
1
Civilization advances
by extending the
number of important
operations which we
can perform without
thinking about them.

Alfred North Whitehead
An Introduction to Mathematics, 1911

Computer
Abstractions
and Technology
1.1 Introduction 3

1.2 Below Your Program 10

1.3 Under the Covers 13

1.4 Performance 26

1.5 The Power Wall 39

1.6 The Sea Change: The Switch from

Uniprocessors to Multiprocessors 41

Ch01-9780123747501.indd 2Ch01-9780123747501.indd 2 25/07/11 2:32 PM25/07/11 2:32 PM

1.7 Real Stuff: Manufacturing and Benchmarking the AMD

Opteron X4 44

1.8 Fallacies and Pitfalls 51

1.9 Concluding Remarks 54

1.10 Historical Perspective and Further Reading 55

1.11 Exercises 56

 1.1 Introduction

Welcome to this book! We’re delighted to have this opportunity to convey the
excitement of the world of computer systems. This is not a dry and dreary fi eld,
where progress is glacial and where new ideas atrophy from neglect. No! Comput-
ers are the product of the incredibly vibrant information technology industry, all
aspects of which are responsible for almost 10% of the gross national product of
the United States, and whose economy has become dependent in part on the rapid
improvements in information technology promised by Moore’s law. This unusual
industry embraces innovation at a breath taking rate. In the last 25 years, there have
been a number of new computers whose introduction appeared to rev olutionize
the computing industry; these revolutions were cut short only because someone
else built an even better computer.

This race to innovate has led to unprecedented progress since the inception of
electronic computing in the late 1940s. Had the transportation industry kept pace
with the computer industry, for example, today we could travel from New York
to London in about a second for roughly a few cents. Take just a moment to
contemplate how such an improvement would change society—living in Tahiti
while working in San Francisco, going to Moscow for an evening at the Bolshoi
Ballet—and you can appreciate the implications of such a change.

Ch01-9780123747501.indd 3Ch01-9780123747501.indd 3 25/07/11 2:32 PM25/07/11 2:32 PM

4 Chapter 1 Computer Abstractions and Technology

Computers have led to a third revolution for civilization, with the information
revolution taking its place alongside the agricultural and the industrial revolu-
tions. The resulting multiplication of humankind’s intellectual strength and reach
naturally has affected our everyday lives profoundly and changed the ways in which
the search for new knowledge is carried out. There is now a new vein of sci entifi c
investigation, with computational scientists joining theoretical and experi mental
scientists in the exploration of new frontiers in astronomy, biol ogy, chemistry, and
physics, among others.

The computer revolution continues. Each time the cost of computing improves
by another factor of 10, the opportunities for computers multiply. Applications
that were economically infeasible suddenly become practical. In the recent past, the
following applications were “computer science fi ction.”

 ■ Computers in automobiles: Until microprocessors improved dramatically in
price and performance in the early 1980s, computer control of cars was ludi-
crous. Today, computers reduce pollution, improve fuel effi ciency via engine
controls, and increase safety through the prevention of dangerous skids and
through the infl ation of air bags to protect occupants in a crash.

 ■ Cell phones: Who would have dreamed that advances in computer systems
would lead to mobile phones, allowing person-to-person communication
almost anywhere in the world?

 ■ Human genome project: The cost of computer equipment to map and ana-
lyze human DNA sequences is hundreds of millions of dollars. It’s unlikely
that anyone would have considered this project had the computer costs been
10 to 100 times higher, as they would have been 10 to 20 years ago. More-
over, costs continue to drop; you may be able to acquire your own genome,
allowing medical care to be tailored to you.

 ■ World Wide Web: Not in existence at the time of the fi rst edition of this book,
the World Wide Web has transformed our society. For many, the WWW has
replaced libraries.

 ■ Search engines: As the content of the WWW grew in size and in value, fi nd-
ing relevant information became increasingly important. Today, many peo-
ple rely on search engines for such a large part of their lives that it would be a
hardship to go without them.

Clearly, advances in this technology now affect almost every aspect of our soci-
ety. Hardware advances have allowed programmers to create wonderfully useful
software, which explains why computers are omnipresent. Today’s science fi ction
suggests tomorrow’s killer applications: already on their way are virtual worlds,
practical speech recognition, and personalized health care.

Ch01-9780123747501.indd 4Ch01-9780123747501.indd 4 25/07/11 2:32 PM25/07/11 2:32 PM

 1.1 Introduction 5

Classes of Computing Applications and Their Characteristics

Although a common set of hardware technologies (see Sections 1.3 and 1.7) is used
in computers ranging from smart home appliances to cell phones to the larg est
supercomputers, these different applications have different design require ments
and employ the core hardware technologies in different ways. Broadly speaking,
computers are used in three different classes of applications.

Desktop computers are possibly the best-known form of computing and are
characterized by the personal computer, which readers of this book have likely used
extensively. Desktop computers emphasize delivery of good performance to single
users at low cost and usually execute third-party software. The evolution of many
computing technologies is driven by this class of computing, which is only about
30 years old!

Servers are the modern form of what were once mainframes, minicomputers,
and supercomputers, and are usually accessed only via a network. Servers are ori-
ented to carrying large workloads, which may consist of either single complex
applications—usually a scientifi c or engineering application—or handling many
small jobs, such as would occur in building a large Web server. These applications
are usually based on software from another source (such as a database or simula-
tion system), but are often modifi ed or customized for a particular function. Serv-
ers are built from the same basic technology as desktop computers, but provide for
greater expandability of both computing and input/output capacity. In gen eral,
servers also place a greater emphasis on dependability, since a crash is usually more
costly than it would be on a single-user desktop computer.

Servers span the widest range in cost and capability. At the low end, a server
may be little more than a desktop computer without a screen or keyboard and
cost a thousand dollars. These low-end servers are typically used for fi le storage,
small business applications, or simple Web serving (see Section 6.10). At the other
extreme are supercomputers, which at the present consist of hundreds to thou-
sands of processors and usually terabytes of memory and petabytes of storage, and
cost millions to hundreds of millions of dollars. Supercomputers are usually used
for high-end scientifi c and engineering calculations, such as weather fore casting,
oil exploration, protein structure determination, and other large-scale problems.
Although such supercomputers represent the peak of computing capa bility, they
represent a relatively small fraction of the servers and a relatively small fraction of
the overall computer market in terms of total revenue.

Although not called supercomputers, Internet datacenters used by companies
like eBay and Google also contain thousands of processors, terabytes of memory,
and petabytes of storage. These are usually considered as large clusters of comput-
ers (see Chapter 7).

Embedded computers are the largest class of computers and span the wid-
est range of applications and performance. Embedded computers include the

desktop computer
A com puter designed
for use by an individual,
usually incorporat ing a
graphics display, a key-
board, and a mouse.

server A computer
used for running larger
programs for multiple
users, often simulta neously,
and typically accessed only
via a network.

supercomputer A class
of computers with the
highest per formance and
cost; they are con fi gured
as servers and typically
cost millions of dollars.

terabyte Originally
1,099,511,627,776 (240)
bytes, although some
communica tions and
secondary storage sys tems
have redefi ned it to mean
1,000,000,000,000 (1012)
bytes.

petabyte Depending
on the situation, either
1000 or 1024 terabytes.

datacenter A room or
building designed to
handle the power, cooling,
and networking needs of
a large number of servers.

embedded computer
A com puter inside
another device used
for running one
predetermined application
or collection of software.

Ch01-9780123747501.indd 5Ch01-9780123747501.indd 5 25/07/11 2:32 PM25/07/11 2:32 PM

6 Chapter 1 Computer Abstractions and Technology

 microprocessors found in your car, the computers in a cell phone, the computers
in a video game or television, and the networks of processors that control a mod-
ern airplane or cargo ship. Embedded computing systems are designed to run one
application or one set of related applications, that are normally integrated with
the hardware and delivered as a single system; thus, despite the large number of
embedded computers, most users never really see that they are using a computer!

Figure 1.1 shows that during the last several years, the growth in cell phones that
rely on embedded computers has been much faster than the growth rate of desktop
computers. Note that the embedded computers are also found in digital TVs and
set-top boxes, automobiles, digital cameras, music players, video games, and a
variety of other such consumer devices, which further increases the gap between
the number of embedded computers and desktop computers.

0
100
200
300
400
500
600
700

M
ill

io
ns

800
900

1000
1100
1200

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

Cell Phones PCs TVs

FIGURE 1.1 The number of cell phones, personal computers, and televisions manufactured
per year between 1997 and 2007. (We have television data only from 2004.) More than a billion new
cell phones were shipped in 2006. Cell phones sales exceeded PCs by only a factor of 1.4 in 1997, but the
ratio grew to 4.5 in 2007. The total number in use in 2004 is estimated to be about 2.0B televisions, 1.8B cell
phones, and 0.8B PCs. As the world population was about 6.4B in 2004, there were approximately one PC,
2.2 cell phones, and 2.5 televisions for every eight people on the planet. A 2006 survey of U.S. families found
that they owned on average 12 gadgets, including three TVs, 2 PCs, and other devices such as game consoles,
MP3 players, and cell phones.

Ch01-9780123747501.indd 6Ch01-9780123747501.indd 6 25/07/11 2:32 PM25/07/11 2:32 PM

 1.1 Introduction 7

Embedded applications often have unique application requirements that
 combine a minimum performance with stringent limitations on cost or power. For
example, consider a music player: the processor need only be as fast as necessary to
handle its limited function, and beyond that, minimizing cost and power are the
most important objectives. Despite their low cost, embedded computers often have
lower tolerance for failure, since the results can vary from upsetting (when your
new television crashes) to devastating (such as might occur when the com puter in
a plane or cargo ship crashes). In consumer-oriented embedded applica tions, such
as a digital home appliance, dependability is achieved primarily through simplic-
ity—the emphasis is on doing one function as perfectly as possi ble. In large embed-
ded systems, techniques of redundancy from the server world are often employed
(see Section 6.9). Although this book focuses on general-pur pose computers, most
concepts apply directly, or with slight modifi cations, to embedded computers.

Elaboration: Elaborations are short sections used throughout the text to provide more
detail on a particular subject that may be of interest. Disinterested readers may skip
over an elabo ration, since the subsequent material will never depend on the contents
of the elaboration.

Many embedded processors are designed using processor cores, a version of a proces-
sor written in a hardware description language, such as Verilog or VHDL (see Chapter 4).
The core allows a designer to integrate other application-specifi c hardware with the pro-
cessor core for fabrication on a single chip.

What You Can Learn in This Book

Successful programmers have always been concerned about the performance of
their programs, because getting results to the user quickly is critical in creating
successful software. In the 1960s and 1970s, a primary constraint on computer
performance was the size of the computer’s memory. Thus, programmers often
followed a simple credo: minimize memory space to make programs fast. In the
last decade, advances in computer design and memory technology have greatly
reduced the importance of small memory size in most applications other than
those in embedded computing systems.

Programmers interested in performance now need to understand the issues
that have replaced the simple memory model of the 1960s: the parallel nature of
processors and the hierarchical nature of memories. Programmers who seek to build
competitive versions of compilers, operating systems, databases, and even applications
will therefore need to increase their knowledge of computer organization.

We are honored to have the opportunity to explain what’s inside this revolution-
ary machine, unraveling the software below your program and the hard ware under
the covers of your computer. By the time you complete this book, we believe you
will be able to answer the following questions:

Ch01-9780123747501.indd 7Ch01-9780123747501.indd 7 25/07/11 2:32 PM25/07/11 2:32 PM

8 Chapter 1 Computer Abstractions and Technology

 ■ How are programs written in a high-level language, such as C or Java, trans-
lated into the language of the hardware, and how does the hardware execute
the resulting program? Comprehending these concepts forms the basis of
understanding the aspects of both the hardware and software that affect
program performance.

 ■ What is the interface between the software and the hardware, and how does
software instruct the hardware to perform needed functions? These con cepts
are vital to understanding how to write many kinds of software.

 ■ What determines the performance of a program, and how can a program-
mer improve the performance? As we will see, this depends on the original
program, the software translation of that program into the computer’s
language, and the effectiveness of the hardware in executing the program.

 ■ What techniques can be used by hardware designers to improve perfor mance?
This book will introduce the basic concepts of modern computer design. The
interested reader will fi nd much more material on this topic in our advanced
book, Computer Architecture: A Quantitative Approach.

 ■ What are the reasons for and the consequences of the recent switch from
sequential processing to parallel processing? This book gives the motivation,
describes the current hardware mechanisms to support parallelism, and
surveys the new generation of “multicore” microprocessors (see Chapter 7).

Without understanding the answers to these questions, improving the perfor-
mance of your program on a modern computer, or evaluating what features might
make one computer better than another for a particular application, will be a
complex process of trial and error, rather than a scientifi c procedure driven by
insight and analysis.

This fi rst chapter lays the foundation for the rest of the book. It introduces the
basic ideas and defi nitions, places the major components of software and hard ware
in perspective, shows how to evaluate performance and power, introduces inte-
grated circuits (the technology that fuels the computer revolution), and explains
the shift to multicores.

In this chapter and later ones, you will likely see many new words, or words
that you may have heard but are not sure what they mean. Don’t panic! Yes, there
is a lot of special terminology used in describing modern computers, but the ter-
minology actually helps, since it enables us to describe precisely a function or
capability. In addition, computer designers (including your authors) love using
acronyms, which are easy to understand once you know what the letters stand for!
To help you remember and locate terms, we have included a highlighted defi ni-
tion of every term in the margins the fi rst time it appears in the text. After a short
time of working with the terminology, you will be fl uent, and your friends will
be impressed as you correctly use acronyms such as BIOS, CPU, DIMM, DRAM,
PCIE, SATA, and many others.

multicore
microprocessor A
microprocessor containing
mul tiple processors
(“cores”) in a single
integrated circuit.

acronym A word
constructed by taking the
initial letters of a string of
words. For example:
RAM is an acronym for
Ran dom Access Memory,
and CPU is an acronym
for Central Processing
Unit.

Ch01-9780123747501.indd 8Ch01-9780123747501.indd 8 25/07/11 2:32 PM25/07/11 2:32 PM

 1.1 Introduction 9

To reinforce how the software and hardware systems used to run a program will
affect performance, we use a special section, Understanding Program Perfor mance,
throughout the book to summarize important insights into program performance.
The fi rst one appears below.

The performance of a program depends on a combination of the effectiveness of
the algorithms used in the program, the software systems used to create and trans-
late the program into machine instructions, and the effectiveness of the computer
in executing those instructions, which may include input/output (I/O) opera tions.
This table summarizes how the hardware and software affect performance.

Understanding
Program
Performance

Hardware or software
component

How this component affects
performance

Where is this
topic covered?

Algorithm Determines both the number of source-level
statements and the number of I/O operations
executed

Other books!

Programming language,
compiler, and architecture

Determines the number of computer
instructions for each source-level statement

Chapters 2 and 3

Processor and memory system Determines how fast instructions can be
executed

Chapters 4, 5, and 7

I/O system (hardware and
operating system)

Determines how fast I/O operations may be
executed

Chapter 6

Check Yourself sections are designed to help readers assess whether they compre-
hend the major concepts introduced in a chapter and understand the implications
of those concepts. Some Check Yourself questions have simple answers; others are
for discussion among a group. Answers to the specifi c ques tions can be found at
the end of the chapter. Check Yourself questions appear only at the end of a section,
making it easy to skip them if you are sure you under stand the material.

1. Section 1.1 showed that the number of embedded processors sold every year
greatly outnumbers the number of desktop processors. Can you con fi rm or
deny this insight based on your own experience? Try to count the number of
embedded processors in your home. How does it compare with the number
of desktop computers in your home?

2. As mentioned earlier, both the software and hardware affect the performance
of a program. Can you think of examples where each of the follow ing is the
right place to look for a performance bottleneck?

 ■ The algorithm chosen

 ■ The programming language or compiler

 ■ The operating system

 ■ The processor

 ■ The I/O system and devices

Check
Yourself

Ch01-9780123747501.indd 9Ch01-9780123747501.indd 9 25/07/11 2:32 PM25/07/11 2:32 PM

10 Chapter 1 Computer Abstractions and Technology

 1.2 Below Your Program

A typical application, such as a word processor or a large database system, may
consist of millions of lines of code and rely on sophisticated software libraries that
implement complex functions in support of the application. As we will see, the
hardware in a computer can only execute extremely simple low-level instructions.
To go from a complex application to the simple instructions involves several layers
of software that interpret or translate high-level operations into simple computer
instructions.

Figure 1.2 shows that these layers of software are organized primarily in a hier -
archical fashion, with applications being the outermost ring and a variety of
systems software sitting between the hardware and applications software.

There are many types of systems software, but two types of systems software are
central to every computer system today: an operating system and a compiler. An
operating system interfaces between a user’s program and the hardware and pro-
vides a variety of services and supervisory functions. Among the most important
functions are

 ■ Handling basic input and output operations

 ■ Allocating storage and memory

 ■ Providing for protected sharing of the computer among multiple applications
using it simultaneously.

Examples of operating systems in use today are Linux, MacOS, and Windows.

In Paris they simply
stared when I spoke to
them in French; I never
did succeed in making
those idiots understand
their own language.

Mark Twain, The
Innocents Abroad, 1869

systems software
Software that provides
services that are
commonly useful,
including operating
systems, compilers,
loaders, and assemblers.

operating system
Supervising program that
manages the resources of
a computer for the benefi t
of the programs that run
on that computer.

FIGURE 1.2 A simplifi ed view of hardware and software as hierarchical layers, shown as
concentric circles with hardware in the center and applications software outermost. In
complex applications, there are often multiple layers of application software as well. For example, a database
system may run on top of the systems software hosting an application, which in turn runs on top of the
database.

Applications software

Sy

ste
ms software

Hardware

Ch01-9780123747501.indd 10Ch01-9780123747501.indd 10 25/07/11 2:32 PM25/07/11 2:32 PM

Compilers perform another vital function: the translation of a program written
in a high-level language, such as C, C++, Java, or Visual Basic into instructions
that the hardware can execute. Given the sophistication of modern programming
lan guages and the simplicity of the instructions executed by the hardware, the
translation from a high-level language program to hardware instructions is
complex. We give a brief overview of the process here and then go into more depth
in Chapter 2 and Appendix B.

