
3 Markov Chains: Introduction

3.1 Definitions

A Markov process {Xt} is a stochastic process with the property that, given the value of
Xt, the values of Xs for s> t are not influenced by the values of Xu for u< t. In words,
the probability of any particular future behavior of the process, when its current state
is known exactly, is not altered by additional knowledge concerning its past behavior.
A discrete-time Markov chain is a Markov process whose state space is a finite or
countable set, and whose (time) index set is T = (0,1,2, . . .). In formal terms, the
Markov property is that

Pr{Xn+1 = j|X0 = i0, . . . ,Xn−1 = in−1,Xn = i}

= Pr{Xn+1 = j|Xn = i} (3.1)

for all time points n and all states i0, . . . , in−1, i, j.
It is frequently convenient to label the state space of the Markov chain by the non-

negative integers {0,1,2, . . .}, which we will do unless the contrary is explicitly stated,
and it is customary to speak of Xn as being in state i if Xn = i.

The probability of Xn+1 being in state j given that Xn is in state i is called the
one-step transition probability and is denoted by Pn,n+1

ij . That is,

Pn,n+1
ij = Pr{Xn+1 = j|Xn = i}. (3.2)

The notation emphasizes that in general the transition probabilities are functions
not only of the initial and final states but also of the time of transition as well. When
the one-step transition probabilities are independent of the time variable n, we say
that the Markov chain has stationary transition probabilities. Since the vast majority
of Markov chains that we shall encounter have stationary transition probabilities, we
limit our discussion to this case. Then, Pn,n+1

ij = Pij is independent of n, and Pij is
the conditional probability that the state value undergoes a transition from i to j in one
trial. It is customary to arrange these numbers Pij in a matrix, in the infinite square
array

P=

∥∥∥∥∥∥∥∥∥∥∥∥∥

P00 P01 P02 P03 · · ·

P10 P11 P12 P13 · · ·

P20 P21 P22 P23 · · ·
...

...
...

...

Pi0 Pi1 Pi2 Pi3 · · ·
...

...
...

...

∥∥∥∥∥∥∥∥∥∥∥∥∥
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and refer to P= ‖Pij‖ as the Markov matrix or transition probability matrix of the
process.

The ith row of P, for i= 0,1, . . . , is the probability distribution of the values of
Xn+1 under the condition that Xn = i. If the number of states is finite, then P is a finite
square matrix whose order (the number of rows) is equal to the number of states.
Clearly, the quantities Pij satisfy the conditions

Pij ≥ 0 for i, j= 0,1,2, . . . , (3.3)
∞∑

j=0

Pij = 1 for i= 0,1,2, . . . . (3.4)

The condition (3.4) merely expresses the fact that some transition occurs at each trial.
(For convenience, one says that a transition has occurred even if the state remains
unchanged.)

A Markov process is completely defined once its transition probability matrix and
initial state X0 (or, more generally, the probability distribution of X0) are specified. We
shall now prove this fact.

Let Pr{X0 = i} = pi. It is enough to show how to compute the quantities

Pr{X0 = i0,X1 = i1,X2 = i2, . . . ,Xn = in}, (3.5)

since any probability involving Xj1 , . . . ,Xjk , for j1 < · · ·< jk, can be obtained, accord-
ing to the axiom of total probability, by summing terms of the form (3.5).

By the definition of conditional probabilities, we obtain

Pr{X0 = i0,X1 = i1,X2 = i2, . . . ,Xn = in}

= Pr{X0 = i0,X1 = i1, . . . ,Xn−1 = in−1}

×Pr{Xn = in|X0 = i0,X1 = i1, . . . ,Xn−1 = in−1}.

(3.6)

Now, by the definition of a Markov process,

Pr{Xn = in|X0 = i0,X1 = i1, . . . ,Xn−1 = in−1}

= Pr{Xn = in|Xn−1 = in−1} = Pin−1,in .
(3.7)

Substituting (3.7) into (3.6) gives

Pr{X0 = i0,X1 = i1, . . . ,Xn = in}

= Pr{X0 = i0,X1 = i1, . . . ,Xn−1 = in−1}Pin−1,in.

Then, upon repeating the argument n− 1 additional times, (3.5) becomes

Pr{X0 = i0,X1 = i1, . . . ,Xn = in}

= pi0Pi0,i1 · · ·Pin−2,in−1Pin−1,in .
(3.8)
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This shows that all finite-dimensional probabilities are specified once the transition
probabilities and initial distribution are given, and in this sense, the process is defined
by these quantities.

Related computations show that (3.1) is equivalent to the Markov property in the
form

Pr{Xn+1 = j1, . . . ,Xn+m = jm|X0 = i0, . . . ,Xn = in}

= Pr{Xn+1 = j1, . . . ,Xn+m = jm|Xn = in}
(3.9)

for all time points n,m and all states i0, . . . , in, j1, . . . , jm. In other words, once (3.9) is
established for the value m= 1, it holds for all m≥ 1 as well.

