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1.1 INTRODUCTION
To most people the word statistics conjures up images of vast tables of confusing
numbers, volumes and volumes of figures pertaining to births, deaths, taxes, popula-
tions, and so forth, or figures indicating baseball batting averages or football yardage
gained flashing across television screens. This is so because in common usage the
word statistics is synonymous with the word data. In a sense this is a reasonably accu-
rate impression because the discipline of statistics deals largely with principles and
procedures for collecting, describing, and drawing conclusions from data. Therefore
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it is appropriate for a text in statistical methods to start by discussing what data are,
how data are characterized, and what tools are used to describe a set of data. The
purpose of this chapter is to

1. provide the definition of a set of data,
2. define the components of such a data set,
3. present tools that are used to describe a data set, and briefly
4. discuss methods of data collection.

Definition 1.1 A set of data is a collection of observed values representing one or more
characteristics of some objects or units.

■ Example 1.1: A typical data set
Every year, the National Opinion Research Center (NORC) publishes the results
of a personal interview survey of U.S. households. This survey is called the Gen-
eral Social Survey (GSS) and is the basis for many studies conducted in the social
sciences. In the 1996 GSS, a total of 2904 households were sampled and asked
over 70 questions concerning lifestyles, incomes, religious and political beliefs,
and opinions on various topics. Table 1.1 lists the data for a sample of 50 respon-
dents on four of the questions asked. This table illustrates a typical midsized data
set. Each of the rows corresponds to a particular respondent (labeled 1 through 50
in the first column). Each of the columns, starting with column two, are responses
to the following four questions:

1. AGE: The respondent’s age in years
2. SEX: The respondent’s sex coded 1 for male and 2 for female
3. HAPPY: The respondent’s general happiness, coded:

1 for “Not too happy”
2 for “Pretty happy”
3 for “Very happy”

4. TVHOURS: The average number of hours the respondent watched TV during
a day

This data set obviously contains a lot of information about this sample of 50
respondents. Unfortunately this information is hard to interpret when the data
are presented as shown in Table 1.1. There are just too many numbers to make
any sense of the data — and we are only looking at 50 respondents! By summa-
rizing some aspects of this data set, we can obtain much more usable information
and perhaps even answer some specific questions. For example, what can we say
about the overall frequency of the various levels of happiness? Do some respon-
dents watch a lot of TV? Is there a relationship between the age of the respondent
and his or her general happiness? Is there a relationship between the age of the
respondent and the number of hours of TV watched?
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Table 1.1 Sample of 50 Responses to the 1996 GSS

Respondent AGE SEX HAPPY TVHOURS Respondent AGE SEX HAPPY TVHOURS

1 41 1 2 0 26 53 1 1 2
2 25 2 1 0 27 26 2 2 0
3 43 1 2 4 28 89 2 2 0
4 38 1 2 2 29 65 1 1 0
5 53 2 3 2 30 45 2 2 3
6 43 2 2 5 31 64 2 3 5
7 56 2 2 2 32 30 2 2 2
8 53 1 2 2 33 75 2 2 0
9 31 2 1 0 34 53 2 2 3

10 69 1 3 3 35 38 1 2 0
11 53 1 2 0 36 26 1 2 2
12 47 1 2 2 37 25 2 3 1
13 40 1 3 3 38 56 2 3 3
14 25 1 2 0 39 26 2 2 1
15 60 1 2 2 40 54 2 2 5
16 42 1 2 3 41 31 2 2 0
17 24 2 2 0 42 44 1 2 0
18 70 1 1 0 43 36 2 2 3
19 23 2 3 0 44 74 2 2 0
20 64 1 1 10 45 74 2 2 3
21 54 1 2 6 46 37 2 3 0
22 64 2 3 0 47 48 1 2 3
23 63 1 3 0 48 42 2 2 6
24 33 2 2 4 49 77 2 2 2
25 36 2 3 0 50 75 1 3 0

We will return to this data set in Section 1.10 after we have explored some methods
of summarizing and making sense of data sets like this one. As we develop more
sophisticated methods of analysis in later chapters, we will again refer to this data
set.1 ■

Definition 1.2 A population is a data set representing the entire entity of interest.

For example, the decennial census of the United States yields a data set containing
information about all persons in the country at that time (theoretically all house-
holds correctly fill out the census forms). The number of persons per household as
listed in the census data constitutes a population of family sizes in the United States.

1The GSS is discussed on the following Web page: http://www.icpsr.umich.edu/GSS/.
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Similarly, the weights of all steers brought to an auction by a particular rancher is a
data set that is the population of the weights of that rancher’s marketable steers.

Note that elements of a population are really measures rather than individuals. This
means that there can be many different definitions of populations that involve the
same collection of individuals. For example, the number of school-age children per
household as listed in the census data would constitute a population for another
study. As we shall see in discussions about statistical inference, it is important to
define the population that we intend to study very carefully.

Definition 1.3 A sample is a data set consisting of a portion of a population. Normally a
sample is obtained in such a way as to be representative of the population.

The Census Bureau conducts various activities during the years between each decen-
nial census, such as the Current Population Survey. This survey samples a small
number of scientifically chosen households to obtain information on changes in
employment, living conditions, and other demographics. The data obtained consti-
tute a sample from the population of all households in the country. If two steers were
selected from a herd of steers brought to an auction by a rancher, these two steers
would be considered a sample from the herd.

1.1.1 Data Sources
This book contains many examples and exercises consisting of data sets that are to
be subjected to statistical analysis. Although the emphasis in this book is on the
statistical analysis of data, we must emphasize that proper data collection is just
as important as proper analysis. We touch briefly on issues of data collection in
Section 1.9. There are many more detailed texts on this subject (for example, Scheaf-
fer et al. 2006). Remember, even the most sophisticated analysis procedures cannot
provide good results from bad data.

In general, data are obtained from two broad categories of sources:

■ Primary data are collected as part of the study.
■ Secondary data are obtained from published sources, such as journals,

governmental publications, news media, or almanacs.

There are several ways of obtaining primary data. Data are often obtained from
simple observation of a process, such as characteristics and prices of homes sold
in a particular geographic location, quality of products coming off an assembly
line, political opinions of registered voters in the state of Texas, or even a person
standing on a street corner and recording how many cars pass each hour during
the day. This kind of a study is called an observational study. Observational stud-
ies are often used to determine whether an association exists between two or more
characteristics measured in the study. For example, a study to determine the relation-
ship between high school student performance and the highest educational level of
the student’s parents would be based on an examination of student performance
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and a history of the parents’ educational experiences. No cause-and-effect relation-
ship could be determined, but a strong association might be the result of such a
study. Note that an observational study does not involve any intervention by the
researcher.

Much primary data are obtained through the use of sample surveys such as Gallup
polls or the Nielsen TV ratings. Such surveys normally represent a particular group
of individuals and are intended to provide information on the characteristics and/or
habits of such a group.

Often data used in studies involving statistics come from designed experiments. In
a designed experiment researchers impose treatments and controls on the process
and then observe the results and take measurements. For example, in a laboratory
experiment rats may be subjected to various noise levels and the rapidity of their
movements recorded. Designed experiments can be used to help establish causa-
tion between two or more characteristics. For example, a study could be designed to
determine if high school student performance is affected by a nutritious breakfast.
By choosing a proper design and conducting the experiment in a rigorous manner,
an actual cause-and-effect relationship might be established. Data from designed
experiments are considered a sample. For example, a study relating high school
student performance to breakfast may use as few as 25 typical urban high school
students. The results of the study would then be inferred to the population of all
urban high school students. Chapter 10 provides an introduction to experimental
designs.

1.1.2 Using the Computer
Today, comprehensive programs for conducting statistical and data analyses are
available in general-use spreadsheet software, graphing calculators, and dedicated
statistical software. A person rarely needs to write his or her own programs, since
they already exist for almost all aspects of statistics. Because a large number of such
packages are currently available, it is impossible to provide specific instructions for
each package in a single book. Although a few exercises in the beginning of this book,
especially those in Chapters 2–5, can be done manually or with the aid of calculators,
most exercises even in these chapters, and all exercises in Chapters 8–11, will require
the use of a computer. In some examples we have included generic instructions for
effective computer usage.

For reasons of consistency and convenience we have used the SAS System almost
exclusively for examples in this book. The SAS System is a very comprehensive soft-
ware package, of which statistical analysis is only a minor portion. Because it is such a
large system it may not be optimal for students to have on their personal computers.
We assume that additional instructions will be available for the particular software
you will be using. In a few instances, especially in the earlier chapters, output from
several software packages are used for comparative purposes.
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One common feature of almost every package is the way files containing the data
are organized. A good rule of thumb is “one observation equals one row”; another
is “one type of measurement (or variable) is one column.” Consider the data in
Table 1.1. Arranged in a spreadsheet or a text file, the data would appear much as
in that table, except that the right half of the table is pasted below the left, to make
50 rows. Each row would correspond to a different respondent. Each column would
correspond to a different item reported on that respondent.

Although the input files have a certain similarity, each software package has its own
style of output. However, most will contain essentially the same results, although
they may appear in a different order and may even have different labels. It is
therefore important to study the documentation of any package being used. We
should note that most computer outputs in this book have been abbreviated because
the full default output often contains information not needed at that particular
time, although in a few instances we have presented the full output for illustration
purposes.

If a set of data represents an entire population, the techniques presented in this chap-
ter can be used to describe various aspects of that population and a statistical analysis
using these descriptors is useful solely for that purpose. However, as is more often
the case, the data to be analyzed come from a sample. In this case, the descriptive
statistics obtained may subsequently be used as tools for statistical inference. A gen-
eral introduction to the concept of statistical inference is presented in Section 1.8,
and most of the remainder of this text is devoted to that subject.

1.2 OBSERVATIONS AND VARIABLES
A data set is composed of information from a set of units. Information from a
unit is known as an observation. An observation consists of one or more pieces
of information about the unit; these are called variables. Some examples:

■ In a study of the effectiveness of a new headache remedy, the units are
individual persons, of which 10 are given the new remedy and 10 are given an
aspirin. The resulting data set has 20 observations and two variables: the
medication used and a score indicating the severity of the headache.

■ In a survey for determining TV viewing habits, the units are families. Usually
there is one observation for each of thousands of families that have been
contacted to participate in the survey. The variables describe the programs
watched as well as descriptions of the characteristics of the families.

■ In a study to determine the effectiveness of a college admissions test (e.g., SAT)
the units are the freshmen at a university. There is one observation per unit and
the variables are the students’ scores on the test and their first year’s GPA.

Variables that yield nonnumerical information are called qualitative variables. Qual-
itative variables are often referred to as categorical variables. Those that yield
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numerical measurements are called quantitative variables. Quantitative variables
can be further classified as discrete or continuous. The diagram below summarizes
these definitions:

Variable/ ∖

Qualitative Quantitative/ ∖

Discrete Continuous

Definition 1.4 A discrete variable can assume only a countable number of values. Typi-
cally, discrete variables are frequencies of observations having specific characteristics, but all
discrete variables are not necessarily frequencies.

Definition 1.5 A continuous variable is one that can take any one of an uncountable
number of values in an interval. Continuous variables are usually measured on a scale and,
although they may appear discrete due to imprecise measurement, they can conceptually take
any value in an interval and cannot therefore be enumerated.

In the field of statistical quality control, the term variable data is used when referring
to data obtained on a continuous variable and attribute data when referring to data
obtained on a discrete variable (usually the number of defectives or nonconformities
observed).

In the preceding examples, the names of the headache remedies and names of TV
programs watched are qualitative (categorical) variables. Headache severity scores is
a discrete numeric variable, while the incomes of TV-watching families, and SAT and
GPA scores are continuous quantitative variables.

We will use the data set in Example 1.2 to present greater detail on various concepts
and definitions regarding observations and variables.

■ Example 1.2
In the fall of 2001, John Mode was offered a new job in a midsized city in east
Texas. Obviously, the availability and cost of housing will influence his decision
to accept, so he and his wife Marsha go to the Internet, find www.realtor.com, and
after a few clicks find some 500 single-family residences for sale in that area. In
order to make the task of investigating the housing market more manageable, they
arbitrarily record the information provided on the first home on each page of six.
This information results in a data set that is shown in Table 1.2.

The data set gives information on 69 homes, which comprise the observations
for this data set. In this example, each property is a unit, often called a sample,
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Table 1.2 Housing Data

Obs zip age bed bath size lot exter garage fp price

1 3 21 3 3.0 951 64904 Other 0 0 30000
2 3 21 3 2.0 1036 217800 Frame 0 0 39900
3 4 7 1 1.0 676 54450 Other 2 0 46500
4 3 6 3 2.0 1456 51836 Other 0 1 48600
5 1 51 3 1.0 1186 10857 Other 1 0 51500
6 2 19 3 2.0 1456 40075 Frame 0 0 56990
7 3 8 3 2.0 1368 . Frame 0 0 59900
8 4 27 3 1.0 994 11016 Frame 1 0 62500
9 1 51 2 1.0 1176 6259 Frame 1 1 65500
10 3 1 3 2.0 1216 11348 Other 0 0 69000
11 4 32 3 2.0 1410 25450 Brick 0 0 76900
12 3 2 3 2.0 1344 . Other 0 1 79000
13 3 25 2 2.0 1064 218671 Other 0 0 79900
14 1 31 3 1.5 1770 19602 Brick 0 1 79950
15 4 29 3 2.0 1524 12720 Brick 2 1 82900
16 3 16 3 2.0 1750 130680 Frame 0 0 84900
17 3 20 3 2.0 1152 104544 Other 2 0 85000
18 3 18 4 2.0 1770 10640 Other 0 0 87900
19 4 28 3 2.0 1624 12700 Brick 2 1 89900
20 2 27 3 2.0 1540 5679 Brick 2 1 89900
21 1 8 3 2.0 1532 6900 Brick 2 1 93500
22 4 19 3 2.0 1647 6900 Brick 2 0 94900
23 2 3 3 2.0 1344 43560 Other 1 0 95800
24 4 5 3 2.0 1550 6575 Brick 2 1 98500
25 4 5 4 2.0 1752 8193 Brick 2 0 99500
26 4 27 3 1.5 1450 11300 Brick 1 1 99900
27 4 33 2 2.0 1312 7150 Brick 0 1 102000
28 1 4 3 2.0 1636 6097 Brick 1 0 106000
29 4 0 3 2.0 1500 . Brick 2 0 108900
30 2 36 3 2.5 1800 83635 Brick 2 1 109900
31 3 5 4 2.5 1972 7667 Brick 2 0 110000
32 3 0 3 2.0 1387 . Brick 2 0 112290
33 4 27 4 2.0 2082 13500 Brick 3 1 114900
34 3 15 3 2.0 . 269549 Frame 0 0 119500
35 4 23 4 2.5 2463 10747 Brick 2 1 119900
36 4 25 3 2.0 2572 7090 Brick 2 1 119900
37 4 24 4 2.0 2113 7200 Brick 2 1 122900
38 4 1 3 2.5 2016 9000 Brick 2 1 123938
39 1 34 3 2.0 1852 13500 Brick 2 0 124900
40 4 26 4 2.0 2670 9158 Brick 2 1 126900

