As we will see, this depends on the original 
program, the software translation of that program into the computer’s 
language, and the effectiveness of the hardware in executing the program.

 ■ What techniques can be used by hardware designers to improve perfor mance? 
This book will introduce the basic concepts of modern computer design. The 
interested reader will fi nd much more material on this topic in our advanced 
book, Computer Architecture: A Quantitative Approach. 

 ■ What are the reasons for and the consequences of the recent switch from 
sequential processing to parallel processing? This book gives the motivation, 
describes the current hardware mechanisms to support parallelism, and 
surveys the new generation of “multicore” microprocessors (see Chapter 7).

Without understanding the answers to these questions, improving the perfor-
mance of your program on a modern computer, or evaluating what features might 
make one computer better than another for a particular application, will be a 
complex process of trial and error, rather than a scientifi c procedure driven by 
insight and analysis.

This fi rst chapter lays the foundation for the rest of the book. It introduces the 
basic ideas and defi nitions, places the major components of software and hard ware 
in perspective, shows how to evaluate performance and power, introduces inte-
grated circuits (the technology that fuels the computer revolution), and explains 
the shift to multicores.

In this chapter and later ones, you will likely see many new words, or words 
that you may have heard but are not sure what they mean. Don’t panic! Yes, there 
is a lot of special terminology used in describing modern computers, but the ter-
minology actually helps, since it enables us to describe precisely a function or 
capability. In addition, computer designers (including your authors) love using 
acronyms, which are easy to understand once you know what the letters stand for! 
To help you remember and locate terms, we have included a highlighted defi ni-
tion of every term in the margins the fi rst time it appears in the text. After a short 
time of working with the terminology, you will be fl uent, and your friends will 
be impressed as you correctly use acronyms such as BIOS, CPU, DIMM, DRAM, 
PCIE, SATA, and many others.

multicore 
microprocessor A 
microprocessor containing 
mul tiple processors 
(“cores”) in a single 
integrated circuit.

acronym A word 
constructed by taking the 
initial letters of a string of 
words. For example: 
RAM is an acronym for 
Ran dom Access Memory, 
and CPU is an acronym 
for Central Processing 
Unit.
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 1.1 Introduction 9

To reinforce how the software and hardware systems used to run a program will 
affect performance, we use a special section, Understanding Program Perfor mance, 
throughout the book to summarize important insights into program performance. 
The fi rst one appears below.

The performance of a program depends on a combination of the effectiveness of 
the algorithms used in the program, the software systems used to create and trans-
late the program into machine instructions, and the effectiveness of the computer 
in executing those instructions, which may include input/output (I/O) opera tions. 
This table summarizes how the hardware and software affect performance.

Understanding 
Program 
Performance

Hardware or software 
component

How this component affects 
performance

Where is this 
topic covered?

Algorithm Determines both the number of source-level 
statements and the number of I/O operations 
executed

Other books!

Programming language, 
compiler, and architecture

Determines the number of computer 
instructions for each source-level statement 

Chapters 2 and 3

Processor and memory system Determines how fast instructions can be 
executed

Chapters 4, 5, and 7

I/O system (hardware and 
operating system)

Determines how fast I/O operations may be 
executed 

Chapter 6

Check Yourself sections are designed to help readers assess whether they compre-
hend the major concepts introduced in a chapter and understand the implications 
of those concepts. Some Check Yourself questions have simple answers; others are 
for discussion among a group. Answers to the specifi c ques tions can be found at 
the end of the chapter. Check Yourself questions appear only at the end of a section, 
making it easy to skip them if you are sure you under stand the material.

1. Section 1.1 showed that the number of embedded processors sold every year 
greatly outnumbers the number of desktop processors. Can you con fi rm or 
deny this insight based on your own experience? Try to count the number of 
embedded processors in your home. How does it compare with the number 
of desktop computers in your home?

2. As mentioned earlier, both the software and hardware affect the performance 
of a program. Can you think of examples where each of the follow ing is the 
right place to look for a performance bottleneck?

 ■ The algorithm chosen

 ■ The programming language or compiler

 ■ The operating system

 ■ The processor

 ■ The I/O system and devices

Check 
Yourself
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10 Chapter 1 Computer Abstractions and Technology

 1.2 Below Your Program

A typical application, such as a word processor or a large database system, may 
consist of millions of lines of code and rely on sophisticated software libraries that 
implement complex functions in support of the application. As we will see, the 
hardware in a computer can only execute extremely simple low-level instructions. 
To go from a complex application to the simple instructions involves several layers 
of software that interpret or translate high-level operations into simple computer 
instructions.

Figure 1.2 shows that these layers of software are organized primarily in a hier -
archical fashion, with applications being the outermost ring and a variety of 
systems software sitting between the hardware and applications software.

There are many types of systems software, but two types of systems software are 
central to every computer system today: an operating system and a compiler. An 
operating system interfaces between a user’s program and the hardware and pro-
vides a variety of services and supervisory functions. Among the most important 
functions are

 ■ Handling basic input and output operations

 ■ Allocating storage and memory

 ■ Providing for protected sharing of the computer among multiple applications 
using it simultaneously. 

Examples of operating systems in use today are Linux, MacOS, and Windows.

In Paris they simply 
stared when I spoke to 
them in French; I never 
did succeed in making 
those idiots understand 
their own  language.

Mark Twain, The 
Innocents Abroad, 1869

systems software 
Software that provides 
services that are 
commonly useful, 
including operating 
systems, compilers, 
loaders, and assemblers.

operating system 
Supervising program that 
manages the resources of 
a computer for the benefi t 
of the  programs that run 
on that computer.

FIGURE 1.2 A simplifi ed view of hardware and software as hierarchical layers, shown as 
concentric circles with hardware in the center and applications software outermost. In 
complex applications, there are often multiple layers of application software as well. For example, a database 
system may run on top of the systems software hosting an application, which in turn runs on top of the 
database. 

Applications software 

Sy

ste
ms software 

Hardware
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Compilers perform another vital function: the translation of a program written 
in a high-level language, such as C, C++, Java, or Visual Basic into instructions 
that the hardware can execute. Given the sophistication of modern programming 
lan guages and the simplicity of the instructions executed by the hardware, the 
translation from a high-level language program to hardware instructions is 
complex. We give a brief overview of the process here and then go into more depth 
in Chapter 2 and Appendix B. 

From a High-Level Language to the Language of Hardware

To actually speak to electronic hardware, you need to send electrical signals. The 
easiest signals for computers to understand are on and off, and so the computer 
alphabet is just two letters. Just as the 26 letters of the English alphabet do not limit 
how much can be written, the two letters of the computer alphabet do not limit 
what computers can do. The two symbols for these two letters are the num bers 0 
and 1, and we commonly think of the computer language as numbers in base 2, or 
binary numbers. We refer to each “letter” as a binary digit or bit. Com puters are 
slaves to our commands, which are called instructions. Instructions, which are just 
collections of bits that the computer understands and obeys, can be thought of as 
numbers. For example, the bits

1000110010100000

tell one computer to add two numbers. Chapter 2 explains why we use  numbers 
for instructions and data; we don’t want to steal that chapter’s  thunder, but using 
numbers for both instructions and data is a foundation of computing.

The fi rst programmers communicated to computers in binary numbers, but this 
was so tedious that they quickly invented new notations that were closer to the way 
humans think. At fi rst, these notations were translated to binary by hand, but this 
process was still tiresome. Using the computer to help program the com puter, the 
pioneers invented programs to translate from symbolic notation to binary. The fi rst 
of these programs was named an assembler. This program trans lates a symbolic 
version of an instruction into the binary version. For example, the programmer 
would write

add A,B

and the assembler would translate this notation into

1000110010100000

This instruction tells the computer to add the two numbers A and B. The name 
coined for this symbolic language, still used today, is assembly language. In con-
trast, the binary language that the machine understands is the machine language.

Although a tremendous improvement, assembly language is still far from the 
notations a scientist might like to use to simulate fl uid fl ow or that an accountant 
might use to balance the books. Assembly language requires the programmer 

compiler A program 
that translates high-level 
language statements 
into assembly  language 
statements.

binary digit Also called 
a bit. One of the two 
 numbers in base 2 (0 or 1) 
that are the compo nents 
of information.

instruction A command 
that computer hardware 
under stands and obeys.

assembler A program 
that translates a symbolic 
version of instructions 
into the binary  version.

assembly language 
A sym bolic representation 
of machine instructions.

machine language 
A binary representation of 
machine instructions.

 1.2 Below Your Program 11

Ch01-9780123747501.indd   11Ch01-9780123747501.indd   11 25/07/11   2:32 PM25/07/11   2:32 PM



12 Chapter 1 Computer Abstractions and Technology

to write one line for every instruction that the computer will follow, forcing the 
programmer to think like the computer. 

The recognition that a program could be written to translate a more powerful 
language into computer instructions was one of the great breakthroughs in the 
early days of computing. Programmers today owe their productivity—and their 
sanity—to the creation of high-level programming languages and compilers that 
translate programs in such languages into instructions. Figure 1.3 shows the rela-
tionships among these programs and languages. 

high-level 
programming 
language A portable 
language such as C, C++, 
Java, or Visual Basic that 
is composed of words 
and algebraic notation 
that can be translated by 
a compiler into assembly 
 language.

FIGURE 1.3 C program compiled into assembly language and then assembled into binary 
machine language. Although the translation from high-level language to binary machine language is 
shown in two steps, some compilers cut out the middleman and produce binary machine language directly. 
These languages and this program are examined in more detail in Chapter 2. 

swap(int v[], int k)
{int temp;
   temp = v[k];
   v[k] = v[k+1];
   v[k+1] = temp;
}

swap:
      multi $2, $5,4
      add   $2, $4,$2
      lw    $15, 0($2)
      lw    $16, 4($2)
      sw    $16, 0($2)
      sw    $15, 4($2)
      jr    $31

00000000101000100000000100011000
0000000010000010000100000100001
10001101111000100000000000000000
10001110000100100000000000000100
10101110000100100000000000000000
10101101111000100000000000000100
00000011111000000000000000001000

Assembler

Compiler

Binary machine
language
program
(for MIPS)

Assembly
language
program
(for MIPS)

High-level
language
program
(in C)
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A compiler enables a programmer to write this high-level language expression: 

A + B

The compiler would compile it into this assembly language statement:

add A,B

As shown above, the assembler would translate this statement into the binary 
instructions that tell the computer to add the two numbers A and B.

High-level programming languages offer several important benefi ts. First, they 
allow the programmer to think in a more natural language, using English words 
and algebraic notation, resulting in programs that look much more like text than 
like tables of cryptic symbols (see Figure 1.3). Moreover, they allow languages to be 
designed according to their intended use. Hence, Fortran was designed for sci entifi c 
computation, Cobol for business data processing, Lisp for symbol manipu lation, 
and so on. There are also domain-specifi c languages for even narrower groups of 
users, such as those interested in simulation of fl uids, for example.

The second advantage of programming languages is improved programmer 
productivity. One of the few areas of widespread agreement in software develop-
ment is that it takes less time to develop programs when they are written in 
languages that require fewer lines to express an idea. Conciseness is a clear 
advantage of high-level languages over assembly language. 

The fi nal advantage is that programming languages allow programs to be inde-
pendent of the computer on which they were developed, since compilers and 
assemblers can translate high-level language programs to the binary instructions 
of any computer. These three advantages are so strong that today little program-
ming is done in assembly language.

 1.3 Under the Covers

Now that we have looked below your program to uncover the unde rlying soft ware, 
let’s open the covers of your computer to learn about the underlying hardware. The 
underlying hardware in any computer performs the same basic functions: inputting 
data, outputting data, processing data, and storing data. How these functions are 
performed is the primary topic of this book, and subsequent chap ters deal with 
different parts of these four tasks. 

When we come to an important point in this book, a point so important 
that we hope you will remember it forever, we emphasize it by identifying it as a 
Big Picture item. We have about a dozen Big Pictures in this book, the fi rst being 

 1.3 Under the Covers 13
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14 Chapter 1 Computer Abstractions and Technology

the fi ve components of a computer that perform the tasks of inputting, out putting, 
processing, and storing data.          

The fi ve classic components of a computer are input, output, memory, 
datapath, and control, with the last two sometimes combined and called 
the processor. Figure 1.4 shows the standard organization of a computer. 
This organization is independent of hardware technology: you can place 
every piece of every computer, past and present, into one of these fi ve cat-
egories. To help you keep all this in perspective, the fi ve components of a 
computer are shown on the front page of each of the following chapters, 
with the portion of interest to that chapter highlighted.

The BIG
Picture

FIGURE 1.4 The organization of a computer, showing the fi ve classic components. The 
processor gets instructions and data from memory. Input writes data to memory, and output reads data 
from memory. Control sends the signals that determine the operations of the datapath, memory, input, and 
output. 
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Figure 1.5 shows a computer with keyboard, wireless mouse, and screen. This 
photograph reveals two of the key components of computers: input devices, such 
as the keyboard and mouse, and output devices, such as the screen. As the names 
suggest, input feeds the computer, and output is the result of computation sent to 
the user. Some devices, such as networks and disks, provide both input and out put 
to the computer.

Chapter 6 describes input/output (I/O) devices in more detail, but let’s take an 
introductory tour through the computer hardware, starting with the external I/O 
devices.

input device 
A mechanism through 
which the computer is fed 
information, such as the 
keyboard or mouse.

output device 
A mechanism that 
conveys the result of a 
com putation to a user or 
another computer.

FIGURE 1.5 A desktop computer. The liquid crystal display (LCD) screen is the primary output 
device, and the keyboard and mouse are the primary input devices. On the right side is an Ethernet 
cable that connected the laptop to the network and the Web. The lap top contains the processor, memory, 
and additional I/O devices. This system is a Macbook Pro 15" laptop connected to an external display. 
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16 Chapter 1 Computer Abstractions and Technology

Anatomy of a Mouse

Although many users now take mice for granted, the idea of a pointing device such 
as a mouse was fi rst shown by Doug Engelbart using a research prototype in 1967. 
The Alto, which was the inspiration for all workstations as well as for the Macintosh 
and Windows OS, included a mouse as its pointing device in 1973. By the 1990s, all 
desktop computers included this device, and new user interfaces based on graphics 
displays and mice became the norm.

The original mouse was electromechanical and used a large ball that when rolled 
across a surface would cause an x and y counter to be incremented. The amount of 
increase in each counter told how far the mouse had been moved. 

The electromechanical mouse has largely been replaced by the newer all-optical 
mouse. The optical mouse is actually a miniature optical processor including an 
LED to provide lighting, a tiny black-and-white camera, and a simple optical pro-
cessor. The LED illuminates the surface underneath the mouse; the camera takes 
1500 sample pictures a second under the illumination. Successive pictures are sent 
to a simple optical processor that compares the images and determines whether 
the mouse has moved and how far. The replacement of the electromechanical 
mouse by the electro-optical mouse is an illustration of a common phenomenon 
where the decreasing costs and higher reliability of electronics cause an electronic 
solution to replace the older electromechanical technology. On page 22 we’ll see 
another example: fl ash memory.

Through the Looking Glass

The most fascinating I/O device is probably the graphics display. All laptop and 
handheld computers, calculators, cellular phones, and almost all desktop comput-
ers now use liquid crystal displays (LCDs) to get a thin, low-power dis play. 
The LCD is not the source of light; instead, it controls the transmission of light. 
A typical LCD includes rod-shaped molecules in a liquid that form a twist ing 
helix that bends light entering the display, from either a light source behind the 
display or less often from refl ected light. The rods straighten out when a cur rent is 
applied and no longer bend the light. Since the liquid crystal material is between 
two screens polarized at 90 degrees, the light cannot pass through unless it is bent. 
Today, most LCD displays use an active matrix that has a tiny transistor switch at 
each pixel to precisely control current and make sharper  images. A red-green-blue 
mask associated with each dot on the display determines the intensity of the three 
color components in the fi nal image; in a color active matrix LCD, there are three 
transistor switches at each point.