Exercises

3.1.1 A Markov chain X0,X1, . . . on states 0, 1, 2 has the transition probability matrix

P=

∥∥∥∥∥∥∥
0 1 2

0 0.1 0.2 0.7

1 0.9 0.1 0

2 0.1 0.8 0.1

∥∥∥∥∥∥∥
and initial distribution p0 = Pr{X0 = 0} = 0.3,p1 = Pr{X0 = 1} = 0.4, and p2 =

Pr{X0 = 2} = 0.3. Determine Pr{X0 = 0,X1 = 1,X2 = 2}.
3.1.2 A Markov chain X0,X1,X2, . . . has the transition probability matrix

P=

∥∥∥∥∥∥∥
0 1 2

0 0.7 0.2 0.1

1 0 0.6 0.4

2 0.5 0 0.5

∥∥∥∥∥∥∥.
Determine the conditional probabilities

Pr{X2 = 1,X3 = 1|X1 = 0} and Pr{X1 = 1,X2 = 1|X0 = 0}.

3.1.3 A Markov chain X0,X1,X2, . . . has the transition probability matrix

P=

∥∥∥∥∥∥∥
0 1 2

0 0.6 0.3 0.1

1 0.3 0.3 0.4

2 0.4 0.1 0.5

∥∥∥∥∥∥∥.
If it is known that the process starts in state X0 = 1, determine the probability
Pr{X0 = 1,X1 = 0,X2 = 2}.
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3.1.4 A Markov chain X0,X1,X2, . . . has the transition probability matrix

P=

∥∥∥∥∥∥∥
0 1 2

0 0.1 0.1 0.8

1 0.2 0.2 0.6

2 0.3 0.3 0.4

∥∥∥∥∥∥∥.
Determine the conditional probabilities

Pr{X1 = 1,X2 = 1|X0 = 0} and Pr{X2 = 1,X3 = 1|X1 = 0}.

3.1.5 A Markov chain X0,X1,X2, . . . has the transition probability matrix

P=

∥∥∥∥∥∥∥
0 1 2

0 0.3 0.2 0.5

1 0.5 0.1 0.4

2 0.5 0.2 0.3

∥∥∥∥∥∥∥
and initial distribution p0 = 0.5 and p1 = 0.5. Determine the probabilities

Pr{X0 = 1,X1 = 1,X2 = 0} and Pr{X1 = 1,X2 = 1,X3 = 0}.

Problems

3.1.1 A simplified model for the spread of a disease goes this way: The total popu-
lation size is N = 5, of which some are diseased and the remainder are healthy.
During any single period of time, two people are selected at random from the
population and assumed to interact. The selection is such that an encounter
between any pair of individuals in the population is just as likely as between
any other pair. If one of these persons is diseased and the other not, with prob-
ability α = 0.1 the disease is transmitted to the healthy person. Otherwise, no
disease transmission takes place. Let Xn denote the number of diseased persons
in the population at the end of the nth period. Specify the transition probability
matrix.

3.1.2 Consider the problem of sending a binary message, 0 or 1, through a signal
channel consisting of several stages, where transmission through each stage is
subject to a fixed probability of error α. Suppose that X0 = 0 is the signal that is
sent and let Xn be the signal that is received at the nth stage. Assume that {Xn}

is a Markov chain with transition probabilities P00 = P11 = 1−α and P01 =

P10 = α, where 0< α < 1.
(a) Determine Pr{X0 = 0,X1 = 0,X2 = 0}, the probability that no error occurs

up to stage n= 2.
(b) Determine the probability that a correct signal is received at stage 2.

Hint: This is Pr{X0 = 0,X1 = 0,X2 = 0}+Pr{X0 = 0,X1 = 1,X2 = 0}.
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3.1.3 Consider a sequence of items from a production process, with each item being
graded as good or defective. Suppose that a good item is followed by another
good item with probability α and is followed by a defective item with probabil-
ity 1−α. Similarly, a defective item is followed by another defective item with
probability β and is followed by a good item with probability 1−β. If the first
item is good, what is the probability that the first defective item to appear is the
fifth item?

3.1.4 The random variables ξ1,ξ2, . . . are independent and with the common proba-
bility mass function

k = 0 1 2 3
Pr{ξ = k} = 0.1 0.3 0.2 0.4

Set X0 = 0, and let Xn =max{ξ1, . . . , ξn} be the largest ξ observed to date. Deter-
mine the transition probability matrix for the Markov chain {Xn}.

3.2 Transition Probability Matrices of a Markov Chain

A Markov chain is completely defined by its one-step transition probability matrix and
the specification of a probability distribution on the state of the process at time 0. The
analysis of a Markov chain concerns mainly the calculation of the probabilities of the
possible realizations of the process.

Central in these calculations are the n-step transition probability matrices P(n) =
‖P(n)ij ‖. Here, P(n)ij denotes the probability that the process goes from state i to state j
in n transitions. Formally,

P(n)ij = Pr{Xm+n = j|Xm = i}. (3.10)

Observe that we are dealing only with temporally homogeneous processes having
stationary transition probabilities, since otherwise the left side of (3.10) would also
depend on m.

The Markov property allows us to express (3.10) in terms of ‖Pij‖ as stated in the
following theorem.