From a High-Level Language to the Language of Hardware

To actually speak to electronic hardware, you need to send electrical signals. The
easiest signals for computers to understand are on and off, and so the computer
alphabet is just two letters. Just as the 26 letters of the English alphabet do not limit
how much can be written, the two letters of the computer alphabet do not limit
what computers can do. The two symbols for these two letters are the num bers 0
and 1, and we commonly think of the computer language as numbers in base 2, or
binary numbers. We refer to each “letter” as a binary digit or bit. Com puters are
slaves to our commands, which are called instructions. Instructions, which are just
collections of bits that the computer understands and obeys, can be thought of as
numbers. For example, the bits

1000110010100000

tell one computer to add two numbers. Chapter 2 explains why we use numbers
for instructions and data; we don’t want to steal that chapter’s thunder, but using
numbers for both instructions and data is a foundation of computing.

The fi rst programmers communicated to computers in binary numbers, but this
was so tedious that they quickly invented new notations that were closer to the way
humans think. At fi rst, these notations were translated to binary by hand, but this
process was still tiresome. Using the computer to help program the com puter, the
pioneers invented programs to translate from symbolic notation to binary. The fi rst
of these programs was named an assembler. This program trans lates a symbolic
version of an instruction into the binary version. For example, the programmer
would write

add A,B

and the assembler would translate this notation into

1000110010100000

This instruction tells the computer to add the two numbers A and B. The name
coined for this symbolic language, still used today, is assembly language. In con-
trast, the binary language that the machine understands is the machine language.

Although a tremendous improvement, assembly language is still far from the
notations a scientist might like to use to simulate fl uid fl ow or that an accountant
might use to balance the books. Assembly language requires the programmer

compiler A program
that translates high-level
language statements
into assembly language
statements.

binary digit Also called
a bit. One of the two
 numbers in base 2 (0 or 1)
that are the compo nents
of information.

instruction A command
that computer hardware
under stands and obeys.

assembler A program
that translates a symbolic
version of instructions
into the binary version.

assembly language
A sym bolic representation
of machine instructions.

machine language
A binary representation of
machine instructions.

 1.2 Below Your Program 11

Ch01-9780123747501.indd 11Ch01-9780123747501.indd 11 25/07/11 2:32 PM25/07/11 2:32 PM

12 Chapter 1 Computer Abstractions and Technology

to write one line for every instruction that the computer will follow, forcing the
programmer to think like the computer.

The recognition that a program could be written to translate a more powerful
language into computer instructions was one of the great breakthroughs in the
early days of computing. Programmers today owe their productivity—and their
sanity—to the creation of high-level programming languages and compilers that
translate programs in such languages into instructions. Figure 1.3 shows the rela-
tionships among these programs and languages.

high-level
programming
language A portable
language such as C, C++,
Java, or Visual Basic that
is composed of words
and algebraic notation
that can be translated by
a compiler into assembly
 language.

FIGURE 1.3 C program compiled into assembly language and then assembled into binary
machine language. Although the translation from high-level language to binary machine language is
shown in two steps, some compilers cut out the middleman and produce binary machine language directly.
These languages and this program are examined in more detail in Chapter 2.

swap(int v[], int k)
{int temp;
 temp = v[k];
 v[k] = v[k+1];
 v[k+1] = temp;
}

swap:
 multi $2, $5,4
 add $2, $4,$2
 lw $15, 0($2)
 lw $16, 4($2)
 sw $16, 0($2)
 sw $15, 4($2)
 jr $31

00000000101000100000000100011000
0000000010000010000100000100001
10001101111000100000000000000000
10001110000100100000000000000100
10101110000100100000000000000000
10101101111000100000000000000100
00000011111000000000000000001000

Assembler

Compiler

Binary machine
language
program
(for MIPS)

Assembly
language
program
(for MIPS)

High-level
language
program
(in C)

Ch01-9780123747501.indd 12Ch01-9780123747501.indd 12 25/07/11 2:32 PM25/07/11 2:32 PM

A compiler enables a programmer to write this high-level language expression:

A + B

The compiler would compile it into this assembly language statement:

add A,B

As shown above, the assembler would translate this statement into the binary
instructions that tell the computer to add the two numbers A and B.

High-level programming languages offer several important benefi ts. First, they
allow the programmer to think in a more natural language, using English words
and algebraic notation, resulting in programs that look much more like text than
like tables of cryptic symbols (see Figure 1.3). Moreover, they allow languages to be
designed according to their intended use. Hence, Fortran was designed for sci entifi c
computation, Cobol for business data processing, Lisp for symbol manipu lation,
and so on. There are also domain-specifi c languages for even narrower groups of
users, such as those interested in simulation of fl uids, for example.

The second advantage of programming languages is improved programmer
productivity. One of the few areas of widespread agreement in software develop-
ment is that it takes less time to develop programs when they are written in
languages that require fewer lines to express an idea. Conciseness is a clear
advantage of high-level languages over assembly language.

The fi nal advantage is that programming languages allow programs to be inde-
pendent of the computer on which they were developed, since compilers and
assemblers can translate high-level language programs to the binary instructions
of any computer. These three advantages are so strong that today little program-
ming is done in assembly language.

 1.3 Under the Covers

Now that we have looked below your program to uncover the unde rlying soft ware,
let’s open the covers of your computer to learn about the underlying hardware. The
underlying hardware in any computer performs the same basic functions: inputting
data, outputting data, processing data, and storing data. How these functions are
performed is the primary topic of this book, and subsequent chap ters deal with
different parts of these four tasks.

When we come to an important point in this book, a point so important
that we hope you will remember it forever, we emphasize it by identifying it as a
Big Picture item. We have about a dozen Big Pictures in this book, the fi rst being

 1.3 Under the Covers 13

Ch01-9780123747501.indd 13Ch01-9780123747501.indd 13 25/07/11 2:32 PM25/07/11 2:32 PM

14 Chapter 1 Computer Abstractions and Technology

the fi ve components of a computer that perform the tasks of inputting, out putting,
processing, and storing data.

The fi ve classic components of a computer are input, output, memory,
datapath, and control, with the last two sometimes combined and called
the processor. Figure 1.4 shows the standard organization of a computer.
This organization is independent of hardware technology: you can place
every piece of every computer, past and present, into one of these fi ve cat-
egories. To help you keep all this in perspective, the fi ve components of a
computer are shown on the front page of each of the following chapters,
with the portion of interest to that chapter highlighted.

The BIG
Picture

FIGURE 1.4 The organization of a computer, showing the fi ve classic components. The
processor gets instructions and data from memory. Input writes data to memory, and output reads data
from memory. Control sends the signals that determine the operations of the datapath, memory, input, and
output.

Ch01-9780123747501.indd 14Ch01-9780123747501.indd 14 25/07/11 2:32 PM25/07/11 2:32 PM

Figure 1.5 shows a computer with keyboard, wireless mouse, and screen. This
photograph reveals two of the key components of computers: input devices, such
as the keyboard and mouse, and output devices, such as the screen. As the names
suggest, input feeds the computer, and output is the result of computation sent to
the user. Some devices, such as networks and disks, provide both input and out put
to the computer.

Chapter 6 describes input/output (I/O) devices in more detail, but let’s take an
introductory tour through the computer hardware, starting with the external I/O
devices.

input device
A mechanism through
which the computer is fed
information, such as the
keyboard or mouse.

output device
A mechanism that
conveys the result of a
com putation to a user or
another computer.

FIGURE 1.5 A desktop computer. The liquid crystal display (LCD) screen is the primary output
device, and the keyboard and mouse are the primary input devices. On the right side is an Ethernet
cable that connected the laptop to the network and the Web. The lap top contains the processor, memory,
and additional I/O devices. This system is a Macbook Pro 15" laptop connected to an external display.

 1.3 Under the Covers 15

Ch01-9780123747501.indd 15Ch01-9780123747501.indd 15 25/07/11 2:32 PM25/07/11 2:32 PM

16 Chapter 1 Computer Abstractions and Technology

Anatomy of a Mouse

Although many users now take mice for granted, the idea of a pointing device such
as a mouse was fi rst shown by Doug Engelbart using a research prototype in 1967.
The Alto, which was the inspiration for all workstations as well as for the Macintosh
and Windows OS, included a mouse as its pointing device in 1973. By the 1990s, all
desktop computers included this device, and new user interfaces based on graphics
displays and mice became the norm.

The original mouse was electromechanical and used a large ball that when rolled
across a surface would cause an x and y counter to be incremented. The amount of
increase in each counter told how far the mouse had been moved.

The electromechanical mouse has largely been replaced by the newer all-optical
mouse. The optical mouse is actually a miniature optical processor including an
LED to provide lighting, a tiny black-and-white camera, and a simple optical pro-
cessor. The LED illuminates the surface underneath the mouse; the camera takes
1500 sample pictures a second under the illumination. Successive pictures are sent
to a simple optical processor that compares the images and determines whether
the mouse has moved and how far. The replacement of the electromechanical
mouse by the electro-optical mouse is an illustration of a common phenomenon
where the decreasing costs and higher reliability of electronics cause an electronic
solution to replace the older electromechanical technology. On page 22 we’ll see
another example: fl ash memory.

Through the Looking Glass

The most fascinating I/O device is probably the graphics display. All laptop and
handheld computers, calculators, cellular phones, and almost all desktop comput-
ers now use liquid crystal displays (LCDs) to get a thin, low-power dis play.
The LCD is not the source of light; instead, it controls the transmission of light.
A typical LCD includes rod-shaped molecules in a liquid that form a twist ing
helix that bends light entering the display, from either a light source behind the
display or less often from refl ected light. The rods straighten out when a cur rent is
applied and no longer bend the light. Since the liquid crystal material is between
two screens polarized at 90 degrees, the light cannot pass through unless it is bent.
Today, most LCD displays use an active matrix that has a tiny transistor switch at
each pixel to precisely control current and make sharper images. A red-green-blue
mask associated with each dot on the display determines the intensity of the three
color components in the fi nal image; in a color active matrix LCD, there are three
transistor switches at each point.

The image is composed of a matrix of picture elements, or pixels, which can be
represented as a matrix of bits, called a bit map. Depending on the size of the screen
and the resolution, the display matrix ranges in size from 640 × 480 to 2560 × 1600
pixels in 2008. A color display might use 8 bits for each of the three colors (red,
blue, and green), for 24 bits per pixel, permitting millions of different colors to be
displayed.

I got the idea for the
mouse while attending
a talk at a computer
conference. The speaker
was so boring that I
started daydreaming
and hit upon the idea.

Doug Engelbart

Through computer
displays I have landed
an airplane on the deck
of a moving carrier,
observed a nuclear
particle hit a potential
well, fl own in a rocket
at nearly the speed of
light and watched a
com puter reveal its
innermost workings.

Ivan Sutherland, the
“father” of computer
graphics, Scientifi c
American, 1984

liquid crystal display
A dis play technology
using a thin layer of liquid
polymers that can be used
to transmit or block light
according to whether a
charge is applied.

active matrix display
A liq uid crystal display
using a tran sistor to
control the transmission
of light at each individual
pixel.

pixel The smallest
individual picture element.
Screens are composed of
hundreds of thousands
to millions of pixels,
organized in a matrix.

Ch01-9780123747501.indd 16Ch01-9780123747501.indd 16 25/07/11 2:32 PM25/07/11 2:32 PM

The computer hardware support for graphics consists mainly of a raster refresh
buffer, or frame buffer, to store the bit map. The im age to be represented onscreen is
stored in the frame buffer, and the bit pattern per pixel is read out to the graph ics
display at the refresh rate. Figure 1.6 shows a frame buffer with a simplifi ed design
of just 4 bits per pixel.

X0 X1

Y0

Frame buffer

Raster scan CRT display

0
01
1

1
10
1

Y1

X0 X1

Y0

Y1

FIGURE 1.6 Each coordinate in the frame buffer on the left determines the shade of
the corresponding coordinate for the raster scan CRT display on the right. Pixel (X

0
, Y

0
)

contains the bit pattern 0011, which is a lighter shade on the screen than the bit pattern 1101 in pixel (X
1
, Y

1
).

The goal of the bit map is to faithfully represent what is on the screen. The
challenges in graphics systems arise because the human eye is very good at detecting
even subtle changes on the screen.

Opening the Box

If we open the box containing the computer, we see a fascinating board of thin
plastic, covered with dozens of small gray or black rectangles. Figure 1.7 shows the
contents of the laptop computer in Figure 1.5. The motherboard is shown in the
upper part of the photo. Two disk drives are in front—the hard drive on the left and
a DVD drive on the right. The hole in the middle is for the laptop battery.

The small rectangles on the motherboard contain the devices that drive our
advancing technology, called integrated circuits and nicknamed chips. The board
is composed of three pieces: the piece connecting to the I/O devices mentioned
earlier, the memory, and the processor.

The memory is where the programs are kept when they are running; it also
contains the data needed by the running programs. Figure 1.8 shows that memory
is found on the two small boards, and each small memory board contains eight
inte grated circuits. The memory in Figure 1.8 is built from DRAM chips. DRAM

motherboard
A plastic board containing
packages of integrated
circuits or chips, including
processor, cache, memory,
and connectors for I/O
devices such as networks
and disks.

integrated circuit Also
called a chip. A device
combining doz ens to
millions of transistors.

memory The storage
area in which programs
are kept when they are
running and that con tains
the data needed by the
running programs.

 1.3 Under the Covers 17

Ch01-9780123747501.indd 17Ch01-9780123747501.indd 17 25/07/11 2:32 PM25/07/11 2:32 PM

18 Chapter 1 Computer Abstractions and Technology

FIGURE 1.7 Inside the laptop computer of Figure 1.5. The shiny box with the white label on the lower left is a 100 GB SATA
hard disk drive, and the shiny metal box on the lower right side is the DVD drive. The hole between them is where the laptop battery would
be located. The small hole above the battery hole is for memory DIMMs. Figure 1.8 is a close-up of the DIMMs, which are inserted from the
bottom in this laptop. Above the battery hole and DVD drive is a printed circuit board (PC board), called the motherboard, which contains
most of the electronics of the computer. The two shiny circles in the upper half of the picture are two fans with covers. The processor is the
large raised rectangle just below the left fan. Photo courtesy of OtherWorldComputing.com.

Hard drive Processor Fan with
cover

Spot for
memory
DIMMs

Spot for
battery

Motherboard Fan with
cover

DVD drive

Ch01-9780123747501.indd 18Ch01-9780123747501.indd 18 25/07/11 2:32 PM25/07/11 2:32 PM

stands for dynamic random access memory. Several DRAMs are used together
to contain the instructions and data of a program. In contrast to sequential access
memories, such as magnetic tapes, the RAM portion of the term DRAM means that
memory accesses take basically the same amount of time no matter what portion
of the memory is read.

dynamic random access
memory (DRAM)
Memory built as an
integrated circuit; it
provides random access to
any location.

FIGURE 1.8 Close-up of the bottom of the laptop reveals the memory. The main memory is
contained on one or more small boards shown on the left. The hole for the battery is to the right. The DRAM
chips are mounted on these boards (called DIMMs, for dual inline memory modules) and then plugged into
the connectors. Photo courtesy of OtherWorldComputing.com.

dual inline memory
module (DIMM)
A small board that
contains DRAM chips on
both sides. (SIMMs have
DRAMs on only one side.)

The processor is the active part of the board, following the instructions of a pro-
gram to the letter. It adds numbers, tests numbers, signals I/O devices to activate,
and so on. The processor is under the fan and covered by a heat sink on the left
side of Figure 1.7. Occasionally, people call the processor the CPU, for the more
bureaucratic-sounding central processor unit.

Descending even lower into the hardware, Figure 1.9 reveals details of a micro-
processor. The processor logically comprises two main components: datapath and
control, the respective brawn and brain of the processor. The datapath performs
the arithmetic operations, and control tells the datapath, memory, and I/O devices
what to do according to the wishes of the instructions of the program. Chapter 4
explains the datapath and control for a higher-performance design.

central processor
unit (CPU) Also called
processor. The active part
of the computer, which
contains the datapath and
con trol and which adds
numbers, tests numbers,
signals I/O devices to
activate, and so on.

datapath The
component of the
processor that performs
arithmetic operations

control The component
of the processor that
commands the datapath,
memory, and I/O devices
according to the instruc-
tions of the program.

 1.3 Under the Covers 19

Ch01-9780123747501.indd 19Ch01-9780123747501.indd 19 25/07/11 2:32 PM25/07/11 2:32 PM

20 Chapter 1 Computer Abstractions and Technology

Descending into the depths of any component of the hardware reveals insights
into the computer. Inside the processor is another type of memory—cache mem-
ory. Cache memory consists of a small, fast memory that acts as a buffer for the
DRAM memory. (The nontechnical defi nition of cache is a safe place for hiding
things.) Cache is built using a different memory technology, static random access
memory (SRAM). SRAM is faster but less dense, and hence more expensive, than
DRAM (see Chapter 5).

You may have noticed a common theme in both the software and the hardware
descriptions: delving into the depths of hardware or software reveals more infor-
mation or, conversely, lower-level details are hidden to offer a simpler model at
higher levels. The use of such layers, or abstractions, is a principal technique for
designing very sophisticated computer systems.

One of the most important abstractions is the interface between the hard-
ware and the lowest-level software. Because of its importance, it is given a special

cache memory A small,
fast memory that acts as a
buffer for a slower, larger
memory.

static random access
mem ory (SRAM) Also
memory built as an
integrated circuit, but
faster and less dense than
DRAM.

abstraction A model
that ren ders lower-level
details of com puter
systems temporarily
invisible to facilitate
design of sophisticated
systems.

FIGURE 1.9 Inside the AMD Barcelona microprocessor. The left-hand side is a microphotograph of the AMD Barcelona processor
chip, and the right-hand side shows the major blocks in the processor. This chip has four processors or “cores”. The microprocessor in the
laptop in Figure 1.7 has two cores per chip, called an Intel Core 2 Duo.

2MB
Shared
L3
Cache

Northbridge

Core 4 Core 3

Core 2
512kB
L2
Cache

HT PHY, link 1

128-bit FPU

L1 Data
Cache

L2
Ctl

L1 Instr
Cache

Execution

Load/
Store

Fetch/
Decode/
Branch

Slow I/O Fuses

HT PHY, link 4
H

T
 P

H
Y

, l
in

k
3

H
T

 P
H

Y
, l

in
k

2
Slow I/O Fuses

D
D
R

P
H
Y

Ch01-9780123747501.indd 20Ch01-9780123747501.indd 20 25/07/11 2:32 PM25/07/11 2:32 PM

name: the instruction set architecture, or simply architecture, of a computer.
The instruction set architecture includes anything programmers need to know
to make a binary machine language program work correctly, including ins tructions,
I/O devices, and so on. Typically, the operating system will encapsulate the details
of doing I/O, allocating memory, and other low-level system functions so that
application programmers do not need to worry about such details. The combina-
tion of the basic instruction set and the operating system interface provided for
application programmers is called the application binary interface (ABI).