The image is composed of a matrix of picture elements, or pixels, which can be 
represented as a matrix of bits, called a bit map. Depending on the size of the screen 
and the resolution, the display matrix ranges in size from 640 × 480 to 2560 × 1600 
pixels in 2008. A  color display might use 8 bits for each of the three colors (red, 
blue, and green), for 24 bits per pixel, permitting millions of different colors to be 
displayed.

I got the idea for the 
mouse while attending 
a talk at a computer 
conference. The speaker 
was so boring that I 
started daydreaming 
and hit upon the idea.

Doug Engelbart

Through computer 
displays I have landed 
an airplane on the deck 
of a moving  carrier, 
observed a nuclear 
particle hit a potential 
well, fl own in a rocket 
at nearly the speed of 
light and watched a 
com puter reveal its 
innermost workings.

Ivan Sutherland, the 
“father” of computer 
graphics, Scientifi  c 
American, 1984

liquid crystal display 
A dis play technology 
using a thin layer of liquid 
polymers that can be used 
to transmit or block light 
according to whether a 
charge is applied.

active matrix display 
A liq uid crystal display 
using a tran sistor to 
control the transmission 
of light at each individual 
pixel.

pixel The smallest 
individual picture element. 
Screens are composed of 
hundreds of thousands 
to millions of pixels, 
organized in a matrix.
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The computer hardware support for graphics consists mainly of a raster refresh 
buffer, or frame buffer, to store the bit map. The im age to be represented onscreen is 
stored in the frame buffer, and the bit pattern per pixel is read out to the graph ics 
display at the refresh rate. Figure 1.6 shows a frame buffer with a simplifi ed design 
of just 4 bits per pixel. 

X0 X1

Y0

Frame buffer

Raster scan CRT display

0
01
1

1
10
1

Y1

X0 X1

Y0

Y1

FIGURE 1.6 Each coordinate in the frame buffer on the left determines the shade of 
the corresponding coordinate for the raster scan CRT display on the right. Pixel (X

0
, Y

0
) 

contains the bit pattern 0011, which is a lighter shade on the screen than the bit pattern 1101 in pixel (X
1
, Y

1
). 

The goal of the bit map is to faithfully represent what is on the screen. The 
challenges in graphics systems arise because the human eye is very good at  detecting 
even subtle changes on the screen. 

Opening the Box

If we open the box containing the computer, we see a fascinating board of thin 
plastic, covered with dozens of small gray or black rectangles. Figure 1.7 shows the 
contents of the laptop computer in Figure 1.5. The motherboard is shown in the 
upper part of the photo. Two disk drives are in front—the hard drive on the left and 
a DVD drive on the right. The hole in the middle is for the laptop battery.

The small rectangles on the motherboard contain the devices that drive our 
advancing technology, called integrated circuits and nicknamed chips. The board 
is composed of three pieces: the piece connecting to the I/O devices mentioned 
earlier, the memory, and the processor. 

The memory is where the programs are kept when they are running; it also 
contains the data needed by the running programs. Figure 1.8 shows that memory 
is found on the two small boards, and each small memory board contains eight 
inte grated  circuits. The memory in Figure 1.8 is built from DRAM chips. DRAM 

motherboard 
A plastic board containing 
packages of  integrated 
circuits or chips, including 
processor, cache, memory, 
and connectors for I/O 
devices such as networks 
and disks.

integrated circuit Also 
called a chip. A device 
combining doz ens to 
millions of transistors.

memory The storage 
area in which programs 
are kept when they are 
running and that con tains 
the data needed by the 
running programs.
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18 Chapter 1 Computer Abstractions and Technology

FIGURE 1.7 Inside the laptop computer of Figure 1.5. The shiny box with the white label on the lower left is a 100 GB SATA 
hard disk drive, and the shiny metal box on the lower right side is the DVD drive. The hole between them is where the laptop battery would 
be located. The small hole above the battery hole is for memory DIMMs. Figure 1.8 is a close-up of the DIMMs, which are inserted from the 
bottom in this laptop. Above the battery hole and DVD drive is a printed circuit board (PC board), called the motherboard, which contains 
most of the electronics of the computer. The two shiny circles in the upper half of the picture are two fans with covers. The processor is the 
large raised rectangle just below the left fan. Photo courtesy of OtherWorldComputing.com.

Hard drive Processor Fan with
cover

Spot for
memory
DIMMs

Spot for
battery

Motherboard Fan with
cover

DVD drive
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stands for dynamic random access memory. Several DRAMs are used together 
to contain the instructions and data of a program. In contrast to sequential access 
memories, such as magnetic tapes, the RAM portion of the term DRAM means that 
memory accesses take basically the same amount of time no matter what portion 
of the memory is read. 

dynamic random access 
memory (DRAM) 
Memory built as an 
integrated circuit; it 
provides random access to 
any location.

FIGURE 1.8 Close-up of the bottom of the laptop reveals the memory. The main memory is 
contained on one or more small boards shown on the left. The hole for the battery is to the right. The DRAM 
chips are mounted on these boards (called DIMMs, for dual inline memory modules) and then plugged into 
the connectors. Photo courtesy of OtherWorldComputing.com.

dual inline memory 
module (DIMM) 
A small board that 
contains DRAM chips on 
both sides. (SIMMs have 
DRAMs on only one side.)

The processor is the active part of the board, following the instructions of a pro-
gram to the letter. It adds numbers, tests numbers, signals I/O devices to activate, 
and so on. The processor is under the fan and covered by a heat sink on the left 
side of Figure 1.7. Occasionally, people call the processor the CPU, for the more 
bureaucratic-sounding central processor unit. 

Descending even lower into the hardware, Figure 1.9 reveals details of a micro-
processor. The processor logically comprises two main components: datapath and 
control, the respective brawn and brain of the processor. The datapath performs 
the arithmetic operations, and control tells the datapath, memory, and I/O devices 
what to do according to the wishes of the instructions of the program. Chapter 4 
explains the datapath and control for a higher-performance design.

central processor 
unit (CPU) Also called 
processor. The active part 
of the computer, which 
contains the datapath and 
con trol and which adds 
numbers, tests numbers, 
signals I/O devices to 
activate, and so on.

datapath The 
component of the 
processor that performs 
arithmetic operations

control The component 
of the processor that 
commands the datapath, 
memory, and I/O devices 
according to the instruc-
tions of the program.
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20 Chapter 1 Computer Abstractions and Technology

Descending into the depths of any component of the hardware reveals insights 
into the computer. Inside the processor is another type of memory—cache mem-
ory. Cache memory consists of a small, fast memory that acts as a buffer for the 
DRAM memory. (The nontechnical defi nition of cache is a safe place for hiding 
things.) Cache is built using a different memory technology, static random access 
memory (SRAM). SRAM is faster but less dense, and hence more expensive, than 
DRAM (see Chapter 5).

You may have noticed a common theme in both the software and the hardware 
descriptions: delving into the depths of hardware or software reveals more infor-
mation or, conversely, lower-level details are hidden to offer a simpler model at 
higher levels. The use of such layers, or abstractions, is a principal technique for 
designing very sophisticated computer systems.

One of the most important abstractions is the interface between the hard-
ware and the lowest-level software. Because of its importance, it is given a  special 

cache memory A small, 
fast memory that acts as a 
buffer for a slower, larger 
memory.

static random access 
mem ory (SRAM) Also 
memory built as an 
integrated circuit, but 
faster and less dense than 
DRAM.

abstraction A model 
that ren ders lower-level 
details of com puter 
systems temporarily 
invisible to facilitate 
design of sophisticated 
systems.

FIGURE 1.9 Inside the AMD Barcelona microprocessor. The left-hand side is a microphotograph of the AMD Barcelona processor 
chip, and the right-hand side shows the major blocks in the processor. This chip has four processors or “cores”. The microprocessor in the 
laptop in Figure 1.7 has two cores per chip, called an Intel Core 2 Duo. 
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name: the instruction set architecture, or simply architecture, of a  computer. 
The instruction set architecture includes anything programmers need to know 
to make a binary machine language program work correctly, including  ins tructions, 
I/O devices, and so on. Typically, the operating system will encapsulate the details 
of doing I/O, allocating memory, and other low-level system functions so that 
application programmers do not need to worry about such details. The combina-
tion of the basic instruction set and the operating system interface provided for 
application programmers is called the application binary interface (ABI). 

An instruction set architecture allows computer designers to talk about func-
tions independently from the hardware that performs them. For example, we 
can talk about the functions of a digital clock (keeping time, displaying the time, 
set ting the alarm) independently from the clock hardware (quartz  crystal, LED 
dis plays, plastic buttons). Computer designers distinguish architecture from an 
implementation of an architecture along the same lines: an implementation is 
hardware that obeys the architecture abstraction. These ideas bring us to another 
Big Picture.

instruction set 
architecture Also 
called architecture. An 
abstract interface between 
the hardware and the 
 lowest-level software 
that encompasses all the 
information necessary to 
write a machine  language 
pro gram that will run 
correctly, including 
instructions, regis ters, 
memory access, I/O, ....

application binary 
interface (ABI) The user 
portion of the instruction 
set plus the operat ing 
system interfaces used by 
application programmers. 
Defi nes a standard for 
binary portability across 
computers. 

implementation 
Hardware that obeys the 
architecture abstraction.

Both hardware and software consist of hierarchical layers, with each lower 
layer hiding details from the level above. This principle of abstrac tion is 
the way both hardware designers and software designers cope with the 
complexity of computer systems. One key interface between the levels 
of abstraction is the instruction set architecture—the interface between 
the hardware and low-level software. This abstract interface enables 
many implementations of varying cost and performance to run identical 
soft ware.

A Safe Place for Data

Thus far, we have seen how to input data, compute using the data, and display 
data. If we were to lose power to the computer, however, everything would be lost 
because the memory inside the computer is volatile—that is, when it loses power, 
it forgets. In contrast, a DVD doesn’t forget the recorded fi lm when you turn off the 
power to the DVD player and is thus a nonvolatile memory technology. 

To distinguish between the volatile memory used to hold data and programs 
while they are running and this nonvolatile memory used to store data and pro-
grams between runs, the term main memory or primary memory is used for the 

volatile memory Stor-
age, such as DRAM, that 
 retains data only if it is 
receiving power. 

nonvolatile memory 
A form of memory that 
retains data even in 
the absence of a power 
source and that is used to 
store programs between 
runs. Mag netic disk is 
nonvolatile.

main memory Also 
called pri mary memory. 
Memory used to hold 
programs while they are 
 running; typically  consists 
of DRAM in today’s 
 computers.
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22 Chapter 1 Computer Abstractions and Technology

former, and secondary memory for the latter. DRAMs have dominated main 
memory since 1975, but magnetic disks have dominated secondary memory 
since 1965. The primary nonvolatile storage used in all server computers and 
workstations is the magnetic hard disk. Flash memory, a nonvolatile semiconduc-
tor memory, is used instead of disks in mobile devices such as cell phones and is 
increasingly replacing disks in music players and even laptops. 

As Figure 1.10 shows, a mag netic hard disk consists of a collection of platters, 
which rotate on a spindle at 5400 to 15,000 revolutions per minute. The metal 
plat ters are covered with magnetic recording material on both sides, similar to the 
material found on a cassette or videotape. To read and write information on a hard 
disk, a movable arm containing a small electromagnetic coil called a read-write 
head is located just above each surface. The entire drive is permanently sealed to 
control the environment inside the drive, which, in turn, allows the disk heads to 
be much closer to the drive surface. 

secondary memory 
Non  volatile memory 
used to store programs 
and data between runs; 
typically consists of mag-
netic disks in today’s 
computers.

magnetic disk Also 
called hard disk. A form 
of nonvolatile sec ondary 
memory composed of 
rotating platters coated 
with a magnetic recording 
 material.

fl ash memory 
A nonvolatile semi-
conductor memory. It 
is cheaper and slower 
than DRAM but more 
expensive and faster than 
magnetic disks.

FIGURE 1.10 A disk showing 10 disk platters and the read/write heads. 
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Diameters of hard disks vary by more than a factor of 3 today, from 1 inch to 
3.5 inches, and have been shrunk over the years to fi t into new products;    work  station 
servers, personal computers, laptops, palmtops, and digital cameras have all inspired 
new disk form factors. Traditionally, the widest disks have the highest performance 
and the smallest disks have the lowest unit cost. The best cost per gigabyte varies. 
Although most hard drives appear inside computers, as in Figure 1.7, hard drives 
can also be attached using external interfaces such as universal serial bus (USB).

The use of mechanical components means that access times for magnetic disks 
are much slower than for DRAMs: disks typically take 5–20 milli seconds, while 
DRAMs take 50–70 nanoseconds—making DRAMs about 100,000 times faster. Yet 
disks have much lower costs than DRAM for the same storage capacity, because the 
production costs for a given amount of disk storage are lower than for the same 
amount of integrated circuit. In 2008, the cost per gigabyte of disk is 30 to 100 
times less expensive than DRAM.

Thus, there are three primary differences between magnetic disks and main 
memory: disks are nonvolatile because they are magnetic; they have a slower 
access time because they are mechanical devices; and they are cheaper per gigabyte 
because they have very high storage capacity at a modest cost.

Many have tried to invent a technology cheaper than DRAM but faster than 
disk to fi ll that gap, but many have failed. Challengers have never had a product to 
market at the right time. By the time a new product would ship, DRAMs and disks 
had continued to make rapid advances, costs had dropped accordingly, and the 
challenging product was immediately obsolete. 

Flash memory, however, is a serious challenger. This semiconductor memory 
is nonvolatile like disks and has about the same bandwidth, but latency is 100 to 
1000 times faster than disk. Flash is popular in cameras and portable music players 
because it comes in much smaller capacities, it is more rugged, and it is more 
power effi cient than disks, despite the cost per gigabyte in 2008 being about 6 to 10 
times higher than disk. Unlike disks and DRAM, fl ash memory bits wear out after 
100,000 to 1,000,000 writes. Thus, fi le systems must keep track of the num ber of 
writes and have a strategy to avoid wearing out storage, such as by moving popular 
data. Chapter 6 describes fl ash in more detail.

Although hard drives are not removable, there are several storage technologies 
in use that include the following:

 ■ Optical disks, including both compact disks (CDs) and digital video disks 
(DVDs), constitute the most common form of removable storage. The Blu-
Ray (BD) optical disk standard is the heir-apparent to DVD.

 ■ Flash-based removable memory cards typically attach to a USB connection 
and are often used to transfer fi les.

 ■ Magnetic tape provides only slow serial access and has been used to back up 
disks, a role now often replaced by duplicate hard drives.

gigabyte Traditionally 
1,073,741,824 (230) 
bytes, although some 
communica tions and 
secondary storage sys tems 
have redefi ned it to mean 
1,000,000,000 (109) bytes. 
Simi larly, depending on 
the context, megabyte is 
either 220 or 106 bytes.
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24 Chapter 1 Computer Abstractions and Technology

Optical disk technology works differently than magnetic disk technology. In 
a CD, data is recorded in a spiral fashion, with individual bits being recorded by 
burning small pits—approximately 1 micron (10−6 meters) in diameter—into the 
disk surface. The disk is read by shining a laser at the CD surface and determining 
by examining the refl ected light whether there is a pit or fl at (refl ective) surface. 
DVDs use the same approach of bouncing a laser beam off a series of pits and fl at 
surfaces. In addition, there are multiple layers that the laser beam can focus on, and 
the size of each bit is much smaller, which together increase capacity signifi  cantly. 
Blu-Ray uses shorter wavelength lasers that shrink the size of the bits and thereby 
increase capacity.

Optical disk writers in personal computers use a laser to make the pits in the 
recording layer on the CD or DVD surface. This writing process is relatively slow, 
taking from minutes (for a full CD) to tens of minutes (for a full DVD). Thus, 
for large quantities a different technique called pressing is used, which costs only 
pennies per optical disk. 