Theorem 3.1. The n-step transition probabilities of a Markov chain satisfy

P(n)ij =

∞∑
k=0

PikP(n−1)
kj , (3.11)

where we define

P(0)ij =

{
1 if i= j,
0 if i 6= j.
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From the theory of matrices, we recognize the relation (3.11) as the formula for
matrix multiplication so that P(n) = P×P(n−1). By iterating this formula, we obtain

P(n) = P×P× ·· ·×P︸ ︷︷ ︸
n factors

= Pn
; (3.12)

in other words, the n-step transition probabilities P(n)ij are the entries in the matrix Pn,
the nth power of P.

Proof. The proof proceeds via a first step analysis, a breaking down, or analysis, of
the possible transitions on the first step, followed by an application of the Markov
property. The event of going from state i to state j in n transitions can be realized in the
mutually exclusive ways of going to some intermediate state k(k = 0,1, . . .) in the first
transition, and then going from state k to state j in the remaining (n− 1) transitions.
Because of the Markov property, the probability of the second transition is P(n−1)

kj and
that of the first is clearly Pik. If we use the law of total probability, then (3.11) follows.
The steps are

P(n)ij = Pr{Xn = j|X0 = i} =
∞∑

k=0

Pr{Xn = j,X1 = k|X0 = i}

=

∞∑
k=0

Pr{X1 = k|X0 = i}Pr{Xn = j|X0 = i,X1 = k}

=

∞∑
k=0

PikP(n−1)
kj .

If the probability of the process initially being in state j is pj, i.e., the distribution
law of X0 is Pr{X0 = j} = pj, then the probability of the process being in state k at
time n is

p(n)k =

∞∑
j=0

pjP
(n)
jk = Pr{Xn = k}. (3.13)

�

Exercises

3.2.1 A Markov chain {Xn} on the states 0,1,2 has the transition probability matrix

P=

∥∥∥∥∥∥∥
0 1 2

0 0.1 0.2 0.7

1 0.2 0.2 0.6

2 0.6 0.1 0.3

∥∥∥∥∥∥∥.
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(a) Compute the two-step transition matrix P2.
(b) What is Pr{X3 = 1|X1 = 0}?
(c) What is Pr{X3 = 1|X0 = 0}?

3.2.2 A particle moves among the states 0,1,2 according to a Markov process whose
transition probability matrix is

P=

∥∥∥∥∥∥∥∥∥∥∥∥∥

0 1 2

0 0
1

2

1

2

1
1

2
0

1

2

2
1

2

1

2
0

∥∥∥∥∥∥∥∥∥∥∥∥∥
.

Let Xn denote the position of the particle at the nth move. Calculate Pr{Xn =

0|X0 = 0} for n= 0,1,2,3,4.
3.2.3 A Markov chain X0,X1,X2, . . . has the transition probability matrix

P=

∥∥∥∥∥∥∥
0 1 2

0 0.7 0.2 0.1

1 0 0.6 0.4

2 0.5 0 0.5

∥∥∥∥∥∥∥.
Determine the conditional probabilities

Pr{X3 = 1|X0 = 0} and Pr{X4 = 1|X0 = 0}.

3.2.4 A Markov chain X0,X1,X2, . . . has the transition probability matrix

P=

∥∥∥∥∥∥∥
0 1 2

0 0.6 0.3 0.1

1 0.3 0.3 0.4

2 0.4 0.1 0.5

∥∥∥∥∥∥∥.
If it is known that the process starts in state X0 = 1, determine the probability
Pr{X2 = 2}.

3.2.5 A Markov chain X0,X1,X2, . . . has the transition probability matrix

P=

∥∥∥∥∥∥∥
0 1 2

0 0.1 0.1 0.8

1 0.2 0.2 0.6

2 0.3 0.3 0.4

∥∥∥∥∥∥∥.
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Determine the conditional probabilities

Pr{X3 = 1|X1 = 0} and Pr{X2 = 1|X0 = 0}.

3.2.6 A Markov chain X0,X1,X2, . . . has the transition probability matrix

P=

∥∥∥∥∥∥∥
0 1 2

0 0.3 0.2 0.5

1 0.5 0.1 0.4

2 0.5 0.2 0.3

∥∥∥∥∥∥∥
and initial distribution p0 = 0.5 and p1 = 0.5. Determine the probabilities
Pr{X2 = 0} and Pr{X3 = 0}.

Problems

3.2.1 Consider the Markov chain whose transition probability matrix is given by

P=

∥∥∥∥∥∥∥∥∥

0 1 2 3

0 0.4 0.3 0.2 0.1

1 0.1 0.4 0.3 0.2

2 0.3 0.2 0.1 0.4

3 0.2 0.1 0.4 0.3

∥∥∥∥∥∥∥∥∥.
Suppose that the initial distribution is pi =

1
4 for i= 0,1,2,3. Show that

Pr{Xn = k} = 1
4 ,k = 0,1,2,3, for all n. Can you deduce a general result from

this example?
3.2.2 Consider the problem of sending a binary message, 0 or 1, through a signal

channel consisting of several stages, where transmission through each stage is
subject to a fixed probability of error α. Let X0 be the signal that is sent, and
let Xn be the signal that is received at the nth stage. Suppose Xn is a Markov
chain with transition probabilities P00 = P11 = 1−α and P01 = P10 = α,(0<
α < 1). Determine Pr{X5 = 0|X0 = 0}, the probability of correct transmission
through five stages.