An instruction set architecture allows computer designers to talk about func-
tions independently from the hardware that performs them. For example, we
can talk about the functions of a digital clock (keeping time, displaying the time,
set ting the alarm) independently from the clock hardware (quartz crystal, LED
dis plays, plastic buttons). Computer designers distinguish architecture from an
implementation of an architecture along the same lines: an implementation is
hardware that obeys the architecture abstraction. These ideas bring us to another
Big Picture.

instruction set
architecture Also
called architecture. An
abstract interface between
the hardware and the
 lowest-level software
that encompasses all the
information necessary to
write a machine language
pro gram that will run
correctly, including
instructions, regis ters,
memory access, I/O,

application binary
interface (ABI) The user
portion of the instruction
set plus the operat ing
system interfaces used by
application programmers.
Defi nes a standard for
binary portability across
computers.

implementation
Hardware that obeys the
architecture abstraction.

Both hardware and software consist of hierarchical layers, with each lower
layer hiding details from the level above. This principle of abstrac tion is
the way both hardware designers and software designers cope with the
complexity of computer systems. One key interface between the levels
of abstraction is the instruction set architecture—the interface between
the hardware and low-level software. This abstract interface enables
many implementations of varying cost and performance to run identical
soft ware.

A Safe Place for Data

Thus far, we have seen how to input data, compute using the data, and display
data. If we were to lose power to the computer, however, everything would be lost
because the memory inside the computer is volatile—that is, when it loses power,
it forgets. In contrast, a DVD doesn’t forget the recorded fi lm when you turn off the
power to the DVD player and is thus a nonvolatile memory technology.

To distinguish between the volatile memory used to hold data and programs
while they are running and this nonvolatile memory used to store data and pro-
grams between runs, the term main memory or primary memory is used for the

volatile memory Stor-
age, such as DRAM, that
 retains data only if it is
receiving power.

nonvolatile memory
A form of memory that
retains data even in
the absence of a power
source and that is used to
store programs between
runs. Mag netic disk is
nonvolatile.

main memory Also
called pri mary memory.
Memory used to hold
programs while they are
 running; typically consists
of DRAM in today’s
 computers.

 1.3 Under the Covers 21

The BIG
Picture

Ch01-9780123747501.indd 21Ch01-9780123747501.indd 21 25/07/11 2:32 PM25/07/11 2:32 PM

22 Chapter 1 Computer Abstractions and Technology

former, and secondary memory for the latter. DRAMs have dominated main
memory since 1975, but magnetic disks have dominated secondary memory
since 1965. The primary nonvolatile storage used in all server computers and
workstations is the magnetic hard disk. Flash memory, a nonvolatile semiconduc-
tor memory, is used instead of disks in mobile devices such as cell phones and is
increasingly replacing disks in music players and even laptops.

As Figure 1.10 shows, a mag netic hard disk consists of a collection of platters,
which rotate on a spindle at 5400 to 15,000 revolutions per minute. The metal
plat ters are covered with magnetic recording material on both sides, similar to the
material found on a cassette or videotape. To read and write information on a hard
disk, a movable arm containing a small electromagnetic coil called a read-write
head is located just above each surface. The entire drive is permanently sealed to
control the environment inside the drive, which, in turn, allows the disk heads to
be much closer to the drive surface.

secondary memory
Non volatile memory
used to store programs
and data between runs;
typically consists of mag-
netic disks in today’s
computers.

magnetic disk Also
called hard disk. A form
of nonvolatile sec ondary
memory composed of
rotating platters coated
with a magnetic recording
 material.

fl ash memory
A nonvolatile semi-
conductor memory. It
is cheaper and slower
than DRAM but more
expensive and faster than
magnetic disks.

FIGURE 1.10 A disk showing 10 disk platters and the read/write heads.

Ch01-9780123747501.indd 22Ch01-9780123747501.indd 22 25/07/11 2:32 PM25/07/11 2:32 PM

Diameters of hard disks vary by more than a factor of 3 today, from 1 inch to
3.5 inches, and have been shrunk over the years to fi t into new products; work station
servers, personal computers, laptops, palmtops, and digital cameras have all inspired
new disk form factors. Traditionally, the widest disks have the highest performance
and the smallest disks have the lowest unit cost. The best cost per gigabyte varies.
Although most hard drives appear inside computers, as in Figure 1.7, hard drives
can also be attached using external interfaces such as universal serial bus (USB).

The use of mechanical components means that access times for magnetic disks
are much slower than for DRAMs: disks typically take 5–20 milli seconds, while
DRAMs take 50–70 nanoseconds—making DRAMs about 100,000 times faster. Yet
disks have much lower costs than DRAM for the same storage capacity, because the
production costs for a given amount of disk storage are lower than for the same
amount of integrated circuit. In 2008, the cost per gigabyte of disk is 30 to 100
times less expensive than DRAM.

Thus, there are three primary differences between magnetic disks and main
memory: disks are nonvolatile because they are magnetic; they have a slower
access time because they are mechanical devices; and they are cheaper per gigabyte
because they have very high storage capacity at a modest cost.

Many have tried to invent a technology cheaper than DRAM but faster than
disk to fi ll that gap, but many have failed. Challengers have never had a product to
market at the right time. By the time a new product would ship, DRAMs and disks
had continued to make rapid advances, costs had dropped accordingly, and the
challenging product was immediately obsolete.

Flash memory, however, is a serious challenger. This semiconductor memory
is nonvolatile like disks and has about the same bandwidth, but latency is 100 to
1000 times faster than disk. Flash is popular in cameras and portable music players
because it comes in much smaller capacities, it is more rugged, and it is more
power effi cient than disks, despite the cost per gigabyte in 2008 being about 6 to 10
times higher than disk. Unlike disks and DRAM, fl ash memory bits wear out after
100,000 to 1,000,000 writes. Thus, fi le systems must keep track of the num ber of
writes and have a strategy to avoid wearing out storage, such as by moving popular
data. Chapter 6 describes fl ash in more detail.

Although hard drives are not removable, there are several storage technologies
in use that include the following:

 ■ Optical disks, including both compact disks (CDs) and digital video disks
(DVDs), constitute the most common form of removable storage. The Blu-
Ray (BD) optical disk standard is the heir-apparent to DVD.

 ■ Flash-based removable memory cards typically attach to a USB connection
and are often used to transfer fi les.

 ■ Magnetic tape provides only slow serial access and has been used to back up
disks, a role now often replaced by duplicate hard drives.

gigabyte Traditionally
1,073,741,824 (230)
bytes, although some
communica tions and
secondary storage sys tems
have redefi ned it to mean
1,000,000,000 (109) bytes.
Simi larly, depending on
the context, megabyte is
either 220 or 106 bytes.

 1.3 Under the Covers 23

Ch01-9780123747501.indd 23Ch01-9780123747501.indd 23 25/07/11 2:32 PM25/07/11 2:32 PM

24 Chapter 1 Computer Abstractions and Technology

Optical disk technology works differently than magnetic disk technology. In
a CD, data is recorded in a spiral fashion, with individual bits being recorded by
burning small pits—approximately 1 micron (10−6 meters) in diameter—into the
disk surface. The disk is read by shining a laser at the CD surface and determining
by examining the refl ected light whether there is a pit or fl at (refl ective) surface.
DVDs use the same approach of bouncing a laser beam off a series of pits and fl at
surfaces. In addition, there are multiple layers that the laser beam can focus on, and
the size of each bit is much smaller, which together increase capacity signifi cantly.
Blu-Ray uses shorter wavelength lasers that shrink the size of the bits and thereby
increase capacity.

Optical disk writers in personal computers use a laser to make the pits in the
recording layer on the CD or DVD surface. This writing process is relatively slow,
taking from minutes (for a full CD) to tens of minutes (for a full DVD). Thus,
for large quantities a different technique called pressing is used, which costs only
pennies per optical disk.

Rewritable CDs and DVDs use a different recording surface that has a crystal-
line, refl ective material; pits are formed that are not refl ective in a manner similar
to that for a write-once CD or DVD. To erase the CD or DVD, the surface is heated
and cooled slowly, allowing an annealing process to restore the surface recording
layer to its crystalline structure. These rewritable disks are the most expensive, with
write-once being cheaper; for read-only disks—used to distribute software, music,
or movies—both the disk cost and recording cost are much lower.

Communicating with Other Computers

We’ve explained how we can input, compute, display, and save data, but there is
still one missing item found in today’s computers: computer networks. Just as the
processor shown in Figure 1.4 is connected to memory and I/O devices, networks
interconnect whole computers, allowing computer users to extend the power of
computing by including communication. Networks have become so popular that
they are the backbone of current computer systems; a new computer without an
optional network interface would be ridiculed. Net worked computers have several
major advantages:

 ■ Communication: Information is exchanged between computers at high speeds.

 ■ Resource sharing: Rather than each computer having its own I/O devices,
devices can be shared by computers on the net work.

 ■ Nonlocal access: By connecting computers over long distances, users need not
be near the computer they are using.

Networks vary in length and performance, with the cost of communication
increasing according to both the speed of communication and the distance that
information travels. Perhaps the most popular type of network is Ethernet. It can
be up to a kilometer long and transfer at upto 10 gigabits per second. Its length and

Ch01-9780123747501.indd 24Ch01-9780123747501.indd 24 25/07/11 2:32 PM25/07/11 2:32 PM

speed make Ethernet useful to connect computers on the same fl oor of a building;
hence, it is an example of what is generically called a local area network. Local area
networks are interconnected with switches that can also provide routing ser vices
and security. Wide area networks cross continents and are the backbone of the
Internet, which supports the World Wide Web. They are typically based on optical
fi bers and are leased from telecommunication companies.

Networks have changed the face of computing in the last 25 years, both by
becoming much more ubiquitous and by making dramatic increases in perfor-
mance. In the 1970s, very few individuals had access to electronic mail, the Internet
and Web did not exist, and physically mailing magnetic tapes was the primary way
to trans fer large amounts of data between two locations. Local area networks were
almost nonexistent, and the few existing wide area networks had limited capacity
and restricted access.

As networking technology improved, it became much cheaper and had a much
higher capacity. For example, the fi rst standardized local area network technology,
developed about 25 years ago, was a version of Ethernet that had a maximum
capacity (also called bandwidth) of 10 million bits per second, typically shared
by tens of, if not a hundred, computers. Today, local area network technology
offers a capacity of from 100 million bits per second to 10 gigabits per second,
usually shared by at most a few computers. Optical communications technology
has allowed similar growth in the capacity of wide area networks, from hundreds
of kilobits to gigabits and from hundreds of computers connected to a worldwide
network to millions of comput ers connected. This combination of dramatic rise in
deployment of networking combined with increases in capacity have made network
technology central to the information revolution of the last 25 years.

For the last decade another innovation in networking is reshaping the way com-
puters communicate. Wireless technology is widespread, and laptops now incorpo-
rate this technology. The ability to make a radio in the same low-cost semiconductor
technology (CMOS) used for memory and microprocessors enabled a signifi cant
improvement in price, leading to an explosion in deploy ment. Currently available
wireless technologies, called by the IEEE standard name 802.11, allow for transmis-
sion rates from 1 to nearly 100 million bits per second. Wireless technology is quite
a bit different from wire-based networks, since all users in an immediate area share
the airwaves.

 ■ Semiconductor DRAM and disk storage differ signifi cantly. Describe the
fundamental difference for each of the following: volatility, access time,
and cost.

Technologies for Building Processors and Memory

Processors and memory have improved at an incredible rate, because computer
designers have long embraced the latest in electronic technology to try to win the
race to design a better computer. Figure 1.11 shows the tech nologies that have been

local area network
(LAN) A network
designed to carry data
within a geographically
confi ned area, typically
within a single building.

wide area network
(WAN) A network
extended over hundreds
of kilometers that can
span a continent.

Check
Yourself

 1.3 Under the Covers 25

Ch01-9780123747501.indd 25Ch01-9780123747501.indd 25 25/07/11 2:32 PM25/07/11 2:32 PM

26 Chapter 1 Computer Abstractions and Technology

used over time, with an estimate of the relative performance per unit cost for
each technology. Section 1.7 explores the technology that has fueled the com puter
industry since 1975 and will continue to do so for the foreseeable future. Since this
technology shapes what computers will be able to do and how quickly they will
evolve, we believe all computer professionals should be familiar with the basics of
integrated circuits.

Year Technology used in computers Relative performance/unit cost

1951 Vacuum tube 0,000,001

1965 Transistor 0,000,035

1975 Integrated circuit 0,000,900

1995 Very large-scale integrated circuit 2,400,000

2005 Ultra large-scale integrated circuit 6,200,000,000

FIGURE 1.11 Relative performance per unit cost of technologies used in computers over
time. Source: Computer Museum, Boston, with 2005 extrapolated by the authors. See Section 1.10 on the CD.

vacuum tube An
electronic component,
predecessor of the
transistor, that consists of
a hol low glass tube about
5 to 10 cm long from
which as much air has
been removed as possible
and that uses an electron
beam to transfer data.

A transistor is simply an on/off switch controlled by electricity. The inte-
grated circuit (IC) combined dozens to hundreds of transistors into a single
chip. To describe the tremendous increase in the number of transistors from
hundreds to millions, the adjective very large scale is added to the term, creating the
 abbreviation VLSI, for very large-scale integrated circuit.

This rate of increasing integration has been remarkably stable. Figure 1.12
shows the growth in DRAM capacity since 1977. For 20 years, the industry has
consistently quadrupled capacity every 3 years, resulting in an increase in excess
of 16,000 times! This increase in transistor count for an integrated circuit is popu-
larly known as Moore’s law, which states that transistor capacity doubles every
18–24 months. Moore’s law resulted from a prediction of such growth in IC
capacity made by Gordon Moore, one of the founders of Intel during the 1960s.

Sustaining this rate of progress for almost 40 years has required incredible
innovation in manufacturing techniques. In Section 1.7, we discuss how to manu-
facture integrated circuits.

 1.4 Performance

Assessing the performance of computers can be quite challenging. The scale and
intricacy of modern software systems, together with the wide range of perfor-
mance improvement techniques employed by hardware designers, have made per-
formance assessment much more diffi cult.

When trying to choose among different computers, performance is an important
attribute. Accurately measuring and comparing different computers is critical to

transistor An on/off
switch controlled by an
electric signal.

very large-scale
integrated (VLSI)
circuit A device con-
taining hundreds of
thousands to millions of
transistors.

Ch01-9780123747501.indd 26Ch01-9780123747501.indd 26 25/07/11 2:32 PM25/07/11 2:32 PM

purchasers and therefore to designers. The people selling computers know this as
well. Often, salespeople would like you to see their computer in the best possible
light, whether or not this light accurately refl ects the needs of the purchaser’s
application. Hence, understanding how best to measure performance and the
limitations of performance measurements is important in selecting a computer.

The rest of this section describes different ways in which performance can be
determined; then, we describe the metrics for measuring performance from the
viewpoint of both a computer user and a designer. We also look at how these metrics
are related and present the classical processor performance equation, which we will
use throughout the text.

Defi ning Performance

When we say one computer has better performance than another, what do we
mean? Although this question might seem simple, an analogy with passenger
airplanes shows how subtle the question of performance can be. Figure 1.13 shows
some typical passenger airplanes, together with their cruising speed, range, and
capacity. If we wanted to know which of the planes in this table had the best per-
formance, we would fi rst need to defi ne performance. For example, considering
different measures of performance, we see that the plane with the highest cruising
speed is the Concorde, the plane with the longest range is the DC-8, and the plane
with the largest capacity is the 747.

Let’s suppose we defi ne performance in terms of speed. This still leaves two possi-
ble defi nitions. You could defi ne the fastest plane as the one with the highest cruis ing
speed, taking a single passenger from one point to another in the least time. If you

FIGURE 1.12 Growth of capacity per DRAM chip over time. The y-axis is measured in Kilobits,
where K = 1024 (210). The DRAM industry quadrupled capacity almost every three years, a 60% increase per
year, for 20 years. In recent years, the rate has slowed down and is somewhat closer to doubling every two
years to three years.

 1,000,000

1976 1978 1980 1982 1984 1986

Year of introduction

1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008

K
bi

t c
ap

ac
ity

16K

64K

256K

1M

4M

16M
64M

128M
256M 512M

1G

100,000

10,000

1000

100

10

 1.4 Performance 27

Ch01-9780123747501.indd 27Ch01-9780123747501.indd 27 25/07/11 2:32 PM25/07/11 2:32 PM

28 Chapter 1 Computer Abstractions and Technology

were interested in transporting 450 passengers from one point to another, however,
the 747 would clearly be the fastest, as the last column of the fi gure shows. Similarly,
we can defi ne computer performance in several different ways.

If you were running a program on two different desktop computers, you’d say that
the faster one is the desktop computer that gets the job done fi rst. If you were running
a datacenter that had several servers running jobs submitted by many users, you’d say
that the faster computer was the one that completed the most jobs during a day.
As an individual computer user, you are interested in reducing response time—the
time between the start and completion of a task—also referred to as execution time.
Datacenter managers are often interested in increasing throughput or bandwidth—
the total amount of work done in a given time. Hence, in most cases, we will need
different performance metrics as well as different sets of applications to benchmark
embedded and desktop computers, which are more focused on response time, versus
servers, which are more focused on throughput.

Throughput and Response Time

Do the following changes to a computer system increase throughput, decrease
re sponse time, or both?

1. Replacing the processor in a computer with a faster version

2. Adding additional processors to a system that uses multiple processors
for separate tasks—for example, searching the World Wide Web

Decreasing response time almost always improves throughput. Hence, in case 1,
both response time and throughput are improved. In case 2, no one task gets
work done faster, so only throughput increases.

If, however, the demand for processing in the second case was almost as large
as the throughput, the system might force requests to queue up. In this case,
increasing the throughput could also improve response time, since it would
reduce the waiting time in the queue. Thus, in many real computer systems,
changing either execution time or throughput often affects the other.

response time Also
called execution time.
The total time required
for the computer to
complete a task, including
disk accesses, memory
accesses, I/O activities,
operating system over-
head, CPU execution
time, and so on.

throughput Also called
band width. Another
measure of per formance,
it is the number of tasks
completed per unit time.