Rewritable CDs and DVDs use a different recording surface that has a crystal-
line, refl ective material; pits are formed that are not refl ective in a manner similar 
to that for a write-once CD or DVD. To erase the CD or DVD, the surface is heated 
and cooled slowly, allowing an annealing process to restore the surface recording 
layer to its crystalline structure. These rewritable disks are the most expensive, with 
write-once being cheaper; for read-only disks—used to distribute software, music, 
or movies—both the disk cost and recording cost are much lower.

Communicating with Other Computers

We’ve explained how we can input, compute, display, and save data, but there is 
still one missing item found in today’s computers: computer networks. Just as the 
processor shown in Figure 1.4 is connected to memory and I/O devices, networks 
interconnect whole computers, allowing computer users to extend the power of 
computing by including communication. Networks have become so popular that 
they are the backbone of current computer systems; a new computer without an 
optional network interface would be ridiculed. Net worked computers have several 
major advantages:

 ■ Communication: Information is exchanged between computers at high speeds.

 ■ Resource sharing: Rather than each computer having its own I/O devices, 
devices can be shared by computers on the net work.

 ■ Nonlocal access: By connecting computers over long distances, users need not 
be near the computer they are using.

Networks vary in length and performance, with the cost of communication 
increasing according to both the speed of communication and the distance that 
information travels. Perhaps the most popular type of network is Ethernet. It can 
be up to a kilometer long and transfer at upto 10 gigabits per second. Its length and 
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speed make Ethernet useful to connect computers on the same fl oor of a building; 
hence, it is an example of what is generically called a local area network. Local area 
networks are interconnected with switches that can also provide routing ser vices 
and security. Wide area networks cross continents and are the backbone of the 
Internet, which supports the World Wide Web. They are typically based on optical 
fi bers and are leased from telecommunication companies. 

Networks have changed the face of computing in the last 25 years, both by 
becoming much more ubiquitous and by making dramatic increases in perfor-
mance. In the 1970s, very few individuals had access to electronic mail, the Internet 
and Web did not exist, and physically mailing magnetic tapes was the primary way 
to trans fer large amounts of data between two locations. Local area networks were 
almost nonexistent, and the few existing wide area networks had limited capacity 
and restricted access. 

As networking technology improved, it became much cheaper and had a much 
higher capacity. For example, the fi rst standardized local area network technology, 
developed about 25 years ago, was a version of Ethernet that had a maximum 
capacity (also called bandwidth) of 10 million bits per second, typically shared
by tens of, if not a hundred, computers. Today, local area network technology 
offers a capacity of from 100 million bits per second to 10 gigabits per second, 
usually shared by at most a few computers. Optical communications technology 
has allowed similar growth in the capacity of wide area networks, from hundreds 
of kilobits to gigabits and from hundreds of computers connected to a worldwide 
network to millions of comput ers connected. This combination of dramatic rise in 
deployment of networking combined with increases in capacity have made network 
technology central to the information revolution of the last 25 years.

For the last decade another innovation in networking is reshaping the way com-
puters communicate. Wireless technology is widespread, and laptops now incorpo-
rate this technology. The ability to make a radio in the same low-cost semiconductor 
technology (CMOS) used for memory and microprocessors enabled a signifi cant 
improvement in price, leading to an explosion in deploy ment. Currently available 
wireless technologies, called by the IEEE standard name 802.11, allow for transmis-
sion rates from 1 to nearly 100 million bits per second. Wireless technology is quite 
a bit different from wire-based networks, since all users in an immediate area share 
the airwaves. 

 ■ Semiconductor DRAM and disk storage differ signifi cantly. Describe the 
fundamental difference for each of the following: volatility, access time, 
and cost.

Technologies for Building Processors and Memory

Processors and memory have improved at an incredible rate, because computer 
designers have long embraced the latest in electronic technology to try to win the 
race to design a better computer. Figure 1.11 shows the tech nologies that have been 

local area network 
(LAN) A network 
designed to carry data 
within a geographically 
confi ned area, typically 
within a single building.

wide area network 
(WAN) A network 
extended over hundreds 
of kilometers that can 
span a continent.

Check 
Yourself
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26 Chapter 1 Computer Abstractions and Technology

used over time, with an estimate of the relative  performance per unit cost for 
each technology. Section 1.7 explores the technology that has fueled the com puter 
industry since 1975 and will continue to do so for the foreseeable future. Since this 
technology shapes what computers will be able to do and how quickly they will 
evolve, we believe all computer professionals should be familiar with the basics of 
integrated circuits.  

Year Technology used in computers Relative performance/unit cost

1951 Vacuum tube 0,000,001

1965 Transistor 0,000,035

1975 Integrated circuit 0,000,900

1995 Very large-scale integrated circuit 2,400,000

2005 Ultra large-scale integrated circuit 6,200,000,000

FIGURE 1.11 Relative performance per unit cost of technologies used in computers over 
time. Source: Computer Museum, Boston, with 2005 extrapolated by the authors. See Section 1.10 on the CD. 

vacuum tube An 
electronic component, 
predecessor of the 
transistor, that consists of 
a hol low glass tube about 
5 to 10 cm long from 
which as much air has 
been removed as possible 
and that uses an electron 
beam to transfer data.

A transistor is simply an on/off switch controlled by electricity. The inte-
grated circuit (IC) combined dozens to hundreds of transistors into a single 
chip. To describe the tremendous increase in the number of transistors from 
hundreds to millions, the adjective very large scale is added to the term, creating the 
 abbreviation VLSI, for very large-scale integrated circuit.

This rate of increasing integration has been remarkably stable. Figure 1.12 
shows the growth in DRAM capacity since 1977. For 20 years, the industry has 
consistently quadrupled capacity every 3 years, resulting in an increase in excess 
of 16,000 times! This increase in transistor count for an integrated circuit is popu-
larly known as Moore’s law, which states that transistor capacity doubles every 
18–24 months. Moore’s law resulted from a prediction of such growth in IC 
capacity made by Gordon Moore, one of the founders of Intel during the 1960s.

Sustaining this rate of progress for almost 40 years has required incredible 
innovation in manufacturing techniques. In Section 1.7, we discuss how to manu-
facture integrated circuits.

 1.4 Performance

Assessing the performance of computers can be quite challenging. The scale and 
intricacy of modern software systems, together with the wide range of perfor-
mance improvement techniques employed by hardware designers, have made per-
formance assessment much more diffi cult. 

When trying to choose among different computers, performance is an important 
attribute. Accurately measuring and comparing different computers is critical to 

transistor An on/off 
switch controlled by an 
electric signal.

very large-scale 
integrated (VLSI) 
circuit A device con-
taining hundreds of 
thousands to  millions of 
transistors.
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purchasers and therefore to designers. The people selling computers know this as 
well. Often, salespeople would like you to see their computer in the best possible 
light, whether or not this light accurately refl ects the needs of the purchaser’s 
application. Hence, understanding how best to measure performance and the 
limitations of performance measurements is important in selecting a computer.

The rest of this section describes different ways in which performance can be 
determined; then, we describe the metrics for measuring performance from the 
viewpoint of both a computer user and a designer. We also look at how these metrics 
are related and present the classical processor performance equation, which we will 
use throughout the text. 

Defi ning Performance

When we say one computer has better performance than another, what do we 
mean? Although this question might seem simple, an analogy with passenger 
airplanes shows how subtle the question of performance can be. Figure 1.13 shows 
some typical passenger airplanes, together with their cruising speed, range, and 
capacity. If we wanted to know which of the planes in this table had the best per-
formance, we would fi rst need to defi ne performance. For example, considering 
different measures of performance, we see that the plane with the highest cruising 
speed is the Concorde, the plane with the longest range is the DC-8, and the plane 
with the largest capacity is the 747.

Let’s suppose we defi ne performance in terms of speed. This still leaves two possi-
ble defi nitions. You could defi ne the fastest plane as the one with the highest cruis ing 
speed, taking a single passenger from one point to another in the least time. If you 

FIGURE 1.12 Growth of capacity per DRAM chip over time. The y-axis is measured in Kilobits, 
where K = 1024 (210). The DRAM industry quadrupled capacity almost every three years, a 60% increase per 
year, for 20 years. In recent years, the rate has slowed down and is somewhat closer to doubling every two 
years to three years. 
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28 Chapter 1 Computer Abstractions and Technology

were interested in transporting 450 passengers from one point to another,  however, 
the 747 would clearly be the fastest, as the last column of the fi gure shows. Similarly, 
we can defi ne computer performance in several different ways.

If you were running a program on two different desktop computers, you’d say that 
the faster one is the desktop computer that gets the job done fi rst. If you were running 
a datacenter that had several servers running jobs submitted by many users, you’d say 
that the faster computer was the one that completed the most jobs during a day. 
As an individual computer user, you are interested in reducing response time—the 
time between the start and completion of a task—also referred to as execution time. 
Datacenter managers are often interested in increasing throughput or bandwidth—
the total amount of work done in a given time. Hence, in most cases, we will need 
different performance metrics as well as different sets of applications to benchmark 
embedded and desktop computers, which are more focused on response time, versus 
servers, which are more focused on throughput. 

Throughput and Response Time

Do the following changes to a computer system increase throughput, decrease 
re sponse time, or both?

1. Replacing the processor in a computer with a faster version

2. Adding additional processors to a system that uses multiple processors 
for separate tasks—for example, searching the World Wide Web 

Decreasing response time almost always improves throughput. Hence, in case 1, 
both response time and throughput are improved. In case 2, no one task gets 
work done faster, so only throughput increases. 

If, however, the demand for processing in the second case was almost as large 
as the throughput, the system might force requests to queue up. In this case, 
increasing the throughput could also improve response time, since it would 
reduce the waiting time in the queue. Thus, in many real computer systems, 
changing either execution time or throughput often affects the other.

response time Also 
called  execution time. 
The total time required 
for the computer to 
complete a task,  including 
disk accesses, memory 
accesses, I/O  activities, 
operating system over-
head, CPU  execution 
time, and so on.

throughput Also called 
band width. Another 
measure of per formance, 
it is the number of tasks 
completed per unit time.

EXAMPLE

ANSWER

Airplane
Passenger
capacity

Cruising range
(miles)

Cruising speed
(m.p.h.)

Passenger throughput
(passengers × m.p.h.)

Boeing 777 375 4630 0610 228,750

Boeing 747 470 4150 0610 286,700

BAC/Sud Concorde 132 4000 1350 178,200

Douglas DC-8-50 146 8720 0544  79,424

FIGURE 1.13 The capacity, range, and speed for a number of commercial airplanes. The last 
column shows the rate at which the airplane transports passengers, which is the capacity times the cruising 
speed (ignoring range and takeoff and landing times). 
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In discussing the performance of computers, we will be primarily concerned 
with response time for the fi rst few chapters. To maximize performance, we want 
to minimize response time or execution time for some task. Thus, we can relate 
performance and execution time for a computer X:

Performance
X
 =    1 ______________  Execution time

X

  

This means that for two computers X and Y, if the performance of X is greater 
than the performance of Y, we have

Performance
X
 > Performance

Y

  
1
 ��  

Execution time
X

    >    
1
 ��  

Execution time
Y

  

Execution time
Y
 > Execution time

X

That is, the execution time on Y is longer than that on X, if X is faster than Y.
In discussing a computer design, we often want to relate the performance of two 

different computers quantitatively. We will use the phrase “X is n times  faster than 
Y”—or equivalently “X is n times as fast as Y”—to mean

  
Performance

X  ��  
Performance

Y

    = n

If X is n times faster than Y, then the execution time on Y is n times longer than it is 
on X:

  
Performance

X  ��  
Performance

Y

    =    
Execution time

Y  ��  
Execution time

X

    = n

Relative Performance

If computer A runs a program in 10 seconds and computer B runs the same 
program in 15 seconds, how much faster is A than B?

We know that A is n times faster than B if

  
Performance

A  ____________  
Performance

B

    =    
Execution time

B  _____________  
 Execution time

A

   =  n

EXAMPLE

ANSWER
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30 Chapter 1 Computer Abstractions and Technology

Thus the performance ratio is

  15 ___ 10    = 1.5

and A is therefore 1.5 times faster than B.

In the above example, we could also say that computer B is 1.5 times slower than 
computer A, since

  
Performance

A  ��  
Performance

B

    = 1.5

means that

  
Performance

A  �� 
1.5

    = Performance
B

For simplicity, we will normally use the terminology faster than when we try to 
compare computers quantitatively. Because performance and execution time are 
reciprocals, increasing perfor mance requires decreasing execution time. To avoid 
the potential confusion between the terms increasing and decreasing, we usually 
say “improve performance” or “improve execution time” when we mean “increase 
performance” and “decrease execution time.”

Measuring Performance

Time is the measure of computer performance: the computer that performs the 
same amount of work in the least time is the fastest. Program execution time is 
measured in seconds per program. However, time can be defi ned in different ways, 
depending on what we count. The most straightforward defi nition of time is called 
wall clock time, response time, or elapsed time. These terms mean the total time 
to complete a task, including disk accesses, memory accesses, input/output (I/O) 
activities, operating system overhead—every thing. 

Computers are often shared, however, and a processor may work on several 
programs simultaneously. In such cases, the system may try to optimize through-
put rather than attempt to minimize the elapsed time for one program. Hence,
we often want to distinguish between the elapsed time and the time that the 
proces sor is working on our behalf. CPU execution time or simply CPU time, 
which recognizes this distinction, is the time the CPU spends comput ing for this 
task and does not include time spent waiting for I/O or running other programs. 
(Remember, though, that the response time experienced by the user will be the 
elapsed time of the program, not the CPU time.) CPU time can be further divided 
into the CPU time spent in the program, called user CPU time, and the CPU time 
spent in the operating sys tem performing tasks on behalf of the program, called 
system CPU time. Differentiating between system and user CPU time is diffi cult to 

CPU execution time 
Also called CPU time. 
The actual time the CPU 
spends computing for a 
specifi c task.

user CPU time The 
CPU time spent in a 
program itself.

system CPU time 
The CPU time spent in 
the operating sys tem 
performing tasks on 
behalf of the program.
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do accurately, because it is often hard to assign responsibility for operating sys tem 
activities to one user program rather than another and because of the func tionality 
differences among operating systems.

For consistency, we maintain a distinction between perfor mance based on 
elapsed time and that based on CPU execution time. We will use the term  system 
perfor mance to refer to elapsed time on an unloaded system and CPU performance 
to refer to user CPU time. We will focus on CPU per formance in this chapter, 
although our discussions of how to summarize  performance can be applied to 
either elapsed time or CPU time measurements. 

Different applications are sensitive to different aspects of the performance of a 
com puter system. Many applications, especially those running on servers, depend 
as much on I/O performance, which, in turn, relies on both hardware and software. 
Total elapsed time measured by a wall clock is the measurement of interest. In 
some application environments, the user may care about throughput, response 
time, or a complex combination of the two (e.g., maximum throughput with a 
worst-case response time). To improve the performance of a program, one must 
have a clear defi nition of what performance metric matters and then proceed to 
look for performance bottlenecks by measuring program execution and looking 
for the likely bottlenecks. In the following chapters, we will describe how to search 
for bot tlenecks and improve performance in various parts of the system.

Although as computer users we care about time, when we examine the  details 
of a computer it’s convenient to think about performance in other metrics. In par-
ticular, computer designers may want to think about a computer by using a mea-
sure that relates to how fast the hardware can perform basic functions. Almost all 
computers are constructed using a clock that determines when events take place in 
the hardware. These discrete time intervals are called clock cycles (or ticks, clock 
ticks, clock per iods, clocks, cycles). Designers refer to the length of a clock period 
both as the time for a complete clock cycle (e.g., 250 picoseconds, or 250 ps) and as 
the clock rate (e.g., 4 gigahertz, or 4 GHz), which is the inverse of the clock period. 
In the next subsection, we will formalize the relationship between the clock cycles 
of the hardware designer and the seconds of the computer user.