(Continued)
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Table 1.2 (Continued)

Obs zip age bed bath size lot exter garage fp price

41 2 26 3 2.0 2336 5408 Brick 0 1 129900
42 4 31 3 2.0 1980 8325 Brick 2 1 132900
43 2 24 4 2.5 2483 10295 Brick 2 1 134900
44 2 29 5 2.5 2809 15927 Brick 2 1 135900
45 4 21 3 2.0 2036 16910 Brick 2 1 139500
46 3 10 3 2.0 2298 10950 Brick 2 1 139990
47 4 3 3 2.0 2038 7000 Brick 2 0 144900
48 2 9 3 2.5 2370 10796 Brick 2 1 147600
49 2 29 5 3.5 2921 11992 Brick 2 1 149990
50 2 8 3 2.0 2262 . Brick 2 1 152550
51 4 7 3 3.0 2456 . Brick 2 1 156900
52 4 1 4 2.0 2436 52000 Brick 2 1 164000
53 3 27 3 2.0 1920 226512 Frame 4 1 167500
54 4 5 3 2.5 2949 11950 Brick 2 1 169900
55 2 32 4 3.5 3310 10500 Brick 2 1 175000
56 4 29 3 3.0 2805 16500 Brick 2 1 179000
57 4 1 3 3.0 2553 8610 Brick 2 1 179900
58 4 1 3 2.0 2510 . Other 2 1 189500
59 4 33 3 4.0 3627 17760 Brick 3 1 199000
60 2 25 4 2.5 3056 10400 Other 2 1 216000
61 3 16 3 2.5 3045 168576 Brick 3 1 229900
62 4 2 4 4.5 3253 54362 Brick 3 2 285000
63 2 2 4 3.5 4106 44737 Brick 3 1 328900
64 4 0 3 2.5 2993 . Brick 2 1 313685
65 4 0 3 2.5 2992 14500 Other 3 1 327300
66 4 20 4 3.0 3055 250034 Brick 3 0 349900
67 4 18 5 4.0 3846 23086 Brick 4 3 370000
68 4 3 4 4.5 3314 43734 Brick 3 1 380000
69 4 5 4 3.5 3472 130723 Brick 2 2 395000

experimental, or observational unit.2 The 11 columns of the table provide spe-
cific characteristics information for each home and compose the 11 variables of
this data set. The variable definitions along with brief mnemonic descriptors
commonly used in computers are as follows:

■ Obs3: a sequential number assigned to each observation as it is entered into
the computer. This is useful for identifying individual observations.

2These different types of units are not always synonymous. For example, an experimental unit may be an animal
subjected to a certain diet while the observational units may be several determinations of the weight of the
animal at different times. Unless otherwise specified, most of the methods presented in this book are based on
the assumption that the three are synonymous and will usually be referred to as experimental units.
3The term Obs is used by the SAS System. Other computer software may use other notations.
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■ zip: the last digit of the postal service zip code. This variable identifies the
area in which the home is located.

■ age: the age of the home in years.
■ bed: the number of bedrooms.
■ bath: the number of bathrooms.
■ size: the interior area of the home in square feet.
■ lot: the size of the lot in square feet.
■ exter: the exterior siding material.
■ garage: the capacity of the garage; zero means no garage.
■ fp: the number of fireplaces.
■ price: the price of the home, in dollars.

The elements of each row define the observed values of the variables. Note that
some values are represented by “.”. In the SAS System, and other statistical com-
puting packages, this notation specifies a missing value; that is, no information on
that variable is available. Such missing values are an unavoidable feature in many
data sets and occasionally cause difficulties in analyzing the data.

Brief mnemonic identifiers such as these are used by computer programs to
make their outputs easier to interpret and are unique for a given set of data.
However, for use in formulas we will follow mathematics convention, where vari-
ables are generically identified by single letters taken from the latter part of the
alphabet. For example the letter Y can be used to represent the variable price.
The same lowercase letter, augmented by a subscript identifying the observation
number, is used to represent the value of the variable for a particular obser-
vation. Using this notation, yi is the observed price of the ith house. Thus,
y1 = 30000, y2 = 39900, . . . , y69 = 395000. The set of observed values of price can
be symbolically represented as y1, y2, . . . , y69, or yi, i = 1, 2, . . . , 69. The total num-
ber of observations is symbolically represented by the letter n; for the data in Table
1.2, n = 69. We can generically represent the values of a variable Y , as yi, i =
1, 2, . . . , n. We will most frequently use Y as the variable and yi as observations of
the variable of interest. ■

1.3 TYPES OF MEASUREMENTS FOR VARIABLES
We usually think of data as consisting of numbers, and certainly many data sets do
contain numbers. In Example 1.2, for instance, the variable price is the asking price
of the home, measured in dollars. This measurement indicates a definite metric or
scale in the values of the variable price. Certainly a $200,000 house costs twice as
much as a $100,000 house. As we will see later, not all variables that measure a quan-
tity have this characteristic. However, not all data necessarily consist of numbers. For
example, the variable exter is observed as either brick, frame, or other, a mea-
surement that does not convey any relative value. Further, variables that are recorded
as numbers do not necessarily imply a quantitative measurement. For example, the
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variable zip simply locates the home in some specific area and has no quantitative
meaning.

We can classify observations according to a standard measurement scale that goes
from “strong” to “weak” depending on the amount or precision of information avail-
able in the scale. These measurement scales are discussed at some length in various
publications, including Conover (1999). We present the characteristics of these scales
in some detail since the nature of the data description and statistical inference is
dependent on the type of variable being studied.

Definition 1.6 The ratio scale of measurement uses the concept of a unit of distance or
measurement and requires a unique definition of a zero value.

Thus, in the ratio scale the difference between any two values can be expressed as
some number of these units. Therefore, the ratio scale is considered the “strongest”
scale since it provides the most precise information on the value of a variable. It is
appropriate for measurements of heights, weights, birth rates, and so on. In the data
set in Table 1.2, all variables except zip and exter are measured in the ratio scale.

Definition 1.7 The interval scale of measurement also uses the concept of distance or
measurement and requires a “zero” point, but the definition of zero may be arbitrary.

The interval scale is the second “strongest” scale of measurement, because the “zero”
is arbitrary. An example of the interval scale is the use of degrees Fahrenheit or Celsius
to measure temperature. Both have a unit of measurement (degree) and a zero point,
but the zero point does not in either case indicate the absence of temperature. Other
popular examples of interval variables are scores on psychological and educational
tests, in which a zero score is often not attainable but some other arbitrary value is
used as a reference value.

We will see that many statistical methods are applicable to variables of either the
ratio or interval scales in exactly the same way. We therefore usually refer to both of
these types as numeric variables.

Definition 1.8 The ordinal scale distinguishes between measurements on the basis of
the relative amounts of some characteristic they possess. Usually the ordinal scale refers to
measurements that make only “greater,” “less,” or “equal” comparisons between consecutive
measurements.

In other words, the ordinal scale represents a ranking or ordering of a set of observed
values. Usually these ranks are assigned integer values starting with “1” for the low-
est value, although other representations may be used. The ordinal scale does not
provide as much information on the values of a variable and is therefore considered
“weaker” than the ratio or interval scale.

For example, if a person were asked to taste five chocolate pies and rank them
according to taste, the result would be a set of observations in the ordinal scale of
measurement.
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A set of data illustrating an ordinal variable is given in Table 1.3. In this data set,
the “1” stands for the most preferred pie while the worst tasting pie receives the rank
of “5.” The values are used only as a means of arranging the observations in some
order. Note that these values would not differ if pie number 3 were clearly superior
or only slightly superior to pie number 4.

Table 1.3
Example
of Ordinal
Data

Pie Rank

1 4
2 3
3 1
4 2
5 5

It is sometimes useful to convert a set of observed ratio or interval values to a set of
ordinal values by converting the actual values to ranks. Ranking a set of actual values
induces a loss of information, since we are going from a stronger to a weaker scale of
measurement. Ranks do contain useful information and, as we will see (especially
in Chapter 14), may provide a useful base for statistical analysis.

Definition 1.9 The nominal scale identifies observed values by name or classification.

A nominally scaled variable is also often called a categorical or qualitative variable.
Although the names of the classifications may be represented by numbers, these are
used merely as a means of identifying the classifications and are usually arbitrarily
assigned and have no quantitative implications. Examples of nominal variables are
sex, breeds of animals, colors, and brand names of products. Because the nominal
scale provides no information on differences among the “values” of the variable, it
is considered the weakest scale. In the data in Table 1.2, the variable describing the
exterior siding material is a nominal variable.

We can convert ratio, interval, or ordinal scale measurements into nominal level
variables by arbitrarily assigning “names” to them. For example, we can convert the
ratio-scaled variable size into a nominally scaled variable, by defining homes with
less than 1000 square feet as “cottages,” those with more than 1000 but less than
3000 as “family-sized,” and those with more than 3000 as “estates.”

Note that the classification of scales is not always completely clear-cut. For example,
the “scores” assigned by judges for track or gymnastic events are usually treated as
possessing the ratio scale but are probably closer to being ordinal in nature.

1.4 DISTRIBUTIONS
Very little information about the characteristics of recently sold houses can be
acquired by casually looking through Table 1.2. We might be able to conclude that
most of the houses have brick exteriors, or that the selling price of houses ranges
from $30,000 to $395,000, but a lot more information about this data set can be
obtained through the use of some rather simple organizational tools.

To provide more information, we will construct frequency distributions by grouping
the data into categories and counting the number of observations that fall into each
one. Because we want to count each house only once, these categories (called classes)
are constructed so they don’t overlap. Because we count each observation only once,
if we add up the number (called the frequency) of houses in all the classes, we get
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the total number of houses in the data set. Nominally scaled variables naturally have
these classes or categories. For example, the variable exter has three values, Brick,
Frame, and Other. Handling ordinal, interval, and ratio scale measurements can be
a little more complicated, but, as subsequent discussion will show, we can easily
handle such data simply by correctly defining the classes.

Once the frequency distribution is constructed, it is usually listed in tabular form.
For the variable exter from Table 1.2 we get the frequency distribution presented in
Table 1.4. Note that one of our first impressions is substantiated by the fact that 48 of
the 69 houses are brick while only 8 have frame exteriors. This simple summarization
shows how the frequency of the exteriors is distributed over the values of exter.

Definition 1.10 A frequency distribution is a listing of frequencies of all categories of the
observed values of a variable.

We can construct frequency distributions for any variable. For example, Table 1.5
shows the distribution of the variable zip, which despite having numeric values, is
actually a categorical variable. This frequency distribution is produced by Proc Freq
of the SAS System where the frequency distribution is shown in the column labeled
Frequency. Apparently the area represented by zip code 4 has the most homes for
sale.

Definition 1.11 A relative frequency distribution consists of the relative frequencies, or
proportions (percentages), of observations belonging to each category.

The relative frequencies expressed as percents are provided in Table 1.5 under the
heading Percent and are useful for comparing frequencies among categories. These
relative frequencies have a useful interpretation: They give the chance or probability
of getting an observation from each category in a blind or random draw. Thus if we

Table 1.4 Distribution of exter

exter Frequency

Brick 48
Frame 8
Other 13

Table 1.5 Distribution of zip

THE FREQ PROCEDURE

Cumulative Cumulative
zip Frequency Percent Frequency Percent

1 6 8.70 6 8.70
2 13 18.84 19 27.54
3 16 23.19 35 50.72
4 34 49.28 69 100.00
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Table 1.6 Distribution of Home Prices in Intervals of $50,000

THE FREQ PROCEDURE

Cumulative Cumulative
Range Frequency Percent Frequency Percent

less than 50k 4 5.80 4 5.80
50k to 100k 22 31.88 26 37.68
100k to 150k 23 33.33 49 71.01
150k to 200k 10 14.49 59 85.51
200k to 250k 2 2.90 61 88.41
250k to 300k 1 1.45 62 89.86
300k to 350k 4 5.80 66 95.65
350k to 400k 3 4.35 69 100.00

were to randomly draw an observation from the data in Table 1.2, there is an 18.84%
chance that it will be from zip area 2. For this reason a relative frequency distribution
is often referred to as an observed or empirical probability distribution (Chapter 2).

Constructing a frequency distribution of a numeric variable is a little more com-
plicated. Defining individual values of the variable as categories will usually only
produce a listing of the original observations since very few, if any, individual
observations will normally have identical values. Therefore, it is customary to define
categories as intervals of values, which are called class intervals. These intervals must
be nonoverlapping and usually each class interval is of equal size with respect to the
scale of measurement. A frequency distribution of the variable price is shown in
Table 1.6. Clearly the preponderance of homes is in the 50- to 150-thousand-dollar
range.

The column labeled Cumulative Frequency in Table 1.6 is the cumulative fre-
quency distribution, which gives the frequency of observed values less than or equal
to the upper limit of that class interval. Thus, for example, 59 of the homes are priced
at less than $200,000. The column labeled Cumulative Percent is the cumulative
relative frequency distribution, which gives the proportion (percentage) of observed
values less than the upper limit of that class interval. Thus the 59 homes priced at
less than $200,000 represent 85.51% of the number of homes offered. We will see
later that cumulative relative frequencies — especially those near 0 and 100% — can
be of considerable importance.

1.4.1 Graphical Representation of Distributions
Using the principle that a picture is worth a thousand words (or numbers), the
information in a frequency distribution is more easily grasped if it is presented in
graphical form. The most common graphical presentation of a frequency distri-
bution for numerical data is a histogram while the most common presentation
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for nominal, categorical, or discrete data is a bar chart. Both these graphs are
constructed in the same way. Heights of vertical rectangles represent the frequency
or the relative frequency. In a histogram, the width of each rectangle represents the
size of the class and the rectangles are usually contiguous and of equal width so that
the areas of the rectangles reflect the relative frequency. In a bar chart the width of
the rectangle has no meaning; however, all the rectangles should be the same width
to avoid distortion. Figure 1.1 shows a frequency bar chart for exter from Table 1.2
that shows the large proportion of brick homes clearly. Figure 1.2 shows a frequency
histogram for price, clearly showing the preponderance of homes selling from 50
to 150 thousand dollars.

Another presentation of a distribution is provided by a pie chart, which is simply
a circle (pie) divided into a number of slices whose sizes correspond to the fre-
quency or relative frequency of each class. Figure 1.3 shows a pie chart for the variable
zip. We have produced these graphs with different programs and options to show
that, although there may be slight differences in appearances, the basic information
remains the same.