EXAMPLE

ANSWER

Airplane
Passenger
capacity

Cruising range
(miles)

Cruising speed
(m.p.h.)

Passenger throughput
(passengers × m.p.h.)

Boeing 777 375 4630 0610 228,750

Boeing 747 470 4150 0610 286,700

BAC/Sud Concorde 132 4000 1350 178,200

Douglas DC-8-50 146 8720 0544 79,424

FIGURE 1.13 The capacity, range, and speed for a number of commercial airplanes. The last
column shows the rate at which the airplane transports passengers, which is the capacity times the cruising
speed (ignoring range and takeoff and landing times).

Ch01-9780123747501.indd 28Ch01-9780123747501.indd 28 25/07/11 2:32 PM25/07/11 2:32 PM

In discussing the performance of computers, we will be primarily concerned
with response time for the fi rst few chapters. To maximize performance, we want
to minimize response time or execution time for some task. Thus, we can relate
performance and execution time for a computer X:

Performance
X
 = 1 ______________ Execution time

X

This means that for two computers X and Y, if the performance of X is greater
than the performance of Y, we have

Performance
X
 > Performance

Y

1
 ��

Execution time
X

 >
1
 ��

Execution time
Y

Execution time
Y
 > Execution time

X

That is, the execution time on Y is longer than that on X, if X is faster than Y.
In discussing a computer design, we often want to relate the performance of two

different computers quantitatively. We will use the phrase “X is n times faster than
Y”—or equivalently “X is n times as fast as Y”—to mean

Performance

X ��
Performance

Y

 = n

If X is n times faster than Y, then the execution time on Y is n times longer than it is
on X:

Performance

X ��
Performance

Y

 =
Execution time

Y ��
Execution time

X

 = n

Relative Performance

If computer A runs a program in 10 seconds and computer B runs the same
program in 15 seconds, how much faster is A than B?

We know that A is n times faster than B if

Performance

A ____________
Performance

B

 =
Execution time

B _____________
 Execution time

A

 = n

EXAMPLE

ANSWER

 1.4 Performance 29

Ch01-9780123747501.indd 29Ch01-9780123747501.indd 29 25/07/11 2:32 PM25/07/11 2:32 PM

30 Chapter 1 Computer Abstractions and Technology

Thus the performance ratio is

 15 ___ 10 = 1.5

and A is therefore 1.5 times faster than B.

In the above example, we could also say that computer B is 1.5 times slower than
computer A, since

Performance

A ��
Performance

B

 = 1.5

means that

Performance

A ��
1.5

 = Performance
B

For simplicity, we will normally use the terminology faster than when we try to
compare computers quantitatively. Because performance and execution time are
reciprocals, increasing perfor mance requires decreasing execution time. To avoid
the potential confusion between the terms increasing and decreasing, we usually
say “improve performance” or “improve execution time” when we mean “increase
performance” and “decrease execution time.”

Measuring Performance

Time is the measure of computer performance: the computer that performs the
same amount of work in the least time is the fastest. Program execution time is
measured in seconds per program. However, time can be defi ned in different ways,
depending on what we count. The most straightforward defi nition of time is called
wall clock time, response time, or elapsed time. These terms mean the total time
to complete a task, including disk accesses, memory accesses, input/output (I/O)
activities, operating system overhead—every thing.

Computers are often shared, however, and a processor may work on several
programs simultaneously. In such cases, the system may try to optimize through-
put rather than attempt to minimize the elapsed time for one program. Hence,
we often want to distinguish between the elapsed time and the time that the
proces sor is working on our behalf. CPU execution time or simply CPU time,
which recognizes this distinction, is the time the CPU spends comput ing for this
task and does not include time spent waiting for I/O or running other programs.
(Remember, though, that the response time experienced by the user will be the
elapsed time of the program, not the CPU time.) CPU time can be further divided
into the CPU time spent in the program, called user CPU time, and the CPU time
spent in the operating sys tem performing tasks on behalf of the program, called
system CPU time. Differentiating between system and user CPU time is diffi cult to

CPU execution time
Also called CPU time.
The actual time the CPU
spends computing for a
specifi c task.

user CPU time The
CPU time spent in a
program itself.

system CPU time
The CPU time spent in
the operating sys tem
performing tasks on
behalf of the program.

Ch01-9780123747501.indd 30Ch01-9780123747501.indd 30 25/07/11 2:32 PM25/07/11 2:32 PM

do accurately, because it is often hard to assign responsibility for operating sys tem
activities to one user program rather than another and because of the func tionality
differences among operating systems.

For consistency, we maintain a distinction between perfor mance based on
elapsed time and that based on CPU execution time. We will use the term system
perfor mance to refer to elapsed time on an unloaded system and CPU performance
to refer to user CPU time. We will focus on CPU per formance in this chapter,
although our discussions of how to summarize performance can be applied to
either elapsed time or CPU time measurements.

Different applications are sensitive to different aspects of the performance of a
com puter system. Many applications, especially those running on servers, depend
as much on I/O performance, which, in turn, relies on both hardware and software.
Total elapsed time measured by a wall clock is the measurement of interest. In
some application environments, the user may care about throughput, response
time, or a complex combination of the two (e.g., maximum throughput with a
worst-case response time). To improve the performance of a program, one must
have a clear defi nition of what performance metric matters and then proceed to
look for performance bottlenecks by measuring program execution and looking
for the likely bottlenecks. In the following chapters, we will describe how to search
for bot tlenecks and improve performance in various parts of the system.

Although as computer users we care about time, when we examine the details
of a computer it’s convenient to think about performance in other metrics. In par-
ticular, computer designers may want to think about a computer by using a mea-
sure that relates to how fast the hardware can perform basic functions. Almost all
computers are constructed using a clock that determines when events take place in
the hardware. These discrete time intervals are called clock cycles (or ticks, clock
ticks, clock per iods, clocks, cycles). Designers refer to the length of a clock period
both as the time for a complete clock cycle (e.g., 250 picoseconds, or 250 ps) and as
the clock rate (e.g., 4 gigahertz, or 4 GHz), which is the inverse of the clock period.
In the next subsection, we will formalize the relationship between the clock cycles
of the hardware designer and the seconds of the computer user.

1. Suppose we know that an application that uses both a desktop client and a
remote server is limited by network performance. For the following changes,
state whether only the throughput improves, both response time and
throughput improve, or neither improves.

a. An extra network channel is added between the client and the server,
increasing the total network throughput and reducing the delay to obtain
network access (since there are now two channels).

Understanding
Program
Performance

clock cycle Also called
tick, clock tick, clock
period, clock, cycle. The
time for one clock period,
usually of the processor
clock, which runs at a
constant rate.

clock period The length
of each clock cycle.

Check
Yourself

 1.4 Performance 31

Ch01-9780123747501.indd 31Ch01-9780123747501.indd 31 25/07/11 2:32 PM25/07/11 2:32 PM

32 Chapter 1 Computer Abstractions and Technology

b. The networking software is improved, thereby reducing the network
communication delay, but not increasing throughput.

c. More memory is added to the computer.

2. Computer C’s performance is 4 times faster than the performance of com-
puter B, which runs a given application in 28 seconds. How long will computer
C take to run that application?

CPU Performance and Its Factors

Users and designers often examine performance using different metrics. If we could
relate these different metrics, we could determine the effect of a design change
on the performance as experienced by the user. Since we are confi ning ourselves
to CPU performance at this point, the bottom-line performance measure is CPU
execution time. A simple formula relates the most basic metrics (clock cycles and
clock cycle time) to CPU time:

 CPU execution time
for a program

 =

 CPU clock cycles
for a program

 × Clock cycle time

Alternatively, because clock rate and clock cycle time are inverses,

 CPU execution time
for a program

 =

CPU clock cycles for a program
 ���

Clock rate

This formula makes it clear that the hardware designer can improve performance
by reducing the number of clock cycles required for a program or the length of
the clock cycle. As we will see in later chapters, the designer often faces a trade-off
between the number of clock cycles needed for a program and the length of each
cycle. Many techniques that decrease the number of clock cycles may also increase
the clock cycle time.

Improving Performance

Our favorite program runs in 10 seconds on computer A, which has a 2 GHz
clock. We are trying to help a computer designer build a computer, B, which will
run this program in 6 seconds. The designer has determined that a sub stantial
increase in the clock rate is possible, but this increase will affect the rest of the
CPU design, causing computer B to require 1.2 times as many clock cycles as
computer A for this program. What clock rate should we tell the designer to
target?

EXAMPLE

Ch01-9780123747501.indd 32Ch01-9780123747501.indd 32 25/07/11 2:32 PM25/07/11 2:32 PM

Let’s fi rst fi nd the number of clock cycles required for the program on A:

CPU time
A
 =

CPU clock cycles
A _________________

Clock rate
A

10 seconds =
CPU clock cycles

A ��

2 × 109
cycles

 �
second

CPU clock cycles
A
 = 10 seconds × 2 × 109

cycles

second
 = 20 × 109 cycles

CPU time for B can be found using this equation:

CPU time
B
 =

1.2 × CPU clock cycles
A _______________________

Clock rate
B

6 seconds =
1.2 × 20 × 109 cycles

Clock rate

B

ANSWER

 1.4 Performance 33

Clock rate
B
 =

1.2 × 20 × 109 cycles
 ��

6 seconds
 =

0.2 × 20 ×109 cycles
 ��

second
 =

4 × 109 cycles
 ��

second
 = 4 GHz

To run the program in 6 seconds, B must have twice the clock rate of A.

Instruction Performance

The performance equations above did not include any reference to the number of
instructions needed for the program. (We’ll see what the instructions that make up
a program look like in the next chapter.) However, since the compiler clearly gener-
ated instructions to execute, and the computer had to execute the instructions to
run the program, the execution time must depend on the number of instructions
in a program. One way to think about execution time is that it equals the number
of instructions executed multiplied by the average time per instruction. Therefore,
the number of clock cycles required for a program can be written as

CPU clock cycles = Instructions for a program × Average clock cycles
per instruction

The term clock cycles per instruction, which is the average number of clock
cycles each instruction takes to execute, is often abbreviated as CPI. Since different

clock cycles per
instruction (CPI)
Average number of clock
cycles per instruction for
a pro gram or program
fragment.

Ch01-9780123747501.indd 33Ch01-9780123747501.indd 33 25/07/11 2:32 PM25/07/11 2:32 PM

34 Chapter 1 Computer Abstractions and Technology

instructions may take different amounts of time depending on what they do,
CPI is an average of all the instructions executed in the program. CPI provides
one way of comparing two different implementations of the same instruction
set architecture, since the number of instructions executed for a program will, of
course, be the same.

Using the Performance Equation

Suppose we have two implementations of the same instruction set architec-
ture. Computer A has a clock cycle time of 250 ps and a CPI of 2.0 for some
program, and computer B has a clock cycle time of 500 ps and a CPI of 1.2
for the same program. Which computer is faster for this program and by how
much?

We know that each computer executes the same number of instructions for
the program; let’s call this number I. First, fi nd the number of processor clock
cycles for each computer:

CPU clock cycles
A
 = I × 2.0

CPU clock cycles
B
 = I × 1.2

Now we can compute the CPU time for each computer:

CPU time
A
 = CPU clock cycles

A
 × Clock cycle time

 = I × 2.0 × 250 ps = 500 × I ps

Likewise, for B:

CPU time
B
 = I × 1.2 × 500 ps = 600 × I ps

Clearly, computer A is faster. The amount faster is given by the ratio of the
execution times:

CPU performance

A ��
CPU performance

B

 =
Execution time

B ��
Execution time

A

 =
600 × I ps

 �
500 × I ps

 = 1.2

We can conclude that computer A is 1.2 times as fast as computer B for this
program.

EXAMPLE

ANSWER

Ch01-9780123747501.indd 34Ch01-9780123747501.indd 34 25/07/11 2:32 PM25/07/11 2:32 PM

The Classic CPU Performance Equation

We can now write this basic performance equation in terms of instruction count
(the number of instructions executed by the program), CPI, and clock cycle time:

CPU time = Instruction count × CPI × Clock cycle time

or, since the clock rate is the inverse of clock cycle time:

CPU time = Instruction count × CPI ��
Clock rate

These formulas are particularly useful because they separate the three key factors
that affect performance. We can use these formulas to compare two different
implementations or to evaluate a design alternative if we know its impact on these
three parameters.

Comparing Code Segments

A compiler designer is trying to decide between two code sequences for a par-
ticular computer. The hardware designers have supplied the following facts:

instruction count The
num ber of instructions
executed by the program.

EXAMPLE

CPI for each instruction class

A B C

CPI 1 2 3

Instruction counts for each instruction class

Code sequence A B C

1 2 1 2

2 4 1 1

For a particular high-level language statement, the compiler writer is consid-
ering two code sequences that require the following instruction counts:

Which code sequence executes the most instructions? Which will be faster?
What is the CPI for each sequence?

 1.4 Performance 35

Ch01-9780123747501.indd 35Ch01-9780123747501.indd 35 25/07/11 2:32 PM25/07/11 2:32 PM

36 Chapter 1 Computer Abstractions and Technology

Sequence 1 executes 2 + 1 + 2 = 5 instructions. Sequence 2 executes 4 + 1 + 1 = 6
instructions. Therefore, sequence 1 executes fewer instructions.

We can use the equation for CPU clock cycles based on instruction count
and CPI to fi nd the total number of clock cycles for each sequence:

CPU clock cycles = ∑
i = 1

n

 (CPI
i
 × C

i
)

This yields

CPU clock cycles
1
 = (2 × 1) + (1 × 2) + (2 × 3) = 2 + 2 + 6 = 10 cycles

CPU clock cycles
2
 = (4 × 1) + (1 × 2) + (1 × 3) = 4 + 2 + 3 = 9 cycles

So code sequence 2 is faster, even though it executes one extra instruction.
Since code sequence 2 takes fewer overall clock cycles but has more instruc-
tions, it must have a lower CPI. The CPI values can be computed by

 CPI =
CPU clock cycles

 ��
Instruction count

CPI
1
 =

CPU clock cycles
1 ��

Instruction count
1

 = 10 �
5

 = 2.0

 CPI
2
 =

CPU clock cycles
2 ��

Instruction count
2

 = 9 �
6

 = 1.5

ANSWER

Figure 1.14 shows the basic measurements at different levels in the
computer and what is being measured in each case. We can see how these
fac tors are combined to yield execution time measured in seconds per
program:

Time = Seconds/Program = Instructions �
Program

 × Clock cycles
 �

Instruction
 × Seconds �

Clock cycle

Always bear in mind that the only complete and reliable measure of
computer performance is time. For example, changing the instruction set
to lower the instruction count may lead to an organization with a slower
clock cycle time or higher CPI that offsets the improvement in instruc tion
count. Similarly, because CPI depends on type of instructions exe cuted,
the code that executes the fewest number of instructions may not be the
 fastest.

The BIG
Picture

Ch01-9780123747501.indd 36Ch01-9780123747501.indd 36 25/07/11 2:32 PM25/07/11 2:32 PM

How can we determine the value of these factors in the performance equation?
We can measure the CPU execution time by running the program, and the clock
cycle time is usually published as part of the documentation for a computer. The
instruction count and CPI can be more diffi cult to obtain. Of course, if we know
the clock rate and CPU execution time, we need only one of the instruction count
or the CPI to determine the other.

We can measure the instruction count by using software tools that profi le the
execution or by using a simulator of the architecture. Alternatively, we can use
hardware counters, which are included in most processors, to record a variety of
measurements, including the number of instructions executed, the average CPI, and
often, the sources of performance loss. Since the instruction count depends on the
architecture, but not on the exact implementation, we can measure the instruction
count without knowing all the details of the implementation. The CPI, however,
depends on a wide variety of design details in the computer, includ ing both the
memory system and the processor structure (as we will see in Chap ters 4 and 5), as
well as on the mix of instruction types executed in an application. Thus, CPI varies
by application, as well as among implementations with the same instruction set.

The above example shows the danger of using only one factor (instruction count)
to assess performance. When comparing two computers, you must look at all three
components, which combine to form execution time. If some of the fac tors are
identical, like the clock rate in the above example, performance can be determined
by comparing all the nonidentical factors. Since CPI varies by instruction mix,
both instruction count and CPI must be compared, even if clock rates are identical.
Several exercises at the end of this chapter ask you to evaluate a series of computer
and compiler enhancements that affect clock rate, CPI, and instruction count. In
Section 1.8, we’ll examine a common performance measure ment that does not
incorporate all the terms and can thus be misleading.

instruction mix
A measure of the dynamic
frequency of instructions
across one or many
programs.

Components of performance Units of measure

CPU execution time for a program Seconds for the program

Instruction count Instructions executed for the program

Clock cycles per instruction (CPI) Average number of clock cycles per instruction

Clock cycle time Seconds per clock cycle

FIGURE 1.14 The basic components of performance and how each is measured.

 1.4 Performance 37

Ch01-9780123747501.indd 37Ch01-9780123747501.indd 37 25/07/11 2:32 PM25/07/11 2:32 PM

38 Chapter 1 Computer Abstractions and Technology

The performance of a program depends on the algorithm, the language, the
compiler, the architecture, and the actual hardware. The following table summarizes
how these components affect the factors in the CPU performance equation.

Understanding
Program

Performance
Hardware

or software
component Affects what? How?

Algorithm Instruction count,
possibly CPI

The algorithm determines the number of source program
instructions executed and hence the number of processor
instructions executed. The algorithm may also affect the CPI, by
favoring slower or faster instructions. For example, if the
algorithm uses more fl oating-point operations, it will tend to have
a higher CPI.

Programming
language

Instruction count,
CPI

The programming language certainly affects the instruction count,
since statements in the language are translated to processor
instructions, which determine instruction count. The language
may also affect the CPI because of its features; for example,
a language with heavy support for data abstraction (e.g., Java)
will require indirect calls, which will use higher CPI instructions.

Compiler Instruction count,
CPI

The effi ciency of the compiler affects both the instruction count
and average cycles per instruction, since the compiler determines
the translation of the source language instructions into computer
instructions. The compiler’s role can be very complex and affect
the CPI in complex ways.

Instruction set
architecture

Instruction count,
clock rate,
CPI

The instruction set architecture affects all three aspects of CPU
performance, since it affects the instructions needed for a
function, the cost in cycles of each instruction, and the overall
clock rate of the processor.