1. Suppose we know that an application that uses both a desktop client and a 
remote server is limited by network performance. For the following changes, 
state whether only the throughput improves, both response time and 
throughput improve, or neither improves.

a. An extra network channel is added between the client and the server, 
increasing the total network throughput and reducing the delay to obtain 
network access (since there are now two channels).

Understanding 
Program 
Performance

clock cycle Also called 
tick, clock tick, clock 
period, clock, cycle. The 
time for one clock period, 
usually of the processor 
clock, which runs at a 
constant rate. 

clock period The length 
of each clock cycle.

Check 
Yourself

 1.4 Performance 31

Ch01-9780123747501.indd   31Ch01-9780123747501.indd   31 25/07/11   2:32 PM25/07/11   2:32 PM



32 Chapter 1 Computer Abstractions and Technology

b. The networking software is improved, thereby reducing the network 
communication delay, but not increasing throughput. 

c. More memory is added to the computer.

2. Computer C’s performance is 4 times faster than the performance of com-
puter B, which runs a given application in 28 seconds. How long will computer 
C take to run that application? 

CPU Performance and Its Factors

Users and designers often examine performance using different metrics. If we could 
relate these different metrics, we could determine the effect of a design change 
on the performance as experienced by the user. Since we are confi ning ourselves 
to CPU performance at this point, the bottom-line performance measure is CPU 
execution time. A simple formula relates the most basic metrics (clock cycles and 
clock cycle time) to CPU time:

 CPU execution time            
for a program

   
 = 

 CPU clock cycles           
for a program

  
  × Clock cycle time

Alternatively, because clock rate and clock cycle time are inverses,

 CPU execution time            
for a program

  
  =    

CPU clock cycles for a program
   ���  

Clock rate
  

This formula makes it clear that the hardware designer can improve performance 
by reducing the number of clock cycles required for a program or the length of 
the clock cycle. As we will see in later chapters, the designer often faces a trade-off 
between the number of clock cycles needed for a program and the length of each 
cycle. Many techniques that decrease the number of clock cycles may also increase 
the clock cycle time.

Improving Performance

Our favorite program runs in 10 seconds on computer A, which has a 2 GHz 
clock. We are trying to help a computer designer build a computer, B, which will 
run this program in 6 seconds. The designer has determined that a sub stantial 
increase in the clock rate is possible, but this increase will  affect the rest of the 
CPU design, causing computer B to require 1.2 times as many clock cycles as 
computer A for this program. What clock rate should we tell the designer to 
target?

EXAMPLE
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Let’s fi rst fi nd the number of clock cycles required for the program on A:

CPU time
A
  =    

CPU clock cycles
A  _________________  

Clock rate
A

  

10 seconds  =    
CPU clock cycles

A  ��  

2 × 109   
cycles

 � 
second

  

  

CPU clock cycles
A
 = 10 seconds × 2 × 109    

cycles
 _______ 

second
    = 20 × 109 cycles

CPU time for B can be found using this equation:

CPU time
B
  =      

1.2 × CPU clock cycles
A  _______________________  

Clock rate
B

  

6 seconds  =      
1.2 × 20 × 109 cycles

  ___________________  
Clock rate

B

  

ANSWER
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Clock rate
B
 =   

1.2 × 20 × 109 cycles
  ��  

6 seconds
   =   

0.2 × 20 ×109 cycles
  ��  

second
   =   

4 × 109 cycles
 �� 

second
   = 4 GHz

To run the program in 6 seconds, B must have twice the clock rate of A.

Instruction Performance

The performance equations above did not include any reference to the number of 
instructions needed for the program. (We’ll see what the instructions that make up 
a program look like in the next chapter.) However, since the compiler clearly gener-
ated instructions to execute, and the computer had to execute the instructions to 
run the program, the execution time must depend on the number of instructions 
in a program. One way to think about execution time is that it equals the number 
of instructions executed multiplied by the average time per instruction. Therefore, 
the number of clock cycles required for a program can be written as

CPU clock cycles = Instructions for a program  ×   Average clock cycles           
per instruction

  

The term clock cycles per instruction, which is the average number of clock 
cycles each instruction takes to execute, is often abbreviated as CPI. Since different 

clock cycles per 
instruction (CPI) 
Average number of clock 
cycles per instruction for 
a pro gram or program 
fragment.
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34 Chapter 1 Computer Abstractions and Technology

instructions may take different amounts of time depending on what they do, 
CPI is an average of all the instructions executed in the program. CPI provides 
one way of comparing two different implementations of the same instruction 
set architecture, since the number of instructions executed for a program will, of 
course, be the same.

Using the Performance Equation

Suppose we have two implementations of the same instruction set architec-
ture. Computer A has a clock cycle time of 250 ps and a CPI of 2.0 for some 
program, and computer B has a clock cycle time of 500 ps and a CPI of 1.2 
for the same program. Which computer is faster for this program and by how 
much?

We know that each computer executes the same number of instructions for 
the program; let’s call this number I. First, fi nd the number of processor clock 
cycles for each computer:

CPU clock cycles
A
 =  I × 2.0

CPU clock cycles
B
 =  I × 1.2

Now we can compute the CPU time for each computer:

CPU time
A
 =  CPU clock cycles

A
 × Clock cycle time

  =  I × 2.0 × 250 ps = 500 × I ps

Likewise, for B:

CPU time
B
 =  I × 1.2 × 500 ps = 600 × I ps

Clearly, computer A is faster. The amount faster is given by the ratio of the 
execution times:

  
CPU performance

A  ��  
CPU performance

B

    =    
Execution time

B  ��  
Execution time

A

    =    
600 × I ps

 � 
500 × I ps

    = 1.2

We can conclude that computer A is 1.2 times as fast as computer B for this 
program.

EXAMPLE

ANSWER
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The Classic CPU Performance Equation

We can now write this basic performance equation in terms of instruction count 
(the number of instructions executed by the program), CPI, and clock  cycle time:

CPU time = Instruction count × CPI × Clock cycle time

or, since the clock rate is the inverse of clock cycle time:

CPU time =   Instruction count × CPI  ��  
Clock rate

  

These formulas are particularly useful because they separate the three key factors 
that affect performance. We can use these formulas to compare two different 
implementations or to evaluate a design alternative if we know its impact on these 
three parameters.

Comparing Code Segments

A compiler designer is trying to decide between two code sequences for a par-
ticular computer. The hardware designers have supplied the following facts:

instruction count The 
num ber of instructions 
executed by the program.

EXAMPLE

CPI for each instruction class

A B C

CPI 1 2 3

Instruction counts for each instruction class

Code sequence A B C

1 2 1 2

2 4 1 1

For a particular high-level language statement, the compiler writer is consid-
ering two code sequences that require the following instruction counts:

Which code sequence executes the most instructions? Which will be faster? 
What is the CPI for each sequence?

 1.4 Performance 35
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36 Chapter 1 Computer Abstractions and Technology

Sequence 1 executes 2 + 1 + 2 = 5 instructions. Sequence 2 executes 4 + 1 + 1 = 6 
instructions. Therefore, sequence 1 executes fewer instructions.

We can use the equation for CPU clock cycles based on instruction count 
and CPI to fi nd the total number of clock cycles for each sequence:

CPU clock cycles =  ∑ 
i = 1

  
n

   (CPI
i
 × C

i
) 

This yields

CPU clock cycles
1
 = (2 × 1) + (1 × 2) + (2 × 3) = 2 + 2 + 6 = 10 cycles

CPU clock cycles
2
 = (4 × 1) + (1 × 2) + (1 × 3) = 4 + 2 + 3 = 9 cycles

So code sequence 2 is faster, even though it executes one extra instruction. 
Since code sequence 2 takes fewer overall clock cycles but has more instruc-
tions, it must have a lower CPI. The CPI values can be computed by

 CPI =   
CPU clock cycles

  ��  
Instruction count

  

CPI
1
 =   

CPU clock cycles
1  ��  

Instruction count
1

   =   10 � 
5

   = 2.0

 CPI
2
 =   

CPU clock cycles
2  ��  

Instruction count
2

   =   9 � 
6

   = 1.5

ANSWER

Figure 1.14 shows the basic measurements at different levels in the 
computer and what is being  measured in each case. We can see how these 
fac tors are combined to yield execution time measured in  seconds per 
program:

Time = Seconds/Program =   Instructions � 
Program

    ×   Clock cycles
 � 

Instruction
   ×   Seconds � 

Clock cycle
  

Always bear in mind that the only complete and reliable measure of 
computer performance is time. For example, changing the instruction set 
to lower the instruction count may lead to an organization with a slower 
clock cycle time or higher CPI that offsets the improvement in instruc tion 
count. Similarly, because CPI depends on type of instructions exe cuted, 
the code that executes the fewest number of instructions may not be the 
 fastest.

The BIG
Picture
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How can we determine the value of these factors in the performance equation? 
We can measure the CPU execution time by running the program, and the clock 
cycle time is usually published as part of the documentation for a computer. The 
instruction count and CPI can be more diffi cult to obtain. Of course, if we know 
the clock rate and CPU execution time, we need only one of the instruction count 
or the CPI to determine the other.

We can measure the instruction count by using software tools that profi le the 
execution or by using a simulator of the architecture. Alternatively, we can use 
hardware counters, which are included in most processors, to record a variety of 
measurements, including the number of instructions executed, the average CPI, and 
often, the sources of performance loss. Since the instruction count depends on the 
architecture, but not on the exact implementation, we can measure the instruction 
count without knowing all the details of the implementation. The CPI, however, 
depends on a wide variety of design details in the computer, includ ing both the 
memory system and the processor structure (as we will see in Chap ters 4 and 5), as 
well as on the mix of instruction types executed in an application. Thus, CPI varies 
by application, as well as among implementations with the same instruction set. 

The above example shows the danger of using only one factor (instruction count) 
to assess performance. When comparing two computers, you must look at all three 
components, which combine to form execution time. If some of the fac tors are 
identical, like the clock rate in the above example, performance can be determined 
by comparing all the nonidentical factors. Since CPI varies by instruction mix, 
both instruction count and CPI must be compared, even if clock rates are identical. 
Several exercises at the end of this chapter ask you to evaluate a series of computer 
and compiler enhancements that affect clock rate, CPI, and instruction count. In 
Section 1.8, we’ll examine a common performance measure ment that does not 
incorporate all the terms and can thus be misleading.

instruction mix 
A measure of the dynamic 
frequency of instructions 
across one or many 
programs.

Components of performance Units of measure

CPU execution time for a program Seconds for the program

Instruction count Instructions executed for the program

Clock cycles per instruction (CPI) Average number of clock cycles per instruction

Clock cycle time Seconds per clock cycle

FIGURE 1.14 The basic components of performance and how each is measured. 
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38 Chapter 1 Computer Abstractions and Technology

The performance of a program depends on the algorithm, the language, the 
compiler, the architecture, and the actual hardware. The following table summarizes 
how these components affect the factors in the CPU performance equation.

Understanding 
Program 

Performance
Hardware 

or software 
component Affects what? How?

Algorithm Instruction count, 
possibly CPI

The algorithm determines the number of source program 
instructions executed and hence the number of processor 
instructions executed. The algorithm may also affect the CPI, by 
favoring slower or faster instructions. For example, if the 
algorithm uses more fl oating-point operations, it will tend to have 
a higher CPI. 

Programming 
language

Instruction count, 
CPI

The programming language certainly affects the instruction count, 
since statements in the language are translated to processor 
instructions, which determine instruction count. The language 
may also affect the CPI because of its features; for example, 
a language with heavy support for data abstraction (e.g., Java) 
will require indirect calls, which will use higher CPI instructions. 

Compiler Instruction count, 
CPI

The effi ciency of the compiler affects both the instruction count 
and average cycles per instruction, since the compiler determines 
the translation of the source language instructions into computer 
instructions. The compiler’s role can be very complex and affect 
the CPI in complex ways.

Instruction set 
architecture

Instruction count, 
clock rate,
CPI

The instruction set architecture affects all three aspects of CPU 
performance, since it affects the instructions needed for a 
function, the cost in cycles of each instruction, and the overall 
clock rate of the processor.

Elaboration: Although you might expect that the minimum CPI is 1.0, as we’ll see in 
Chap ter 4, some processors fetch and execute multiple instructions per clock cycle. To 
refl ect that approach, some designers invert CPI to talk about IPC, or instructions per 
clock cycle. If a pro cessor executes on average 2 instructions per clock cycle, then it has 
an IPC of 2 and hence a CPI of 0.5.

A given application written in Java runs 15 seconds on a desktop processor. A new 
Java compiler is released that requires only 0.6 as many instructions as the old 
compiler. Unfortunately, it increases the CPI by 1.1. How fast can we expect the 
application to run using this new compiler? Pick the right answer from the three 
choices below

a.   15 × 0.6 � 
1.1

   = 8.2 sec

b. 15 × 0.6 × 1.1 = 9.9 sec

c.   15 × 1.1 � 
0.6

   = 27.5 sec

Check
Yourself
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 1.5 The Power Wall

Figure 1.15 shows the increase in clock rate and power of eight generations of Intel 
microprocessors over 25 years. Both clock rate and power increased rapidly for 
decades, and then fl attened off recently. The reason they grew together is that they 
are correlated, and the reason for their recent slowing is that we have run into the 
practical power limit for cooling commodity microprocessors.

FIGURE 1.15 Clock rate and Power for Intel x86 microprocessors over eight generations 
and 25 years. The Pentium 4 made a dramatic jump in clock rate and power but less so in performance. 
The Prescott thermal problems led to the abandonment of the Pentium 4 line. The Core 2 line reverts to a 
simpler pipeline with lower clock rates and multiple processors per chip. 
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The dominant technology for integrated circuits is called CMOS (complemen-
tary metal oxide semiconductor). For CMOS, the primary source of power dissi-
pation is so-called dynamic power—that is, power that is consumed  during 
switching. The dynamic power dissipation depends on the capacitive loading 
of each transistor, the voltage applied, and the frequency that the transistor is 
switched:

Power = Capacitive load × Voltage2 × Frequency switched
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40 Chapter 1 Computer Abstractions and Technology

Frequency switched is a function of the clock rate. The capacitive load per 
tran sistor is a function of both the number of transistors connected to an output 
(called the fanout) and the technology, which determines the capacitance of both 
wires and transistors.

How could clock rates grow by a factor of 1000 while power grew by only a 
factor of 30? Power can be reduced by lowering the voltage, which occurred with 
each new generation of technology, and power is a function of the voltage squared. 
Typically, the voltage was reduced about 15% per generation. In 20 years, voltages 
have gone from 5V to 1V, which is why the increase in power is only 30 times. 

Relative Power

Suppose we developed a new, simpler processor that has 85% of the capacitive 
load of the more complex older processor. Further, assume that it has adjust-
able voltage so that it can reduce voltage 15% compared to processor B, which 
results in a 15% shrink in frequency. What is the impact on dynamic power?

  
Power

new � 
Power

old

    =     
〈Capacitive load × 0.85〉 × 〈Voltage × 0.85〉2 × 〈Frequency switched × 0.85〉 

      �����    
Capacitive load × Voltage2 × Frequency switched

  

Thus the power ratio is

0.854 = 0.52

Hence, the new processor uses about half the power of the old processor.

The problem today is that further lowering of the voltage appears to make the 
transistors too leaky, like water faucets that cannot be completely shut off. Even 
today about 40% of the power consumption is due to leakage. If transistors started 
leaking more, the whole process could become unwieldy.

To try to address the power problem, designers have already attached large 
devices to increase cooling, and they turn off parts of the chip that are not used in a 
given clock cycle. Although there are many more expensive ways to cool chips and 
thereby raise their power to, say, 300 watts, these techniques are too expensive for 
desktop computers.

Since computer designers slammed into a power wall, they needed a new way 
forward. They chose a different way from the way they designed microprocessors 
for their fi rst 30 years.