The use of graphs and charts is pervasive in the news media, business and
economic reports, and governmental reports and publications, mainly due to the

FIGURE 1.1
Bar Chart for exter.
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FIGURE 1.2
Histogram of price.
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FIGURE 1.3
Pie Chart for the Relative
Frequency Distribution of zip.
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ease of storage, retrieval, manipulation, and summary of large sets of data using
modern computers. Because of this, it is extremely important to be able to evaluate
critically the information contained in a graph or chart. After all, a graphical presen-
tation is simply a visual impression, which is quite easy to distort. In fact, distortion is
so easy and commonplace that in 1992 the Canadian Institute of Chartered Accoun-
tants deemed it necessary to begin setting guidelines for financial graphics, after a
study of hundreds of the annual reports of major corporations reported almost 10%
of the reports contained at least one misleading graph that masked unfavorable data.
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Whether intentional or by honest mistake, it is very easy to mislead with an incor-
rectly presented chart or graph. Darrell Huff, in a book entitled How to Lie with
Statistics (1982) illustrates many such charts and graphs and discusses various issues
concerning misleading graphs. In general, a correctly constructed chart or graph
should have

1. all axes labeled correctly, with clearly identifiable scales,
2. be captioned correctly,
3. have bars and/or rectangles of equal width to avoid distortion,
4. have sizes of figures properly proportioned, and
5. contain only relevant information.

Histograms of numeric variables provide information on the shape of a distribution,
a characteristic that we will later see to be of importance when performing statistical
analyses. The shape is roughly defined by drawing a reasonably smooth line through
the tops of the bars. In such a representation of a distribution, the region of highest
frequency is known as the “peak” and the ends as “tails.” If the tails are of approxi-
mately equal length, the distribution is said to be symmetric. If the distribution has
an elongated tail on the right side, the distribution is skewed to the right and vice
versa. Other features may consist of a sharp peak and long “fat” tails, or a broad peak
and short tails. We can see that the distribution of price is slightly skewed to the
right, which, in this case, is due to a few unusually high prices. We will see later that
recognizing the shape of a distribution can be quite important.

We continue the study of shapes of distributions with another example.

■ Example 1.3
The discipline of forest science is a frequent user of statistics. An important activity
is to gather data on the physical characteristics of a random sample of trees in a
forest. The resulting data may be used to estimate the potential yield of the forest,
to obtain information on the genetic composition of a particular species, or to
investigate the effect of environmental conditions.

Table 1.7 is a listing of such a set of data. This set consists of measurements of three
characteristics of 64 sample trees of a particular species. The researcher would like
to summarize this set of data in graphic form to aid in its interpretation.

Solution

As we can see from Table 1.7, the data set consists of 64 observations of three
ratio variables. The three variables are measurements characterizing each tree
and are identified by brief mnemonic identifiers in the column headings as
follows:

1. DFOOT, the diameter of the tree at one foot above ground level, measured in
inches,
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Table 1.7 Data on Tree Measurements

OBS DFOOT HCRN HT OBS DFOOT HCRN HT OBS DFOOT HCRN HT

1 4.1 1.5 24.5 23 4.3 2.0 25.6 45 4.7 3.3 29.7

2 3.4 4.7 25.0 24 2.7 3.0 20.4 46 4.6 8.9 26.6

3 4.4 2.8 29.0 25 4.3 2.0 25.0 47 4.8 2.4 28.1

4 3.6 5.1 27.0 26 3.3 1.8 20.6 48 4.5 4.7 28.5

5 4.4 1.6 26.5 27 5.0 1.7 24.6 49 3.9 2.3 26.0

6 3.9 1.9 27.0 28 5.2 1.8 26.9 50 4.4 5.4 28.0

7 3.6 5.3 27.0 29 4.7 1.5 26.7 51 5.0 3.2 30.4

8 4.3 7.6 28.0 30 3.8 3.2 26.3 52 4.6 2.5 30.5

9 4.8 1.1 28.5 31 3.8 2.6 27.6 53 4.1 2.1 26.0

10 3.5 1.2 26.0 32 4.2 1.8 23.5 54 3.9 1.8 29.0

11 4.3 2.3 28.0 33 4.7 2.7 25.0 55 4.9 4.7 29.5

12 4.8 1.7 28.5 34 5.0 3.1 27.3 56 4.9 8.3 29.5

13 4.5 2.0 30.0 35 3.2 2.9 26.2 57 5.1 2.1 28.4

14 4.8 2.0 28.0 36 4.1 1.3 25.8 58 4.4 1.7 29.0

15 2.9 1.1 20.5 37 3.5 3.2 24.0 59 4.2 2.2 28.5

16 5.6 2.2 31.5 38 4.8 1.7 26.5 60 4.6 6.6 28.5

17 4.2 8.0 29.3 39 4.3 6.5 27.0 61 5.1 1.0 26.5

18 3.7 6.3 27.2 40 5.1 1.6 27.0 62 3.8 2.7 28.5

19 4.6 3.0 27.0 41 3.7 1.4 25.9 63 4.8 2.2 27.0

20 4.2 2.4 25.4 42 5.0 3.8 29.5 64 4.0 3.1 26.0

21 4.8 2.9 30.4 43 3.3 2.4 25.8

22 4.3 1.4 24.5 44 4.3 3.0 25.2

2. HCRN, the height to the base of the crown measured in feet, and
3. HT, the total height of the tree measured in feet.

A histogram for the heights (HT) of the 64 trees is shown in Fig. 1.4 as produced
by PROC INSIGHT of the SAS System. Due to space limitations, not all bound-
aries of class intervals are shown, but we can deduce that the default option of
PROC INSIGHT yielded a class interval width of 1.5 feet with the first interval being
from 20.25 to 21.75 and the last from 30.75 to 32.25. In this program the user
can adjust the size of class intervals by clicking on an arrow at the lower left (not
shown in Fig 1.4) that causes a menu to pop up allowing such changes. For exam-
ple, by changing the first “tick” to 20, the last to 32, and the “tick interval” to 2,
the histogram will have 6 classes instead of the 8 shown. Many graphics programs
allow this type of interactive modification. Of course, the basic shape of the distri-
bution is not changed by such modifications. Also note that in these histograms,
the legend gives the boundaries of the intervals; other graphic programs may give
the midpoints.
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FIGURE 1.4
Histogram of Tree Height.
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FIGURE 1.5
Histogram of HCRN Variable.
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The histogram for the variable HCRN is shown in Fig. 1.5. We can now see that the
distribution of HT is slightly skewed to the left while the distribution of HCRN is
quite strongly skewed to the right. ■

1.5 NUMERICAL DESCRIPTIVE STATISTICS
Although distributions provide useful descriptions of data, they still contain too
much detail for some purposes. Assume, for example, that we have collected data on
tree dimensions from several forests for the purpose of detecting possible differences
in the distribution of tree sizes among these forests. Side-by-side histograms of the
distributions would certainly give some indication of such differences, but would
not produce measures of the differences that could be used for quantitative com-
parisons. Numerical measures that provide descriptions of the characteristics of the
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distributions, which can then be used to provide more readily interpretable informa-
tion on such differences, are needed. Of course, since these are numerical measures,
their use is largely restricted to numeric variables, that is, variables measured in the
ratio or interval scales (see, however, Chapters 12 and 14).

Note that when we first started evaluating the tree measurement data (Table 1.7)
we had 64 observations to contend with. As we attempted to summarize the data
using a frequency distribution of heights and the accompanying histogram (Fig. 1.4)
we represented these data with only eight entries (classes). We can use numerical
descriptive statistics to reduce the number of entries describing a set of data even
further, typically using only using two numbers. This action of reducing the number
of items used to describe the distribution of a set of data is referred to as data reduc-
tion, which is unfortunately accompanied by a progressive loss of information. In
order to minimize the loss of information, we need to determine the most important
characteristics of the distribution and find measures to describe these characteristics.
The two most important aspects are the location and the dispersion of the data. In
other words, we need to find a number that indicates where the observations are on
the measurement scale and another to indicate how widely the observations vary.

1.5.1 Location
The most useful single characteristic of a distribution is some typical, average, or
representative value that describes the set of values. Such a value is referred to as a
descriptor of location or central tendency. Several different measures are available
to describe this concept. We present two in detail. Other measures not widely used
are briefly noted.

The most frequently used measure of location is the arithmetic mean, usually referred
to simply as the mean.

Definition 1.12 The mean is the sum of all the observed values divided by the number of
values.

Denote by yi, i = 1, . . . , n, an observed value of the variable Y , then the sample
mean4 denoted by ȳ is obtained by the formula

ȳ =
∑

yi

n
,

where the symbol
∑

stands for “the sum of.” For example, the mean for DFOOT in
Table 1.7 is 4.301, which is the mean diameter (at one foot above the ground) of the
64 trees measured. A quick glance at the observed values of DFOOT reveals that this
value is indeed representative of the values of that variable.5

4It is also often called the average. However, this term is often used as a generic term for any unspecified measure
of location and will therefore not be used in this context.
5Some small data sets suitable for practicing computations are available in the following pages as well as in
exercises at the end of the chapter.
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Another useful measure of location is the median.

Definition 1.13 The median of a set of observed values is defined to be the middle
value when the measurements are arranged from lowest to highest; that is, 50% of the
measurements lie above it and 50% fall below it.

The precise definition of the median depends on whether the number of observations
is odd or even as follows:

1. If n is odd, the median is the middle observation; hence, exactly
(n − 1)/2 values are greater than and (n − 1)/2 values are less than the median,
respectively.

2. If n is even, there are two middle values and the median is the mean of the two
middle values and n/2 values are greater than and n/2 values are less than the
median, respectively.6

Although both mean and median are measures of central tendency, they do differ in
interpretation. For example, consider the following data for two variables, X and Y ,
given in Table 1.8.

We first compute the means

x̄ = (1/6)(1 + 2 + 3 + 3 + 4 + 5) = 3.0

and

ȳ = (1/6)(1 + 1 + 1 + 2 + 5 + 8) = 3.0.

Table 1.8
Data for
Comparing
Mean and
Median

X Y

1 1
2 1
3 1
3 2
4 5
5 8

The means are the same for both variables.

Denoting the medians by mx and my, respectively, and noting that there are an even
number of observations, we find

mx = (3 + 3)/2 = 3.0

and

my = (1 + 2)/2 = 1.5.

The medians are different. The reason for the difference is seen by examining the
histograms of the two variables in Fig. 1.6.

The distribution of the variable X is symmetric, while the distribution of the variable
Y is skewed to the right. For symmetric or nearly symmetric distributions, the mean
and median will be the same or nearly the same, while for skewed distributions the
value of the mean will tend to be “pulled” toward the long tail. This phenomenon
can be explained by the fact that the mean can be interpreted as the center of gravity

6If there are some identical values of the variable, the phrase “or equal to” may need to be added to these
statements.
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FIGURE 1.6
Data for Comparing Mean and
Median.
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of the distribution. That is, if the observations are viewed as weights placed on a
plane, then the mean is the position at which the weights on each side balance. It
is a well-known fact of physics that weights placed further from the center of gravity
exert a larger degree of influence (also called leverage); hence the mean must shift
toward those weights in order to achieve balance. However, the median assigns equal
weights to all observations regardless of their actual values; hence the extreme values
have no special leverage.

The difference between the mean and median is also illustrated by the tree data
(Table 1.7). The heights variable (HT) was seen to have a reasonably symmetric dis-
tribution (Fig. 1.4). The mean diameter is 26.96 and its median is 27.0.7 The variable
HCRN has a highly right-skewed distribution (Fig. 1.5) and its mean is 3.04, which is
quite a bit larger than its median of 2.4.

Now that we have two measures of location, it is logical to ask, which is better?
Which one should we use? Note that the mean is calculated using the value of each
observation, so all the information available from the data is utilized. This is not so
for the median. For the median we only need to know where the “middle” of the data
is. Therefore, the mean is the more useful measure and, in most cases, the mean will
give a better measure of the location of the data. However, as we have seen, the value
of the mean is heavily influenced by extreme values and tends to become a distorted

7It is customary to give a mean with one more decimal than the observed values. Computer programs usually
give all decimal places that the space on the output allows. If a median corresponds to an observed value (n

odd), the value is presented as is; if it is the mean of two observations (n even), the extra decimal may be used.
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measure of location for a highly skewed distribution. In this case, the median may
be more appropriate.

The choice of the measure to be used may depend on its ultimate interpretation and
use. For example, monthly rainfall data often contain a few very large values corre-
sponding to rare floods. For this variable, the mean does indicate the total amount
of water derived from rain but hardly qualifies as a typical value for monthly rainfall.
On the other hand, the median does qualify as a typical value, but certainly does not
reflect the total amount of water.

In general, we will use the mean as the single measure of location unless the distribu-
tion of the variable is skewed. We will see later (Chapter 4) that variables with highly
skewed distributions can be regarded as not fulfilling the assumptions required for
methods of statistical analysis that are based on the mean. In Section 1.6 we present
some techniques that may be useful for detecting characteristics of distributions that
may make the mean an inappropriate measure of location.

Other occasionally used measures of location are as follows:

1. The mode is the most frequently occurring value. This measure may
not be unique in that two (or more) values may occur with the same greatest
frequency. Also, the mode may not be defined if all values
occur only once, which usually happens with continuous numeric variables.

2. The geometric mean is the nth root of the product of the values of the n

observations. This measure is related to the arithmetic mean of the logarithms
of the observed values. The geometric mean cannot exist if there are any values
less than or equal to 0.

3. The midrange is the mean of the smallest and largest observed values. This
measure is not frequently used because it ignores most of the information in
the data. (See the following discussion of the range and similar measures.)

1.5.2 Dispersion
Although location is generally considered to be the most important single char-
acteristic of a distribution, the variability or dispersion of the values is also very
important. For example, it is imperative that the diameters of 1

4 -in. nuts and bolts
have virtually no variability, or else the nuts may not match the bolts. Thus the mean
diameter provides an almost complete description of the size of a set of 1

4 -in. nuts
and bolts. However, the mean or median incomes of families in a city provide a very
inadequate description of the distribution of that variable since a listing of incomes
would include a wide range of values.

Figure 1.7 shows histograms of two small data sets. Both have 10 observations, both
have a mean of 5 and, since the distributions are symmetric, both have a median
of 5. However, the two distributions are certainly quite different. Data set 2 may be
described as having more variability since it has fewer observations near the mean
and more observations at the extremes of the distribution.
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FIGURE 1.7
Illustration of Dispersion.