Elaboration: Although you might expect that the minimum CPI is 1.0, as we’ll see in
Chap ter 4, some processors fetch and execute multiple instructions per clock cycle. To
refl ect that approach, some designers invert CPI to talk about IPC, or instructions per
clock cycle. If a pro cessor executes on average 2 instructions per clock cycle, then it has
an IPC of 2 and hence a CPI of 0.5.

A given application written in Java runs 15 seconds on a desktop processor. A new
Java compiler is released that requires only 0.6 as many instructions as the old
compiler. Unfortunately, it increases the CPI by 1.1. How fast can we expect the
application to run using this new compiler? Pick the right answer from the three
choices below

a. 15 × 0.6 �
1.1

 = 8.2 sec

b. 15 × 0.6 × 1.1 = 9.9 sec

c. 15 × 1.1 �
0.6

 = 27.5 sec

Check
Yourself

Ch01-9780123747501.indd 38Ch01-9780123747501.indd 38 25/07/11 2:32 PM25/07/11 2:32 PM

 1.5 The Power Wall

Figure 1.15 shows the increase in clock rate and power of eight generations of Intel
microprocessors over 25 years. Both clock rate and power increased rapidly for
decades, and then fl attened off recently. The reason they grew together is that they
are correlated, and the reason for their recent slowing is that we have run into the
practical power limit for cooling commodity microprocessors.

FIGURE 1.15 Clock rate and Power for Intel x86 microprocessors over eight generations
and 25 years. The Pentium 4 made a dramatic jump in clock rate and power but less so in performance.
The Prescott thermal problems led to the abandonment of the Pentium 4 line. The Core 2 line reverts to a
simpler pipeline with lower clock rates and multiple processors per chip.

2667

12.5 16

2000

200

66

25

3600

75.3
95

29.1
10.14.94.13.3

103

1

10

100

1000

10000

80
28

6
(1

98
2)

80
38

6
(1

98
5)

80
48

6
(1

98
9)

P
en

tiu
m

(1
99

3)

P
en

tiu
m

P
ro

 (
19

97
)

P
en

tiu
m

 4
W

ill
am

et
te

(2
00

1)

P
en

tiu
m

 4
P

re
sc

ot
t

(2
00

4)

C
or

e
2

K
en

ts
fie

ld
(2

00
7)

C
lo

ck
 R

at
e

(M
H

z)

0

20

40

60

80

100

120

P
ow

er
 (

W
at

ts
)

Clock Rate

Power

The dominant technology for integrated circuits is called CMOS (complemen-
tary metal oxide semiconductor). For CMOS, the primary source of power dissi-
pation is so-called dynamic power—that is, power that is consumed during
switching. The dynamic power dissipation depends on the capacitive loading
of each transistor, the voltage applied, and the frequency that the transistor is
switched:

Power = Capacitive load × Voltage2 × Frequency switched

 1.5 The Power Wall 39

Ch01-9780123747501.indd 39Ch01-9780123747501.indd 39 25/07/11 2:32 PM25/07/11 2:32 PM

40 Chapter 1 Computer Abstractions and Technology

Frequency switched is a function of the clock rate. The capacitive load per
tran sistor is a function of both the number of transistors connected to an output
(called the fanout) and the technology, which determines the capacitance of both
wires and transistors.

How could clock rates grow by a factor of 1000 while power grew by only a
factor of 30? Power can be reduced by lowering the voltage, which occurred with
each new generation of technology, and power is a function of the voltage squared.
Typically, the voltage was reduced about 15% per generation. In 20 years, voltages
have gone from 5V to 1V, which is why the increase in power is only 30 times.

Relative Power

Suppose we developed a new, simpler processor that has 85% of the capacitive
load of the more complex older processor. Further, assume that it has adjust-
able voltage so that it can reduce voltage 15% compared to processor B, which
results in a 15% shrink in frequency. What is the impact on dynamic power?

Power

new �
Power

old

 =
〈Capacitive load × 0.85〉 × 〈Voltage × 0.85〉2 × 〈Frequency switched × 0.85〉

 �����
Capacitive load × Voltage2 × Frequency switched

Thus the power ratio is

0.854 = 0.52

Hence, the new processor uses about half the power of the old processor.

The problem today is that further lowering of the voltage appears to make the
transistors too leaky, like water faucets that cannot be completely shut off. Even
today about 40% of the power consumption is due to leakage. If transistors started
leaking more, the whole process could become unwieldy.

To try to address the power problem, designers have already attached large
devices to increase cooling, and they turn off parts of the chip that are not used in a
given clock cycle. Although there are many more expensive ways to cool chips and
thereby raise their power to, say, 300 watts, these techniques are too expensive for
desktop computers.

Since computer designers slammed into a power wall, they needed a new way
forward. They chose a different way from the way they designed microprocessors
for their fi rst 30 years.

Elaboration: Although dynamic power is the primary source of power dissipation in
CMOS, static power dissipation occurs because of leakage current that fl ows even when
a transistor is off. As mentioned above, leakage is typically responsible for 40% of
the power consumption in 2008. Thus, increasing the number of transistors increases
power dissipation, even if the tran sistors are always off. A variety of design techniques
and technology innovations are being deployed to control leakage, but it’s hard to lower
voltage further.

EXAMPLE

ANSWER

Ch01-9780123747501.indd 40Ch01-9780123747501.indd 40 25/07/11 2:32 PM25/07/11 2:32 PM

 1.6 The Sea Change: The Switch from
Uniprocessors to Multiprocessors

The power limit has forced a dramatic change in the design of microprocessors.
Figure 1.16 shows the improvement in response time of programs for desktop
microprocessors over time. Since 2002, the rate has slowed from a factor of 1.5 per
year to less than a factor of 1.2 per year.

Rather than continuing to decrease the response time of a single program run-
ning on the single processor, as of 2006 all desktop and server companies are ship-
ping microprocessors with multiple processors per chip, where the benefi t is often
more on throughput than on response time. To reduce confusion between the
words processor and microprocessor, companies refer to processors as “cores,” and
such microprocessors are generically called multicore microprocessors. Hence, a
“quadcore” microprocessor is a chip that contains four processors or four cores.

Figure 1.17 shows the number of processors (cores), power, and clock rates
of recent microprocessors. The offi cial plan of record for many companies is to
double the number of cores per microprocessor per semiconductor technology
gener ation, which is about every two years (see Chapter 7).

In the past, programmers could rely on innovations in hardware, architecture,
and compilers to double performance of their programs every 18 months without
having to change a line of code. Today, for programmers to get signifi cant improve-
ment in response time, they need to rewrite their programs to take advantage of
multiple processors. Moreover, to get the historic benefi t of running faster on new
microprocessors, programmers will have to continue to improve performance of
their code as the number of cores doubles.

To reinforce how the software and hardware systems work hand in hand, we use
a special section, Hardware/Software Interface, throughout the book, with the fi rst
one appearing below. These elements summarize important insights at this critical
interface.

Parallelism has always been critical to performance in computing, but it was often
hidden. Chapter 4 will explain pipelining, an elegant technique that runs pro-
grams faster by overlapping the execution of instructions. This is one example of
instruction-level parallelism, where the parallel nature of the hardware is abstracted
away so the programmer and compiler can think of the hardware as executing
instructions sequentially.

Forcing programmers to be aware of the parallel hardware and to explicitly
rewrite their programs to be parallel had been the “third rail” of computer architec-
ture, for companies in the past that depended on such a change in behavior failed
(see Section 7.14 on the CD). From this historical perspective, it’s startling that
the whole IT industry has bet its future that programmers will fi nally successfully
switch to explicitly parallel programming.

“Up to now, most
software has been like
music written for a
solo performer; with
the current generation
of chips we’re getting a
little experi ence with
duets and quar tets and
other small ensembles;
but scoring a work for
large orchestra and
chorus is a different
kind of challenge.”

Brian Hayes, Computing
in a Parallel Universe,
2007.

Hardware/
Software
Interface

 1.6 The Sea Change: The Switch from Uniprocessors to Multiprocessors 41

Ch01-9780123747501.indd 41Ch01-9780123747501.indd 41 25/07/11 2:32 PM25/07/11 2:32 PM

42 Chapter 1 Computer Abstractions and Technology

Why has it been so hard for programmers to write explicitly parallel programs?
The fi rst reason is that parallel programming is by defi nition performance pro-
gramming, which increases the diffi culty of programming. Not only does the
pro gram need to be correct, solve an important problem, and provide a useful
interface to the people or other programs that invoke it, the program must also be
fast. Otherwise, if you don’t need performance, just write a sequential program.

The second reason is that fast for parallel hardware means that the program mer
must divide an application so that each processor has roughly the same amount to

FIGURE 1.16 Growth in processor performance since the mid-1980s. This chart plots performance relative to the VAX 11/780
as measured by the SPECint benchmarks (see Section 1.8). Prior to the mid-1980s, processor performance growth was largely technology-
driven and averaged about 25% per year. The increase in growth to about 52% since then is attributable to more advanced architectural and
organizational ideas. By 2002, this growth led to a difference in performance of about a factor of seven. Performance for fl oating-point-
oriented calculations has increased even faster. Since 2002, the limits of power, available instruction-level parallelism, and long memory latency
have slowed uniprocessor performance recently, to about 20% per year.

P
er

fo
rm

an
ce

 (
vs

.V
A

X
-1

1/
78

0)

10,000

1000

100

10

1978
0

1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006

1779
Intel Pentium III, 1.0 GHz 2584

AMD Athlon, 1.6 GHz

Intel Pentium 4, 3.0 GHz
4195

AMD Opteron, 2.2 GHz
5364

5764

Intel Xeon, 3.6 GHz 64-bit Intel Xeon, 3.6 GHz
6505

1267
Alpha 21264A, 0.7 GHz

993

Alpha 21264, 0.6 GHz

649
Alpha 21164, 0.6 GHz

481
Alpha 21164, 0.5 GHz

280
Alpha 21164, 0.3 GHz

183
Alpha 21064A, 0.3 GHz

117PowerPC 604, 0.1GHz

80
Alpha 21064, 0.2 GHz

51
HP PA-RISC, 0.05 GHz

24
IBM RS6000/540

18
MIPS M2000

13MIPS M/120

9Sun-4/260

5VAX 8700

1.5, VAX-11/78525%/year

52%/year

20%

VAX-11/780

Product

AMD
Opteron X4
(Barcelona) Intel Nehalem IBM Power 6

Sun
Ultra SPARC T2

(Niagara 2)

Cores per chip 4 4 02 8

Clock rate 2.5 GHz ~ 2.5 GHz ? 4.7 GHz 1.4 GHz

Microprocessor power 120 W ~ 100 W ? ~ 100 W ? 94 W

FIGURE 1.17 Number of cores per chip, clock rate, and power for 2008 multicore micro-
processors.

Ch01-9780123747501.indd 42Ch01-9780123747501.indd 42 25/07/11 2:32 PM25/07/11 2:32 PM

do at the same time, and that the overhead of scheduling and coordi nation doesn’t
fritter away the potential performance benefi ts of parallelism.

As an analogy, suppose the task was to write a newspaper story. Eight reporters
working on the same story could potentially write a story eight times faster. To
achieve this increased speed, one would need to break up the task so that each
reporter had something to do at the same time. Thus, we must schedule the sub-
tasks. If anything went wrong and just one reporter took longer than the seven
others did, then the benefi ts of having eight writers would be diminished. Thus, we
must balance the load evenly to get the desired speedup. Another danger would be
if reporters had to spend a lot of time talking to each other to write their sec tions.
You would also fall short if one part of the story, such as the conclusion, couldn’t
be written until all of the other parts were completed. Thus, care must be taken
to reduce communication and synchronization overhead. For both this anal ogy and
parallel programming, the challenges include scheduling, load balancing, time for
synchronization, and overhead for communication between the parties. As you
might guess, the challenge is stiffer with more reporters for a newspa per story and
more processors for parallel programming.

To refl ect this sea change in the industry, the next fi ve chapters in this edition of
the book each have a section on the implications of the parallel revolution to that
chapter:

 ■ Chapter 2, Section 2.11: Parallelism and Instructions: Synchronization. Usually
independent parallel tasks need to coordinate at times, such as to say when
they have completed their work. This chapter explains the instructions used
by multi core processors to synchronize tasks.

 ■ Chapter 3, Section 3.6: Parallelism and Computer Arithmetic : Associativity.
Often parallel program mers start from a working sequential program.
A natural question to learn if their parallel version works is, “does it get the
same answer?” If not, a logical conclusion is that there are bugs in the new
version. This logic assumes that computer arithmetic is associative: you get
the same sum when adding a million numbers, no matter what the order.
This chapter explains that while this logic holds for integers, it doesn’t hold
for fl oating-point numbers.

 ■ Chapter 4, Section 4.10: Parallelism and Advanced Instruction-Level Parallelism.
Given the diffi culty of explicitly parallel programming, tremendous effort was
invested in the 1990s in having the hardware and the compiler uncover implicit
par allelism. This chapter describes some of these aggressive techniques, includ-
ing fetching and executing multiple instructions simultaneously and guessing
on the outcomes of decisions, and executing instructions speculatively.

 1.6 The Sea Change: The Switch from Uniprocessors to Multiprocessors 43

Ch01-9780123747501.indd 43Ch01-9780123747501.indd 43 25/07/11 2:32 PM25/07/11 2:32 PM

44 Chapter 1 Computer Abstractions and Technology

 ■ Chapter 5, Section 5.8: Parallelism and Memory Hierarchies: Cache Coherence.
One way to lower the cost of communication is to have all processors use
the same address space, so that any processor can read or write any data.
Given that all processors today use caches to keep a temporary copy of the
data in faster memory near the pro cessor, it’s easy to imagine that parallel
programming would be even more diffi cult if the caches associated with each
processor had inconsistent values of the shared data. This chapter describes
the mechanisms that keep the data in all caches consistent.

 ■ Chapter 6, Section 6.9: Parallelism and I/O: Redundant Arrays of Inexpensive
Disks. If you ignore input and output in this parallel revolution, the
unintended conse quence of parallel programming may be to make your
parallel program spend most of its time waiting for I/O. This chapter
describes RAID, a tech nique to accelerate the performance of storage
accesses. RAID points out another potential benefi t of parallelism: by having
many copies of resources, the system can continue to provide service despite
a failure of one resource. Hence, RAID can improve both I/O performance
and availability.

In addition to these sections, there is a full chapter on parallel processing.
Chapter 7 goes into more detail on the challenges of parallel programming;
presents the two contrasting approaches to communication of shared addressing
and explicit message passing; describes a restricted model of parallelism that is
easier to program; discusses the diffi culty of benchmarking parallel processors;
introduces a new simple performance model for multicore microprocessors and
fi nally describes and evaluates four examples of multicore microprocessors using
this model.

Starting with this edition of the book, Appendix A describes an increasingly
popular hardware component that is included with desktop computers, the graph-
ics processing unit (GPU). Invented to accelerate graphics, GPUs are becoming
programming platforms in their own right. As you might expect, given these times,
GPUs are highly parallel. Appendix A describes the NVIDIA GPU and highlights
parts of its parallel programming environment.

 1.7 Real Stuff: Manufacturing and
Benchmarking the AMD Opteron X4

Each chapter has a section entitled “Real Stuff” that ties the concepts in the book
with a computer you may use every day. These sections cover the technology
underlying modern computers. For this fi rst “Real Stuff” section, we look at how
integrated circuits are manufactured and how performance and power are mea-
sured, with the AMD Opteron X4 as the example.

I thought [computers]
would be a universally
applicable idea, like a
book is. But I didn’t
think it would develop
as fast as it did, because
I didn’t envision we’d
be able to get as many
parts on a chip as
we fi nally got. The
transistor came along
unex pectedly. It all
happened much faster
than we expected.

J. Presper Eckert,
coinventor of ENIAC,
speaking in 1991

Ch01-9780123747501.indd 44Ch01-9780123747501.indd 44 25/07/11 2:32 PM25/07/11 2:32 PM

Let’s start at the beginning. The manufacture of a chip begins with silicon, a
substance found in sand. Because silicon does not conduct electricity well, it is
called a semiconductor. With a special chemical process, it is possible to add
 materials to silicon that allow tiny areas to transform into one of three devices:

 ■ Excellent conductors of electricity (using either microscopic copper or
aluminum wire)

 ■ Excellent insulators from electricity (like plastic sheathing or glass)

 ■ Areas that can conduct or insulate under special conditions (as a switch)

Transistors fall in the last category. A VLSI circuit, then, is just billions of combi-
nations of conductors, insulators, and switches manufactured in a single small
package.

The manufacturing process for integrated circuits is critical to the cost of the
chips and hence important to computer designers. Figure 1.18 shows that process.
The process starts with a silicon crystal ingot, which looks like a giant sausage.
Today, ingots are 8–12 inches in diameter and about 12–24 inches long. An ingot is
fi nely sliced into wafers no more than 0.1 inch thick. These wafers then go through
a series of processing steps, during which patterns of chemicals are placed on

silicon A natural element
that is a semiconductor.

semiconductor
A substance that does not
conduct electricity well.

silicon crystal ingot
A rod composed of a
silicon crystal that is
between 8 and 12 inches
in diameter and about 12
to 24 inches long.

wafer A slice from a
silicon ingot no more
than 0.1 inch thick, used
to create chips.

FIGURE 1.18 The chip manufacturing process. After being sliced from the silicon ingot, blank
wafers are put through 20 to 40 steps to create patterned wafers (see Figure 1.19). These pat terned wafers
are then tested with a wafer tester, and a map of the good parts is made. Then, the wafers are diced into dies
(see Figure 1.9). In this fi gure, one wafer produced 20 dies, of which 17 passed testing. (X means the die is
bad.) The yield of good dies in this case was 17/20, or 85%. These good dies are then bonded into packages
and tested one more time before shipping the packaged parts to customers. One bad packaged part was
found in this fi nal test.

Slicer

Dicer

20 to 40
processing steps

Bond die to
package

Silicon ingot

Wafer
tester

Part
tester

Ship to
customers

Tested dies Tested
wafer

Blank
wafers

Packaged dies

Patterned wafers

Tested packaged dies

 1.7 Real Stuff: Manufacturing and Benchmarking the AMD Opteron X4 45

Ch01-9780123747501.indd 45Ch01-9780123747501.indd 45 25/07/11 2:32 PM25/07/11 2:32 PM

46 Chapter 1 Computer Abstractions and Technology

each wafer, creating the transistors, conductors, and insulators discussed ear lier.
Today’s integrated circuits contain only one layer of transistors but may have from
two to eight levels of metal conductor, separated by layers of insulators.