Elaboration: Although dynamic power is the primary source of power dissipation in 
CMOS, static power dissipation occurs because of leakage current that fl ows even when 
a transistor is off. As mentioned above, leakage is typically responsible for 40% of 
the power consumption in 2008. Thus, increasing the number of transistors increases 
power dissipation, even if the tran sistors are always off. A variety of design techniques 
and technology innovations are being deployed to control leakage, but it’s hard to lower 
voltage further.

EXAMPLE

ANSWER
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 1.6  The Sea Change: The Switch from 
Uniprocessors to Multiprocessors

The power limit has forced a dramatic change in the design of microprocessors. 
Figure 1.16 shows the improvement in response time of programs for desktop 
microprocessors over time. Since 2002, the rate has slowed from a factor of 1.5 per 
year to less than a factor of 1.2 per year. 

Rather than continuing to decrease the response time of a single program run-
ning on the single processor, as of 2006 all desktop and server companies are ship-
ping microprocessors with multiple processors per chip, where the benefi t is often 
more on throughput than on response time. To reduce confusion between the 
words processor and microprocessor, companies refer to processors as “cores,” and 
such microprocessors are generically called multicore microprocessors. Hence, a 
“quadcore” microprocessor is a chip that contains four processors or four cores.

Figure 1.17 shows the number of processors (cores), power, and clock rates 
of recent microprocessors. The offi cial plan of record for many companies is to 
double the number of cores per microprocessor per semiconductor technology 
gener ation, which is about every two years (see Chapter 7).

In the past, programmers could rely on innovations in hardware, architecture, 
and compilers to double performance of their programs every 18 months without 
having to change a line of code. Today, for programmers to get signifi cant improve-
ment in response time, they need to rewrite their programs to take advantage of 
multiple processors. Moreover, to get the historic benefi t of running faster on new 
microprocessors, programmers will have to continue to improve performance of 
their code as the number of cores doubles.

To reinforce how the software and hardware systems work hand in hand, we use 
a special section, Hardware/Software Interface, throughout the book, with the fi rst 
one appearing below. These elements summarize important insights at this critical 
interface.

Parallelism has always been critical to performance in computing, but it was often 
hidden. Chapter 4 will explain pipelining, an elegant technique that runs pro-
grams faster by overlapping the execution of instructions. This is one example of 
instruction-level parallelism, where the parallel nature of the hardware is abstracted 
away so the programmer and compiler can think of the hardware as executing 
instructions sequentially.

Forcing programmers to be aware of the parallel hardware and to explicitly 
rewrite their programs to be parallel had been the “third rail” of computer architec-
ture, for companies in the past that depended on such a change in behavior failed 
(see Section 7.14 on the CD). From this historical perspective, it’s startling that 
the whole IT industry has bet its future that programmers will fi nally successfully 
switch to explicitly parallel programming.

“Up to now, most 
software has been like 
music written for a 
solo performer; with 
the current generation 
of chips we’re getting a 
little experi ence with 
duets and quar tets and 
other small ensembles; 
but scoring a work for 
large orchestra and 
chorus is a different 
kind of challenge.”

Brian Hayes, Computing 
in a Parallel Universe, 
2007.

Hardware/ 
Software 
Interface
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42 Chapter 1 Computer Abstractions and Technology

Why has it been so hard for programmers to write explicitly parallel programs? 
The fi rst reason is that parallel programming is by defi nition performance pro-
gramming, which increases the diffi culty of programming. Not only does the 
pro gram need to be correct, solve an important problem, and provide a useful 
interface to the people or other programs that invoke it, the program must also be 
fast. Otherwise, if you don’t need performance, just write a sequential program. 

The second reason is that fast for parallel hardware means that the program mer 
must divide an application so that each processor has roughly the same amount to 

FIGURE 1.16 Growth in processor performance since the mid-1980s. This chart plots performance relative to the VAX 11/780 
as measured by the SPECint benchmarks (see Section 1.8). Prior to the mid-1980s, processor performance growth was largely technology-
driven and averaged about 25% per year. The increase in growth to about 52% since then is attributable to more advanced architectural and 
organizational ideas. By 2002, this growth led to a difference in performance of about a factor of seven. Performance for fl oating-point-
oriented calculations has increased even faster. Since 2002, the limits of power, available instruction-level parallelism, and long memory latency 
have slowed uniprocessor performance recently, to about 20% per year. 
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FIGURE 1.17 Number of cores per chip, clock rate, and power for 2008 multicore micro-
processors. 
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do at the same time, and that the overhead of scheduling and coordi nation doesn’t 
fritter away the potential performance benefi ts of parallelism. 

As an analogy, suppose the task was to write a newspaper story. Eight reporters 
working on the same story could potentially write a story eight times faster. To 
achieve this increased speed, one would need to break up the task so that each 
reporter had something to do at the same time. Thus, we must schedule the sub-
tasks. If anything went wrong and just one reporter took longer than the seven 
others did, then the benefi ts of having eight writers would be diminished. Thus, we 
must balance the load evenly to get the desired speedup. Another danger would be 
if reporters had to spend a lot of time talking to each other to write their sec tions. 
You would also fall short if one part of the story, such as the conclusion, couldn’t 
be written until all of the other parts were completed. Thus, care must be taken 
to reduce communication and synchronization overhead. For both this anal ogy and 
parallel programming, the challenges include scheduling, load balancing, time for 
synchronization, and overhead for communication between the parties. As you 
might guess, the challenge is stiffer with more reporters for a newspa per story and 
more processors for parallel programming. 

To refl ect this sea change in the industry, the next fi ve chapters in this edition of 
the book each have a section on the implications of the parallel revolution to that 
chapter:

 ■ Chapter 2, Section 2.11: Parallelism and Instructions: Synchronization. Usually 
independent parallel tasks need to coordinate at times, such as to say when 
they have completed their work. This chapter explains the instructions used 
by multi core processors to synchronize tasks.

 ■ Chapter 3, Section 3.6: Parallelism and Computer Arithmetic : Associativity. 
Often parallel program mers start from a working sequential program. 
A natural question to learn if their parallel version works is, “does it get the 
same answer?” If not, a logical conclusion is that there are bugs in the new 
version. This logic assumes that computer arithmetic is associative: you get 
the same sum when adding a million numbers, no matter what the order. 
This chapter explains that while this logic holds for integers, it doesn’t hold 
for fl oating-point numbers.

 ■ Chapter 4, Section 4.10: Parallelism and Advanced Instruction-Level Parallelism. 
Given the diffi culty of explicitly parallel programming, tremendous effort was 
invested in the 1990s in having the hardware and the compiler uncover implicit 
par allelism. This chapter describes some of these aggressive techniques, includ-
ing fetching and executing multiple instructions simultaneously and guessing 
on the outcomes of decisions, and executing instructions speculatively.
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44 Chapter 1 Computer Abstractions and Technology

 ■ Chapter 5, Section 5.8: Parallelism and Memory Hierarchies: Cache Coherence. 
One way to lower the cost of communication is to have all processors use 
the same address space, so that any processor can read or write any data. 
Given that all processors today use caches to keep a temporary copy of the 
data in faster memory near the pro cessor, it’s easy to imagine that parallel 
programming would be even more diffi cult if the caches associated with each 
processor had inconsistent values of the shared data. This chapter describes 
the mechanisms that keep the data in all caches consistent.

 ■ Chapter 6, Section 6.9: Parallelism and I/O: Redundant Arrays of Inexpensive 
Disks. If you ignore input and output in this parallel revolution, the 
unintended conse quence of parallel programming may be to make your 
parallel program spend most of its time waiting for I/O. This chapter 
describes RAID, a tech nique to accelerate the performance of storage 
accesses. RAID points out another potential benefi t of parallelism: by having 
many copies of resources, the system can continue to provide service despite 
a failure of one resource. Hence, RAID can improve both I/O performance 
and availability.

In addition to these sections, there is a full chapter on parallel processing. 
Chapter 7 goes into more detail on the challenges of parallel programming; 
presents the two contrasting approaches to communication of shared addressing 
and explicit message passing; describes a restricted model of parallelism that is 
easier to program; discusses the diffi culty of benchmarking parallel processors; 
introduces a new simple performance model for multicore microprocessors and 
fi nally describes and evaluates four examples of multicore microprocessors using 
this model.

Starting with this edition of the book, Appendix A describes an increasingly 
popular hardware component that is included with desktop computers, the graph-
ics processing unit (GPU). Invented to accelerate graphics, GPUs are becoming 
programming platforms in their own right. As you might expect, given these times, 
GPUs are highly parallel. Appendix A describes the NVIDIA GPU and highlights 
parts of its parallel programming environment.

 1.7  Real Stuff: Manufacturing and 
Benchmarking the AMD Opteron X4

Each chapter has a section entitled “Real Stuff” that ties the concepts in the book 
with a computer you may use every day. These sections cover the technology 
underlying modern computers. For this fi rst “Real Stuff” section, we look at how 
integrated circuits are manufactured and how performance and power are mea-
sured, with the AMD Opteron X4 as the example. 

I thought [computers] 
would be a universally 
applicable idea, like a 
book is. But I didn’t 
think it would develop 
as fast as it did, because 
I didn’t envision we’d 
be able to get as many 
parts on a chip as 
we fi nally got. The 
transistor came along 
unex pectedly. It all 
happened much faster 
than we expected.

J. Presper Eckert, 
coinventor of ENIAC, 
speaking in 1991
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Let’s start at the beginning. The manufacture of a chip begins with silicon, a 
substance found in sand. Because silicon does not conduct electricity well, it is 
called a semiconductor. With a special chemical process, it is possible to add 
 materials to silicon that allow tiny areas to transform into one of three devices:  

 ■ Excellent conductors of electricity (using either microscopic copper or 
aluminum wire) 

 ■ Excellent insulators from electricity (like plastic sheathing or glass)

 ■ Areas that can conduct or insulate under special conditions (as a switch)

Transistors fall in the last category. A VLSI circuit, then, is just billions of combi-
nations of conductors, insulators, and switches manufactured in a  single small 
package.

The manufacturing process for integrated circuits is critical to the cost of the 
chips and hence important to computer designers. Figure 1.18 shows that process. 
The process starts with a silicon crystal ingot, which looks like a giant sausage. 
Today, ingots are 8–12 inches in diameter and about 12–24 inches long. An ingot is 
fi nely sliced into wafers no more than 0.1 inch thick. These wafers then go through 
a series of processing steps, during which patterns of chemicals are placed on 

silicon A natural element 
that is a semiconductor.

semiconductor 
A substance that does not 
conduct  electricity well.

silicon crystal ingot 
A rod composed of a 
silicon crystal that is 
between 8 and 12 inches 
in diameter and about 12 
to 24 inches long.

wafer A slice from a 
silicon ingot no more 
than 0.1 inch thick, used 
to create chips.

FIGURE 1.18 The chip manufacturing process. After being sliced from the silicon ingot, blank 
wafers are put through 20 to 40 steps to create patterned wafers (see Figure 1.19). These pat terned wafers 
are then tested with a wafer tester, and a map of the good parts is made. Then, the wafers are diced into dies 
(see Figure 1.9). In this fi gure, one wafer produced 20 dies, of which 17 passed testing. (X means the die is 
bad.) The yield of good dies in this case was 17/20, or 85%. These good dies are then bonded into packages 
and tested one more time before shipping the packaged parts to customers. One bad packaged part was 
found in this fi nal test. 

Slicer

Dicer

20 to 40
processing steps

Bond die to
package

Silicon ingot

Wafer
tester

Part
tester

Ship to
customers

Tested dies Tested
wafer

Blank
wafers

Packaged dies

Patterned wafers

Tested packaged dies
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46 Chapter 1 Computer Abstractions and Technology

each wafer, creating the transistors, conductors, and insulators discussed ear lier. 
Today’s integrated circuits contain only one layer of transistors but may have from 
two to eight levels of metal conductor, separated by layers of insulators. 

A single microscopic fl aw in the wafer itself or in one of the dozens of pattern-
ing steps can result in that area of the wafer failing. These defects, as they are 
called, make it virtually impossible to manufacture a perfect wafer. To cope with 
imperfection, several strategies have been used, but the simplest is to place many 
independent components on a single wafer. The patterned wafer is then chopped 
up, or diced, into these components, called dies and more informally known as 
chips. Figure 1.19 is a photograph of a wafer containing microprocessors before 
they have been diced; earlier, Figure 1.9 on page 20 shows an individual micro-
processor die and its major components. 

Dicing enables you to discard only those dies that were unlucky enough to con-
tain the fl aws, rather than the whole wafer. This concept is quantifi ed by the yield 
of a process, which is defi ned as the percentage of good dies from the total num ber 
of dies on the wafer. 

The cost of an integrated circuit rises quickly as the die size increases, due both 
to the lower yield and the smaller number of dies that fi t on a wafer. To reduce 
the cost, a large die is often “shrunk” by using the next generation process, which 
incorporates smaller sizes for both transistors and wires. This improves the yield 
and the die count per wafer. 

Once you’ve found good dies, they are connected to the input/output pins 
of a package, using a process called bonding. These packaged parts are tested a 
fi nal time, since mistakes can occur in packaging, and then they are shipped to 
cus tomers.

As mentioned above, an increasingly important design constraint is power. 
Power is a challenge for two reasons. First, power must be brought in and distrib-
uted around the chip; modern microprocessors use hundreds of pins just for power 
and ground! Similarly, multiple levels of interconnect are used solely for power and 
ground distribution to portions of the chip. Second, power is dissi pated as heat and 
must be removed. An AMD Opteron X4 model 2356 2.0 GHz burns 120 watts in 
2008, which must be removed from a chip whose surface area is just over 1 cm2!

Elaboration: The cost of an integrated circuit can be expressed in three simple 
equations:

 Cost per die =      Cost per wafer
  ____________________  

Dies per wafer × yield
  

 Dies per wafer ≈      Wafer area __________ 
Die area

  

 Yield =    1  __________________________________    (1 + (Defects per area × Die area/2))2  

defect A microscopic 
fl aw in a wafer or in 
patterning steps that can 
result in the failure of the 
die containing that defect.

die The individual 
rectangular sections that 
are cut from a wafer, 
more informally known 
as chips.

yield The percentage of 
good dies from the total 
number of dies on the 
wafer.
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The fi rst equation is straightforward to derive. The second is an approximation, 
since it does not subtract the area near the border of the round wafer that cannot 
accommodate the rectangu lar dies (see Figure 1.19). The fi nal equation is based on 
empirical observations of yields at inte grated circuit factories, with the exponent related 
to the number of critical processing steps. 

Hence, depending on the defect rate and the size of the die and wafer, costs are 
generally not linear in die area.

FIGURE 1.19 A 12-inch (300mm) wafer of AMD Opteron X2 chips, the predecessor of 
Opteron X4 chips (Courtesy AMD). The number of dies per wafer at 100% yield is 117. The several 
dozen partially rounded chips at the boundaries of the wafer are useless; they are included because it’s easier 
to create the masks used to pattern the silicon. This die uses a 90-nanometer technology, which means that the 
smallest transistors are approximately 90 nm in size, although they are typically somewhat smaller than the 
actual feature size, which refers to the size of the transistors as “drawn” versus the fi nal manufactured size. 
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48 Chapter 1 Computer Abstractions and Technology

SPEC CPU Benchmark

A computer user who runs the same programs day in and day out would be the 
perfect candidate to evaluate a new computer. The set of programs run would form 
a workload. To evaluate two computer systems, a user would simply com pare the 
execution time of the workload on the two computers. Most users, how ever, are 
not in this situation. Instead, they must rely on other methods that measure the 
performance of a candidate computer, hoping that the methods will refl ect how 
well the computer will perform with the user’s workload. This alterna tive is usually 
followed by evaluating the computer using a set of benchmarks—programs 
specifi cally chosen to measure performance. The benchmarks form a workload 
that the user hopes will predict the performance of the actual workload.