The simplest and intuitively most obvious measure of variability is the range,
which is defined as the difference between the largest and smallest observed val-
ues. Although conceptually simple, the range has one very serious drawback: It
completely ignores any information from all the other values in the data. This char-
acteristic is also illustrated by the two data sets in Fig. 1.7. Both of these data sets
exhibit the same range (eight), but data set 2 exhibits more variability.

Since greater dispersion means that observations are farther from the center of the
distribution, it is logical to consider distances of observations from that center as
indication of variability. The preferred measure of variation when the mean is used
as the measure of center is based on the set of distances or differences of the observed
values (yi) from the mean (ȳ). These differences, (yi − ȳ), i = 1, 2, . . . , n, are called
the deviations from the mean. Large magnitudes of deviation imply a high degree
of variability, and small magnitudes of deviation imply a low degree of variability.
If all deviations are zero, the data set exhibits no variability; that is, all values are
identical.

The mean of these deviations would seem to provide a reasonable measure of dis-
persion. However, a relatively simple exercise in algebra shows that the sum of these
deviations, that is,

∑
(yi − ȳ), is always zero. Therefore, this quantity is not useful.

The mean absolute deviation (the mean of deviations ignoring their signs) will cer-
tainly be an indicator of variability and is sometimes used for that purpose. However,
this measure turns out not to be very useful as the absolute values make theoretical
development difficult.

Another way to neutralize the effect of opposite signs is to base the measure of vari-
ability on the squared deviations. Squaring each deviation gives a nonnegative value
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and summing the squares of the deviations gives a positive measure of variability.
This criterion is the basis for the most frequently used measure of dispersion, the
variance.

Definition 1.14 The sample variance, denoted by s2, of a set of n observed values having
a mean ȳ is the sum of the squared deviations divided by n − 1:

s2 =
∑

(yi − ȳ)2

n − 1
.

Note that the variance is actually an average or mean of the squared deviations and
is often referred to as a mean square, a term we will use quite often in later chapters.
Note also that we have divided the sum by (n − 1) rather than n. While the reason
for using (n − 1) may seem confusing at this time, there is a good reason for it. As
we see later in the chapter, one of the uses of the sample variance is to estimate the
population variance. Dividing by n tends to underestimate the population variance;
therefore by dividing by (n − 1) we get, on average, a more accurate estimate. Recall
that we have already noted that the sum of deviations

∑
(yi − ȳ) = 0; hence, if we

know the values of any (n − 1) of these values, the last one must have that value
that causes the sum of all deviations to be zero. Thus there are only (n − 1) “free”
deviations. Therefore, the quantity (n − 1) is called the degrees of freedom.

An equivalent argument is to note that in order to compute s2, we must first compute
ȳ. Starting with the concept that a set of n observed values of a variable provides
n units of information, when we compute s2 we have already used one piece of
information, leaving only (n − 1) “free” units or (n − 1) degrees of freedom.

Computing the variance using the above formula is straightforward but somewhat
tedious. First we must compute ȳ, then the individual deviations (yi − ȳ), square
these, and then sum. For the two data sets represented by Fig. 1.7 we obtain

Data set 1:

s2 = (1/9)[(1 − 5)2 + (3 − 5)2 + · · · + (9 − 5)2]

= (1/9) · 40 = 4.44,

Data set 2:
s2 = (1/9)[(1 − 5)2 + (1 − 5)2 + · · · + (9 − 5)2]

= (1/9) · 80 = 8.89,

showing the expected larger variance for data set 2.

Calculations similar to that for the numerator of the variance are widely used in
many statistical analyses and if done as shown in Definition 1.14 are quite tedious.
This numerator, called the sum of squares and often denoted by SS, is more easily
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calculated by using the equivalence

SS =
∑

(yi − ȳ)2 =
∑

y2
i −

( ∑
yi

)2/
n.

The first portion,
∑

y2
i
, is simply the sum of squares of the original y val-

ues. The second part, (
∑

yi)
2/n, the square of the sum of the y values divided

by the number of observations, is called the correction factor, since it “corrects”
the sum of squared values to become the sum of squared deviations from the mean.
The result, SS, is called the corrected, or centered, sum of squares, or often simply the
sum of squares. This sum of squares is divided by the degrees of freedom to obtain
the mean square, which is the variance. In general, then the variance

s2 = mean square = (sum of squares)/(degrees of freedom).

For the case of computing a variance from a single set of observed values, the sum
of squares is the sum of squared deviations from the mean of those observations,
and the degrees of freedom are (n − 1). For more complex situations, which we will
encounter in subsequent chapters, we will continue with this general definition of
a variance; however, there will be different methods for computing sums of squares
and degrees of freedom.

The computations are now quite straightforward, especially since many calculators
have single-key operations for obtaining sums and sums of squares.8 For the two
data sets we have

Data set 1:

n = 10,
∑

yi = 50,
∑

y2
i = 290,

SS = 290 − 502/10 = 40,

s2 = 40/9 = 4.44,

Data set 2:
n = 10,

∑
yi = 50,

∑
y2

i = 330,

SS = 330 − 502/10 = 80,

s
2 = 80/9 = 8.89.

For purposes of interpretation, the variance has one major drawback: It measures
the dispersion in the square of the units of the observed values. In other words, the
numeric value is not descriptive of the variability of the observed values. This flaw
is remedied by using the square root of the variance, which is called the standard
deviation.

8Many calculators also automatically obtain the variance (or standard deviation). Some even provide options
for using either n or (n − 1) for the denominator of the variance estimate! We suggest practice computing a few
variances without using this feature.
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Definition 1.15 The standard deviation of a set of observed values is defined to be the
positive square root of the variance.

This measure is denoted by s and does have, as we will see shortly, a very useful
interpretation as a measure of dispersion. For the two example data sets, the standard
deviations are

Data set 1: s = 2.11,

Data set 2: s = 2.98.

Usefulness of the Mean and Standard Deviation
Although the mean and standard deviation (or variance) are only two descriptive
measures, together the two actually provide a great deal of information about the
distribution of an observed set of values. This is illustrated by the empirical rule: If
the shape of the distribution is nearly bell shaped, the following statements hold:

1. The interval (ȳ ± s) contains approximately 68% of the observations.
2. The interval (ȳ ± 2s) contains approximately 95% of the observations.
3. The interval (ȳ ± 3s) contains virtually all of the observations.

Note that for each of these intervals the mean is used to describe the location and the
standard deviation is used to describe the dispersion of a given portion of the data.
We illustrate the empirical rule with the tree data (Table 1.7). The height (HT) was
seen to have a nearly bell-shaped distribution, so the empirical rule should hold as
a reasonable approximation. For this variable we compute

n = 64, ȳ = 26.959, s2 = 5.163, s = 2.272.

According to the empirical rule:

(ȳ ± s), which is 26.959 ± 2.272, defines the interval 24.687 to 29.231 and
should include (0.68)(64) = 43 observations,

(ȳ ± 2s),which is 26.959 ± 4.544, defines the interval from 22.415 to 31.503
and should include (0.95)(64) = 61 observations, and

(ȳ ± 3s) defines the interval from 20.143 to 33.775 and should include
all 64 observations.

The effectiveness of the empirical rule is verified using the actual data. This task may
be made easier by obtaining an ordered listing of the observed values or using a
stem and leaf plot (Section 1.6), which we do not reproduce here. For this variable,
46 values fall between 24.687 and 29.231, 61 fall between 22.415 and 31.503, and
all observations fall between 20.143 and 33.775. Thus the empirical rule appears to
work reasonably well for this variable.

The empirical rule furnishes us with a quick method of estimating the standard devi-
ation of a bell-shaped distribution. Since at least 95% of the observations fall within
2 standard deviations of the mean in either direction, the range of the data covers
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Table 1.9 The Empirical Rule Applied to a
Nonsymmetric Distribution

Interval Number of Obervations

Specified Actual Should Include Does Include

ȳ ± s 1.146 to 4.926 43 51
ȳ ± 2s −0.744 to 6.816 61 60
ȳ ± 3s −2.634 to 8.706 64 63

about 4 standard deviations. Thus, we can estimate the standard deviation (a crude
estimate by the way) by taking the range divided by 4. For example, the range of the
data on the HT variable is 31.5 − 20.4 = 11.1. Divided by 4 we get about 2.77. The
actual standard deviation had a value of 2.272, which is approximately “in the ball
park,” so to speak.

The HCRN variable had a rather skewed distribution (Fig. 1.5); hence the empirical
rule should not work as well. The mean is 3.036 and the standard deviation is 1.890.
The expected and actual frequencies are given in Table 1.9. As expected, the empirical
rule does not work as well. In other words, for a nonsymmetric distribution the mean
and standard deviation (or variance) do not provide as complete a description of the
distribution as they do for a more nearly bell-shaped one. We may want to include a
histogram or general discussion of the shape of the distribution along with the mean
and standard deviation when describing data with a highly skewed distribution.

Actually the mean and standard deviation provide useful information about a dis-
tribution no matter what the shape. A much more conservative relation between the
distribution and its mean and standard deviation is given by Tchebysheff ’s theorem.

Definition 1.16 Tchebysheff’s theorem For any arbitrary constant k, the interval (ȳ ± ks)

contains a proportion of the values of at least [1 − (1/k2)].9

Note that Tchebysheff ’s theorem is more conservative than the empirical rule. This
is because the empirical rule describes distributions that are approximately “bell”
shaped, whereas Tchebysheff ’s theorem is applicable for any shaped distribution.
For example, for k = 2, Tchebysheff ’s theorem states that the interval (ȳ ± 2s) will
contain at least [1 − (1/4)] = 0.75 of the data. For the HCRN variable, this interval is
from −0.744 to 6.816 (Table 1.9), which actually contains 60/64 = 0.9375 of the val-
ues. Thus we can see that Tchebysheff’s theorem provides a guarantee of a proportion
in an interval but at the cost of a wider interval.

9Tchebysheff ’s theorem is usually described in terms of a theoretical distribution rather than for a set of data.
This difference is of no concern at this point.
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The empirical rule and Tchebysheff’s theorem have been presented not because they
are quoted in many statistical analyses but because they demonstrate the power of
the mean and standard deviation to describe a set of data. The wider intervals
specified by Tchebysheff’s theorem also show that this power is diminished if the
assumption of a bell-shaped curve is not made.

1.5.3 Other Measures
A measure of dispersion that has uses in some applications is the coefficient of
variation.

Definition 1.17 The coefficient of variation is the ratio of the standard deviation to the
mean, expressed in percentage terms.

Usually denoted by CV, it is

CV = s

ȳ
· 100.

That is, the CV gives the standard deviation as a proportion of the mean. For example,
a standard deviation of 5 has little meaning unless we can compare it to something.
If ȳ has a value of 100, then this variation would probably be considered small. If,
however, ȳ has a value of 1, a standard deviation of 5 would be quite large relative
to the mean. If we were evaluating the precision of a laboratory measuring device,
the first case, CV = 5%, would probably be acceptable. The second case, CV = 500%,
probably would not.

Additional useful descriptive measures are the percentiles of a distribution.

Definition 1.18 The pth percentile is defined to be that value for which at most (p)% of
the measurements are less and at most (100 − p)% of the measurements are greater.10

For example, the 75th percentile of the diameter variable (DFOOT) corresponds to the
48th (0.75 · 64 = 48) ordered observation, which is 4.8. This means that 75% of the
trees have diameters of 4.8 in. or less. By definition, cumulative relative frequencies
define percentiles.

To illustrate how a computer program calculates percentiles, the Frequency option
of SPSS was instructed to find the 30th percentile for the same variable, DFOOT. The
program returned the value 4.05. To find this value we note that 0.3 × 64 = 19.2.
Therefore we want the value of DFOOT for which 19.2 of the observations are smaller
and 60.8 are larger. This means that the 30th percentile falls between the 19th obser-
vation, 4.00, and the 20th observation, 4.10. The computer program simply took the
midpoint between these two values and gave the 30th percentile the value of 4.05.

10Occasionally the percentile desired falls between two of the measurements in the data set. In that case interpo-
lation may be used to obtain the value. To avoid becoming unnecessarily pedantic, most people simply choose
the midpoint between the two values involved. Different computer programs may use different interpolation
methods.
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A special set of percentiles of interest are the quartiles, which are the 25th, 50th, and
75th percentiles. The 50th percentile is, of course, the median.

Definition 1.19 The interquartile range is the length of the interval between the 25th
and 75th percentiles and describes the range of the middle half of the distribution.

For the tree diameters, the 25th and 75th percentiles correspond to 3.9 and 4.8
inches; hence the interquartile range is 0.9 inches. We will use this measure in
Section 1.6 when we discuss the box plot. We will see later that we are often inter-
ested in the percentiles at the extremes or tails of a distribution, especially the 1, 2.5,
5, 95, 97.5, and 99th percentiles.

Certain measures may be used to describe other aspects of a distribution. For
example, a measure of skewness is available to indicate the degree of skewness
of a distribution. Similarly, a measure of kurtosis indicates whether a distribu-
tion has a narrow “peak” and fat “tails” or a flat peak and skinny tails. Generally,
a “fat-tailed” distribution is characterized by having an excessive number of out-
liers or unusual observations, which is an undesirable characteristic. Although these
measures have some theoretical interest, they are not often used in practice. For
additional information, see Snedecor and Cochran (1980), Sections 5.13 and 5.14.

1.5.4 Computing the Mean and Standard Deviation from
a Frequency Distribution

If a data set is presented as a frequency distribution, a good approximation of the
mean and variance may be obtained directly from that distribution. Let yi represent
the midpoint and fi the frequency of the ith class. Then

ȳ ≈
∑

fiyi

/ ∑
fi

and
s2 ≈

∑
fi(yi − ȳ)2

/ ∑
fi

or, using the computational form,

s2 ≈
[ ∑

fiy
2
i −

( ∑
fiyi

)2/∑
fi

]/ ∑
fi.

Note that these formulas use weighted sums of the observed values11 or squared
deviations. That is, each value is weighted by the number of observations it rep-
resents. If the yi are the actual values (rather than midpoints of intervals) of a
discrete distribution, these formulas provide exactly the same values as those using
the formulas presented previously in this section.

11These formulas are primarily used for large data sets where n ≈ n − 1; hence
∑

fi = n, rather than (n − 1), is
used as the denominator for computing the variance.



1.5 Numerical Descriptive Statistics 31

Equivalent formulas may be used for data represented as a relative frequency
distribution. Let pi be the relative frequency of the ith class. Then

ȳ ≈
∑

piyi and s2 ≈
∑

pi(yi − ȳ)2

or, using the computational form,

s2 ≈
∑

piy
2
i −

(∑
piyi

)2
.

Most data sets are available in their original form and since computers readily per-
form direct computation of mean and variance these formulas are not often used.
We will, however, find these formulas useful in discussions of theoretical probability
distributions in Chapter 2.