3.2.3 Let Xn denote the quality of the nth item produced by a production system
with Xn = 0 meaning “good” and Xn = 1 meaning “defective.” Suppose that
Xn evolves as a Markov chain whose transition probability matrix is

P=

∥∥∥∥∥
0 1

0 0.99 0.01

1 0.12 0.88

∥∥∥∥∥.
What is the probability that the fourth item is defective given that the first item
is defective?
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3.2.4 Suppose Xn is a two-state Markov chain whose transition probability matrix is

P=

∥∥∥∥∥
0 1

0 α 1−α

1 1−β β

∥∥∥∥∥.
Then, Zn = (Xn−1,Xn) is a Markov chain having the four states (0,0), (0,1),
(1,0), and (1,1). Determine the transition probability matrix.

3.2.5 A Markov chain has the transition probability matrix

P=

∥∥∥∥∥∥∥
0 1 2

0 0.7 0.2 0.1

1 0.3 0.5 0.2

2 0 0 1

∥∥∥∥∥∥∥.
The Markov chain starts at time zero in state X0 = 0. Let

T =min{n≥ 0;Xn = 2}

be the first time that the process reaches state 2. Eventually, the process will
reach and be absorbed into state 2. If in some experiment we observed such a
process and noted that absorption had not yet taken place, we might be interested
in the conditional probability that the process is in state 0 (or 1), given that
absorption had not yet taken place. Determine Pr{X3 = 0|X0,T > 3}.

Hint: The event {T > 3} is exactly the same as the event {X3 6= 2} = {X3 =

0} ∪ {X3 = 1}.

3.3 Some Markov Chain Models

Markov chains can be used to model and quantify a large number of natural physical,
biological, and economic phenomena that can be described by them. This is enhanced
by the amenability of Markov chains to quantitative manipulation. In this section, we
give several examples of Markov chain models that arise in various parts of science.
General methods for computing certain functionals on Markov chains are derived in
the following section.

3.3.1 An Inventory Model

Consider a situation in which a commodity is stocked in order to satisfy a contin-
uing demand. We assume that the replenishment of stock takes place at the end of
periods labeled n= 0,1,2, . . . , and we assume that the total aggregate demand for
the commodity during period n is a random variable ξn whose distribution function is
independent of the time period,

Pr{ξn = k} = ak for k = 0,1,2, . . . , (3.14)
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where ak ≥ 0 and
∑
∞

k=0 ak = 1. The stock level is examined at the end of each period.
A replenishment policy is prescribed by specifying two nonnegative critical numbers
s and S> s whose interpretation is, if the end-of-period stock quantity is not greater
than s, then an amount sufficient to increase the quantity of stock on hand up to the
level S is immediately procured. If, however, the available stock is in excess of s, then
no replenishment of stock is undertaken. Let Xn denote the quantity on hand at the
end of period n just prior to restocking. The states of the process {Xn} consist of the
possible values of stock size

S,S− 1, . . . ,+1,0,−1,−2, . . . ,

where a negative value is interpreted as an unfilled demand that will be satisfied imme-
diately upon restocking.

The process {Xn} is depicted in Figure 3.1.
According to the rules of the inventory policy, the stock levels at two consecutive

periods are connected by the relation

Xn+1 =

{
Xn− ξn+1 if s< Xn ≤ S,

S− ξn+1 if Xn ≤ s,
(3.15)

where ξn is the quantity demanded in the nth period, stipulated to follow the probability
law (3.14). If we assume that the successive demands ξ1,ξ2, . . . are independent ran-
dom variables, then the stock values X0,X1, X2, . . . constitute a Markov chain whose
transition probability matrix can be calculated in accordance with relation (3.15).
Explicitly,

Pij = Pr{Xn+1 = j|Xn = i}

=

{
Pr{ξn+1 = i− j} if s< i≤ S,

Pr{ξn+1 = S− j} if i≤ s.

S

1 2 3 Period

s

X0 X2

X1

ξ1

ξ3

ξ2

X3

Figure 3.1 The inventory process.
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Consider a spare parts inventory model as a numerical example in which either 0,1,
or 2 repair parts are demanded in any period, with

Pr{ξn = 0} = 0.5, Pr{ξn = 1} = 0.4, Pr{ξn = 2} = 0.1,

and suppose s= 0, while S= 2. The possible values for Xn are S= 2,1,0, and −1.
To illustrate the transition probability calculations, we will consider first the deter-
mination of P10 = Pr{Xn+1 = 0|Xn = 1}. When Xn = 1, then no replenishment takes
place and the next state Xn+1 = 0 results when the demand ξn+1 = 1, and this occurs
with probability P10 = 0.4. To illustrate another case, if Xn = 0, then instantaneous
replenishment to S= 2 ensues, and a next period level of Xn+1 = 0 results from
the demand quantity ξn+1 = 2. The corresponding probability of this outcome yields
P00 = 0.1. Continuing in this manner, we obtain the transition probability matrix