A single microscopic fl aw in the wafer itself or in one of the dozens of pattern-
ing steps can result in that area of the wafer failing. These defects, as they are
called, make it virtually impossible to manufacture a perfect wafer. To cope with
imperfection, several strategies have been used, but the simplest is to place many
independent components on a single wafer. The patterned wafer is then chopped
up, or diced, into these components, called dies and more informally known as
chips. Figure 1.19 is a photograph of a wafer containing microprocessors before
they have been diced; earlier, Figure 1.9 on page 20 shows an individual micro-
processor die and its major components.

Dicing enables you to discard only those dies that were unlucky enough to con-
tain the fl aws, rather than the whole wafer. This concept is quantifi ed by the yield
of a process, which is defi ned as the percentage of good dies from the total num ber
of dies on the wafer.

The cost of an integrated circuit rises quickly as the die size increases, due both
to the lower yield and the smaller number of dies that fi t on a wafer. To reduce
the cost, a large die is often “shrunk” by using the next generation process, which
incorporates smaller sizes for both transistors and wires. This improves the yield
and the die count per wafer.

Once you’ve found good dies, they are connected to the input/output pins
of a package, using a process called bonding. These packaged parts are tested a
fi nal time, since mistakes can occur in packaging, and then they are shipped to
cus tomers.

As mentioned above, an increasingly important design constraint is power.
Power is a challenge for two reasons. First, power must be brought in and distrib-
uted around the chip; modern microprocessors use hundreds of pins just for power
and ground! Similarly, multiple levels of interconnect are used solely for power and
ground distribution to portions of the chip. Second, power is dissi pated as heat and
must be removed. An AMD Opteron X4 model 2356 2.0 GHz burns 120 watts in
2008, which must be removed from a chip whose surface area is just over 1 cm2!

Elaboration: The cost of an integrated circuit can be expressed in three simple
equations:

 Cost per die = Cost per wafer

Dies per wafer × yield

 Dies per wafer ≈ Wafer area __________
Die area

 Yield = 1 __________________________________ (1 + (Defects per area × Die area/2))2

defect A microscopic
fl aw in a wafer or in
patterning steps that can
result in the failure of the
die containing that defect.

die The individual
rectangular sections that
are cut from a wafer,
more informally known
as chips.

yield The percentage of
good dies from the total
number of dies on the
wafer.

Ch01-9780123747501.indd 46Ch01-9780123747501.indd 46 25/07/11 2:32 PM25/07/11 2:32 PM

The fi rst equation is straightforward to derive. The second is an approximation,
since it does not subtract the area near the border of the round wafer that cannot
accommodate the rectangu lar dies (see Figure 1.19). The fi nal equation is based on
empirical observations of yields at inte grated circuit factories, with the exponent related
to the number of critical processing steps.

Hence, depending on the defect rate and the size of the die and wafer, costs are
generally not linear in die area.

FIGURE 1.19 A 12-inch (300mm) wafer of AMD Opteron X2 chips, the predecessor of
Opteron X4 chips (Courtesy AMD). The number of dies per wafer at 100% yield is 117. The several
dozen partially rounded chips at the boundaries of the wafer are useless; they are included because it’s easier
to create the masks used to pattern the silicon. This die uses a 90-nanometer technology, which means that the
smallest transistors are approximately 90 nm in size, although they are typically somewhat smaller than the
actual feature size, which refers to the size of the transistors as “drawn” versus the fi nal manufactured size.

 1.7 Real Stuff: Manufacturing and Benchmarking the AMD Opteron X4 47

Ch01-9780123747501.indd 47Ch01-9780123747501.indd 47 25/07/11 2:32 PM25/07/11 2:32 PM

48 Chapter 1 Computer Abstractions and Technology

SPEC CPU Benchmark

A computer user who runs the same programs day in and day out would be the
perfect candidate to evaluate a new computer. The set of programs run would form
a workload. To evaluate two computer systems, a user would simply com pare the
execution time of the workload on the two computers. Most users, how ever, are
not in this situation. Instead, they must rely on other methods that measure the
performance of a candidate computer, hoping that the methods will refl ect how
well the computer will perform with the user’s workload. This alterna tive is usually
followed by evaluating the computer using a set of benchmarks—programs
specifi cally chosen to measure performance. The benchmarks form a workload
that the user hopes will predict the performance of the actual workload.

SPEC (System Performance Evaluation Cooperative) is an effort funded and
supported by a number of computer vendors to create standard sets of bench marks
for modern computer systems. In 1989, SPEC originally created a bench mark
set focusing on processor performance (now called SPEC89), which has evolved
through fi ve generations. The latest is SPEC CPU2006, which consists of a set of 12
integer benchmarks (CINT2006) and 17 fl oating-point benchmarks (CFP2006).
The integer benchmarks vary from part of a C compiler to a chess program to a
quantum computer simulation. The fl oating-point benchmarks include structured
grid codes for fi nite element modeling, particle method codes for molecular
dynamics, and sparse linear algebra codes for fl uid dynam ics.

Figure 1.20 describes the SPEC integer benchmarks and their execution time
on the Opteron X4 and shows the factors that explain execution time: instruction
count, CPI, and clock cycle time. Note that CPI varies by a factor of 13.

To simplify the marketing of computers, SPEC decided to report a single
number to summarize all 12 integer benchmarks. The execution time measure-
ments are fi rst normalized by dividing the execution time on a reference processor
by the execution time on the measured computer; this normalization yields a
measure, called the SPECratio, which has the advantage that bigger numeric
results indicate faster performance (i.e., the SPECratio is the inverse of execution
time). A CINT2006 or CFP2006 summary measurement is obtained by taking the
geometric mean of the SPECratios.

Elaboration: When comparing two computers using SPECratios, use the geometric
mean so that it gives the same relative answer no matter what computer is used to
normalize the results. If we averaged the normalized execution time values with an
arithmetic mean, the results would vary depending on the computer we choose as the
reference.

workload A set of
programs run on a
computer that is either
the actual collection of
applica tions run by a user
or con structed from real
programs to approximate
such a mix. A typi cal
workload specifi es both
the programs and the
relative fre quencies.

benchmark A program
selected for use in
comparing computer
performance.

Ch01-9780123747501.indd 48Ch01-9780123747501.indd 48 25/07/11 2:32 PM25/07/11 2:32 PM

The formula for the geometric mean is

n �
���

 �
i = 1

n

 Execution time ratio
i

where Execution time ratio
i
 is the execution time, normalized to the reference computer,

for the ith program of a total of n in the workload, and

 �
i = 1

n

 ai
 means the product a1 × a2 × … × a

n

SPEC Power Benchmark

Today, SPEC offers a dozen different benchmark sets designed to test a wide
variety of computing environments using real applications and strictly specifi ed
execution rules and reporting requirements. The most recent is SPECpower. It
reports power consumption of servers at different workload levels, divided into
10% increments, over a period of time. Figure 1.21 shows the results for a server
using Barcelona.

SPECpower started with the SPEC benchmark for Java business applications
(SPECJBB2005), which exercises the processors, caches, and main memory as well
as the Java virtual machine, compiler, garbage collector, and pieces of the operat ing

 1.7 Real Stuff: Manufacturing and Benchmarking the AMD Opteron X4 49

FIGURE 1.20 SPECINTC2006 benchmarks running on AMD Opteron X4 model 2356 (Barcelona). As the equation on
page 35 explains, execution time is the prod uct of the three factors in this table: instruction count in billions, clocks per instruction (CPI), and
clock cycle time in nanoseconds. SPECratio is sim ply the reference time, which is supplied by SPEC, divided by the measured execution time.
The single number quoted as SPECINTC2006 is the geometric mean of the SPECratios. Figure 5.40 on page 542 shows that mcf, libquantum,
omnetpp, and xalancbmk have relatively high CPIs because they have high cache miss rates.

Description Name
Instruction
Count × 109 CPI

Clock cycle time
(seconds × 10−9)

Execution
Time

(seconds)

Reference
Time

(seconds) SPECratio

Interpreted string processing perl 2,118 0.75 0.4 637 9,770 15.3

Block-sorting
compression

bzip2 2,389 0.85 0.4 817 9,650 11.8

GNU C compiler gcc 1,050 1.72 0.4 724 8,050 11.1

Combinatorial optimization mcf 336 10.00 0.4 1,345 9,120 6.8

Go game (AI) go 1,658 1.09 0.4 721 10,490 14.6

Search gene sequence hmmer 2,783 0.80 0.4 890 9,330 10.5

Chess game (AI) sjeng 2,176 0.96 0.4 837 12,100 14.5

Quantum computer
simulation

libquantum 1,623 1.61 0.4 1,047 20,720 19.8

Video compression h264avc 3,102 0.80 0.4 993 22,130 22.3

Discrete event
simulation library

omnetpp 587 2.94 0.4 690 6,250 9.1

Games/path fi nding astar 1,082 1.79 0.4 773 7,020 9.1

XML parsing xalancbmk 1,058 2.70 0.4 1,143 6,900 6.0

Geometric Mean 11.7

Ch01-9780123747501.indd 49Ch01-9780123747501.indd 49 25/07/11 2:32 PM25/07/11 2:32 PM

50 Chapter 1 Computer Abstractions and Technology

system. Performance is measured in throughput, and the units are business
operations per second. Once again, to simplify the marketing of computers, SPEC
boils these numbers down to a single number, called “overall ssj_ops per Watt.” The
formula for this single summarizing metric is

overall ssj_ops per Watt = � ∑
i = 0

10

 ssj_ops
i
 � / � ∑

i = 0

10

 power
i
 �

where ssj_ops
i
 is performance at each 10% increment and power

i
 is power con-

sumed at each performance level.

A key factor in determining the cost of an integrated circuit is volume. Which of
the following are reasons why a chip made in high volume should cost less?

1. With high volumes, the manufacturing process can be tuned to a particular
design, increasing the yield.

2. It is less work to design a high-volume part than a low-volume part.

3. The masks used to make the chip are expensive, so the cost per chip is lower
for higher volumes.

4. Engineering development costs are high and largely independent of vol ume;
thus, the development cost per die is lower with high-volume parts.

5. High-volume parts usually have smaller die sizes than low-volume parts and
therefore have higher yield per wafer.

Check
Yourself

Target Load %
Performance

(ssj_ops)
Average Power

(Watts)

100% 231,867 295

90% 211,282 286

80% 185,803 275

70% 163,427 265

60% 140,160 256

50% 118,324 246

40% 92,035 233

30% 70,500 222

20% 47,126 206

10% 23,066 180

0% 0 141

Overall Sum 1,283,590 2,605

Σ ssj_ops / Σ power = 493

FIGURE 1.21 SPECpower_ssj2008 running on dual socket 2.3 GHz AMD Opteron X4 2356
(Barcelona) with 16 GB Of DDR2-667 DRAM and one 500 GB disk.

Ch01-9780123747501.indd 50Ch01-9780123747501.indd 50 25/07/11 2:32 PM25/07/11 2:32 PM

 1.8 Fallacies and Pitfalls

The purpose of a section on fallacies and pitfalls, which will be found in every
chapter, is to explain some commonly held misconceptions that you might
encounter. We call such misbeliefs fallacies. When discussing a fallacy, we try to
give a counterexample. We also discuss pitfalls, or easily made mistakes. Often pit-
falls are generalizations of principles that are true in a limited context. The pur pose
of these sections is to help you avoid making these mistakes in the computers you
may design or use. Cost/performance fallacies and pitfalls have ensnared many a
computer architect, including us. Accordingly, this section suffers no shortage of
relevant examples. We start with a pitfall that traps many designers and reveals an
important relationship in computer design.

Pitfall: Expecting the improvement of one aspect of a computer to increase overall
performance by an amount proportional to the size of the improvement.

This pitfall has visited designers of both hardware and software. A simple design prob-
lem illustrates it well. Suppose a program runs in 100 seconds on a computer, with
multiply operations responsible for 80 seconds of this time. How much do I have to
improve the speed of multiplication if I want my program to run fi ve times faster?

The execution time of the program after making the improvement is given by
the following simple equation known as Amdahl’s law:

Execution time after improvement =

Execution time affected by improvement

 ����
Amount of improvement

 + Execution time unaffected

For this problem:

Execution time after improvement = 80 seconds � n + (100 − 80 seconds)

Since we want the performance to be fi ve times faster, the new execution time
should be 20 seconds, giving

20 seconds = 80 seconds � n + 20 seconds

 0 = 80 seconds � n

That is, there is no amount by which we can enhance-multiply to achieve a fi vefold
increase in performance, if multiply accounts for only 80% of the workload.

Science must begin
with myths, and the
criticism of myths.

Sir Karl Popper, The
 Philosophy of Science,
1957

Amdahl’s law A rule
stating that the
performance enhance-
ment possible with a
given improvement is
limited by the amount
that the improved feature
is used. It is a quantita-
tive version of the law of
diminishing returns.

 1.8 Fallacies and Pitfalls 51

Ch01-9780123747501.indd 51Ch01-9780123747501.indd 51 25/07/11 2:32 PM25/07/11 2:32 PM

52 Chapter 1 Computer Abstractions and Technology

The performance enhancement possible with a given improvement is limited by
the amount that the improved feature is used. This concept also yields what we
call the law of diminishing returns in everyday life.

We can use Amdahl’s law to estimate performance improvements when we
know the time consumed for some function and its potential speedup. Amdahl’s
law, together with the CPU performance equation, is a handy tool for evaluating
potential enhancements. Amdahl’s law is explored in more detail in the exercises.

A common theme in hardware design is a corollary of Amdahl’s law: Make the
common case fast. This simple guideline reminds us that in many cases the fre quency
with which one event occurs may be much higher than the frequency of another.
 Amdahl’s law reminds us that the opportunity for improvement is affected by how
much time the event consumes. Thus, making the common case fast will tend to
enhance performance better than optimizing the rare case. Ironically, the com mon
case is often simpler than the rare case and hence is often easier to enhance.

Amdahl’s law is also used to argue for practical limits to the number of parallel
processors. We examine this argument in the Fallacies and Pitfalls section of
Chapter 7.

Fallacy: Computers at low utilization use little power.

Power effi ciency matters at low utilizations because server workloads vary. CPU
utilization for servers at Google, for example, is between 10% and 50% most of the
time and at 100% less than 1% of the time. Figure 1.22 shows power for serv ers
with the best SPECpower results at 100% load, 50% load, 10% load, and idle. Even
servers that are only 10% utilized burn about two-thirds of their peak power.

Since servers’ workloads vary but use a large fraction of peak power, Luiz
Barroso and Urs Hölzle [2007] argue that we should redesign hardware to achieve
“energy-proportional computing.” If future servers used, say, 10% of peak power at
10% workload, we could reduce the electricity bill of datacenters and become good
corporate citizens in an era of increasing concern about CO

2
 emissions.

FIGURE 1.22 SPECPower results for three servers with the best overall ssj_ops per watt in the fourth quarter of
2007. The overall ssj_ops per watt of the three servers are 698, 682, and 667, respectively. The memory of the top two servers is 16 GB and
the bottom is 8 GB.

Server
Manufacturer

Micro-
processor

Total
Cores/
Sockets

Clock
 Rate

Peak
Performance

(ssj_ops)

100%
Load

Power

50%
Load

Power

50%
Load/
100%
Power

10%
Load

Power

10%
Load/
100%
Power

Active
Idle

Power

Active
Idle/
100%
Power

HP Xeon E5440 8/2 3.0 GHz 308,022 269 W 227 W 84% 174 W 65% 160 W 59%

Dell Xeon E5440 8/2 2.8 GHz 305,413 276 W 230 W 83% 173 W 63% 157 W 57%

Fujitsu Seimens Xeon X3220 4/1 2.4 GHz 143,742 132 W 110 W 83% 85 W 65% 80 W 60%

Pitfall: Using a subset of the performance equation as a performance metric.

We have already shown the fallacy of predicting performance based on simply one
of clock rate, instruction count, or CPI. Another common mistake is to use only

Ch01-9780123747501.indd 52Ch01-9780123747501.indd 52 25/07/11 2:32 PM25/07/11 2:32 PM

two of the three factors to compare performance. Although using two of the three
factors may be valid in a limited context, the concept is also easily misused. Indeed,
nearly all pro posed alternatives to the use of time as the performance metric have
led eventually to misleading claims, distorted results, or incorrect interpretations.

One alternative to time is MIPS (million instructions per second). For a given
program, MIPS is simply

MIPS = Instruction count
 ��

Execution time × 106

Since MIPS is an instruction execution rate, MIPS specifi es performance
inversely to execution time; faster computers have a higher MIPS rating. The good
news about MIPS is that it is easy to understand, and faster computers mean big ger
MIPS, which matches intuition.

There are three problems with using MIPS as a measure for comparing com-
puters. First, MIPS specifi es the instruction execution rate but does not take into
account the capabilities of the instructions. We cannot compare computers with
different instruction sets using MIPS, since the instruction counts will certainly
differ. Second, MIPS varies between programs on the same computer; thus, a com-
puter cannot have a single MIPS rating. For example, by substituting for execu tion
time, we see the relationship between MIPS, clock rate, and CPI:

MIPS = Instruction count ���

 Instruction count × CPI ��
 Clock rate

 × 106

 = Clock rate �
CPI × 106

Recall that CPI varied by 13× for SPEC CPU2006 on Opteron X4, so MIPS does as
well. Finally, and most importantly, if a new program executes more instructions
but each instruction is faster, MIPS can vary independently from performance!

Consider the following performance measurements for a program:

million instructions
per sec ond (MIPS)
A measurement of
program execution speed
based on the number of
millions of instructions.
MIPS is computed as the
instruction count divided
by the product of the
execution time and 106.

Check
Yourself

Measurement Computer A Computer B

Instruction count 10 billion 8 billion

Clock rate 4 GHz 4 GHz

CPI 1.0 1.1

a. Which computer has the higher MIPS rating?

b. Which computer is faster?

 1.8 Fallacies and Pitfalls 53

Ch01-9780123747501.indd 53Ch01-9780123747501.indd 53 25/07/11 2:32 PM25/07/11 2:32 PM

54 Chapter 1 Computer Abstractions and Technology

 1.9 Concluding Remarks

Although it is diffi cult to predict exactly what level of cost/performance comput-
ers will have in the future, it’s a safe bet that they will be much better than they
are today. To participate in these advances, computer designers and programmers
must understand a wider variety of issues.