1.5.5 Change of Scale
Change of scale is often called coding or linear transformation. Most interval and
ratio variables arise from measurements on a scale such as inches, grams, or degrees
Celsius. The numerical values describing these distributions naturally reflect the scale
used. In some circumstances it is useful to change the scale such as, for example,
changing from imperial (inches, pounds, etc.) to metric units. Scale changes may
take many forms, including a change from ratio to ordinal scales as mentioned in
Section 1.3. Other scale changes may involve the use of functions such as logarithms
or square roots (see Chapter 6).

A useful form of scaling is the use of a linear transformation. Let Y represent a vari-
able in the observed scale, which is transformed to a rescaled or transformed variable
X by the equation

X = a + bY ,

where a and b are constants. The constant a represents a change in the origin, while
the constant b represents a change in the unit of measurement, or scale, identified
with a ratio or interval scale variable (Section 1.3). A well-known example of such a
transformation is the change from degrees Celsius to degrees Fahrenheit. The formula
for the transformation is

X = 32 + 1.8Y ,

where X represents readings in degrees Fahrenheit and Y in degrees Celsius.

Many descriptive measures retain their interpretation through linear transformation.
Specifically, for the mean and variance:

x̄ = a + bȳ and s2
x = b2s2

y .

A useful application of a linear transformation is that of reducing round-off errors.
For example, consider the following values yi, i = 1, 2, . . . , 6:

10.004 10.002 9.997 10.000 9.996 10.001.
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Using the linear transformation

xi = −10,000 + 1000 yi

results in the values of xi

4 2 −3 0 −4 1,

from which it is easy to calculate

x̄ = 0 and s2
x = 9.2.

Using the above relationships, we see that ȳ = 10.000 and s2
y = 0.0000092.

The use of the originally observed yi may induce round-off error. Using the original
data,

∑
yi = 60.000,

∑
y2

i = 600.000046, and
(∑

yi

)2/
n = 600.000000.

Then

SS = 0.000046 and s2 = 0.0000092.

If the calculator we are using has only eight digits of precision, then
∑

y2 would
be truncated to 600.00004, and we would obtain s2 = 0.000008. Admittedly this is
a pathological example, but round-off errors in statistical calculations occur quite
frequently, especially when the calculations involve many steps as will be required
later. Therefore, scaling by a linear transformation is sometimes useful.

1.6 EXPLORATORY DATA ANALYSIS
We have seen that the mean and variance (or standard deviation) can do a very good
job of describing the characteristics of a frequency distribution. However, we have
also seen that these do not work as well when the distribution is skewed and/or
includes some extreme or outlying observations. Because the vast majority of sta-
tistical analyses make use of the mean and standard deviation, the results of such
analyses may prove misleading if the distribution has such features. Therefore, it is
imperative that some preliminary checks of the data be performed to see if other
methods (see Section 4.5 and Chapter 14) may be more appropriate.

Fortunately, the same computers that can so easily produce inappropriate analy-
ses can just as easily be used to perform preliminary data screening to provide an
overview of the nature of the data and thus provide information on unusual distri-
butions and/or data anomalies. A variety of such procedures have been developed
and many are available on most popularly used computer software. These procedures
are called exploratory data analysis techniques or EDA, a concept first introduced
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by Tukey (1977). We present here two of the most frequently used EDA tools: the
stem and leaf plot and the box plot.

1.6.1 The Stem and Leaf Plot
The stem and leaf plot is a modification of a histogram for a ratio or interval vari-
able that provides additional information about the distribution of the variable. The
first one or two digits specify the class interval, called the “stem,” and the next digit
(rounded if necessary) is used to construct increments of the bar, which are called
the “leaves.” Usually in a stem and leaf plot, the bars are arranged horizontally and
the leaf values are arranged in ascending order.

We illustrate the construction of a stem and leaf plot using the data on size for the
69 homes. To make construction easier, we first arrange the observations from low
to high as shown in Table 1.10.

Normally the first or first two digits are used to define stem values, but in this case
using one would result in an inadequate five stems, while using two would generate
an overwhelming 40 stems. A compromise is to use the first two digits, in sets of
two, a procedure automatically done by computer programs. In this example, the
first stem value (the “.” corresponds to the missing value) is 6, which identifies the
range of 600 to 799 square feet. There is one observation in that range, 676, so the
leaf value is 8 (76 rounded to 80). The second stem value has two observations, 951
and 994, producing leaf values of 5 and 9. When there are homes represented by
both individual stem values, the leaf values for the first precede those for the second.
For example, the stem value of 24 represents the range from 2400 to 2599. The first
four leaf values 4, 6, 6, and 8, are in the range 2400 to 2499, while the values 1, 5, and
7 are in the range 2500 to 2599. The last stem value is 40 with a leaf value of 1. The

Table 1.10 Home Sizes Measured in Square Feet Arranged
from Low to High

. 1344 1624 2016 2483 3055
676 1368 1636 2036 2510 3056
951 1387 1647 2038 2553 3253
994 1410 1750 2082 2572 3310

1036 1450 1752 2113 2670 3314
1064 1456 1770 2262 2805 3472
1152 1456 1770 2298 2809 3627
1176 1500 1800 2336 2921 3846
1186 1524 1852 2370 2949 4106
1216 1532 1920 2436 2992
1312 1540 1972 2456 2993
1344 1550 1980 2463 3045
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FIGURE 1.8
Stem and Leaf Plot and Box
Plot for size.
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resulting plot is shown in Fig. 1.8, produced by PROC UNIVARIATE of the SAS System,
which automatically also provides the box plot discussed later in this section.12

At first glance, the stem and leaf plot looks like a histogram, which it is. However,
the stem and leaf plot usually has a larger number of bars (or stems), 18 in this case,
which provide greater detail about the nature of the distribution. In this case the stem
and leaf chart does not provide any new information on this data set. The leaves
provide rather little additional information here, but could, for example, provide
evidence of rounding or imprecise measurements by showing an excessive number
of zeros and fives. The leaves may also provide evidence of bunching of specific values
within a stem by showing disproportionate frequencies of specific digits.

For some data sets minor modifications may be necessary to provide an informative
plot. For example, the first digit of the HCRN variable in the tree data (Table 1.7)
provides for only eight stems (classes) while using the first two digits creates too
many stems. In such cases it is customary to use two lines for each digit, the first
representing leaves with values from 0 through 4, and a second for values from 5
through 9. Most computer programs automatically adjust for such situations. This
plot is given in Fig. 1.9 (also produced by PROC UNIVARIATE). The extreme skewness
we have previously noted is quite obvious.

1.6.2 The Box Plot
The box plot13 is used to show distributional shapes and to detect unusual obser-
vations. Figure 1.10 illustrates a typical box plot and the procedure is illustrated in

12This provides a good illustration of the fact that computer programs do not always provide only what is needed.
13Also referred to as a “box and whisker plot” by Tukey (1977).
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FIGURE 1.9
Stem and Leaf Plot and Box
Plot for HCRN Variable.
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FIGURE 1.10
Typical Box Plot.
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Fig. 1.8 for the size variable from the housing data set and in Fig. 1.9 for the HCRN
variable from the trees data set.

The scale of the plot is that of the observed variable and may be presented horizon-
tally as in Fig. 1.10 or vertically as produced by the SAS System in Figs. 1.8 and 1.9.
The features of the plot are as follows:

1. The “box,” representing the interquartile range, has a value we denote by R and
the endpoints Q1 and Q3.

2. A vertical line inside the box indicates the median. If the median is in the center
of the box, the middle portion of the distribution is symmetric.

3. Horizontal lines extending from the box represent the range of observed values
inside the “inner fences,” which are located 1.5 times the value of the
interquartile range (1.5R) beyond Q1 to the left and Q3 on the right. The
relative lengths of these lines are an indicator of the skewness of the
distribution as a whole.
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4. Individual symbols ◦ represent “mild” outliers, which are defined as values
between the inner and outer fences that are located 3R units beyond Q1

and Q3.
5. Individual symbols·represent the location of extreme outliers, which are

defined as being beyond the outer fences. Different computer programs may use
different symbols for outliers and may provide options for different formats.

Symmetric distributions, which can be readily described by the mean and variance,
should have the median line close to the middle of the box and reasonably equal
length lines on both sides, a few mild outliers preferably equally distributed on both
sides, and virtually no extreme outliers.

An ordered listing of the data or a stem and leaf plot can be used to construct the
box plot. We illustrate the procedure for the HCRN variable for which the stem and
leaf and box plots are shown in Fig. 1.9. Note that the box plot is arranged vertically
in that plot. The scale is the same as the stem and leaf plot on the left. The details of
the procedure are as follows:

1. The quartiles Q1 and Q3 are found by counting (n/4) = 16 leaf values from the
top and bottom, respectively. The resulting values of 1.8 and 3.2 define the box.
These values also provide the interquartile range: R = Q3 − Q1 = 3.2 − 1.8 =
1.4. The median of 2.4 defines the line in the box.

2. The inner fences are

f1 = Q1 − 1.5R = 1.8 − 2.1 = −0.3 and

f2 = Q3 + 1.5R = 3.2 + 2.1 = 5.3.

The lines extend on each side to the nearest actual values inside the inner
fences. In this example the lines extend to 1.0 (the smallest value in the data
set) and 5.3, respectively. The much longer line on the high side clearly
indicates the skewness.

3. The outer fences are F1 = −2.4 and F2 = 7.4. The fact that the lower fence has a
negative value that cannot occur is a clear indicator of a skewed distribution.
The four mild outliers lying between the inner and outer fences are 5.4, 6.3, 6.5,
and 6.6, and are indicated by the symbol ◦. Note that they are all on the high
side, again indicating the skewness.

4. The extreme outliers are beyond the outer fences. They are 7.6, 8.0, 8.3, and 8.9,
and are indicated by •. These are also all on the high side.

Thus we see that the box plot clearly shows the lack of symmetry for the distri-
bution of the HCRN variable. On the other hand, the box plot for the house sizes
(Fig. 1.8) shows little lack of symmetry and also has neither mild nor extreme out-
liers. Obviously the box plot provides a good bit of information on the distribution
and outliers, but cannot be considered a complete replacement for the stem and leaf
plot in terms of total information about the observations.
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1.6.3 Comments
The presence of outliers in a set of data may cause problems in the analysis to be
performed. For example, a single outlier (or several in the same direction) usually
causes a distribution to be skewed, thereby affecting the mean of the distribution. In
the box plot in Fig. 1.9 we see that there are several large values of the HCRN variable
identified as outliers. If the mean is to be used for the analysis, it may be larger than is
representative of the data due to the presence of these outliers. However, we cannot
simply ignore or discard these observations as the trees do exist and to ignore them
would be dishonest. A closer examination of the larger trees may reveal that they
actually belong to an older grove that represents a different population from that
being studied. In that case we could eliminate these observations from the analysis,
but note that older trees that belonged to a population not included in the study
were present in the data.

Descriptive statistical techniques, and in particular the EDA methods discussed here,
are valuable in identifying outliers; however, the techniques very rarely furnish
guidance as to what should be done with the outliers. In fact, the concern for “unrep-
resentative,” “rogue,” or “outlying” observations in sets of data has been voiced by
many people for a long time. There is evidence that concern for outliers predates
most of statistical methodology. Treatments of outliers are discussed in many texts,
and in fact a book by Barnett and Lewis (1994), entitled Outliers in Statistical Data, is
completely devoted to the topic. The sheer volume of literature addressing outliers
points to the difficulty of adjusting the analysis when outliers are present.

All outliers are not deleterious to the analysis. For example, the experimenter may be
tempted in some situations not to reject an outlier but to welcome it as an indication
of some unexpectedly useful chemical reaction or surprisingly successful variety of
corn. Often it is not necessary to take either of the extreme positions — reject the
outlier or include the outlier — but instead to use some form of “robust” analysis that
minimizes the effect of the outlier. One such example would be to use the median
in the analysis of the variable HCRN in the tree data instead of the mean.

■ Example 1.4
A biochemical assay for a substance we will abbreviate to cytosol is supposed to
be an indicator of breast cancer. Masood and Johnson (1987) report on the results
of such an assay, which indicates the presence of this material in units per 5 mg
of protein on 42 patients. Also reported are the results of another cancer detec-
tion method, which are simply reported as “yes” or “no.” The data are given in
Table 1.11. We would like to summarize the data on the variable CYTOSOL.

Solution

All the descriptive measures, the stem and leaf plot, and the box plot for these
observations are given in Fig. 1.11 as provided by the MinitabDES-CRIBE, STEM-
AND-LEAF, and BOXPLOT commands.
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Table 1.11 Cytosol Levels in Cancer Patients

OBS CYTOSOL CANCER OBS CYTOSOL CANCER

1 145.00 YES 22 1.00 NO
2 5.00 NO 23 3.00 NO
3 183.00 YES 24 1.00 NO
4 1075.00 YES 25 269.00 YES
5 5.00 NO 26 33.00 YES
6 3.00 NO 27 135.00 YES
7 245.00 YES 28 1.00 NO
8 22.00 YES 29 1.00 NO
9 208.00 YES 30 37.00 YES
10 49.00 YES 31 706.00 YES
11 686.00 YES 32 28.00 YES
12 143.00 YES 33 90.00 YES
13 892.00 YES 34 190.00 YES
14 123.00 YES 35 1.00 YES
15 1.00 NO 36 1.00 NO
16 23.00 YES 37 7.20 NO
17 1.00 NO 38 1.00 NO
18 18.00 NO 39 1.00 NO
19 150.00 YES 40 71.00 YES
20 3.00 NO 41 189.00 YES
21 3.20 YES 42 1.00 NO

The first portion gives the numerical descriptors. The mean is 136.9 and the stan-
dard deviation is 248.5. Note that the standard deviation is greater than the mean.
Since the variable (CYTOSOL) cannot be negative, the empirical rule will not be
applicable, implying that the distribution is skewed. This conclusion is reinforced
by the large difference between the mean and the median. Finally, the first quartile
is the same as the minimum value, indicating that at least 25% of the values occur
at the minimum. The asymmetry is also evident from the positions of the quar-
tiles, with values of 1.0 and 158.3 respectively. The output also gives the minimum
and maximum values, along with two measures (TRMEAN and SEMEAN), which are
not discussed in this chapter.

The stem and leaf and box plots reinforce the extremely skewed nature of this
distribution. It is of interest to note that in this plot the mild outliers are denoted
by ∗ (there are none) and extreme outliers by 0.

A conclusion to be reached here is that the mean and standard deviation are
not particularly useful measures for describing the distribution of this variable.
Instead, the median should be used along with a brief description of the shape of
the distribution. ■
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FIGURE 1.11
Descriptive Measures of CYTOSOL.