P=

∥∥∥∥∥∥∥∥∥

−1 0 +1 +2

−0 0 0.1 0.4 0.5

0 0 0.1 0.4 0.5

+1 0.1 0.4 0.5 0

+2 0 0.1 0.4 0.5

∥∥∥∥∥∥∥∥∥.
Important quantities of interest in inventory models of this type are the long-term

fraction of periods in which demand is not met (Xn < 0) and long-term average inven-
tory level. Using the notation p(n)j = Pr{Xn = j}, we give these quantities, respectively,

as limn→∞6j<0p(n)j and limn→∞6j>0jp(n)j . This illustrates the importance of deter-

mining conditions under which the probabilities p(n)j stabilize and approach limiting
probabilities πj as n→∞ and of determining methods for calculating the limiting
probabilities πj when they exist. These topics are the subject of Chapter 4.

3.3.2 The Ehrenfest Urn Model

A classical mathematical description of diffusion through a membrane is the famous
Ehrenfest urn model. Imagine two containers containing a total of 2a balls (molecules).
Suppose the first container, labeled A, holds k balls and the second container, B, holds
the remaining 2a− k balls. A ball is selected at random (all selections are equally
likely) from the totality of the 2a balls and moved to the other container. (A molecule
diffuses at random through the membrane.) Each selection generates a transition of the
process. Clearly, the balls fluctuate between the two containers with an average drift
from the urn with the excess numbers to the one with the smaller concentration.

Let Yn be the number of balls in urn A at the nth stage, and define Xn = Yn− a.
Then, {Xn} is a Markov chain on the states i=−a, −a+ 1, . . . ,−1,0,+1, . . . ,a with
transition probabilities

Pij =


a− i

2a
if j= i+ 1,

a+ i

2a
if j= i− 1,

0 otherwise.
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An important quantity in the Ehrenfest urn model is the long-term, or equilibrium,
distribution of the number of balls in each urn.

3.3.3 Markov Chains in Genetics

The following idealized genetics model was introduced by S. Wright to investigate
the fluctuation of gene frequency under the influence of mutation and selection. We
begin by describing the so-called simple haploid model of random reproduction, dis-
regarding mutation pressures and selective forces. We assume that we are dealing with
a fixed population size of 2N genes composed of type-a and type-A individuals. The
makeup of the next generation is determined by 2N independent Bernoulli trials as
follows: If the parent population consists of j a-genes and 2N− j A-genes, then each
trial results in a or A with probabilities

pj =
j

2N
, qj = 1−

j

2N
,

respectively. Repeated selections are done with replacement. By this procedure, we
generate a Markov chain {Xn}, where Xn is the number of a-genes in the nth genera-
tion among a constant population size of 2N individuals. The state space contains the
2N+ 1 values {0,1,2, . . . ,2N}. The transition probability matrix is computed accord-
ing to the binomial distribution as

Pr{Xn+1 = k|Xn = j} = Pjk =

(
2N
k

)
pk

j q2N−k
j (3.16)

( j,k = 0,1, . . . ,2N).

For some discussion of the biological justification of these postulates, we refer the
reader to Fisher.∗

Notice that states 0 and 2N are completely absorbing in the sense that once Xn = 0
(or 2N), then Xn+k = 0 (or 2N, respectively) for all k ≥ 0. One of the questions of
interest is to determine the probability, under the condition X0 = i, that the popula-
tion will attain fixation, i.e., that it will become a pure population composed only of
a-genes or A-genes. It is also pertinent to determine the rate of approach to fixation.
We will examine such questions in our general analysis of absorption probabilities.

A more complete model takes account of mutation pressures. We assume that prior
to the formation of the new generation, each gene has the possibility to mutate, i.e.,
to change into a gene of the other kind. Specifically, we assume that for each gene
the mutation a→ A occurs with probability α, and A→ a occurs with probabil-
ity β. Again we assume that the composition of the next generation is determined
by 2N independent binomial trials. The relevant values of pj and qj when the parent

∗ R. A. Fisher, The Genetical Theory of Natural Selection, Oxford (Clarendon) Press, London and New York,
1962.
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population consists of j a-genes are now taken to be

pj =
j

2N
(1−α)+

(
1−

j

2N

)
β

(3.17)and

qj =
j

2N
α+

(
1−

j

2N

)
(1−β).

The rationale is as follows: We assume that the mutation pressures operate first, after
which a new gene is chosen by random selection from the population. Now, the prob-
ability of selecting an a-gene after the mutation forces have acted is just 1/(2N) times
the number of a-genes present; hence, the average probability (averaged with respect
to the possible mutations) is simply 1/(2N) times the average number of a-genes after
mutation. But this average number is clearly j(1−α)+ (2N− j)β, which leads at once
to (3.17).

The transition probabilities of the associated Markov chain are calculated by (3.16)
using the values of pj and qj given in (3.17).

