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Preface to the Fourth Edition

Since the publication of the third edition in 1998, some new developments have
occurred. Samuel Karlin died in 2007, leaving a gap at the authorship level and the
new designation of authors.

In the fourth edition, we have added two new chapters: Chapter 10 on random evo-
lution and Chapter 11 on characteristic functions. Random Evolution denotes a set
of stochastic models, which describe continuous motion with piecewise linear sample
functions. Explicit formulas are available in the simplest cases. In the general case, one
has a central limit theorem, which is pursued more generally in Chapter 11, “Char-
acteristic Functions and Their Applications.” Here the necessary tools from Fourier
Analysis are developed and applied when necessary. Many theorems are proved in
full detail, while other proofs are sketched—in the spirit of the earlier Chapters 1–9.
Complete proofs may be found by consulting the intermediate textbooks listed in the
section on further reading. Instructors who have taught from the third edition may
be reassured that Chapters 1–9 of the new edition are identical to the corresponding
chapters of the new book.

We express our thanks to Michael Perlman of the University of Washington and
Russell Lyons of Indiana University for sharing their lists of errata from the third edi-
tion. We would also like to thank Craig Evans for useful advice on partial differential
equations.

Biographical Note

Samuel Karlin earned his undergraduate degree from the Illinois Institute of Technol-
ogy and his doctorate from Princeton University in 1947 at age 22. He served on the
faculty of Caltech from 1948–1956 before joining the faculty of Stanford University,
where he spent the remainder of his career. Karlin made fundamental contributions to
mathematical economics, bioinformatics, game theory, evolutionary theory, biomolec-
ular sequence analysis, mathematical population genetics, and total positivity.

Karlin authored 10 books and more than 450 articles. He was a member of the
American Academy of Arts and Sciences and the National Academy of Sciences.
In 1989, he received the National Medal of Science for his broad and remarkable
researches in mathematical analysis, probability theory, and mathematical statistics
and in the application of these ideas to mathematical economics, mechanics, and genet-
ics. He died on December 18, 2007.

Mark A. Pinsky
Department of Mathematics

Northwestern University
Evanston, IL 60208-2730





Preface to the Third Edition

The purposes, level, and style of this new edition conform to the tenets set forth in the
original preface. We continue with our objective of introducing some theory and appli-
cations of stochastic processes to students having a solid foundation in calculus and
in calculus-level probability, but who are not conversant with the “epsilon–delta” def-
initions of mathematical analysis. We hope to entice students toward the deeper study
of mathematics that is prerequisite to further work in stochastic processes by showing
the myriad and interesting ways in which stochastic models can help us understand the
real world.

We have removed some topics and added others. We added a small section on
martingales that includes an example suggesting the martingale concept as appropriate
for modeling the prices of assets traded in a perfect market. A new chapter introduces
the Brownian motion process and includes several applications of it and its variants
in financial modeling. In this chapter the Black–Scholes formula for option pricing
is evaluated and compared with some reported prices of options. A Poisson process
whose intensity is itself a stochastic process is described in another new section.

Some treatments have been updated. The law of rare events is presented via an
inequality that measures the accuracy of a Poisson approximation for the distribution
of the sum of independent, not necessarily identically distributed, Bernoulli random
variables. We have added the shot noise model and related it to a random sum.

The text contains more than 250 exercises and 350 problems. Exercises are elemen-
tary drills intended to promote active learning and to develop familiarity with concepts
through use. They often simply involve the substitution of numbers into given formu-
las or reasoning one or two steps away from a definition. They are the kinds of simple
questions that we, as instructors, hope that students would pose and answer for them-
selves as they read a text. Answers to the exercises are given at the end of the book so
that students may gauge their understanding as they go along.

Problems are more difficult. Some involve extensive algebraic or calculus ma-
nipulation. Many are “word problems” wherein the student is asked, in effect, to model
some described scenario. As in formulating a model, the first step in the solution of a
word problem is often a sentence of the form “Let x = . . . .” A manual containing the
solutions to the problems is available from the publisher.

A reasonable strategy on the part of the teacher might be to hold students respon-
sible for all of the exercises, but to require submitted solutions only to selected prob-
lems. Every student should attempt a representative selection of the problems in order
to develop his or her ability to carry out stochastic modeling in his or her area of
interest.



xiv Preface to the Third Edition

A small number of problems are labeled “Computer Challenges.” These call for
more than pencil and paper for their analyses, and either simulation, numerical explo-
ration, or symbol manipulation may prove helpful. Computer Challenges are meant
to be open-ended, intended to explore what constitutes an answer in today’s world of
computing power. They might be appropriate as part of an honors requirement.

Because our focus is on stochastic modeling, in some instances, we have omitted a
proof and contented ourselves with a precise statement of a result and examples of its
application. All such omitted proofs may be found in A First Course in Stochastic Pro-
cesses, by the present authors. In this more advanced text, the ambitious student will
also find additional material on martingales, Brownian motion, and renewal processes,
and presentations of several other classes of stochastic processes.



Preface to the First Edition

Stochastic processes are ways of quantifying the dynamic relationships of sequences
of random events. Stochastic models play an important role in elucidating many areas
of the natural and engineering sciences. They can be used to analyze the variability
inherent in biological and medical processes, to deal with uncertainties affecting man-
agerial decisions and with the complexities of psychological and social interactions,
and to provide new perspectives, methodology, models, and intuition to aid in other
mathematical and statistical studies.

This book is intended as a beginning text in stochastic processes for students famil-
iar with elementary probability calculus. Its aim is to bridge the gap between basic
probability know-how and an intermediate-level course in stochastic processes—for
example, A First Course in Stochastic Processes, by the present authors.

The objectives of this book are as follows: (1) to introduce students to the standard
concepts and methods of stochastic modeling; (2) to illustrate the rich diversity of
applications of stochastic processes in the sciences; and (3) to provide exercises in the
application of simple stochastic analysis to appropriate problems.

The chapters are organized around several prototype classes of stochastic pro-
cesses featuring Markov chains in discrete and continuous time, Poisson processes
and renewal theory, the evolution of branching events, and queueing models. After
the concluding Chapter 9, we provide a list of books that incorporate more advanced
discussions of several of the models set forth in this text.





To the Instructor

If possible, we recommend having students skim the first two chapters, referring as
necessary to the probability review material, and starting the course with Chapter 3, on
Markov chains. A one-quarter course adapted to the junior–senior level could consist
of a cursory (1-week) review of Chapters 1 and 2, followed in order by Chapters 3
through 6. For interested students, Chapters 7, 8, and 9 discuss other currently active
areas of stochastic modeling. Starred sections contain material of a more advanced or
specialized nature.
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