1.7 BIVARIATE DATA
So far we have presented methods for describing the distribution of observed values
of a single variable. These methods can be used individually to describe distributions
of each of several variables that may occur in a set of data. However, when there are
several variables in one data set, we may also be interested in describing how these
variables may be related to or associated with each other. We present in this section
some graphic and tabular methods for describing the association between two vari-
ables. Numeric descriptors of association are presented in later chapters, especially
Chapters 7 and 8.

Specific methods for describing association between two variables depend on
whether the variables are measured in a nominal or numerical scale. (Association
between variables measured in the ordinal scale is discussed in Chapter 14.) We
illustrate these methods by using the variables on home sales given in Table 1.2.

1.7.1 Categorical Variables
Table 1.12 reproduces the home sales data for the two categorical variables sorted in
order of zip and exter. Association between two variables measured in the nominal
scale (categorical variables) can be described by a two-way frequency distribution,
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Table 1.12 Home Sales Data for the Categorical Variables

zip exter zip exter zip exter zip exter zip exter zip exter

1 Brick 2 Brick 3 Frame 4 Brick 4 Brick 4 Brick
1 Brick 2 Brick 3 Frame 4 Brick 4 Brick 4 Brick
1 Brick 2 Brick 3 Frame 4 Brick 4 Brick 4 Brick
1 Brick 2 Brick 3 Frame 4 Brick 4 Brick 4 Brick
1 Frame 2 Frame 3 Other 4 Brick 4 Brick 4 Brick
1 Other 2 Other 3 Other 4 Brick 4 Brick 4 Frame
2 Brick 2 Other 3 Other 4 Brick 4 Brick 4 Other
2 Brick 3 Brick 3 Other 4 Brick 4 Brick 4 Other
2 Brick 3 Brick 3 Other 4 Brick 4 Brick 4 Other
2 Brick 3 Brick 3 Other 4 Brick 4 Brick
2 Brick 3 Brick 3 Other 4 Brick 4 Brick
2 Brick 3 Frame 4 Brick 4 Brick 4 Brick

Table 1.13 Association between zip
and exter

The FREQ Procedure
Table of zip by exter

ZIP
Frequency EXTER
Row pct Brick Frame Other Total

1 4 1 1 6
66.67 16.67 16.67

2 10 1 2 13
76.92 7.69 15.38

3 4 5 7 16
25.00 31.25 43.75

4 30 1 3 34
88.24 2.94 8.82

Total 48 8 13 69

which is a two-dimensional table showing the frequencies of combinations of the
values of the two variables. Table 1.13 is such a table showing the association
between the zip and exterior siding material of the houses. This table has been pro-
duced by PROC FREQ of the SAS System. The table shows the frequencies of the six
combinations of the zip and exter variables. The headings at the top and left indi-
cate the categories of the two variables. Each of the combinations of the two variables
is referred to as a cell. The last row and column (each labeled Total) are the indi-
vidual or marginal frequencies of the two variables. As indicated by the legend at the
top left of the table, the first number in each cell is the frequency.
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FIGURE 1.12
Block Chart for exter and
zip.
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The second number in each cell is the row percentage, that is, the percentage of
each row (zip) that is brick, frame, or other. We can now see that brick homes
predominate in all zip areas except 3, which has a mixture of all types.

The relationship between two categorical variables can also be illustrated with a
block chart (a three-dimensional bar chart) with the height of the blocks being
proportional to the frequencies. A block chart of the relationship between zip and
exter is given in Fig. 1.12. Numeric descriptors for relationships between categorical
variables are presented in Chapter 12.

1.7.2 Categorical and Interval Variables
The relationship between a categorical and interval (or ratio) variable is usually
described by computing frequency distributions or numerical descriptors for the
interval variables for each value of the nominal variable. For example, the mean and
standard deviation of sales prices for the four zip areas are

zip area 1, ȳ = 86, 892, s = 26, 877

zip area 2, ȳ = 147, 948, s = 67, 443

zip area 3, ȳ = 96, 455, s = 50, 746

zip area 4, ȳ = 169, 624, s = 98, 929.

We can now see that zip areas 2 and 4 have the higher priced homes. Side-by-side
box plots can illustrate this information graphically as shown in Fig. 1.13 for price
by zip. This plot reinforces the information provided by the means and standard
deviations, but additionally shows that all of the very-high-priced homes are in zip
area 4.

Box plots may also be used to illustrate differences among distributions. We illustrate
this method with the cancer data, by showing the side-by-side box plots of CYTOSOL
for the two groups of patients who were diagnosed for cancer by the other method.
The results, produced this time with PROC INSIGHT of the SAS System in Fig. 1.14,
shows that both the location and dispersion differ markedly between the two groups.
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FIGURE 1.13
Side-by-Side Box Plots of Home
Prices.
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Apparently both methods can detect cancer, although contradictory diagnoses occur
for some patients.

1.7.3 Interval Variables
The relationship between two interval variables can be graphically illustrated with a
scatterplot. A scatterplot has two axes representing the scales of the two variables.
The choice of variables for the horizontal or vertical axes is immaterial, although if
one variable is considered more important it will usually occupy the vertical axis.
Also, if one variable is used to predict another variable, the variable being predicted
always goes on the vertical axis. Each observation is plotted by a point representing
the two variable values. Special symbols may be needed to show multiple points
with identical values. The pattern of plotted points is an indicator of the nature of
the relationship between the two variables. Figure 1.15 is a scatterplot showing the
relationship between price and size for the data in Table 1.2.
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FIGURE 1.15
Scatterplot of price against
size.
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The pattern of the plotted data points shows a rather strong association between
price and size, except for the higher price homes. Apparently these houses have a
wider range of other amenities that affect the price. Numeric descriptors for this type
of association are introduced in Chapter 7.

We should note at this point that the increased sophistication of computer graphics
is rapidly leading to more informative graphs and plots. For example, some software
packages provide a scatterplot with box plots on each axis describing the distribution
of each of the individual variables.

1.8 POPULATIONS, SAMPLES, AND STATISTICAL
INFERENCE — A PREVIEW

In the beginning of this chapter we noted that a set of data may represent either a
population or a sample. Using the terminology developed in this chapter, we can
now more precisely define a population as the set of values of one or more variables
for the entire collection of units relevant to a particular study. Most researchers have
at least a conceptual picture of the population for a given study. This population
is usually called the target population. A target population may be well defined.
For example, the trees in Table 1.7 are a sample from a population of trees in a
specified forest. On the other hand, a population may be only conceptually defined.
For example, an experiment measuring the decrease in blood pressure resulting from
a new drug is a sample from a hypothetical population consisting of all sufferers of
high blood pressure who are potential users of the drug. A population can, in fact,
be infinite. For example, a laboratory experiment can hypothetically be reproduced
an infinite number of times.

We are rarely afforded the opportunity of measuring all the elements of an entire
population. For this reason, most data are normally some portion or sample of
the target population. Obviously a sample provides only partial information on the
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population. In other words, the characteristics of the population cannot be com-
pletely known from sample data.

We can, however, draw certain parallels between the sample and the population.
Both population and sample may be described by measures such as those presented
in this chapter (although we cannot usually calculate them for a population). To dif-
ferentiate between a sample and the population from which it came, the descriptive
measures for a sample are called statistics and are calculated and symbolized as pre-
sented in this chapter. Specifically, the sample mean is ȳ and the sample variance is
s2. Descriptive measures for the population are called parameters and are denoted
by Greek letters. Specifically, we denote the mean of a population by μ and the vari-
ance by σ 2. If the population consists of a finite number of values, y1, y2, . . . , yN ,
then the mean is calculated by

μ =
∑

yi/N ,

and the variance is found by

σ 2 =
∑

(yi − μ)2

N
.

It is logical to assume that the sample statistics provide some information on the
values of the population parameters. In other words, the sample statistics may be
considered to be estimates of the population parameters. However, the statistics
from a sample cannot exactly reflect the values of the parameters of the population
from which the sample is taken. In fact, two or more individual samples from the
same population will invariably exhibit different values of sample estimates. The
magnitude of variation among sample estimates is referred to as the sampling error
of the estimates. Therefore, the magnitude of this sampling error provides an indica-
tion of how closely a sample estimate approximates the corresponding population
parameter. In other words, if a sample estimate can be shown to have a small sam-
pling error, that estimate is said to provide a good estimate for the corresponding
population parameter.

We must emphasize that sampling error is not an error in the sense of making a
mistake. It is simply a recognition of the fact that a sample statistic does not exactly
represent the value of a population parameter. The recognition and measurement of
this sampling error is the cornerstone of statistical inference.

1.9 DATA COLLECTION
Usually, our goal is to use the findings in our sample to make statements about the
population from which the sample was drawn, that is, we want to make statistical
inferences. But to do this, we have to be careful about the way the data was collected.
If the process in some way, perhaps quite subtle, favored getting data that indicated
a certain result, then we will have introduced a bias into the process. Bias produces



1.9 Data Collection 45

a systematic slanting of the results. Unlike sampling error, its size will not diminish
even for very large samples. Worse, its nature cannot be guessed from information
contained within the sample itself.

To avoid bias, we need to collect data using random sampling, or some more
advanced probability sampling technique. All the statistical inferences discussed in
this text assume the data came from random sampling, where “blind chance” domi-
nates the selection of the units. A simple random sample is one where each possible
sample of the specified size has an equal chance of occurring.

The process of drawing a simple random sample is conceptually simple, but difficult
to implement in practice. Essentially, it is like drawing for prizes in a lottery: the
population consists of all the lottery tickets and the sample of winners is drawn from
a well-shaken drum containing all the tickets. The most straightforward method for
drawing a random sample is to create a numbered list, called a sampling frame, of all
the sampling units in the population. A random number generator from a computer
program, or a table of random numbers, is used to select units from the list.

■ Example 1.5
Medicare has selected a particular medical provider for audit. The Medicare carrier
begins by defining the target population—say all claims from Provider X to Medi-
care for office visits with dates of service between 1/1/2007 and 12/31/2007. The
carrier then combs its electronic records for a list of all claims fitting this descrip-
tion, finding 521. This set of 521 claims, when sorted by beneficiary ID number
and date of service, becomes the sampling frame. The sampling units are the indi-
vidual claims. Units in the list are numbered from 1 to 521. The carrier decides
that it has sufficient time and money to carry out an exploratory audit of 30 claims.
To select the claims, the carrier uses a computer program to generate 30 integers
with values between 1 and 521. Since it would be a waste to audit the same claim
twice, these integers will be selected without replacement. The 30 claims in the
sampling frame that correspond to these integers are the ones for which the carrier
will request medical records and carry out a review.

This procedure can be used for relatively small finite populations but may be
impractical for large finite populations, and is obviously impossible for infinite
populations. Nevertheless, some blind, unbiased sampling mechanism is impor-
tant, particularly for observational studies. Human populations are notoriously
difficult to sample. Aside from the difficulty of constructing reasonably complete
sampling frames for a target population such as “all American men between the
ages of 50 and 59,” people will frequently simply refuse to participate in a sur-
vey, poll, or experiment. This nonresponse problem often results in a sample that
is drastically different from the target population in ways that cannot be readily
assessed.

Convenience samples are another dangerous source of data. These samples con-
sist of whatever data the researcher was most easily able to obtain, usually without
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any random sampling. Often these samples allow people to self-select into the
data set, as in polls in the media where viewers call in or click a choice on-line to
give their opinion. These samples are often wildly biased, as the most extreme
opinions will be over-represented in the data. You should never attempt to
generalize convenience sample results to the population.

True random samples are difficult. Designed experiments partially circumvent
these difficulties by introducing randomization in a different way. Convenience
samples are indeed selected, usually with some effort at obtaining a representa-
tive group of individuals. This nonrandom sample is then randomly divided into
subgroups one of which is often a placebo, control, or standard treatment group.
The other subgroups are given alternative treatments. Participants are not allowed
to select which treatment they will be given; rather, that is randomly determined.
Suppose, for example, that we wanted to know whether adding nuts to a diet low
in saturated fat would lead to a greater drop in cholesterol than would the diet
alone. We could advertise for volunteers with high total cholesterol levels. We
would then randomly divide them into two groups. One group would go on the
low saturated-fat diet, the second group would go on the same diet but with the
addition of nuts. At the end of three months, we would compare their changes in
cholesterol levels. The assumption here is that even though the participants were
not recruited randomly, the randomization makes it fair to generalize our results
regarding the effect of the addition of the nuts.

For more information on selecting random samples, or for advanced sampling,
see a text on sampling (for example, Scheaffer et al., 2006 or Cochran, 1977).
Designed experiments are covered in great detail in texts on experimental design
(for example, Maxwell and Delaney, 2000). The overriding factor in all types of
random sampling is that the actual selection of sample elements not be subject to
personal or other bias.

In many cases experimental conditions are such that nonrestricted randomization
is impossible; hence the sample is not a random sample. For example, much of the
data available for economic research consists of measurements of economic vari-
ables over time. For such data the normal sequencing of the data cannot be altered
and we cannot really claim to have a random sample of observations. In such situ-
ations, however, it is possible to define an appropriate model that contains a ran-
dom element. Models that incorporate such random elements are introduced in
Chapters 6 and 7. ■

1.10 CHAPTER SUMMARY

Solution to Example 1.1

We now know that the data listed in Table 1.1 consists of 50 observations on four
variables from an observational study. Two of the variables (AGE and TVHOURS)
are numerical and have the ratio level of measurement. The other two are categorical
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(nominal) level variables. We will explore the nature of these variables and a few of
the relationships between them.

We start by using SPSS to construct the frequency histograms of AGE and TVHOURS
as shown in Fig. 1.16. From these it appears that the distribution of age is somewhat
skewed positively while that of TVHOURS is extremely skewed positively.

To further explore the shape of the distributions of the two variables we construct
the box plots shown in Fig. 1.17. Note the symmetry of the variable AGE while the
obvious positive skewness of TVHOURS is highlighted by the long whisker on the
positive side of the box plot. Also, note that there is one potential outlier identified in
the TVHOURS box plot. This is the value 10 corresponding to the 20th respondent
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FIGURE 1.16
Histograms of AGE and TVHOURS.
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Box Plots of AGE and TVHOURS.



48 CHAPTER 1: Data and Statistics

in the data set. It is also interesting to see that fully 25% of the respondents reported
their average number of hours watching TV as 0 as indicated by the fact that the lower
quartile (the lower edge of the box) is at the level “0.”

We now examine some of the numerical descriptive statistics for these two measures
as seen in Table 1.14.

The first two rows of Table 1.14 tell us that all 50 of our sample respondents answered
the questions concerning age and number of hours per day watching TV. There were
no missing values for these variables. The mean age is 48.26 and the age of the
respondents ranges from 23 to 89. The mean number of hours per day watching
TV is 1.88 and ranges from 0 to 10. Note that the standard deviation of the number
of hours watching TV is actually larger than the mean. This is another indication of
the extremely skewed distribution of these values.