If αβ > 0, then fixation will not occur in any state. Instead, as n→∞, the distri-
bution function of Xn will approach a steady-state distribution of a random variable
ξ , where Pr{ξ = k} = πk(k = 0,1,2, . . . ,2N)

(∑n
k=0πk = 1,πk > 0

)
. The distribution

function of ξ is called the steady-state gene frequency distribution.
We return to the simple random mating model and discuss the concept of a selec-

tion force operating in favor of, say, a-genes. Suppose we wish to impose a selective
advantage for a-genes over A-genes so that the relative number of offspring have
expectations proportional to 1+ s and 1, respectively, where s is small and positive.
We replace pj = j/(2N) and qj = 1− j/(2N) by

pj =
(1+ s)j

2N+ sj
, qj = 1− pj,

and build the next generation by binomial sampling as before. If the parent population
consisted of j a-genes, then in the next generation the expected population sizes of
a-genes and A-genes, respectively, are

2N
(1+ s)j

2N+ sj
, 2N

(2N− j)

2N+ sj
.

The ratio of expected population size of a-genes to A-genes at the (n+ 1)st genera-
tion is

1+ s

1
×

j

2N− j
=

(
1+ s

1

)(
number of a-genes in the nth generation

number of A-genes in the nth generation

)
,

which explains the meaning of selection.
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3.3.4 A Discrete Queueing Markov Chain

Customers arrive for service and take their place in a waiting line. During each period
of time, a single customer is served, provided that at least one customer is present.
If no customer awaits service, then during this period no service is performed. (We
can imagine, e.g., a taxi stand at which a cab arrives at fixed time intervals to give
service. If no one is present, the cab immediately departs.) During a service period,
new customers may arrive. We suppose that the actual number of customers that arrive
during the nth period is a random variable ξn whose distribution is independent of the
period and is given by

Pr{k customers arrive in a service period} = Pr{ξn = k} = ak,

for k = 0,1, . . . , where ak ≥ 0 and
∑
∞

k=0 ak = 1.
We also assume that ξ1,ξ2, . . . are independent random variables. The state of the

system at the start of each period is defined to be the number of customers waiting in
line for service. If the present state is i, then after the lapse of one period the state is

j=

{
i− 1+ ξ if i≥ 1,
ξ if i= 0,

(3.18)

where ξ is the number of new customers having arrived in this period while a single
customer was served. In terms of the random variables of the process, we can express
(3.18) formally as

Xn+1 = (Xn− 1)++ ξn,

where Y+ =max{Y,0}. In view of (3.18), the transition probability matrix may be
calculated easily, and we obtain

P=

∥∥∥∥∥∥∥∥∥∥∥∥∥

a0 a1 a2 a3 a4 · · ·

a0 a1 a2 a3 a4 · · ·

0 a0 a1 a2 a3 · · ·

0 0 a0 a1 a2 · · ·

0 0 0 a0 a1 · · ·

...
...

...
...

...

∥∥∥∥∥∥∥∥∥∥∥∥∥
.

It is intuitively clear that if the expected number of new customers,
∑
∞

k=0 kak, who
arrive during a service period exceeds one, then with the passage of time the length
of the waiting line increases without limit. On the other hand, if

∑
∞

k=0 kak < 1, then
the length of the waiting line approaches a statistical equilibrium that is described by
a limiting distribution

lim
n→∞

Pr{Xn = k|X0 = j} = πk > 0, for k = 0,1, . . . ,

where
∑x

k=0πk = 1. Important quantities to be determined by this model include the
long run fraction of time that the service facility is idle, given by π0, and the long run
mean time that a customer spends in the system, given by

∑
∞

k=0(1+ k)πk.
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Exercises

3.3.1 Consider a spare parts inventory model in which either 0,1, or 2 repair parts are
demanded in any period, with

Pr{ξn = 0} = 0.4, Pr{ξn = 1} = 0.3, Pr{ξn = 2} = 0.3,

and suppose s= 0 and S= 3. Determine the transition probability matrix for
the Markov chain {Xn}, where Xn is defined to be the quantity on hand at the
end-of-period n.

3.3.2 Consider two urns A and B containing a total of N balls. An experiment is
performed in which a ball is selected at random (all selections equally likely) at
time t(t = 1,2, . . .) from among the totality of N balls. Then, an urn is selected
at random (A is chosen with probability p and B is chosen with probability q)
and the ball previously drawn is placed in this urn. The state of the system at
each trial is represented by the number of balls in A. Determine the transition
matrix for this Markov chain.

3.3.3 Consider the inventory model of Section 3.3.1. Suppose that S= 3. Set up
the corresponding transition probability matrix for the end-of-period inventory
level Xn.

3.3.4 Consider the inventory model of Section 3.3.1. Suppose that S= 3 and that the
probability distribution for demand is Pr{ξ = 0} = 0.1, Pr{ξ = 1} = 0.4,Pr{ξ =
2} = 0.3, and Pr{ξ = 3} = 0.2. Set up the corresponding transition probability
matrix for the end-of-period inventory level Xn.

3.3.5 An urn initially contains a single red ball and a single green ball. A ball is
drawn at random, removed, and replaced by a ball of the opposite color, and
this process repeats so that there are always exactly two balls in the urn. Let Xn

be the number of red balls in the urn after n draws, with X0 = 1. Specify the
transition probabilities for the Markov chain {Xn}.