SPEC (System Performance Evaluation Cooperative) is an effort funded and 
supported by a number of computer vendors to create standard sets of bench marks 
for modern computer systems. In 1989, SPEC originally created a bench mark 
set focusing on processor performance (now called SPEC89), which has evolved 
through fi ve generations. The latest is SPEC CPU2006, which consists of a set of 12 
integer benchmarks (CINT2006) and 17 fl oating-point benchmarks (CFP2006). 
The integer benchmarks vary from part of a C compiler to a chess program to a 
quantum computer simulation. The fl oating-point benchmarks include structured 
grid codes for fi nite element modeling, particle method codes for molecular 
dynamics, and sparse linear algebra codes for fl uid dynam ics. 

Figure 1.20 describes the SPEC integer benchmarks and their execution time 
on the Opteron X4 and shows the factors that explain execution time: instruction 
count, CPI, and clock cycle time. Note that CPI varies by a factor of 13. 

To simplify the marketing of computers, SPEC decided to report a single 
number to summarize all 12 integer benchmarks. The execution time measure-
ments are fi rst normalized by dividing the execution time on a reference processor 
by the execution time on the measured computer; this normalization yields a 
measure, called the SPECratio, which has the advantage that bigger numeric 
results indicate faster performance (i.e., the SPECratio is the inverse of execution 
time). A CINT2006 or CFP2006 summary measurement is obtained by taking the 
geometric mean of the SPECratios.

Elaboration: When comparing two computers using SPECratios, use the geometric 
mean so that it gives the same relative answer no matter what computer is used to 
normalize the results. If we averaged the normalized execution time values with an 
arithmetic mean, the results would vary depending on the computer we choose as the 
reference. 

workload A set of 
programs run on a 
computer that is either 
the actual collection of 
applica tions run by a user 
or con structed from real 
programs to approximate 
such a mix. A typi cal 
workload specifi es both 
the programs and the 
relative fre quencies.

benchmark A program 
selected for use in 
comparing computer 
performance.
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The formula for the geometric mean is

n �
���

   � 
i = 1

   
n

   Execution time ratio   
i

where Execution time ratio
i
 is the execution time, normalized to the reference computer, 

for the ith program of a total of n in the workload, and 

 � 
i = 1

  
n

   ai
 means the product a1 × a2 × … × a

n
 

SPEC Power Benchmark

Today, SPEC offers a dozen different benchmark sets designed to test a wide 
variety of computing environments using real applications and strictly specifi ed 
execution rules and reporting requirements. The most recent is SPECpower. It 
reports power consumption of servers at different workload levels, divided into 
10% increments, over a period of time. Figure 1.21 shows the results for a server 
using Barcelona. 

SPECpower started with the SPEC benchmark for Java business applications 
(SPECJBB2005), which exercises the processors, caches, and main memory as well 
as the Java virtual machine, compiler, garbage collector, and pieces of the  operat ing 
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FIGURE 1.20 SPECINTC2006 benchmarks running on AMD Opteron X4 model 2356 (Barcelona). As the equation on 
page 35 explains, execution time is the prod uct of the three factors in this table: instruction count in billions, clocks per instruction (CPI), and 
clock cycle time in nanoseconds. SPECratio is sim ply the reference time, which is supplied by SPEC, divided by the measured execution time. 
The single number quoted as SPECINTC2006 is the geometric mean of the SPECratios. Figure 5.40 on page 542 shows that mcf, libquantum, 
omnetpp, and xalancbmk have relatively high CPIs because they have high cache miss rates. 

Description Name
Instruction 
Count × 109 CPI

Clock cycle time
(seconds × 10−9)

Execution 
Time 

(seconds)

Reference 
Time 

(seconds) SPECratio

Interpreted string processing perl 2,118 0.75 0.4 637 9,770 15.3

Block-sorting 
compression

bzip2 2,389 0.85 0.4 817 9,650 11.8

GNU C compiler gcc 1,050 1.72 0.4 724 8,050 11.1

Combinatorial optimization mcf 336 10.00 0.4 1,345 9,120 6.8

Go game (AI) go 1,658 1.09 0.4 721 10,490 14.6

Search gene sequence hmmer 2,783 0.80 0.4 890 9,330 10.5

Chess game (AI) sjeng 2,176 0.96 0.4 837 12,100 14.5

Quantum computer
simulation

libquantum 1,623 1.61 0.4 1,047 20,720 19.8

Video compression h264avc 3,102 0.80 0.4 993 22,130 22.3

Discrete event 
simulation library

omnetpp 587 2.94 0.4 690 6,250 9.1

Games/path fi nding astar 1,082 1.79 0.4 773 7,020 9.1

XML parsing xalancbmk 1,058 2.70 0.4 1,143 6,900 6.0

Geometric Mean 11.7
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50 Chapter 1 Computer Abstractions and Technology

system. Performance is measured in throughput, and the units are business 
operations per second. Once again, to simplify the marketing of computers, SPEC 
boils these numbers down to a single number, called “overall ssj_ops per Watt.” The 
formula for this single summarizing metric is

overall ssj_ops per Watt =  �  ∑ 
i = 0

  
10

   ssj_ops
i
  �  /  �  ∑ 

i = 0

  
10

   power
i
  � 

where ssj_ops
i
 is performance at each 10% increment and power

i
 is power con-

sumed at each performance level.

A key factor in determining the cost of an integrated circuit is volume. Which of 
the following are reasons why a chip made in high volume should cost less?

1. With high volumes, the manufacturing process can be tuned to a particular 
design, increasing the yield.

2. It is less work to design a high-volume part than a low-volume part.

3. The masks used to make the chip are expensive, so the cost per chip is lower 
for higher volumes.

4. Engineering development costs are high and largely independent of vol ume; 
thus, the development cost per die is lower with high-volume parts.

5. High-volume parts usually have smaller die sizes than low-volume parts and 
therefore have higher yield per wafer. 

Check 
Yourself

Target Load %
Performance 

(ssj_ops)
Average Power 

(Watts)

100% 231,867 295

90% 211,282 286

80% 185,803 275

70% 163,427 265

60% 140,160 256

50% 118,324 246

40% 92,035 233

30% 70,500 222

20% 47,126 206

10% 23,066 180

0% 0 141

Overall Sum 1,283,590 2,605

Σ ssj_ops / Σ power =  493

FIGURE 1.21 SPECpower_ssj2008 running on dual socket 2.3 GHz AMD Opteron X4 2356 
(Barcelona) with 16 GB Of DDR2-667 DRAM and one 500 GB disk. 
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 1.8 Fallacies and Pitfalls

The purpose of a section on fallacies and pitfalls, which will be found in every 
chapter, is to explain some commonly held misconceptions that you might 
encounter. We call such misbeliefs fallacies. When discussing a fallacy, we try to 
give a counterexample. We also discuss pitfalls, or easily made mistakes. Often pit-
falls are generalizations of principles that are true in a limited context. The pur pose 
of these sections is to help you avoid making these mistakes in the computers you 
may design or use. Cost/performance fallacies and pitfalls have ensnared many a 
computer architect, including us. Accordingly, this section suffers no shortage of 
relevant examples. We start with a pitfall that traps many designers and reveals an 
important relationship in computer design. 

Pitfall: Expecting the improvement of one aspect of a computer to increase overall 
performance by an amount proportional to the size of the improvement.

This pitfall has visited designers of both hardware and software. A simple design prob-
lem illustrates it well. Suppose a program runs in 100 seconds on a computer, with 
multiply operations responsible for 80 seconds of this time. How much do I have to 
improve the speed of multiplication if I want my program to run fi ve times faster?

The execution time of the program after making the improvement is given by 
the following simple equation known as Amdahl’s law:

Execution time after improvement =

  
Execution time affected by improvement

    ����   
Amount of improvement

    +  Execution time unaffected

For this problem:

Execution time after improvement  =    80 seconds � n    +  (100 − 80 seconds)

Since we want the performance to be fi ve times faster, the new execution time 
should be 20 seconds, giving

20 seconds  =    80 seconds � n    +  20 seconds

 0  =    80 seconds � n  

That is, there is no amount by which we can enhance-multiply to achieve a fi vefold 
increase in performance, if multiply accounts for only 80% of the workload. 

Science must begin 
with myths, and the 
criticism of myths.

Sir Karl Popper, The 
 Philosophy of Science, 
1957

Amdahl’s law A rule 
stating that the 
performance  enhance-
ment possible with a 
given improvement is 
limited by the amount 
that the improved feature 
is used. It is a quantita-
tive version of the law of 
diminishing returns.
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52 Chapter 1 Computer Abstractions and Technology

The performance enhancement possible with a given improvement is limited by 
the amount that the improved feature is used. This concept also yields what we 
call the law of diminishing returns in everyday life. 

We can use Amdahl’s law to estimate performance improvements when we 
know the time consumed for some function and its potential speedup. Amdahl’s 
law, together with the CPU performance equation, is a handy tool for evaluating 
potential enhancements. Amdahl’s law is explored in more detail in the exercises.

A common theme in hardware design is a corollary of Amdahl’s law: Make the 
common case fast. This simple guideline reminds us that in many cases the fre quency 
with which one event occurs may be much higher than the frequency of another. 
 Amdahl’s law reminds us that the opportunity for improvement is affected by how 
much time the event consumes. Thus, making the common case fast will tend to 
enhance performance better than optimizing the rare case. Ironically, the com mon 
case is often simpler than the rare case and hence is often easier to enhance. 

Amdahl’s law is also used to argue for practical limits to the number of parallel 
processors. We examine this argument in the Fallacies and Pitfalls section of 
Chapter 7.

Fallacy: Computers at low utilization use little power. 

Power effi ciency matters at low utilizations because server workloads vary. CPU 
utilization for servers at Google, for example, is between 10% and 50% most of the 
time and at 100% less than 1% of the time. Figure 1.22 shows power for serv ers 
with the best SPECpower results at 100% load, 50% load, 10% load, and idle. Even 
servers that are only 10% utilized burn about two-thirds of their peak power.

Since servers’ workloads vary but use a large fraction of peak power, Luiz 
Barroso and Urs Hölzle [2007] argue that we should redesign hardware to achieve 
“energy-proportional computing.” If future servers used, say, 10% of peak power at 
10% workload, we could reduce the electricity bill of datacenters and become good 
corporate citizens in an era of increasing concern about CO

2
 emissions.  

FIGURE 1.22 SPECPower results for three servers with the best overall ssj_ops per watt in the fourth quarter of 
2007. The overall ssj_ops per watt of the three servers are 698, 682, and 667, respectively. The memory of the top two servers is 16 GB and 
the bottom is 8 GB. 

Server 
Manufacturer

Micro- 
processor

Total 
Cores/ 
Sockets

Clock
 Rate

Peak 
Performance 

(ssj_ops)

100% 
Load 

Power

50% 
Load 

Power

50% 
Load/ 
100% 
Power

10% 
Load 

Power

10% 
Load/ 
100% 
Power

Active 
Idle 

Power

Active 
Idle/ 
100% 
Power

HP Xeon E5440 8/2 3.0 GHz 308,022 269 W 227 W 84% 174 W 65% 160 W 59%

Dell Xeon E5440 8/2 2.8 GHz 305,413 276 W 230 W 83% 173 W 63% 157 W 57%

Fujitsu Seimens Xeon X3220 4/1 2.4 GHz 143,742 132 W 110 W 83% 85 W 65% 80 W 60%

Pitfall: Using a subset of the performance equation as a performance metric. 

We have already shown the fallacy of predicting performance based on simply one 
of clock rate, instruction count, or CPI. Another common mistake is to use only 
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two of the three factors to compare performance. Although using two of the three 
factors may be valid in a limited context, the concept is also easily misused. Indeed, 
nearly all pro posed alternatives to the use of time as the performance metric have 
led eventually to misleading claims, distorted results, or incorrect interpretations.

One alternative to time is MIPS (million instructions per second). For a given 
program, MIPS is simply

MIPS  =    Instruction count
  ��  

Execution time × 106  

Since MIPS is an instruction execution rate, MIPS specifi es performance 
inversely to execution time; faster computers have a higher MIPS rating. The good 
news about MIPS is that it is easy to understand, and faster computers mean big ger 
MIPS, which matches intuition.

There are three problems with using MIPS as a measure for comparing com-
puters. First, MIPS specifi es the instruction execution rate but does not take into 
account the capabilities of the instructions. We cannot compare computers with 
different instruction sets using MIPS, since the instruction counts will certainly 
differ. Second, MIPS varies between programs on the same computer; thus, a com-
puter cannot have a single MIPS rating. For example, by substituting for execu tion 
time, we see the relationship between MIPS, clock rate, and CPI: 

MIPS  =    Instruction count  ���   

  Instruction count × CPI  ��  
 Clock rate

   × 106

    =    Clock rate � 
CPI × 106

  

Recall that CPI varied by 13× for SPEC CPU2006 on Opteron X4, so MIPS does as 
well. Finally, and most importantly, if a new program executes more instructions 
but each instruction is faster, MIPS can vary independently from performance!

Consider the following performance measurements for a program:

million instructions 
per sec ond (MIPS) 
A measurement of 
program execution speed 
based on the number of 
millions of instructions. 
MIPS is computed as the 
instruction count divided 
by the product of the 
execution time and 106.

Check
Yourself

Measurement Computer A Computer B

Instruction count 10 billion 8 billion

Clock rate 4 GHz 4 GHz

CPI 1.0 1.1

a. Which computer has the higher MIPS rating?

b. Which computer is faster? 
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54 Chapter 1 Computer Abstractions and Technology

 1.9 Concluding Remarks

Although it is diffi cult to predict exactly what level of cost/performance comput-
ers will have in the future, it’s a safe bet that they will be much better than they 
are today. To participate in these advances, computer designers and programmers 
must understand a wider variety of issues. 

Both hardware and software designers construct computer systems in hierar-
chical layers, with each lower layer hiding details from the level above. This princi-
ple of abstraction is fundamental to understanding today’s computer systems, but it 
does not mean that designers can limit themselves to knowing a single abstraction. 
Perhaps the most important example of abstraction is the interface between 
hardware and low-level software, called the instruction set architecture. Maintain-
ing the instruction set architecture as a constant enables many implementations of 
that architecture—presumably varying in cost and performance—to run identical 
software. On the downside, the architecture may preclude introducing innova tions 
that require the interface to change.

There is a reliable method of determining and reporting performance by using 
the execution time of real programs as the metric. This execution time is related to 
other important measurements we can make by the following equation:

  Seconds � 
Program

    =    Instructions � 
Program

    ×    Clock cycles
 � 

Instruction
    ×    Seconds � 

Clock cycle
  

We will use this equation and its constituent factors many times. Remember, 
though, that individually the factors do not determine performance: only the 
product, which equals execution time, is a reliable measure of performance. 

Execution time is the only valid and unimpeachable measure of perfor-
mance. Many other metrics have been proposed and found wanting. 
Sometimes these metrics are fl awed from the start by not refl ecting exe-
cution time; other times a metric that is valid in a limited context is 
extended and used beyond that context or without the additional clarifi -
cation needed to make it valid.

The key hardware technology for modern processors is silicon. Equal in impor-
tance to an understanding of integrated circuit technology is an understanding of 
the expected rates of technological change. While silicon fuels the rapid advance 
of hardware, new ideas in the organization of computers have improved price/
performance. Two of the key ideas are exploiting parallelism in the program, 

The BIG
Picture

Where . . . the ENIAC 
is equipped with 
18,000  vacuum tubes 
and weighs 30 tons, 
computers in the future 
may have 1,000 
vacuum tubes and 
perhaps weigh just 
1½ tons.

Popular Mechanics, 
March 1949
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typically today via multiple processors, and exploiting locality of accesses to a 
memory hierarchy, typically via caches.

Power has replaced die area as the most critical resource of microprocessor 
design. Conserving power while trying to increase performance has forced the 
hardware industry to switch to multicore microprocessors, thereby forcing the 
software industry to switch to programming parallel hardware.