Figure 1.18 shows a relative frequency (percent) bar chart of the variable HAPPY.
From this we can see that only about 12% of the respondents considered themselves
not happy with their lives. Figure 1.18 also shows a pie chart of the variable SEX.
This indicates that 56% of the respondents were female vs. 44% male.

To see if there is any noticeable relationship between the variables AGE and
TVHOURS, a scatter diagram is constructed. The graph is shown in Fig. 1.19. There
does not seem to be a strong relationship between these two variables. There is one
respondent who seems to be “separated” from the group, and that is the respondent
who watches TV about 10 hours per day.

To examine the relationship between the two variables SEX and HAPPY, we will
construct side-by-side relative frequency bar charts. These are given in Fig. 1.20. Note
that the patterns of “happiness” seem to be opposite for the sexes. For example, of

Table 1.14 Numerical Statistics
for AGE and TVHOURS

Age of Hours per Day
Respondent Watching TV

N

Valid 50 50
Missing 0 0

Mean 48.26 1.88
Median 46.00 2.00
Mode 53 0
Std. deviation 17.05 2.14
Variance 290.65 4.60
Minimum 23 0
Maximum 89 10
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FIGURE 1.18
Bar Chart of HAPPY and Pie Chart of SEX.

FIGURE 1.19
Scatter Diagram of AGE and
TVHOURS.
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those who identified themselves as being “Very Happy,” 67% were female while only
33% were male.

Finally, to see if there is any difference in the relationship between AGE and
TVHOURS when the respondents are identified by SEX, we construct a scatter
diagram identifying points by SEX. This graph is given in Fig. 1.21.

The graph does not indicate any systematic difference in the relationship by sex. The
respondent who watches TV about 10 hours per day is male, but other than that
nothing can be concluded by examination of this graph. ■
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FIGURE 1.20
Side-by-Side Bar Charts for
HAPPY by SEX.
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AGE vs. TVHOURS Identified
by SEX.
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Summary

Statistics is concerned with the analysis of data. A set of data is defined as a set of
observations on one or more variables. Variables may be measured on a nominal,
ordinal, interval, or ratio scale with the ratio scale providing the most information.
Additionally, interval and ratio scale variables, also called numerical variables, may
be discrete or continuous. The nature of a statistical analysis is largely dictated by the
type of variable being analyzed.

A set of observations on a variable is described by a distribution, which is a listing of
the frequencies with which different values of the variable occur. A relative frequency
distribution shows the proportion of the total number of observations associated
with each value or class of values and is related to a probability distribution, which
is extensively used in statistics.
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Graphical representation of distributions is extremely useful for investigating various
characteristics of distributions, especially their shape and the existence of unusual
values. Frequently used graphical representations include bar charts, stem and leaf
plots, and box plots.

Numerical measures of various characteristics of distributions provide a manage-
able set of numeric values that can readily be used for descriptive and comparative
purposes. The most frequently used measures are those that describe the location
(center) and dispersion (variability) of a distribution. The most frequently used mea-
sure of location is the mean, which is the sum of observations divided by the number
of observations. Also used is the median, which is the center value.

The most frequently used measure of dispersion is the variance, which is the aver-
age of the squared differences between the observations and the mean. The square
root of the variance, called the standard deviation, describes dispersion in the orig-
inal scale of measurement. Other measures of dispersion are the range, which is
the difference between the largest and smallest observations, and the mean abso-
lute deviation, which is the average of the absolute values of the differences between
the observations and the mean.

Other numeric descriptors of the characteristics of a distribution include the per-
centiles, of which the quartile and interquartile ranges are special cases.

The importance of the mean and standard deviation is underscored by the empirical
rule and Tchebysheff’s theorem, which show that these two measures provide a very
adequate description of data distributions.

The chapter concludes with brief sections on descriptions of relationships between
two variables and a look ahead at the uses of descriptive measures for statistical infer-
ence. The chapter concludes with brief sections that describe certain relationships
between two variables, look ahead at the uses of descriptive measures for statistical
inference, and highlight some of the issues associated with data collection.

1.11 CHAPTER EXERCISES

Concept Questions

The following multiple choice questions are intended to provide practice in methods
and reinforce some of the concepts presented in this chapter.

1. The scores of eight persons on the Stanford–Binet IQ test were:

95 87 96 110 150 104 112 110

The median is:
(1) 107
(2) 110
(3) 112
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(4) 104
(5) none of the above

2. The concentration of DDT, in milligrams per liter, is:
(1) a nominal variable
(2) an ordinal variable
(3) an interval variable
(4) a ratio variable

3. If the interquartile range is zero, you can conclude that:
(1) the range must also be zero
(2) the mean is also zero
(3) at least 50% of the observations have the same value
(4) all of the observations have the same value
(5) none of the above is correct

4. The species of each insect found in a plot of cropland is:
(1) a nominal variable
(2) an ordinal variable
(3) an interval variable
(4) a ratio variable

5. The “average” type of grass used in Texas lawns is best described by
(1) the mean
(2) the median
(3) the mode

6. A sample of 100 IQ scores produced the following statistics:

mean = 95 lower quartile = 70

median = 100 upper quartile = 120

mode = 75 standard deviation = 30

Which statement(s) is (are) correct?
(1) Half of the scores are less than 95.
(2) The middle 50% of scores are between 100 and 120.
(3) One-quarter of the scores are greater than 120.
(4) The most common score is 95.

7. A sample of 100 IQ scores produced the following statistics:

mean = 100 lower quartile = 70

median = 95 upper quartile = 120

mode = 75 standard deviation = 30

Which statement(s) is (are) correct?
(1) Half of the scores are less than 100.
(2) The middle 50% of scores are between 70 and 120.
(3) One-quarter of the scores are greater than 100.
(4) The most common score is 95.
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8. Identify which of the following is a measure of dispersion:
(1) median
(2) 90th percentile
(3) interquartile range
(4) mean

9. A sample of pounds lost in a given week by individual members of a weight-
reducing clinic produced the following statistics:

mean = 5 pounds first quartile = 2 pounds
median = 7 pounds third quartile = 8.5 pounds

mode = 4 pounds standard deviation = 2 pounds

Identify the correct statement:
(1) One-fourth of the members lost less than 2 pounds.
(2) The middle 50% of the members lost between 2 and 8.5 pounds.
(3) The most common weight loss was 4 pounds.
(4) All of the above are correct.
(5) None of the above is correct.

10. A measurable characteristic of a population is:
(1) a parameter
(2) a statistic
(3) a sample
(4) an experiment

11. What is the primary characteristic of a set of data for which the standard
deviation is zero?
(1) All values of the variable appear with equal frequency.
(2) All values of the variable have the same value.
(3) The mean of the values is also zero.
(4) All of the above are correct.
(5) None of the above is correct.

12. Let X be the distance in miles from their present homes to residences when in
high school for individuals at a class reunion. Then X is:
(1) a categorical (nominal) variable
(2) a continuous variable
(3) a discrete variable
(4) a parameter
(5) a statistic

13. A subset of a population is:

(1) a parameter
(2) a population
(3) a statistic
(4) a sample
(5) none of the above
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14. The median is a better measure of central tendency than the mean if:
(1) the variable is discrete
(2) the distribution is skewed
(3) the variable is continuous
(4) the distribution is symmetric
(5) none of the above is correct

15. A small sample of automobile owners at Texas A & M University produced the
following number of parking tickets during a particular year: 4, 0, 3, 2, 5, 1, 2, 1,
0. The mean number of tickets (rounded to the nearest tenth) is:
(1) 1.7
(2) 2.0
(3) 2.5
(4) 3.0
(5) none of the above

16. In Problem 15, the implied sampling unit is:
(1) an individual automobile
(2) an individual automobile owner
(3) an individual ticket

17. To judge the extent of damage from Hurricane Ivan, an Escambia County official
randomly selects addresses of 30 homes from the county tax assessor’s roll and
then inspects these homes for damage.

Identify each of the following by writing the appropriate letter into the blank.

Target population (a) The tax assessor’s roll
Sampling unit (b) The 30 homes inspected
Sampling frame (c) An individual home
Sample (d) All homes in Escambia County

Practice Exercises

Most of the exercises in this and subsequentchapters are based on data sets for which
computations are most efficiently done with computers. However, manual computa-
tions, although admittedly tedious, provide a feel for how various results arise and
what they may mean. For this reason, we have included a few exercises with small
numbers of simple-valued observations that can be done manually. The solutions to
all these exercises are given in the back of the text.

1. A university published the following distribution of students enrolled in the
various colleges:

College Enrollment College Enrollment

Agriculture 1250 Liberal arts 2140
Business 3675 Science 1550
Earth sciences 850 Social sciences 2100
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Construct a bar chart of these data.

2. On ten days, a bank had 18, 15, 13, 12, 8, 3, 7, 14, 16, and 3 bad checks.
Find the mean, median, variance, and standard deviation of the number of bad
checks.

3. Calculate the mean and standard deviation of the following sample:

−1, 4, 5, 0.

4. The following is the distribution of ages of students in a graduate course:

Age (years) Frequency

20–24 11
25–29 24
30–34 30
35–39 18
40–44 11
45–49 5
50–54 1

(a) Construct a bar chart of the data.
(b) Calculate the mean and standard deviation of the data.

5. The percentage change in the consumer price index (CPI) is widely used as a
gauge of inflation. The following numbers show the percentage change in the
average CPI for the years 1993 through 2007:

3.0 2.6 2.8 3.0 2.3 1.6 2.2 3.4 2.8 1.6 2.3 2.7 3.4 3.2 2.8

(a) Using time as the horizontal axis and CPI as the vertical axis, constructa trend
graph showing how the CPI moved during this period. Comment on the trend.

(b) Calculate the mean, standard deviation, and median of the CPI.
(c) Calculate the inner and outer fences, and use this to say whether there are

any outliers in this data.
(d) Construct a box plot of the CPI values, and comment on the shape of the

distribution.

Exercises

1. Most of the problems in this and other chapters deal with “real” data for which
computations are most efficiently performed with computers. Since a little expe-
rience in manual computing is healthy, here are 15 observations of a variable
having no particular meaning:

12 18 22 17 20 15 19 13 23 8 14 14 19 11 30.

(a) Compute the mean, median, variance, range, and interquartile range for
these observations.
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(b) Produce a stem and leaf plot.
(c) Write a brief description of this data set.

2. Because waterfowl are an important economic resource, wildlife scientists study
how waterfowl abundance is related to various environmental variables. In such
a study, the variables shown in Table 1.15 were observed for a sample of 52
ponds.

Table 1.15 Waterfowl Data

OBS WATER VEG FOWL OBS WATER VEG FOWL

1 1.00 0.00 0 27 0.25 0.00 0
2 0.25 0.00 10 28 1.50 0.00 240
3 1.00 0.00 125 29 2.00 1.50 2
4 15.00 3.00 30 30 31.00 0.00 0
5 1.00 0.00 0 31 149.00 9.00 1410
6 33.00 0.00 32 32 1.00 2.75 0
7 0.75 0.00 16 33 0.50 0.00 15
8 0.75 0.00 0 34 1.50 0.00 16
9 2.00 0.00 14 35 0.25 0.00 0
10 1.50 0.00 17 36 0.25 0.25 0
11 1.00 0.00 0 37 0.75 0.00 125
12 16.00 1.00 210 38 0.25 0.00 2
13 0.25 0.00 11 39 1.25 0.00 0
14 5.00 1.00 218 40 6.00 0.00 179
15 10.00 2.00 5 41 2.00 0.00 80
16 1.25 0.50 26 42 5.00 8.00 167
17 0.50 0.00 4 43 2.00 0.00 0
18 16.00 2.00 74 44 0.25 0.00 11
19 2.00 0.00 0 45 5.00 1.00 364
20 1.50 0.00 51 46 7.00 2.25 59
21 0.50 0.00 12 47 9.00 7.00 185
22 0.75 0.00 18 48 0.00 1.25 0
23 0.25 0.00 1 49 0.00 4.00 0
24 17.00 5.25 2 50 7.00 0.00 177
25 3.00 0.75 16 51 4.00 2.00 0
26 1.50 1.75 9 52 1.00 2.00 0

WATER: the amount of open water in the pond, in acres.
VEG: the amount of aquatic and wetland vegetation present at and

around the pond, in acres.
FOWL: the number of waterfowl recorded at the pond during a

(random) one-day visit to the pond in January.
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The results of some intermediate computations:

WATER:
∑

y = 370.5
∑

y2 = 25735.9
VEG:

∑
y = 58.25

∑
y2 = 285.938

FOWL:
∑

y = 3933
∑

y2 = 2449535

(a) Make a complete summary of one of these variables. (Compute mean,
median, and variance, and construct a bar chart or stem and leaf and box
plots.) Comment on the nature of the distribution.

(b) Construct a frequency distribution for FOWL, and use the frequency distribu-
tion formulas to compute the mean and variance.

(c) Make a scatterplot relating WATER or VEG to FOWL.

3. Someone wants to know whether the direction of price movements of the general
stock market, as measured by the New York Stock Exchange (NYSE) Composite
Index, can be predicted by directional price movements of the New York Futures
Contract for the next month. Data on these variables have been collected for a
46-day period and are presented in Table 1.16. The variables are:

Table 1.16 Stock Prices

DAY INDEX FUTURE DAY INDEX FUTURE

1 0.58 0.70 24 1.13 0.46
2 0.00 −0.79 25 2.96 1.54
3 0.43 0.85 26 −3.19 −1.08
4 −0.14 −0.16 27 1.04 −0.32
5 −1.15 −0.71 28 −1.51 −0.60
6 0.15 −0.02 29 −2.18 −1.13
7 −1.23 −1.10 30 −0.91 −0.36
8 −0.88 −0.77 31 1.83 −0.02
9 −1.26 −0.78 32 2.86 0.91
10 0.08 −0.35 33 2.22 1.56
11 −0.15 0.26 34 −1.48 −0.22
12 0.23 −0.14 35 −0.47 −0.63
13 −0.97 −0.33 36 2.14 0.91
14 −1.36 −1.17 37 −0.08 −0.02
15 −0.84 −0.46 38 −0.62 −0.41
16 −1.01 −0.52 39 −1.33 −0.81
17 −0.86 −0.28 40 −1.34 −2.43
18 0.87 0.28 41 1.12 −0.34
19 −0.78 −0.20 42 −0.16 −0.13
20 −2.36 −1.55 43 1.35 0.18
21 0.48 −0.09 44 1.33 1.18
22 −0.88 −0.44 45 −0.15 0.67
23 0.08 −0.63 46 −0.46 −0.10
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INDEX: the percentage change in the NYSE composite index for a
one-day period.