Problems

3.3.1 An urn contains six tags, of which three are red and three are green. Two tags
are selected from the urn. If one tag is red and the other is green, then the
selected tags are discarded and two blue tags are returned to the urn. Otherwise,
the selected tags are resumed to the urn. This process repeats until the urn
contains only blue tags. Let Xn denote the number of red tags in the urn after
the nth draw, with X0 = 3. (This is an elementary model of a chemical reaction
in which red and green atoms combine to form a blue molecule.) Give the
transition probability matrix.

3.3.2 Three fair coins are tossed, and we let X1 denote the number of heads that
appear. Those coins that were heads on the first trial (there were X1 of them)
we pick up and toss again, and now we let X2 be the total number of tails,
including those left from the first toss. We toss again all coins showing tails,
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and let X3 be the resulting total number of heads, including those left from the
previous toss. We continue the process. The pattern is, count heads, toss heads,
count tails, toss tails, count heads, toss heads, etc., and X0 = 3. Then, {Xn} is a
Markov chain. What is the transition probability matrix?

3.3.3 Consider the inventory model of Section 3.3.1. Suppose that unfulfilled
demand is not back ordered but is lost.
(a) Set up the corresponding transition probability matrix for the end-of-

period inventory level Xn.
(b) Express the long run fraction of lost demand in terms of the demand dis-

tribution and limiting probabilities for the end-of-period inventory.
3.3.4 Consider the queueing model of Section 3.4. Now, suppose that at most a single

customer arrives during a single period, but that the service time of a customer
is a random variable Z with the geometric probability distribution

Pr{Z = k} = α(1−α)k−1 for k = 1,2, . . . .

Specify the transition probabilities for the Markov chain whose state is the
number of customers waiting for service or being served at the start of each
period. Assume that the probability that a customer arrives in a period is β and
that no customer arrives with probability 1−β.

3.3.5 You are going to successively flip a quarter until the pattern HHT appears,
that is, until you observe two successive heads followed by a tails. In order to
calculate some properties of this game, you set up a Markov chain with the
following states: 0,H,HH, and HHT , where 0 represents the starting point, H
represents a single observed head on the last flip, HH represents two successive
heads on the last two flips, and HHT is the sequence that you are looking for.
Observe that if you have just tossed a tails, followed by a heads, a next toss of
a tails effectively starts you over again in your quest for the HHT sequence.
Set up the transition probability matrix.

3.3.6 Two teams, A and B, are to play a best of seven series of games. Suppose that
the outcomes of successive games are independent, and each is won by A with
probability p and won by B with probability 1− p. Let the state of the system
be represented by the pair (a,b), where a is the number of games won by A,
and b is the number of games won by B. Specify the transition probability
matrix. Note that a+ b≤ 7 and that the entries end whenever a= 4 or b= 4.

3.3.7 A component in a system is placed into service, where it operates until its fail-
ure, whereupon it is replaced at the end of the period with a new component
having statistically identical properties, and the process repeats. The proba-
bility that a component lasts for k periods is αk, for k = 1,2, . . . . Let Xn be
the remaining life of the component in service at the end-of-period n. Then,
Xn = 0 means that Xn+1 will be the total operating life of the next component.
Give the transition probabilities for the Markov chain {Xn}.

3.3.8 Two urns A and B contain a total of N balls. Assume that at time t, there were
exactly k balls in A. At time t+ 1, an urn is selected at random in proportion
to its contents (i.e., A is chosen with probability k/N and B is chosen with
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probability (N− k)/N). Then, a ball is selected from A with probability p or
from B with probability q and placed in the previously chosen urn. Determine
the transition matrix for this Markov chain.

3.3.9 Suppose that two urns A and B contain a total of N balls. Assume that at time t,
there are exactly k balls in A. At time t+ 1, a ball and an urn are chosen with
probability depending on the contents of the urn (i.e., a ball is chosen from
A with probability k/N or from B with probability (N− k)/N). Then, the ball
is placed into one of the urns, where urn A is chosen with probability k/N or
urn B is chosen with probability (N− k)/N. Determine the transition matrix of
the Markov chain with states represented by the contents of A.

3.3.10 Consider a discrete-time, periodic review inventory model and let ξn be the
total demand in period n, and let Xn be the inventory quantity on hand at the
end-of-period n. An (s,S) inventory policy is used: If the end-of-period stock
is not greater than s, then a quantity is instantly procured to bring the level up
to S. If the end-of-period stock exceeds s, then no replenishment takes place.
(a) Suppose that s= 1,S= 4, and X0 = S= 4. If the period demands turn

out to be ξ1 = 2,ξ2 = 3,ξ3 = 4,ξ4 = 0,ξ5 = 2,ξ6 = 1,ξ7 = 2, and ξ8 = 2,
what are the end-of-period stock levels Xn for periods n= 1,2, . . . ,8?