Both hardware and software designers construct computer systems in hierar-
chical layers, with each lower layer hiding details from the level above. This princi-
ple of abstraction is fundamental to understanding today’s computer systems, but it
does not mean that designers can limit themselves to knowing a single abstraction.
Perhaps the most important example of abstraction is the interface between
hardware and low-level software, called the instruction set architecture. Maintain-
ing the instruction set architecture as a constant enables many implementations of
that architecture—presumably varying in cost and performance—to run identical
software. On the downside, the architecture may preclude introducing innova tions
that require the interface to change.

There is a reliable method of determining and reporting performance by using
the execution time of real programs as the metric. This execution time is related to
other important measurements we can make by the following equation:

 Seconds �
Program

 = Instructions �
Program

 × Clock cycles
 �

Instruction
 × Seconds �

Clock cycle

We will use this equation and its constituent factors many times. Remember,
though, that individually the factors do not determine performance: only the
product, which equals execution time, is a reliable measure of performance.

Execution time is the only valid and unimpeachable measure of perfor-
mance. Many other metrics have been proposed and found wanting.
Sometimes these metrics are fl awed from the start by not refl ecting exe-
cution time; other times a metric that is valid in a limited context is
extended and used beyond that context or without the additional clarifi -
cation needed to make it valid.

The key hardware technology for modern processors is silicon. Equal in impor-
tance to an understanding of integrated circuit technology is an understanding of
the expected rates of technological change. While silicon fuels the rapid advance
of hardware, new ideas in the organization of computers have improved price/
performance. Two of the key ideas are exploiting parallelism in the program,

The BIG
Picture

Where . . . the ENIAC
is equipped with
18,000 vacuum tubes
and weighs 30 tons,
computers in the future
may have 1,000
vacuum tubes and
perhaps weigh just
1½ tons.

Popular Mechanics,
March 1949

Ch01-9780123747501.indd 54Ch01-9780123747501.indd 54 25/07/11 2:32 PM25/07/11 2:32 PM

typically today via multiple processors, and exploiting locality of accesses to a
memory hierarchy, typically via caches.

Power has replaced die area as the most critical resource of microprocessor
design. Conserving power while trying to increase performance has forced the
hardware industry to switch to multicore microprocessors, thereby forcing the
software industry to switch to programming parallel hardware.

Computer designs have always been measured by cost and performance, as well
as other important factors such as power, reliability, cost of ownership, and scal-
ability. Although this chapter has focused on cost, performance, and power, the
best designs will strike the appropriate balance for a given market among all the
factors.

Road Map for This Book
At the bottom of these abstractions are the fi ve classic components of a computer:
datapath, control, memory, input, and output (refer to Figure 1.4). These fi ve
components also serve as the framework for the rest of the chapters in this book:

 ■ Datapath: Chapters 3, 4, 7, and Appendix A

 ■ Control: Chapters 4, 7, and Appendix A

 ■ Memory: Chapter 5

 ■ Input: Chapter 6

 ■ Output: Chapter 6

As mentioned above, Chapter 4 describes how processors exploit implicit par-
allelism, Chapter 7 describes the explicitly parallel multicore microprocessors that
are at the heart of the parallel revolution, and Appendix A describes the highly
parallel graphics processor chip. Chapter 5 describes how a memory hierarchy
exploits locality. Chapter 2 describes instruction sets—the interface between com-
pilers and the computer—and emphasizes the role of compilers and programming
languages in using the features of the instruction set. Appendix B provides a
reference for the instruction set of Chapter 2. Chapter 3 describes how computers
handle arithmetic data. Appendix C, on the CD, introduces logic design.

 Historical Perspective and Further Reading

For each chapter in the text, a section devoted to a historical perspective can be
found on the CD that accompanies this book. We may trace the development of
an idea through a series of computers or describe some important projects, and we
provide references in case you are interested in probing further.

An active fi eld of
science is like an
immense anthill; the
individual almost
vanishes into the mass
of minds tum bling
over each other, carry-
ing information from
place to place, passing
it around at the speed
of light.

Lewis Thomas, “Natural
 Science,” in The Lives of
a Cell, 1974

1.10

 1.10 Historical Perspective and Further Reading 55

Ch01-9780123747501.indd 55Ch01-9780123747501.indd 55 25/07/11 2:32 PM25/07/11 2:32 PM

56 Chapter 1 Computer Abstractions and Technology

The historical perspective for this chapter provides a background for some
of the key ideas presented in this opening chapter. Its purpose is to give you the
human story behind the technological advances and to place achievements in
their historical context. By understanding the past, you may be better able to
understand the forces that will shape computing in the future. Each historical per-
spectives section on the CD ends with suggestions for further reading, which are
also collected separately on the CD under the section “Further Reading.” The rest
of Section 1.10 is found on the CD.

 1.11 Exercises
Contributed by Javier Bruguera of Universidade de Santiago de Compostela

Most of the exercises in this edition are designed so that they feature a qualitative
description supported by a table that provides alternative quantitative parameters.
These parameters are needed to solve the questions that comprise the exercise.
Individual questions can be solved using any or all of the parameters—you decide
how many of the parameters should be considered for any given exercise question.
For example, it is possible to say “complete Question 4.1.1 using the parameters
given in row A of the table.” Alternately, instructors can customize these exercises
to create novel solutions by replacing the given parameters with your own unique
values.

The number of quantitative exercises varies from chapter to chapter and depends
largely on the topics covered. More conventional exercises are provided where the
quantitative approach does not fi t.

The relative time ratings of exercises are shown in square brackets after each
exercise number. On average, an exercise rated [10] will take you twice as long as
one rated [5]. Sections of the text that should be read before attempting an exercise
will be given in angled brackets; for example, <1.3> means you should have read
Section 1.3, Under the Covers, to help you solve this exercise.

Exercise 1.1
Find the word or phrase from the list below that best matches the description in the
following questions. Use the num bers to the left of words in the answer. Each
answer should be used only once.

Ch01-9780123747501.indd 56Ch01-9780123747501.indd 56 25/07/11 2:32 PM25/07/11 2:32 PM

1. virtual worlds 14. operating system

2. desktop computers 15. compiler

3. servers 16. bit

4. low-end servers 17. instruction

5. supercomputers 18. assembly language

6. terabyte 19. machine language

7. petabyte 20. C

8. datacenters 21. assembler

9. embedded computers 22. high-level language

10. multicore processors 23. system software

11. VHDL 24. application software

12. RAM 25. Cobol

13. CPU 26. Fortran

1.1.1 [2] <1.1> Computer used to run large problems and usually accessed via a
network

1.1.2 [2] <1.1> 1015 or 250 bytes

1.1.3 [2] <1.1> Computer composed of hundred to thousand processors and
terabytes of memory

1.1.4 [2] <1.1> Today’s science fi ction application that probably will be available
in the near future

1.1.5 [2] <1.1> A kind of memory called random access memory

1.1.6 [2] <1.1> Part of a computer called central processor unit

1.1.7 [2] <1.1> Thousands of processors forming a large cluster

1.1.8 [2] <1.1> Microprocessors containing several processors in the same chip

1.1.9 [2] <1.1> Desktop computer without a screen or keyboard usually accessed
via a network

1.1.10 [2] <1.1> A computer used to running one predetermined application or
collection of software

1.1.11 [2] <1.1> Special language used to describe hardware components

 1.11 Exercises 57

AQ 1

AQ 2

Ch01-9780123747501.indd 57Ch01-9780123747501.indd 57 25/07/11 2:32 PM25/07/11 2:32 PM

58 Chapter 1 Computer Abstractions and Technology

1.1.12 [2] <1.1> Personal computer delivering good performance to single users
at low cost

1.1.13 [2] <1.2> Program that translates statements in high-level language to
assembly language

1.1.14 [2] <1.2> Program that translates symbolic instructions to binary
 ins tructions

1.1.15 [2] <1.2> High-level language for business data processing

1.1.16 [2] <1.2> Binary language that the processor can understand

1.1.17 [2] <1.2> Commands that the processors understand

1.1.18 [2] <1.2> High-level language for scientifi c computation

1.1.19 [2] <1.2> Symbolic representation of machine instructions

1.1.20 [2] <1.2> Interface between user’s program and hardware providing a
variety of services and supervision functions

1.1.21 [2] <1.2> Software/programs developed by the users

1.1.22 [2] <1.2> Binary digit (value 0 or 1)

1.1.23 [2] <1.2> Software layer between the application software and the hard-
ware that includes the operating system and the compilers

1.1.24 [2] <1.2> High-level language used to write application and system
software

1.1.25 [2] <1.2> Portable language composed of words and algebraic expres-
sions that must be translated into assembly language before run in a computer

1.1.26 [2] <1.2> 1012 or 240 bytes

Exercise 1.2
Consider the different confi gurations shown in the table

Confi guration Resolution Main Memory Ethernet Network

a. 1 640 × 480 2 Gbytes 100 Mbit

2 1280 × 1024 4 Gbytes 1 Gbit

b. 1 1024 × 768 2 Gbytes 100 Mbit

2 2560 × 1600 4 Gbytes 1Gbit

Ch01-9780123747501.indd 58Ch01-9780123747501.indd 58 25/07/11 2:32 PM25/07/11 2:32 PM

1.2.1 [10] <1.3> For a color display using 8 bits for each of the primary colors
(red, green, blue) per pixel, what should be the minimum size in bytes of the frame
buffer to store a frame?

1.2.2 [5] <1.3> How many frames could it store, assuming the memory contains
no other information?

1.2.3 [5] <1.3> If a 256 Kbytes fi le is sent through the Ethernet connection, how
long it would take?

For problems below, use the information about access time for every type of mem-
ory in the following table.

Cache DRAM Flash Memory Magnetic Disk

a. 5 ns 50 ns 5 μs 5 ms

b. 7 ns 70 ns 15 μs 20 ms

1.2.4 [5] <1.3> Find how long it takes to read a fi le from a DRAM if it takes 2
microseconds from the cache memory.

1.2.5 [5] <1.3> Find how long it takes to read a fi le from a disk if it takes 2 micro-
seconds from the cache memory.

1.2.6 [5] <1.3> Find how long it takes to read a fi le from a fl ash memory if it
takes 2 microseconds from the cache memory.

Exercise 1.3
Consider three different processors P1, P2, and P3 executing the same instruction
set with the clock rates and CPIs given in the following table.

Processor Clock Rate CPI

a. P1 3 GHz 1.5

P2 2.5 GHz 1.0

P3 4 GHz 2.2

b. P1 2 GHz 1.2

P2 3 GHz 0.8

P3 4 GHz 2.0

1.3.1 [5] <1.4> Which processor has the highest performance expressed in
instructions per second?

1.3.2 [10] <1.4> If the processors each execute a program in 10 seconds, fi nd the
number of cycles and the number of instructions.

 1.11 Exercises 59

Ch01-9780123747501.indd 59Ch01-9780123747501.indd 59 25/07/11 2:32 PM25/07/11 2:32 PM

60 Chapter 1 Computer Abstractions and Technology

1.3.3 [10] <1.4> We are trying to reduce the time by 30% but this leads to
an increase of 20% in the CPI. What clock rate should we have to get this time
reduction?

For problems below, use the information in the following table.

Processor Clock Rate No. Instructions Time

a. P1 3 GHz 20.00E+09 7 s

P2 2.5 GHz 30.00E+09 10 s

P3 4 GHz 90.00E+09 9 s

b. P1 2 GHz 20.00E+09 5 s

P2 3 GHz 30.00E+09 8 s

P3 4 GHz 25.00E+09 7 s

1.3.4 [10] <1.4> Find the IPC (instructions per cycle) for each processor.

1.3.5 [5] <1.4> Find the clock rate for P2 that reduces its execution time to
that of P1.

1.3.6 [5] <1.4> Find the number of instructions for P2 that reduces its execution
time to that of P3.

Exercise 1.4
Consider two different implementations of the same instruction set architecture.
There are four classes of instructions, A, B, C, and D. The clock rate and CPI of each
implementation are given in the following table.

Clock Rate CPI Class A CPI Class B CPI Class C CPI Class D

a. P1 2.5 GHz 1 2 3 3

P2 3 GHz 2 2 2 2

b. P1 2.5 GHz 2 1.5 2 1

P2 3 GHz 1 2 1 1

1.4.1 [10] <1.4> Given a program with 106 instructions divided into classes as
follows: 10% class A, 20% class B, 50% class C, and 20% class D, which implemen-
tation is faster?

1.4.2 [5] <1.4> What is the global CPI for each implementation?

1.4.3 [5] <1.4> Find the clock cycles required in both cases.

Ch01-9780123747501.indd 60Ch01-9780123747501.indd 60 25/07/11 2:32 PM25/07/11 2:32 PM

The following table shows the number of instructions for a program.

Arith Store Load Branch Total

a. 650 100 600 50 1400

b. 750 250 500 500 2000

1.4.4 [5] <1.4> Assuming that arith instructions take 1 cycle, load and store 5
cycles, and branches 2 cycles, what is the execution time of the program in a 2 GHz
processor?

1.4.5 [5] <1.4> Find the CPI for the program.

1.4.6 [10] <1.4> If the number of load instructions can be reduced by one half,
what is the speedup and the CPI?

Exercise 1.5
Consider two different implementations, P1 and P2, of the same instruction set.
There are fi ve classes of instructions (A, B, C, D, and E) in the instruction set. The
clock rate and CPI of each class is given below.

Clock Rate CPI Class A CPI Class B CPI Class C CPI Class D CPI Class E

a. P1 2.0 GHz 1 2 3 4 3

P2 4.0 GHz 2 2 2 4 4

b. P1 2.0 GHz 1 1 2 3 2

P2 3.0 GHz 1 2 3 4 3

1.5.1 [5] <1.4> Assume that peak performance is defi ned as the fastest rate that
a computer can execute any instruction sequence. What are the peak performances
of P1 and P2 expressed in instructions per second?

1.5.2 [10] <1.4> If the number of instructions executed in a certain program
is divided equally among the classes of instructions except for class A, which
occurs twice as often as each of the others, which computer is faster? How much
faster is it?

1.5.3 [10] <1.4> If the number of instructions executed in a certain program
is divided equally among the classes of instructions except for class E, which oc-
curs twice as often as each of the others, which computer is faster? How much
faster is it?

The table below shows instruction-type breakdown for different programs. Using
this data, you will be exploring the performance trade-offs different changes made
to an MIPS processor.

 1.11 Exercises 61

AQ 3

AQ 4

Ch01-9780123747501.indd 61Ch01-9780123747501.indd 61 25/07/11 2:32 PM25/07/11 2:32 PM

62 Chapter 1 Computer Abstractions and Technology

No. Instructions

Compute Load Store Branch Total

a. Program1 600 600 200 50 1450

b. Program 2 900 500 100 200 1700

1.5.4 [5] <1.4> Assuming that computes take 1 cycle, loads and store instructions
take 10 cycles, and branches take 3 cycles, fi nd the execution time on a 3 GHz MIPS
processor.

1.5.5 [5] <1.4> Assuming that computes take 1 cycle, loads and store instructions
take 2 cycles, and branches take 3 cycles, fi nd the execution time on a 3 GHz MIPS
processor.

1.5.6 [5] <1.4> Assuming that computes take 1 cycle, loads and store instruc-
tions take 2 cycles, and branches take 3 cycles, what is the speedup if the number of
compute instruction can be reduced by one-half?

Exercise 1.6
Compilers can have a profound impact on the performance of an application on
given a processor. This problem will explore the impact compilers have on execu-
tion time.

Compiler A Compiler B

No. Instructions Execution Time No. Instructions Execution Time

a. 1.00E+09 1.8 s 1.20E+09 1.8 s

b. 1.00E+09 1.1 s 1.20E+09 1.5 s

 1.6.1 [5] <1.4> For the same program, two different compilers are used. The table
above shows the execution time of the two different compiled programs. Find the
average CPI for each program given that the processor has a clock cycle time of 1 ns.

1.6.2 [5] <1.4> Assume the average CPIs found in 1.6.1, but that the compiled
programs run on two different processors. If the execution times on the two pro-
cessors are the same, how much faster is the clock of the processor running com-
piler A’s code versus the clock of the processor running compiler B’s code?

1.6.3 [5] <1.4> A new compiler is developed that uses only 600 million instruc-
tions and has an average CPI of 1.1. What is the speedup of using this new compiler
versus using Compiler A or B on the original processor of 1.6.1?

Consider two different implementations, P1 and P2, of the same instruction set.
There are fi ve classes of instructions (A, B, C, D, and E) in the instruction set. P1
has a clock rate of 4 GHz, and P2 has a clock rate of 6 GHz. The average number
of cycles for each instruction class for P1 and P2 are listed in the following table.

Ch01-9780123747501.indd 62Ch01-9780123747501.indd 62 25/07/11 2:32 PM25/07/11 2:32 PM

CPI Class A CPI Class B CPI Class C CPI Class D CPI Class E

a. P1 1 2 3 4 5

P2 3 3 3 5 5

b. P1 1 2 3 4 5

P2 2 2 2 2 6

1.6.4 [5] <1.4> Assume that peak performance is defi ned as the fastest rate that
a computer can execute any instruction sequence. What are the peak performances
of P1 and P2 expressed in instructions per second?

1 .6.5 [5] <1.4> If the number of instructions executed in a certain program is di-
vided equally among the fi ve classes of instructions except for class A, which occurs
twice as often as each of the others, how much faster is P2 than P1?

1.6.6 [5] <1.4> At what frequency does P1 have the same performance of P2 for
the instruction mix given in 1.6.5?

E xercise 1.7
The following table shows the increase in clock rate and power of eight generations
of Intel processors over 28 years.

Processor Clock Rate Power

80286 (1982) 12.5 MHz 3.3 W

80386 (1985) 16 MHz 4.1 W

80486 (1989) 25 MHz 4.9 W

Pentium (1993) 66 MHz 10.1 W

Pentium Pro (1997) 200 MHz 29.1 W

Pentium 4 Willamette (2001) 2 GHz 75.3 W

Pentium 4 Prescott (2004) 3.6 GHz 103 W

Core 2 Ketsfi eld (2007) 2.667 GHz 95 W

1.7.1 [5] <1.5> What is the geometric mean of the ratios between consecutive
generations for both clock rate and power? (The geometric mean is described in
Section 1.7.)

1.7.2 [5] <1.5> What is the largest relative change in clock rate and power
between generations?

1.7.3 [5] <1.5> How much larger is the clock rate and power of the last genera-
tion with respect to the fi rst generation?