FUTURE: the percentage change in the NYSE futures contract for a
one-day period.

(a) Make a complete summary of one of these variables.
(b) Construct a scatterplot relating these variables. Does the plot help to answer

the question posed?

4. The data in Table 1.17 consist of 25 values for four computer-generatedvariables
called Y1, Y2, Y3, and Y4. Each of these is intended to represent a particular distri-
butional shape. Use a stem and leaf and a box plot to ascertain the nature of each
distribution and then see whether the empirical rule works for each of these.

Table 1.17 Data for Recognizing
Distributional Shapes

Y1 Y2 Y3 Y4 Y1 Y2 Y3 Y4

4.0 3.5 1.3 5.0 8.1 4.7 2.7 2.3
6.7 6.4 6.7 1.0 6.3 3.3 1.3 0.1
6.2 3.3 1.3 0.6 6.9 3.9 2.7 3.9
2.4 4.0 2.7 4.5 8.4 5.7 5.4 1.4
1.6 3.5 1.3 1.8 3.1 3.3 1.3 2.2
5.3 4.8 4.0 0.3 4.5 5.2 4.0 0.9
6.8 3.2 1.3 0.1 1.6 4.0 2.7 4.8
6.8 6.9 9.4 4.7 1.8 6.7 8.0 1.6
2.8 6.5 6.7 2.7 5.3 5.2 4.0 0.1
7.3 6.6 6.7 1.1 2.7 5.8 5.4 3.9
5.8 4.4 2.7 2.1 3.2 5.9 5.4 0.9
6.1 4.2 2.7 2.3 4.2 3.1 0.0 7.4
3.1 4.6 2.7 2.5

5. Climatological records provide a rich source of data suitable for description by
statistical methods. The data for this example (Table 1.18) are the number of
January days in London, England, having rain (Days) and the average January
temperature (Temp, in degrees Fahrenheit) for the years 1858 through 1939.

(a) Summarize these two variables.
(b) Draw a scatterplot to see whether the two variables are related.

6. Table 1.19 gives data on population (in thousands) and expenditures on crimi-
nal justice activities (in millions of dollars) for the 50 states and the District of
Columbia as obtained from the 2005 Statistical Abstract of the United States.
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Table 1.18 Rain Days and Temperatures, London Area,
January

Year Days Temp Year Days Temp Year Days Temp

1858 6 40.5 1886 23 35.8 1914 12 39.7
1859 10 40.0 1887 13 37.9 1915 19 45.9
1860 21 34.0 1888 9 37.2 1916 14 35.5
1861 7 39.3 1889 10 43.6 1917 18 39.6
1862 19 42.2 1890 21 34.1 1918 18 37.8
1863 15 36.6 1891 14 36.6 1919 22 42.4
1864 8 36.5 1892 13 35.5 1920 21 46.1
1865 13 43.1 1893 17 38.5 1921 20 40.2
1866 23 34.6 1894 25 33.7 1922 20 41.5
1867 17 37.6 1895 16 40.5 1923 15 40.8
1868 19 41.4 1896 9 35.4 1924 18 41.7
1869 15 38.5 1897 21 43.7 1925 11 40.5
1870 17 33.4 1898 9 42.8 1926 18 41.0
1871 17 41.5 1899 19 40.4 1927 17 42.1
1872 22 42.3 1900 21 38.8 1928 21 34.8
1873 18 41.9 1901 12 42.0 1929 12 44.0
1874 17 43.6 1902 11 41.1 1930 17 39.0
1875 23 37.3 1903 17 39.5 1931 20 44.0
1876 11 42.9 1904 22 38.4 1932 13 37.4
1877 25 40.4 1905 8 42.4 1933 14 39.6
1878 15 31.8 1906 18 38.8 1934 18 40.7
1879 12 33.3 1907 8 36.8 1935 13 40.9
1880 5 31.7 1908 10 38.8 1936 21 41.9
1881 8 40.5 1909 13 40.0 1937 23 43.6
1882 7 41.4 1910 14 38.2 1938 21 41.7
1883 21 43.9 1911 12 40.2 1939 22 30.8
1884 16 36.6 1912 17 41.1
1885 16 36.3 1913 17 38.4

(a) Describe the distribution of states’ criminal justice expenditures with what-
ever measures appear appropriate. Comment on the features and implica-
tions of these data.

(b) Compute the per capita expenditures (EXPEND /POP) for these data. Repeat
part (a). Discuss any differences in the nature of the distribution you may
have stated in part (a).

(c) Make a scatterplot of total and per capita expenditures on the vertical axis
against population on the horizontal axis. Which of these plots is more
useful?
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Table 1.19 Criminal Justice Expenditures

STATE POP EXPEND STATE POP EXPEND

AK 669 563 MT 936 441
AL 4540 1757 NC 8679 3706
AR 2772 1145 ND 636 224
AZ 5952 3589 NE 1754 726
CA 35990 29332 NH 1303 515
CO 4674 2519 NJ 8657 5982
CT 3486 1949 NM 1916 1156
DC 582 671 NV 2409 1730
DE 841 588 NY 19263 15449
FL 17736 11351 OH 11460 6028
GA 9108 4490 OK 3536 1485
HI 1268 678 OR 3630 2076
IA 2956 1126 PA 12367 6629
ID 1426 646 RI 1067 607
IL 12720 6500 SC 4255 1570
IN 6257 2390 SD 780 280
KS 2742 1215 TN 5989 2504
KY 4171 1706 TX 22844 10668
LA 4496 2491 UT 2505 1225
MA 6429 3465 VA 7558 3794
MD 5573 3578 VT 620 284
ME 1312 484 WA 6271 3292
MI 10108 5681 WI 5540 3092
MN 5114 2470 WV 1806 643
MO 5788 2425 WY 507 459
MS 2900 1050

7. Make scatterplots for all pairwise combinations of the variables from the tree
data (Table 1.7). Which pairs of variables have the strongest relationship? Is your
conclusion consistent with prior knowledge?

8. The data set in Table 1.20 lists all cases of Down syndrome in Victoria, Australia,
from 1942 through 1957, as well as the number of births classified by the age of
the mother (Andrews and Herzberg, 1985).
(a) Construct a relative frequency histogram for total number of births by age

group.
(b) Construct a relative frequency histogram for number of mothers of Down

syndrome patients by age group.
(c) Compare the shape of the two histograms. Does the shape of the histogram

for Down syndrome suggest that age alone accounts for number of Down
syndrome patients born?
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Table 1.20 Down Syndrome in Victoria,
Australiaa

Age Group, Total Number Number of Mothers of
Years of Births Down Syndrome Patients

20 or less 35,555 15
20–24 207,931 128
25–29 253,450 208
30–34 170,970 194
35–39 86,046 297
40–44 24,498 240
45 or over 1,707 37

aReprinted with permission from Andrews and Herzberg (1985).

(d) Constructa scatter diagram of total number of births versus number of moth-
ers of Down syndrome. Does the scatter diagram support the conclusion in
part (c)?

9. Table 1.21 shows the times in days from remission induction to relapse for 51
patients with acute nonlymphoblastic leukemia who were treated on a common
protocol at university and private institutions in the Pacific Northwest. This is a
portion of a larger study reported by Glucksberg et al. (1981).

Table 1.21 Ordered Remission Durations for 51 Patients with Acute
Nonlymphoblastic Leukemia (in days)

24 46 57 57 64 65 82 89 90 90 111 117 128 143 148 152
166 171 186 191 197 209 223 230 247 249 254 258 264 269 270 273
284 294 304 304 332 341 393 395 487 510 516 518 518 534 608 642
697 955 1160

Since data of this type are notoriously skewed, the distribution of the times can
be examined using the following output from PROC UNIVARIATE in SAS as seen in
Fig. 1.22.
(a) What is the relation between the mean and the median? What does this

mean about the shape of the distribution? Do the stem and leaf plot and the
box plot support this?

(b) Identify any outliers in this data set. Can you think of any reasons for these
outliers? Can we just “throw them away”? Note that the mean time of
remission is 292.39 days and the median time is 249.

(c) Approximately what percent of these patients were in remission for less than
one year?
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FIGURE 1.22
Summary Statistics for
Remission Data.
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10. The use of placement exams in elementary statistics courses has been a contro-
versial topic in recent times. Some researchers think that the use of a placement
exam can help determine whether a student will successfully complete a course
(or program). A recent study in a large university resulted in the data listed in
Table 1.22. The placement test administered was an in-house written general
mathematics test. The course was Elementary Statistics. The students were told
that the test would not affect their course grade. After the semester was over,
students were classified according to their status. In Table 1.22 are the students’
scores on the placement test (from 0 to 100), and the status of the student (coded
as 0 = passed the course, 1 = failed the course, and 2 = dropped out before the
semester was over) related?
(a) Construct a frequency histogram for Score. Describe the results.
(b) Construct a relative frequency histogram for Score for each value of Sta-

tus. Describe the differences among these distributions. Are there some
surprises?

11. The Energy Information Administration (http://www.eia.doe.gov) tabulates
information on the average cost of electricity (in cents per kwh) for residential
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Table 1.22 Placement Scores for Elementary Statistics

Student Score Status Student Score Status Student Score Status

1 90 2 36 85 0 71 97 2
2 65 2 37 99 1 72 90 0
3 30 1 38 45 0 73 30 0
4 55 0 39 90 0 74 1 0
5 1 0 40 10 1 75 1 0
6 5 1 41 56 0 76 70 0
7 95 0 42 55 2 77 90 0
8 99 0 43 50 0 78 70 0
9 40 0 44 1 1 79 75 0

10 95 0 45 45 0 80 75 2
11 1 0 46 50 0 81 70 2
12 55 0 47 85 2 82 85 0
13 85 0 48 95 2 83 45 0
14 95 0 49 15 0 84 50 0
15 15 2 50 35 0 85 55 0
16 95 0 51 85 0 86 15 0
17 15 0 52 85 0 87 55 0
18 65 0 53 50 0 88 20 1
19 55 0 54 10 1 89 1 1
20 75 0 55 60 0 90 75 0
21 15 0 56 45 1 91 45 2
22 35 2 57 90 0 92 70 0
23 90 0 58 1 1 93 70 0
24 10 0 59 80 2 94 45 0
25 10 1 60 45 0 95 90 0
26 20 0 61 90 0 96 65 2
27 25 0 62 45 0 97 75 2
28 15 1 63 20 0 98 70 0
29 40 0 64 35 1 99 65 0
30 15 0 65 40 2 100 55 0
31 50 0 66 40 0 101 55 0
32 80 0 67 60 0 102 40 0
33 50 1 68 15 0 103 56 0
34 50 2 69 45 0 104 85 0
35 97 0 70 45 0 105 80 0

customers in the United States. The data is shown in Table 1.23 for the years
1995 through 2008.
(a) Plot the cost versus the year.
(b) Comment on the trends, or general patterns, that are present in the data.
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Table 1.23 Electricity Costs

Year Cost Year Cost Year Cost

1995 8.40 2000 8.24 2005 9.45
1996 8.36 2001 8.58 2006 10.40
1997 8.43 2002 8.44 2007 10.65
1998 8.26 2003 8.72 2008 11.36
1999 8.16 2004 8.95

12. A study of characteristics of successful salespersons in a certain industry
included a questionnaire given to sales managers of companies in this industry.
In this questionnaire the sales manager had to choose a trait that the manager
thought was most important for salespersons to have. The results of 120 such
responses are given in Table 1.24.

Table 1.24 Traits of Salespersons
Considered Most Important by Sales
Managers

Trait Number of Responses

Reliability 44
Enthusiastic/energetic 30
Self-starter 20
Good grooming habits 18
Eloquent 6
Pushy 2

(a) Convert the number of responses to percents of total. What can be said about
the first two traits?

(b) Draw a bar chart of the data.

13. A measure of the time a drug stays in the blood system is given by the half-life
of the drug. This measure is dependent on the type of drug, the weight of the
patient, and the dose administered. To study the half-life of aminoglyco sides
in trauma patients, a pharmacy researcher recorded the data in Table 1.25 for
patients in a critical care facility. The data consist of measurements of dosage per
kilogram of weight of the patient, type of drug, either Amikacin or Gentamicin,
and the half-life measured 1 hour after administration.
(a) Draw a scatter diagram of half-life versus dose per kilogram, indexed by

drug type (use A’s and G’s). Does there appear to be a difference in the
prescription of initial doses in types of drugs?

(b) Does there appear to be a relation between half-life and dosage? Explain.
(c) Find the mean and standard deviation for dose per kilogram for the two types

of drugs. Does this seem to support the conclusion in part (a)?
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Table 1.25 Half-Life of Aminoglycosides and Dosage by Drug Type

Dosage Dosage
Patient Drug Half-Life (mg drug/kg patient) Patient Drug Half-Life (mg drug/kg patient)

1 G 1.60 2.10 23 A 1.98 10.00
2 A 2.50 7.90 24 A 1.87 9.87
3 G 1.90 2.00 25 G 2.89 2.96
4 G 2.30 1.60 26 A 2.31 10.00
5 A 2.20 8.00 27 A 1.40 10.00
6 A 1.60 8.30 28 A 2.48 10.50
7 A 1.30 8.10 29 G 1.98 2.86
8 A 1.20 8.60 30 G 1.93 2.86
9 G 1.80 2.00 31 G 1.80 2.86

10 G 2.50 1.90 32 G 1.70 3.00
11 A 1.60 7.60 33 G 1.60 3.00
12 A 2.20 6.50 34 G 2.20 2.86
13 A 2.20 7.60 35 G 2.20 2.86
14 G 1.70 2.86 36 G 2.40 3.00
15 A 2.60 10.00 37 G 1.70 2.86
16 A 1.00 9.88 38 G 2.00 2.86
17 G 2.86 2.89 39 G 1.40 2.82
18 A 1.50 10.00 40 G 1.90 2.93
19 A 3.15 10.29 41 G 2.00 2.95
20 A 1.44 9.76 42 A 2.80 10.00
21 A 1.26 9.69 43 A 0.69 10.00
22 A 1.98 10.00

Project

1. Lake Data Set. The Florida Lakes data set (Appendix C.1) shows total phosphorus
levels for a sample of lakes in Northeast Florida. (Phosphorus is one of the nutri-
ents that encourages algal growth in lake water.) For the lakes in the Hawthorne
geologic formation (HAW), compare the winter total phosphorus levels (WTRTP)
for those with clayey sand soil (CS) to those with quartzite sand soil (QS). Use
both graphical and numerical statistical comparisons. Then transform the phos-
phorus levels by computing LOGWTRTP = ln(WTRTP). Are the transformed values
easier to compare? Which variable is better described by means and standard
deviations?