Computer designs have always been measured by cost and performance, as well 
as other important factors such as power, reliability, cost of ownership, and scal-
ability. Although this chapter has focused on cost, performance, and power, the 
best designs will strike the appropriate balance for a given market among all the 
factors.

Road Map for This Book
At the bottom of these abstractions are the fi ve classic components of a computer: 
datapath, control, memory, input, and output (refer to Figure 1.4). These fi ve 
components also serve as the framework for the rest of the chapters in this book:

 ■ Datapath: Chapters 3, 4, 7, and Appendix A

 ■ Control: Chapters 4, 7, and Appendix A

 ■ Memory: Chapter 5 

 ■ Input: Chapter 6

 ■ Output: Chapter 6

As mentioned above, Chapter 4 describes how processors exploit implicit par-
allelism, Chapter 7 describes the explicitly parallel multicore microprocessors that 
are at the heart of the parallel revolution, and Appendix A describes the highly 
parallel graphics processor chip. Chapter 5 describes how a memory hierarchy 
exploits locality. Chapter 2 describes instruction sets—the interface between com-
pilers and the computer—and emphasizes the role of compilers and  programming 
languages in using the features of the instruction set. Appendix B provides a 
reference for the instruction set of Chapter 2. Chapter 3 describes how computers 
handle arithmetic data.  Appendix C, on the CD, introduces logic design. 

   Historical Perspective and Further Reading

For each chapter in the text, a section devoted to a historical perspective can be 
found on the CD that accompanies this book. We may trace the development of 
an idea through a series of computers or describe some important projects, and we 
provide references in case you are interested in probing further. 

An active fi eld of 
science is like an 
immense anthill; the 
individual almost 
vanishes into the mass 
of minds tum bling 
over each other, carry-
ing information from 
place to place, passing 
it around at the speed 
of light.

Lewis Thomas, “Natural 
 Science,” in The Lives of 
a Cell, 1974

1.10

 1.10 Historical Perspective and Further Reading 55
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56 Chapter 1 Computer Abstractions and Technology

The historical perspective for this chapter provides a background for some 
of the key ideas presented in this opening chapter. Its purpose is to give you the 
human story behind the technological advances and to place achievements in 
their historical context. By understanding the past, you may be better able to 
understand the forces that will shape computing in the future. Each historical per-
spectives section on the CD ends with suggestions for further reading, which are 
also collected separately on the CD under the section “Further Reading.” The rest 
of  Section 1.10 is found on the CD.

 1.11 Exercises
Contributed by Javier Bruguera of Universidade de Santiago de Compostela

Most of the exercises in this edition are designed so that they feature a qualitative 
description supported by a table that provides alternative quantitative parameters. 
These parameters are needed to solve the questions that comprise the exercise. 
Individual questions can be solved using any or all of the parameters—you decide 
how many of the parameters should be considered for any given exercise question. 
For example, it is possible to say “complete Question 4.1.1 using the parameters 
given in row A of the table.” Alternately, instructors can customize these exercises 
to create novel solutions by replacing the given parameters with your own unique 
values.

The number of quantitative exercises varies from chapter to chapter and depends 
largely on the topics covered. More conventional exercises are provided where the 
quantitative approach does not fi t.

The relative time ratings of exercises are shown in square brackets after each 
exercise number. On average, an exercise rated [10] will take you twice as long as 
one rated [5]. Sections of the text that should be read before attempting an exercise 
will be given in angled brackets; for example, <1.3> means you should have read 
Section 1.3, Under the Covers, to help you solve this exercise.

Exercise 1.1
Find the word or phrase from the list below that best matches the description in the 
following questions. Use the num bers to the left of words in the answer. Each
answer should be used only once. 
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1. virtual worlds 14. operating system

2. desktop computers 15. compiler

3. servers 16. bit

4. low-end servers 17. instruction

5. supercomputers 18. assembly language

6. terabyte 19. machine language

7. petabyte 20. C

8. datacenters 21. assembler

9. embedded computers 22. high-level language

10. multicore processors 23. system software

11. VHDL 24. application software

12. RAM 25. Cobol

13. CPU 26. Fortran

1.1.1 [2] <1.1> Computer used to run large problems and usually accessed via a 
network

1.1.2 [2] <1.1> 1015 or 250 bytes

1.1.3 [2] <1.1> Computer composed of hundred to thousand processors and 
terabytes of memory

1.1.4 [2] <1.1> Today’s science fi ction application that probably will be available 
in the near future 

1.1.5 [2] <1.1> A kind of memory called random access memory

1.1.6 [2] <1.1> Part of a computer called central processor unit

1.1.7 [2] <1.1> Thousands of processors forming a large cluster

1.1.8 [2] <1.1> Microprocessors containing several processors in the same chip

1.1.9 [2] <1.1> Desktop computer without a screen or keyboard usually accessed 
via a network

1.1.10 [2] <1.1> A computer used to running one predetermined application or 
collection of software

1.1.11 [2] <1.1> Special language used to describe hardware components
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58 Chapter 1 Computer Abstractions and Technology

1.1.12 [2] <1.1> Personal computer delivering good performance to single users 
at low cost

1.1.13 [2] <1.2> Program that translates statements in high-level language to 
assembly language 

1.1.14 [2] <1.2> Program that translates symbolic instructions to binary 
 ins tructions

1.1.15 [2] <1.2> High-level language for business data processing

1.1.16 [2] <1.2> Binary language that the processor can understand

1.1.17 [2] <1.2> Commands that the processors understand

1.1.18 [2] <1.2> High-level language for scientifi c computation

1.1.19 [2] <1.2> Symbolic representation of machine instructions

1.1.20 [2] <1.2> Interface between user’s program and hardware providing a 
variety of services and supervision functions

1.1.21 [2] <1.2> Software/programs developed by the users 

1.1.22 [2] <1.2> Binary digit (value 0 or 1)

1.1.23 [2] <1.2> Software layer between the application software and the hard-
ware that includes the operating system and the compilers

1.1.24 [2] <1.2> High-level language used to write application and system 
software

1.1.25 [2] <1.2> Portable language composed of words and algebraic expres-
sions that must be translated into assembly language before run in a computer

1.1.26 [2] <1.2> 1012 or 240 bytes

Exercise 1.2
Consider the different confi gurations shown in the table

Confi guration Resolution Main Memory Ethernet Network

a. 1 640 × 480 2 Gbytes 100 Mbit

2 1280 × 1024 4 Gbytes 1 Gbit

b. 1 1024 × 768 2 Gbytes 100 Mbit

2 2560 × 1600 4 Gbytes 1Gbit
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1.2.1 [10] <1.3> For a color display using 8 bits for each of the primary colors 
(red, green, blue) per pixel, what should be the minimum size in bytes of the frame 
buffer to store a frame?

1.2.2 [5] <1.3> How many frames could it store, assuming the memory contains 
no other information?

1.2.3 [5] <1.3> If a 256 Kbytes fi le is sent through the Ethernet connection, how 
long it would take?

For problems below, use the information about access time for every type of mem-
ory in the following table.

Cache DRAM Flash Memory Magnetic Disk

a. 5 ns 50 ns 5 μs 5 ms

b. 7 ns 70 ns 15 μs 20 ms

1.2.4 [5] <1.3> Find how long it takes to read a fi le from a DRAM if it takes 2 
microseconds from the cache memory.

1.2.5 [5] <1.3> Find how long it takes to read a fi le from a disk if it takes 2 micro-
seconds from the cache memory.

1.2.6 [5] <1.3> Find how long it takes to read a fi le from a fl ash memory if it 
takes 2 microseconds from the cache memory.

Exercise 1.3
Consider three different processors P1, P2, and P3 executing the same instruction 
set with the clock rates and CPIs given in the following table.

Processor Clock Rate CPI

a. P1 3 GHz 1.5

P2 2.5 GHz 1.0

P3 4 GHz 2.2

b. P1 2 GHz 1.2

P2 3 GHz 0.8

P3 4 GHz 2.0

1.3.1 [5] <1.4> Which processor has the highest performance expressed in 
instructions per second?

1.3.2 [10] <1.4> If the processors each execute a program in 10 seconds, fi nd the 
number of cycles and the number of instructions.
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60 Chapter 1 Computer Abstractions and Technology

1.3.3 [10] <1.4> We are trying to reduce the time by 30% but this leads to 
an increase of 20% in the CPI. What clock rate should we have to get this time 
reduction?

For problems below, use the information in the following table.

Processor Clock Rate No. Instructions Time

a. P1 3 GHz 20.00E+09 7 s

P2 2.5 GHz 30.00E+09 10 s

P3 4 GHz 90.00E+09 9 s

b. P1 2 GHz 20.00E+09 5 s

P2 3 GHz 30.00E+09 8 s

P3 4 GHz 25.00E+09 7 s

1.3.4 [10] <1.4> Find the IPC (instructions per cycle) for each processor.

1.3.5 [5] <1.4> Find the clock rate for P2 that reduces its execution time to 
that of P1.

1.3.6 [5] <1.4> Find the number of instructions for P2 that reduces its execution 
time to that of P3.

Exercise 1.4
Consider two different implementations of the same instruction set architecture. 
There are four classes of instructions, A, B, C, and D. The clock rate and CPI of each 
implementation are given in the following table.

Clock Rate CPI Class A CPI Class B CPI Class C CPI Class D

a. P1 2.5 GHz 1 2 3 3

P2 3 GHz 2 2 2 2

b. P1 2.5 GHz 2 1.5 2 1

P2 3 GHz 1 2 1 1

1.4.1 [10] <1.4> Given a program with 106 instructions divided into classes as 
follows: 10% class A, 20% class B, 50% class C, and 20% class D, which implemen-
tation is faster?

1.4.2 [5] <1.4> What is the global CPI for each implementation?

1.4.3 [5] <1.4> Find the clock cycles required in both cases.

Ch01-9780123747501.indd   60Ch01-9780123747501.indd   60 25/07/11   2:32 PM25/07/11   2:32 PM



The following table shows the number of instructions for a program.

Arith Store Load Branch Total

a. 650 100 600 50 1400

b. 750 250 500 500 2000

1.4.4 [5] <1.4> Assuming that arith instructions take 1 cycle, load and store 5 
cycles, and branches 2 cycles, what is the execution time of the program in a 2 GHz 
processor?

1.4.5 [5] <1.4> Find the CPI for the program.

1.4.6 [10] <1.4> If the number of load instructions can be reduced by one half, 
what is the speedup and the CPI?

Exercise 1.5
Consider two different implementations, P1 and P2, of the same instruction set. 
There are fi ve classes of instructions (A, B, C, D, and E) in the instruction set. The 
clock rate and CPI of each class is given below.

Clock Rate CPI Class A CPI Class B CPI Class C CPI Class D CPI Class E

a. P1 2.0 GHz 1 2 3 4 3

P2 4.0 GHz 2 2 2 4 4

b. P1 2.0 GHz 1 1 2 3 2

P2 3.0 GHz 1 2 3 4 3

1.5.1 [5] <1.4> Assume that peak performance is defi ned as the fastest rate that 
a computer can execute any instruction sequence. What are the peak performances 
of P1 and P2 expressed in instructions per second?

1.5.2 [10] <1.4> If the number of instructions executed in a certain program 
is divided equally among the classes of instructions except for class A, which 
occurs twice as often as each of the others, which computer is faster? How much 
faster is it?

1.5.3 [10] <1.4> If the number of instructions executed in a certain program 
is divided equally among the classes of instructions except for class E, which oc-
curs twice as often as each of the others, which computer is faster? How much 
faster is it?

The table below shows instruction-type breakdown for different programs. Using 
this data, you will be exploring the performance trade-offs different changes made 
to an MIPS processor.
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No. Instructions

Compute Load Store Branch Total

a. Program1 600 600 200 50 1450

b. Program 2 900 500 100 200 1700

1.5.4 [5] <1.4> Assuming that computes take 1 cycle, loads and store instructions 
take 10 cycles, and branches take 3 cycles, fi nd the execution time on a 3 GHz MIPS 
processor.

1.5.5 [5] <1.4> Assuming that computes take 1 cycle, loads and store instructions 
take 2 cycles, and branches take 3 cycles, fi nd the execution time on a 3 GHz MIPS 
processor.

1.5.6 [5] <1.4> Assuming that computes take 1 cycle, loads and store instruc-
tions take 2 cycles, and branches take 3 cycles, what is the speedup if the number of 
compute instruction can be reduced by one-half?

Exercise 1.6
Compilers can have a profound impact on the performance of an application on 
given a processor. This problem will explore the impact compilers have on execu-
tion time.

Compiler A Compiler B

No. Instructions Execution Time No. Instructions Execution Time

a. 1.00E+09 1.8 s 1.20E+09 1.8 s

b. 1.00E+09 1.1 s 1.20E+09 1.5 s

 1.6.1 [5] <1.4> For the same program, two different compilers are used. The table 
above shows the execution time of the two different compiled programs. Find the 
average CPI for each program given that the processor has a clock cycle time of 1 ns.

1.6.2 [5] <1.4> Assume the average CPIs found in 1.6.1, but that the compiled 
programs run on two different processors. If the execution times on the two pro-
cessors are the same, how much faster is the clock of the processor running com-
piler A’s code versus the clock of the processor running compiler B’s code?

1.6.3 [5] <1.4> A new compiler is developed that uses only 600 million instruc-
tions and has an average CPI of 1.1. What is the speedup of using this new compiler 
versus using Compiler A or B on the original processor of 1.6.1?

Consider two different implementations, P1 and P2, of the same instruction set. 
There are fi ve classes of instructions (A, B, C, D, and E) in the instruction set. P1 
has a clock rate of 4 GHz, and P2 has a clock rate of 6 GHz. The average number 
of cycles for each instruction class for P1 and P2 are listed in the following table.
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CPI Class A CPI Class B CPI Class C CPI Class D CPI Class E

a. P1 1 2 3 4 5

P2 3 3 3 5 5

b. P1 1 2 3 4 5

P2 2 2 2 2 6

1.6.4 [5] <1.4> Assume that peak performance is defi ned as the fastest rate that 
a computer can execute any instruction sequence. What are the peak performances 
of P1 and P2 expressed in instructions per second?

1 .6.5 [5] <1.4> If the number of instructions executed in a certain program is di-
vided equally among the fi ve classes of instructions except for class A, which occurs 
twice as often as each of the others, how much faster is P2 than P1?

1.6.6 [5] <1.4> At what frequency does P1 have the same performance of P2 for 
the instruction mix given in 1.6.5?

E xercise 1.7
The following table shows the increase in clock rate and power of eight generations 
of Intel processors over 28 years.

Processor Clock Rate Power 

80286 (1982) 12.5 MHz 3.3 W 

80386 (1985)   16 MHz 4.1 W 

80486 (1989) 25 MHz 4.9 W 

Pentium (1993)  66 MHz 10.1 W 

Pentium Pro (1997)  200 MHz 29.1 W 

Pentium 4 Willamette (2001)  2 GHz 75.3 W 

Pentium 4 Prescott (2004) 3.6 GHz 103 W 

Core 2 Ketsfi eld (2007) 2.667 GHz 95 W 

1.7.1 [5] <1.5> What is the geometric mean of the ratios between consecutive 
generations for both clock rate and power? (The geometric mean is described in 
Section 1.7.)

1.7.2 [5] <1.5> What is the largest relative change in clock rate and power 
between generations?

1.7.3 [5] <1.5> How much larger is the clock rate and power of the last genera-
tion with respect to the fi rst generation?
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64 Chapter 1 Computer Abstractions and Technology

Consider the following values for voltage in each generation.

Processor Voltage

80286 (1982) 5

80386 (1985)  5

80486 (1989) 5

Pentium (1993) 5

Pentium Pro (1997) 3.3

Pentium 4 Willamette (2001) 1.75

Pentium 4 Prescott (2004) 1.25

Core 2 Ketsfi eld (2007) 1.1

1.7.4 [5] <1.5> Find the average capacitive loads, assuming a negligible static 
power consumption.

1.7.5 [5] <1.5> Find the largest relative change in voltage between generations.