 1.11 Exercises 63

Ch01-9780123747501.indd 63Ch01-9780123747501.indd 63 25/07/11 2:32 PM25/07/11 2:32 PM

64 Chapter 1 Computer Abstractions and Technology

Consider the following values for voltage in each generation.

Processor Voltage

80286 (1982) 5

80386 (1985) 5

80486 (1989) 5

Pentium (1993) 5

Pentium Pro (1997) 3.3

Pentium 4 Willamette (2001) 1.75

Pentium 4 Prescott (2004) 1.25

Core 2 Ketsfi eld (2007) 1.1

1.7.4 [5] <1.5> Find the average capacitive loads, assuming a negligible static
power consumption.

1.7.5 [5] <1.5> Find the largest relative change in voltage between generations.

1.7.6 [5] <1.5> Find the geometric mean of the voltage ratios in the generations
since the Pentium.

Exercise 1.8
Suppose we have developed new versions of a processor with the following char-
acteristics.

Version Voltage Clock Rate

a. Version 1 1.75 V 1.5 GHz

Version 2 1.2 V 2 GHz

b. Version 1 1.1 V 3 GHz

Version 2 0.8 V 4 GHz

1.8.1 [5] <1.5> How much has the capacitive load varied between versions if the
dynamic power has been reduced by 10%?

1.8.2 [5] <1.5> How much has the dynamic power been reduced if the capacitive
load does not change?

1.8.3 [10] <1.5> Assuming that the capacitive load of version 2 is 80% the
capacitive load of version 1, fi nd the voltage for version 2 if the dynamic power of
version 2 is reduced by 40% from version 1.

Suppose that the industry trends show that a new process generation varies as
follows.

Ch01-9780123747501.indd 64Ch01-9780123747501.indd 64 25/07/11 2:32 PM25/07/11 2:32 PM

Capacitance Voltage Clock Rate Area

a. 1 1/21/2 1.15 1/21/2

b. 1 1/21/4 1.2 1/21/4

1.8.4 [5] <1.5> Find the scaling factor for the dynamic power.

1.8.5 [5] <1.5> Find the scaling of the capacitance per unit area unit.

1.8.6 [5] <1.5> Assuming a Core 2 processor with a clock rate of 2.667 GHz, a
power consumption of 95 W, and a voltage of 1.1 V, fi nd the voltage and clock rate
of this processor for the next process generation.

Exercise 1.9
Although the dynamic power is the primary source of power dissipation in CMOS,
leakage current produces a static power dissipation V × I

leak
. The smaller the on-

chip dimensions, the more signifi cant is the static power. Assume the fi gures shown
in the following table for static and dynamic power dissipation for several genera-
tions of processors.

Technology Dynamic Power (W) Static Power (W) Voltage (V)

a. 180 nm 50 10 1.2

b. 70 nm 90 60 0.9

1.9.1 [5] <1.5> Find the percentage of the total dissipated power comprised by
static power.

1.9.2 [5] <1.5> If the total dissipated power is reduced by 10% while maintain-
ing the static to total power rate of problem 1.9.1, how much should the voltage be
reduced to maintain the same leakage current?

1.9.3 [5] <1.5> Determine the ratio of static power to dynamic power for each
technology.

Consider now the dynamic power dissipation of different versions of a given pro-
cessor for three different voltages given in the following table.

1.2 V 1.0 V 0.8 V

a. 75 W 60 W 35 W

b. 62 W 50 W 30 W

 1.11 Exercises 65

Ch01-9780123747501.indd 65Ch01-9780123747501.indd 65 25/07/11 2:32 PM25/07/11 2:32 PM

66 Chapter 1 Computer Abstractions and Technology

1.9.4 [5] <1.5> Determine the static power at 0.8 V, assuming a static to dynamic
power ratio of 0.6.

1.9.5 [5] <1.5> Determine the static and dynamic power dissipation assuming
the rates obtained in problem 1.9.1.

1.9.6 [10] <1.5> Determine the geometric mean of the power variations between
versions.

Exercise 1.10
The table below shows the instruction type breakdown of a given application
executed on 1, 2, 4, or 8 processors. Using this data, you will be exploring the speed-
up of applications on parallel processors.

Processors No. Instructions per Processor CPI

Arithmetic Load/Store Branch Arithmetic Load/Store Branch

a. 1 2560 1280 256 1 4 2

2 1280 640 128 1 5 2

4 640 320 64 1 7 2

8 320 160 32 1 12 2

Processors No. Instructions per Processor CPI

Arithmetic Load/Store Branch Arithmetic Load/Store Branch

b. 1 2560 1280 256 1 4 2

2 1280 640 128 1 6 2

4 640 320 64 1 8 2

8 320 160 32 1 10 2

1.10.1 [5] <1.4, 1.6> The table above shows the number of instructions required
per processor to complete a program on a multiprocessor with 1, 2, 4, or 8 proces-
sors. What is the total number of instructions executed per processor? What is the
aggregate number of instructions executed across all processors?

1.10.2 [5] <1.4, 1.6> Given the CPI values on the right of the table above, fi nd
the total execution time for this program on 1, 2, 4, and 8 processors. Assume that
each processor has a 2 GHz clock frequency.

1.10.3 [10] <1.4, 1.6> If the CPI of the arithmetic instructions was doubled,
what would the impact be on the execution time of the program on 1, 2, 4, or 8
processors?

Ch01-9780123747501.indd 66Ch01-9780123747501.indd 66 25/07/11 2:32 PM25/07/11 2:32 PM

The table below shows the number of instructions per processor core on a multi core
processor as well as the average CPI for executing the program on 1, 2, 4, or 8 cores.
Using this data, you will be exploring the speedup of applications on multicore
 processors.

Cores per Processor Instructions per Core Average CPI

a. 1 1.00E+10 1.2

2 5.00E+09 1.4

4 2.50E+09 1.8

8 1.25E+09 2.6

Cores per Processor Instructions per Core Average CPI

b. 1 1.00E+10 1.0

2 5.00E+09 1.2

4 2.50E+09 1.4

8 1.25E+09 1.7

1.10.4 [10] <1.4, 1.6> Assuming a 3 GHz clock frequency, what is the execution
time of the program using 1, 2, 4, or 8 cores?

1.1 0.5 [10] <1.5, 1.6> Assume that the power consumption of a processor core
can be described by the following equation:

Power = 5.0mA �
MHz

 Voltage2

where the operation voltage of the processor is described by the following equa-
tion:

Voltage = 1 �
5
 Frequency + 0.4

with the frequency measured in GHz. So, at 5 GHz, the voltage would be 1.4 V. Find
the power consumption of the program executing on 1, 2, 4, and 8 cores assuming
that each core is operating at a 3 GHz clock frequency. Likewise, fi nd the power
consumption of the program executing on 1, 2, 4, or 8 cores assuming that each
core is operating at 500 MHz.

1.10.6 [10] <1.5, 1.6> If using a single core, fi nd the required CPI for this core
to get an execution time equal to the time obtained by using the number of cores
in the table above (execution times in problem 1.10.4). Note that the number of
instructions should be the aggregate number of instructions executed across all
the cores.

 1.11 Exercises 67

Ch01-9780123747501.indd 67Ch01-9780123747501.indd 67 25/07/11 2:32 PM25/07/11 2:32 PM

68 Chapter 1 Computer Abstractions and Technology

Exercise 1.11
The following table shows manufacturing data for various processors.

Wafer Diameter Dies per Wafer Defects per Unit Area Cost per Wafer

a. 15 cm 84 0.020 defects/cm2 12

b. 20 cm 100 0.031 defects/cm2 15

1.11.1 [10] <1.7> Find the yield.

1.11.2 [5] <1.7> Find the cost per die.

1.11.3 [10] <1.7> If the number of dies per wafer is increased by 10% and the
defects per area unit increases by 15%, fi nd the die area and yield.

Suppose that, with the evolution of the electronic devices manufacturing tech-
nology, the yield varies as shown in the following table.

T1 T2 T3 T4

Yield 0.85 0.89 0.92 0.95

1.11.4 [10] <1.7> Find the defects per area unit for each technology given a die
area of 200 mm2.

1.11.5 [5] <1.7> Represent graphically the variation of the yield together with
the variation of defects per unit area.

Exer cise 1.12
The following table shows results for SPEC CPU2006 benchmark programs
running on an AMD Barcelona.

Name Intr. Count × 109 Execution Time (seconds) Reference Time (seconds)

a. bzip2 2389 750 9650

b. go 1658 700 10,490

1.12.1 [5] <1.7> Find the CPI if the clock cycle time is 0.333 ns.

1.12.2 [5] <1.7> Find the SPEC ratio.

1.12.3 [5] <1.7> For these two benchmarks, fi nd the geometric mean of the
SPEC ratio.

Ch01-9780123747501.indd 68Ch01-9780123747501.indd 68 25/07/11 2:32 PM25/07/11 2:32 PM

The following table shows data for further benchmarks.

Name CPI Clock Rate SPEC Ratio

a. libquantum 1.61 4 GHz 19.8

b. astar 1.79 4 GHz 9.1

1.12.4 [5] <1.7> Find the increase in CPU time if the number of instructions of
the benchmark is increased by 10% without affecting the CPI.

1.12. 5 [5] <1.7> Find the increase in CPU time if the number of instructions of
the benchmark is increased by 10% and the CPI is increased by 5%.

1.12.6 [5] <1.7> Find the change in the SPEC ratio for the change described in
1.12.5.

Exercise 1.13
Suppose that we are developing a new version of the AMD Barcelona proces-
sor with a 4 GHz clock rate. We have added some additional instructions to the
instruction set in such a way that the number of instructions has been reduced by
15% from the values shown for each benchmark in Exercise 1.12. The execution
times obtained are shown in the following table.

Name Execution Time (seconds) Reference Time (seconds) SPEC Ratio

a. bzip2 700 9650 13.7

b. go 620 10490 16.9

1.13.1 [10] <1.8> Find the new CPI.

1.13.2 [10] <1.8> In general, these CPI values are larger than those obtained in
previous exercises for the same benchmarks. This is due mainly to the clock rate
used in both cases, 3 GHz and 4 GHz. Determine whether the increase in the CPI
is similar to that of the clock rate. If they are dissimilar, why?

1.13.3 [5] <1.8> How much has the CPU time been reduced?

The following table shows data for further benchmarks.

Name Execution Time (seconds) CPI Clock Rate

a. libquantum 960 1.61 3 GHz

b. astar 690 1.79 3 GHz

 1.11 Exercises 69

Ch01-9780123747501.indd 69Ch01-9780123747501.indd 69 25/07/11 2:32 PM25/07/11 2:32 PM

70 Chapter 1 Computer Abstractions and Technology

1.13.4 [10] <1.8> If the execution time is reduced by an additional 10% with-
out affecting to the CPI and with a clock rate of 4 GHz, determine the number of
instructions.

1.13.5 [10] <1.8> Determine the clock rate required to give a further 10% reduc-
tion in CPU time while maintaining the number of instructions and with the CPI
unchanged.

1.13.6 [10] <1.8> Determine the clock rate if the CPI is reduced by 15% and the
CPU time by 20% while the number of instructions is unchanged.

Exercise 1.14
Section 1.8 cites as a pitfall the utilization of a subset of the performance equa-
tion as a performance metric. To illustrate this, consider the following data for the
execution of a program in different processors.

Processor Clock Rate CPI No. Instr.

a. P1 4 GHz 0.9 5.00E+06

P2 3 GHz 0.75 1.00E+06

b. P1 3 GHz 1.1 3.00E+06

P2 2.5 GHz 1.0 0.50E+06

1.14.1 [5] <1.8> One usual fallacy is to consider the computer with the largest
clock rate as having the largest performance. Check if this is true for P1 and P2.

1.14.2 [10] <1.8> Another fallacy is to consider that the processor executing the
largest number of instructions will need a larger CPU time. Considering that pro-
cessor P1 is executing a sequence of 106 instructions and that the CPI of proces-
sors P1 and P2 do not change, determine the number of instructions that P2 can
execute in the same time that P1 needs to execute 106 instructions.

1.14.3 [10] <1.8> A common fallacy is to use MIPS (millions of instructions per
second) to compare the performance of two different processors, and consider that
the processor with the largest MIPS has the largest performance. Check if this is
true for P1 and P2.

Another common performance fi gure is MFLOPS (million of fl oating-point
operations per second), defi ned as

MFLOPS = No. FP operations / (execution time × 106)

but this fi gure has the same problems as MIPS. Consider the program in the fol-
lowing table, running on the two processors below.

Ch01-9780123747501.indd 70Ch01-9780123747501.indd 70 25/07/11 2:32 PM25/07/11 2:32 PM

Processor Instr. Count

No. Instructions CPI

L/S FP Branch L/S FP Branch Clock Rate

a. P1 1.00E+06 50% 40% 10% 0.75 1.0 1.5 4 GHz

P2 5.00E+06 40% 40% 20% 1.25 0.8 1.25 3 GHz

b. P1 5.00E+06 30% 30% 40% 1.5 1.0 2.0 4 GHz

P2 2.00E+06 40% 30% 30% 1.25 1.0 2.5 3 GHz

1.14.4 [10] <1.8> Find the MFLOPS fi gures for the programs.

1.14.5 [10] <1.8> Find the MIPS fi gures for the programs.

1.14.6 [10] <1.8> Find the performance for the programs and compare it with
MIPS and MFLOPS.

Exercise 1.15
Another pitfall cited in Section 1.8 is expecting to improve the overall performance
of a computer by improving only one aspect of the computer. This might be true,
but not always. Consider a computer running programs with CPU times shown in
the following table.

 FP Instr. INT Instr. L/S Instr. Branch Instr. Total Time

a. 70 s 85 s 55 s 40 s 250 s

b. 40 s 90 s 60 s 20 s 210 s

1.15.1 [5] <1.8> How much is the total time reduced if the time for FP opera-
tions is reduced by 20%?

1.15.2 [5] <1.8> How much is the time for INT operations reduced if the total
time is reduced by 20%?

1.15.3 [5] <1.8> Can the total time can be reduced by 20% by reducing only the
time for branch instructions?

The following table shows the instruction type breakdown per processor of given
applications executed in different numbers of processors.

Processors FP Instr. INT Instr. L/S Instr.
Branch
Instr.

CPI
(FP)

CPI
(INT)

CPI
(L/S)

CPI
(Branch)

a. 2 280 × 106 1000 × 166 640 × 106 128 × 106 1 1 4 2

b. 16 50 × 106 110 × 106 80 × 106 16 × 106 1 1 4 2

 1.11 Exercises 71

Ch01-9780123747501.indd 71Ch01-9780123747501.indd 71 25/07/11 2:32 PM25/07/11 2:32 PM

72 Chapter 1 Computer Abstractions and Technology

Assume that each processor has a 2 GHz clock rate.

1.15.4 [10] <1.8> How much must we improve the CPI of FP instructions if we
want the program to run two times faster?

1.15.5 [10] <1.8> How much must we improve the CPI of L/S instructions if we
want the program to run two times faster?

1.15.6 [5] <1.8> How much is the execution time of the program improved if the
CPI of INT and FP instructions is reduced by 40% and the CPI of L/S and Branch
is reduced by 30%?

Exercise 1.16
Another pitfall, relating to the execution of programs in multiprocessor systems, is
expecting improvement in performance by improving only the execution time of
part of the routines. The following table shows the execution time of fi ve routines
of a program running on different numbers of processors.

No.
Processors

Routine A
(ms)

Routine B
(ms)

Routine C
(ms)

Routine D
(ms)

Routine E
(ms)

a. 4 12 45 6 36 3

b. 32 2 7 1 6 2

1.16.1 [10] <1.8> Find the total execution time and by how much it is reduced if
the time of routines A, C, and E is improved by 15%.

1.16.2 [10] <1.8> How much is the total time reduced if routine B is improved
by 10%?

1.16.3 [10] <1.8> How much is the total time reduced if routine D is improved
by 10%?

Execution time in a multiprocessor system can be split into computing time for
the routines plus routing time spent sending data from one processor to another.
Consider the execution time and routing time given in the following table. In this
case, the routing time is an important component of the total time.

Ch01-9780123747501.indd 72Ch01-9780123747501.indd 72 25/07/11 2:32 PM25/07/11 2:32 PM

No.
Processors

Routine A
(ms)

Routine B
(ms)

Routine C
(ms)

Routine D
(ms)

Routine E
(ms)

Routing
Time (ms)

2 40 78 9 70 4 11

4 29 60 4 36 2 13

8 15 45 3 19 3 17

16 7 35 1 11 2 22

32 4 23 1 6 1 23

64 2 12 0.5 3 1 26

1.16.4 [10] <1.8> For each doubling of the number of processors, determine the
ratio of new to old computing time and the ratio of new to old routing time.

1.16.5 [5] <1.8> Using the geometric means of the ratios, extrapolate to fi nd the
computing time and routing time in a 128-processor system.

1.16.6 [10] <1.8> Find the computing time and routing time for a system with
one processor.

§1.1, page 9: Discussion questions: many answers are acceptable.
§1.3, page 25: Disk memory: nonvolatile, long access time (milliseconds), and cost
$0.20–$2.00/GB. Semiconductor memory: volatile, short access time (nanosec onds),
and cost $20–$75/GB.
§1.4, page 31: 1. a: both, b: latency, c: neither. 2. 7 seconds.
§1.4, page 38: b.
§1.7, page 50: 1, 3, and 4 are valid reasons. Answer 5 can be generally true because
high volume can make the extra investment to reduce die size by, say, 10% a good
economic decision, but it doesn’t have to be true.
§1.8, page 53: a. Computer A has the higher MIPS rating. b. Computer B is faster.

Answers to
Check Yourself

 1.11 Exercises 73

Ch01-9780123747501.indd 73Ch01-9780123747501.indd 73 25/07/11 2:32 PM25/07/11 2:32 PM

Author Query

AQ 1: Page 57: Should this be two words?
AQ 2: Page 57: Sense?
AQ 3: Page 61: Sp?
AQ 4: Page 61: Sp?

Ch01-9780123747501.indd 74Ch01-9780123747501.indd 74 25/07/11 2:32 PM25/07/11 2:32 PM

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 212
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 212
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 424
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on 'ELS Web Pdf_01'] [Based on 'ELS Web Pdf'] [Based on 'Els Web Pdf'] [Based on 'Els Web Pdf'] [Based on 'ELS_WOBL'] Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /ExportLayers /ExportVisiblePrintableLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /DocumentRGB
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks true
 /IncludeHyperlinks true
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