1.7.6 [5] <1.5> Find the geometric mean of the voltage ratios in the generations 
since the Pentium.

Exercise 1.8
Suppose we have developed new versions of a processor with the following char-
acteristics.

Version Voltage Clock Rate

a. Version 1 1.75 V 1.5 GHz

Version 2 1.2 V 2 GHz

b. Version 1 1.1 V 3 GHz

Version 2 0.8 V 4 GHz

1.8.1 [5] <1.5> How much has the capacitive load varied between versions if the 
dynamic power has been reduced by 10%?

1.8.2 [5] <1.5> How much has the dynamic power been reduced if the capacitive 
load does not change?

1.8.3 [10] <1.5> Assuming that the capacitive load of version 2 is 80% the 
capacitive load of version 1, fi nd the voltage for version 2 if the dynamic power of 
version 2 is reduced by 40% from version 1.

Suppose that the industry trends show that a new process generation varies as 
follows.
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Capacitance Voltage Clock Rate Area

a. 1 1/21/2 1.15 1/21/2

b. 1 1/21/4 1.2 1/21/4

1.8.4 [5] <1.5> Find the scaling factor for the dynamic power.

1.8.5 [5] <1.5> Find the scaling of the capacitance per unit area unit.

1.8.6 [5] <1.5> Assuming a Core 2 processor with a clock rate of 2.667 GHz, a 
power consumption of 95 W, and a voltage of 1.1 V, fi nd the voltage and clock rate 
of this processor for the next process generation.

Exercise 1.9
Although the dynamic power is the primary source of power dissipation in CMOS, 
leakage current produces a static power dissipation V × I

leak
. The smaller the on-

chip dimensions, the more signifi cant is the static power. Assume the fi gures shown 
in the following table for static and dynamic power dissipation for several genera-
tions of processors.

Technology Dynamic Power (W) Static Power (W) Voltage (V)

a. 180 nm 50 10 1.2

b. 70 nm 90 60 0.9

1.9.1 [5] <1.5> Find the percentage of the total dissipated power comprised by 
static power.

1.9.2 [5] <1.5> If the total dissipated power is reduced by 10% while maintain-
ing the static to total power rate of problem 1.9.1, how much should the voltage be 
reduced to maintain the same leakage current?

1.9.3 [5] <1.5> Determine the ratio of static power to dynamic power for each 
technology.

Consider now the dynamic power dissipation of different versions of a given pro-
cessor for three different voltages given in the following table.

1.2 V 1.0 V 0.8 V

a. 75 W 60 W 35 W

b. 62 W 50 W 30 W
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66 Chapter 1 Computer Abstractions and Technology

1.9.4 [5] <1.5> Determine the static power at 0.8 V, assuming a static to dynamic 
power ratio of 0.6.

1.9.5 [5] <1.5> Determine the static and dynamic power dissipation assuming 
the rates obtained in problem 1.9.1.

1.9.6 [10] <1.5> Determine the geometric mean of the power variations between 
versions.

Exercise 1.10
The table below shows the instruction type breakdown of a given application 
executed on 1, 2, 4, or 8 processors. Using this data, you will be exploring the speed-
up of applications on parallel processors.

Processors No. Instructions per Processor CPI

Arithmetic Load/Store Branch Arithmetic Load/Store Branch

a. 1 2560 1280 256 1 4 2

2 1280 640 128 1 5 2

4 640 320 64 1 7 2

8 320 160 32 1 12 2

Processors No. Instructions per Processor CPI

Arithmetic Load/Store Branch Arithmetic Load/Store Branch

b. 1 2560 1280 256 1 4 2

2 1280 640 128 1 6 2

4 640 320 64 1 8 2

8 320 160 32 1 10 2

1.10.1 [5] <1.4, 1.6> The table above shows the number of instructions required 
per processor to complete a program on a multiprocessor with 1, 2, 4, or 8 proces-
sors. What is the total number of instructions executed per processor? What is the 
aggregate number of instructions executed across all processors?

1.10.2 [5] <1.4, 1.6> Given the CPI values on the right of the table above, fi nd 
the total execution time for this program on 1, 2, 4, and 8 processors. Assume that 
each processor has a 2 GHz clock frequency.

1.10.3 [10] <1.4, 1.6> If the CPI of the arithmetic instructions was doubled, 
what would the impact be on the execution time of the program on 1, 2, 4, or 8 
processors?
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The table below shows the number of instructions per processor core on a multi core 
processor as well as the average CPI for executing the program on 1, 2, 4, or 8 cores. 
Using this data, you will be exploring the speedup of applications on  multicore 
 processors.

Cores per Processor Instructions per Core Average CPI

a. 1 1.00E+10 1.2

2 5.00E+09 1.4

4 2.50E+09 1.8

8 1.25E+09 2.6

Cores per Processor Instructions per Core Average CPI

b. 1 1.00E+10 1.0

2 5.00E+09 1.2

4 2.50E+09 1.4

8 1.25E+09 1.7

1.10.4 [10] <1.4, 1.6> Assuming a 3 GHz clock frequency, what is the execution 
time of the program using 1, 2, 4, or 8 cores?

1.1 0.5 [10] <1.5, 1.6> Assume that the power consumption of a processor core 
can be described by the following equation:

Power =   5.0mA � 
MHz

    Voltage2

where the operation voltage of the processor is described by the following equa-
tion:

Voltage =   1 � 
5
   Frequency + 0.4

with the frequency measured in GHz. So, at 5 GHz, the voltage would be 1.4 V. Find 
the power consumption of the program executing on 1, 2, 4, and 8 cores assuming 
that each core is operating at a 3 GHz clock frequency. Likewise, fi nd the power 
consumption of the program executing on 1, 2, 4, or 8 cores assuming that each 
core is operating at 500 MHz.

1.10.6 [10] <1.5, 1.6> If using a single core, fi nd the required CPI for this core 
to get an execution time equal to the time obtained by using the number of cores 
in the table above (execution times in problem 1.10.4). Note that the number of 
instructions should be the aggregate number of instructions executed across all 
the cores.
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68 Chapter 1 Computer Abstractions and Technology

Exercise 1.11
The following table shows manufacturing data for various processors.

Wafer Diameter Dies per Wafer Defects per Unit Area Cost per Wafer

a. 15 cm 84 0.020 defects/cm2 12

b. 20 cm 100 0.031 defects/cm2 15

1.11.1 [10] <1.7> Find the yield.

1.11.2 [5] <1.7> Find the cost per die.

1.11.3 [10] <1.7> If the number of dies per wafer is increased by 10% and the 
defects per area unit increases by 15%, fi nd the die area and yield.

Suppose that, with the evolution of the electronic devices manufacturing tech-
nology, the yield varies as shown in the following table.

T1 T2 T3 T4

Yield 0.85 0.89 0.92 0.95

1.11.4 [10] <1.7> Find the defects per area unit for each technology given a die 
area of 200 mm2.

1.11.5 [5] <1.7> Represent graphically the variation of the yield together with 
the variation of defects per unit area.

Exer cise 1.12
The following table shows results for SPEC CPU2006 benchmark programs 
running on an AMD Barcelona.

Name Intr. Count × 109 Execution Time (seconds) Reference Time (seconds)

a. bzip2 2389 750 9650

b. go 1658 700 10,490

1.12.1 [5] <1.7> Find the CPI if the clock cycle time is 0.333 ns.

1.12.2 [5] <1.7> Find the SPEC ratio.

1.12.3 [5] <1.7> For these two benchmarks, fi nd the geometric mean of the 
SPEC ratio.
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The following table shows data for further benchmarks.

Name CPI Clock Rate SPEC Ratio

a. libquantum 1.61 4 GHz 19.8

b. astar 1.79 4 GHz 9.1

1.12.4 [5] <1.7> Find the increase in CPU time if the number of instructions of 
the benchmark is increased by 10% without affecting the CPI.

1.12. 5 [5] <1.7> Find the increase in CPU time if the number of instructions of 
the benchmark is increased by 10% and the CPI is increased by 5%.

1.12.6 [5] <1.7> Find the change in the SPEC ratio for the change described in 
1.12.5.

Exercise 1.13
Suppose that we are developing a new version of the AMD Barcelona proces-
sor with a 4 GHz clock rate. We have added some additional instructions to the 
instruction set in such a way that the number of instructions has been reduced by 
15% from the values shown for each benchmark in Exercise 1.12. The execution 
times obtained are shown in the following table.

Name Execution Time (seconds) Reference Time (seconds) SPEC Ratio

a. bzip2 700 9650 13.7

b. go 620 10490 16.9

1.13.1 [10] <1.8> Find the new CPI.

1.13.2 [10] <1.8> In general, these CPI values are larger than those obtained in 
previous exercises for the same benchmarks. This is due mainly to the clock rate 
used in both cases, 3 GHz and 4 GHz. Determine whether the increase in the CPI 
is similar to that of the clock rate. If they are dissimilar, why?

1.13.3 [5] <1.8> How much has the CPU time been reduced?

The following table shows data for further benchmarks.

Name Execution Time (seconds) CPI Clock Rate

a. libquantum 960 1.61 3 GHz 

b. astar 690 1.79 3 GHz 
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70 Chapter 1 Computer Abstractions and Technology

1.13.4 [10] <1.8> If the execution time is reduced by an additional 10% with-
out affecting to the CPI and with a clock rate of 4 GHz, determine the number of 
instructions.

1.13.5 [10] <1.8> Determine the clock rate required to give a further 10% reduc-
tion in CPU time while maintaining the number of instructions and with the CPI 
unchanged.

1.13.6 [10] <1.8> Determine the clock rate if the CPI is reduced by 15% and the 
CPU time by 20% while the number of instructions is unchanged.

Exercise 1.14
Section 1.8 cites as a pitfall the utilization of a subset of the performance equa-
tion as a performance metric. To illustrate this, consider the following data for the 
execution of a program in different processors.

Processor Clock Rate CPI No. Instr.

a. P1 4 GHz 0.9 5.00E+06

P2 3 GHz 0.75 1.00E+06

b. P1 3 GHz 1.1 3.00E+06

P2 2.5 GHz 1.0 0.50E+06

1.14.1 [5] <1.8> One usual fallacy is to consider the computer with the largest 
clock rate as having the largest performance. Check if this is true for P1 and P2.

1.14.2 [10] <1.8> Another fallacy is to consider that the processor executing the 
largest number of instructions will need a larger CPU time. Considering that pro-
cessor P1 is executing a sequence of 106 instructions and that the CPI of proces-
sors P1 and P2 do not change, determine the number of instructions that P2 can 
execute in the same time that P1 needs to execute 106 instructions.

1.14.3 [10] <1.8> A common fallacy is to use MIPS (millions of instructions per 
second) to compare the performance of two different processors, and consider that 
the processor with the largest MIPS has the largest performance. Check if this is 
true for P1 and P2.

Another common performance fi gure is MFLOPS (million of fl oating-point 
operations per second), defi ned as

MFLOPS = No. FP operations / (execution time × 106)

but this fi gure has the same problems as MIPS. Consider the program in the fol-
lowing table, running on the two processors below.
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Processor Instr. Count

No. Instructions CPI

L/S FP Branch L/S FP Branch Clock Rate

a. P1 1.00E+06 50% 40% 10% 0.75 1.0 1.5 4 GHz

P2 5.00E+06 40% 40% 20% 1.25 0.8 1.25 3 GHz

b. P1 5.00E+06 30% 30% 40% 1.5 1.0 2.0 4 GHz

P2 2.00E+06 40% 30% 30% 1.25 1.0 2.5 3 GHz

1.14.4 [10] <1.8> Find the MFLOPS fi gures for the programs.

1.14.5 [10] <1.8> Find the MIPS fi gures for the programs.

1.14.6 [10] <1.8> Find the performance for the programs and compare it with 
MIPS and MFLOPS.

Exercise 1.15
Another pitfall cited in Section 1.8 is expecting to improve the overall performance 
of a computer by improving only one aspect of the computer. This might be true, 
but not always. Consider a computer running programs with CPU times shown in 
the following table.

 FP Instr. INT Instr. L/S Instr. Branch Instr. Total Time

a. 70 s 85 s 55 s 40 s 250 s

b. 40 s 90 s 60 s 20 s 210 s

1.15.1 [5] <1.8> How much is the total time reduced if the time for FP opera-
tions is reduced by 20%?

1.15.2 [5] <1.8> How much is the time for INT operations reduced if the total 
time is reduced by 20%?

1.15.3 [5] <1.8> Can the total time can be reduced by 20% by reducing only the 
time for branch instructions?

The following table shows the instruction type breakdown per processor of given 
applications executed in different numbers of processors.

Processors FP Instr. INT Instr. L/S Instr.
Branch 
Instr.

CPI 
(FP)

CPI 
(INT)

CPI 
(L/S)

CPI 
(Branch)

a. 2 280 × 106 1000 × 166 640 × 106 128 × 106 1 1 4 2

b. 16 50 × 106 110 × 106 80 × 106 16 × 106 1 1 4 2
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72 Chapter 1 Computer Abstractions and Technology

Assume that each processor has a 2 GHz clock rate.

1.15.4 [10] <1.8> How much must we improve the CPI of FP instructions if we 
want the program to run two times faster?

1.15.5 [10] <1.8> How much must we improve the CPI of L/S instructions if we 
want the program to run two times faster?

1.15.6 [5] <1.8> How much is the execution time of the program improved if the 
CPI of INT and FP instructions is reduced by 40% and the CPI of L/S and Branch 
is reduced by 30%?

Exercise 1.16
Another pitfall, relating to the execution of programs in multiprocessor systems, is 
expecting improvement in performance by improving only the execution time of 
part of the routines. The following table shows the execution time of fi ve routines 
of a program running on different numbers of processors.

No. 
Processors

Routine A 
(ms)

Routine B 
(ms)

Routine C 
(ms)

Routine D 
(ms)

Routine E 
(ms)

a. 4 12 45 6 36 3

b. 32 2 7 1 6 2

1.16.1 [10] <1.8> Find the total execution time and by how much it is reduced if 
the time of routines A, C, and E is improved by 15%.

1.16.2 [10] <1.8> How much is the total time reduced if routine B is improved 
by 10%?

1.16.3 [10] <1.8> How much is the total time reduced if routine D is improved 
by 10%?

Execution time in a multiprocessor system can be split into computing time for 
the routines plus routing time spent sending data from one processor to another. 
Consider the execution time and routing time given in the following table. In this 
case, the routing time is an important component of the total time.
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No. 
Processors

Routine A 
(ms)

Routine B 
(ms)

Routine C 
(ms) 

Routine D 
(ms)

Routine E 
(ms)

Routing 
Time (ms)

2 40 78 9 70 4 11

4 29 60 4 36 2 13

8 15 45 3 19 3 17

16 7 35 1 11 2 22

32 4 23 1 6 1 23

64 2 12 0.5 3 1 26

1.16.4 [10] <1.8> For each doubling of the number of processors, determine the 
ratio of new to old computing time and the ratio of new to old routing time.

1.16.5 [5] <1.8> Using the geometric means of the ratios, extrapolate to fi nd the 
computing time and routing time in a 128-processor system.

1.16.6 [10] <1.8> Find the computing time and routing time for a system with 
one processor.

§1.1, page 9: Discussion questions: many answers are acceptable.
§1.3, page 25: Disk memory: nonvolatile, long access time (milliseconds), and cost 
$0.20–$2.00/GB. Semiconductor memory: volatile, short access time (nanosec onds), 
and cost $20–$75/GB.
§1.4, page 31: 1. a: both, b: latency, c: neither. 2. 7 seconds.
§1.4, page 38: b.
§1.7, page 50: 1, 3, and 4 are valid reasons. Answer 5 can be generally true because 
high volume can make the extra investment to reduce die size by, say, 10% a good 
economic decision, but it doesn’t have to be true.
§1.8, page 53: a. Computer A has the higher MIPS rating. b. Computer B is faster.

Answers to 
Check Yourself
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