(b) Suppose ξ1,ξ2, . . . are independent random variables where Pr{ξn = 0} =
0.1,Pr{ξn = 1} = 0.3,Pr{ξn = 2} = 0.3,Pr{ξn=3}=0.2, and Pr{ξn = 4} =
0.1. Then, X0,X1, . . . is a Markov chain. Determine P41 and P04.

3.4 First Step Analysis

A surprising number of functionals on a Markov chain can be evaluated by a tech-
nique that we call first step analysis. This method proceeds by analyzing, or breaking
down, the possibilities that can arise at the end of the first transition, and then invoking
the law of total probability coupled with the Markov property to establish a charac-
terizing relationship among the unknown variables. We first applied this technique in
Theorem 3.1. In this section, we develop a series of applications of the technique.

3.4.1 Simple First Step Analyses

Consider the Markov chain {Xn} whose transition probability matrix is

P=

∥∥∥∥∥∥∥
0 1 2

0 1 0 0

1 α β γ

2 0 0 1

∥∥∥∥∥∥∥,
where α > 0,β > 0,γ > 0, and α+β + γ = 1. If the Markov chain begins in state 1,
it remains there for a random duration and then proceeds either to state 0 or to state 2,
where it is trapped or absorbed. That is, once in state 0, the process remains there for
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ever after, as it also does in state 2. Two questions arise: In which state, 0 or 2, is the
process ultimately trapped, and how long, on the average, does it take to reach one of
these states? Both questions are easily answered by instituting a first step analysis.

We begin by more precisely defining the questions. Let

T =min{n≥ 0;Xn = 0 or Xn = 2}

be the time of absorption of the process. In terms of this random absorption time, the
two questions ask us to find

u= Pr{XT = 0|X0 = 1}

and

v= E[T|X0 = 1].

We proceed to institute a first step analysis, considering separately the three con-
tingencies X1 = 0,X1 = 1, and X1 = 2, with respective probabilities α,β, and γ . Con-
sider u= Pr{XT = 0|X0 = 1}. If X1 = 0, which occurs with probability α, then T = 1
and XT = 0. If X1 = 2, which occurs with probability γ , then again T = 1, but XT = 2.
Finally, if X1 = 1, which occurs with probability β, then the process returns to state 1
and the problem repeats from the same state as before. In symbols, we claim that

Pr{XT = 0|X1 = 0} = 1,

Pr{XT = 0|X1 = 2} = 0,

Pr{XT = 0|X1 = 1} = u,

which inserted into the law of total probability gives

u= Pr{XT = 0|X0 = 1}

=

2∑
k=0

Pr{XT = 0|X0 = 1,X1 = k}Pr{X1 = k|X0 = 1}

=

2∑
k=0

Pr{XT = 0|X1 = k}Pr{X1 = k|X0 = 1}

(by the Markov property)
= 1(α)+ u(β)+ 0(γ ).

Thus, we obtain the equation

u= α+βu, (3.19)

which gives

u=
α

1−β
=

α

α+ γ
.
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Observe that this quantity is the conditional probability of a transition to 0, given that
a transition to 0 or 2 occurred. That is, the answer makes sense.

We turn to determining the mean time to absorption, again analyzing the possibili-
ties arising on the first step. The absorption time T is always at least 1. If either X1 = 0
or X1 = 2, then no further steps are required. If, on the other hand, X1 = 1, then the
process is back at its starting point, and on the average, v= E[T|X0 = 1] additional
steps are required for absorption. Weighting these contingencies by their respective
probabilities, we obtain for v= E[T|X0 = 1],

v= 1+α(0)+β(v)+ γ (0)

= 1+βv, (3.20)

which gives

v=
1

1−β
.

In the example just studied, the reader is invited to verify that T has the geometric
distribution in which

Pr{T > k|X0 = 1} = βk for k = 0,1, . . . ,

and, therefore,

E[T|X0 = 1]=
∞∑

k=0

Pr{T > k|X0 = 1} =
1

1−β
.

That is, a direct calculation verifies the result of the first step analysis. Unfortunately,
in more general Markov chains, a direct calculation is rarely possible, and first step
analysis provides the only solution technique.

A significant extension occurs when we move up to the four-state Markov chain
whose transition probability matrix is

P=

∥∥∥∥∥∥∥∥∥

0 1 2 3

0 1 0 0 0

1 P10 P11 P12 P13

2 P20 P21 P22 P23

3 0 0 0 1

∥∥∥∥∥∥∥∥∥.
Absorption now occurs in states 0 and 3, and states 1 and 2 are “transient.” The proba-
bility of ultimate absorption in state 0, say, now depends on the transient state in which
the process began. Accordingly, we must extend our notation to include the starting
state. Let

T =min{n≥ 0;Xn = 0 or Xn = 3},

ui = Pr{XT = 0|X0 = i} for i= 1,2,
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and

vi = E[T|X0 = i] for i= 1,2.

We may extend the definitions for ui and vi in a consistent and commonsense manner
by prescribing u0 = 1,u3 = 0, and v0 = v3 = 0.

The first step analysis now requires us to consider the two possible starting states
X0 = 1 and X0 = 2 separately. Considering X0 = 1 and applying a first step analysis to
u1 = Pr{XT = 0|X0 = 1}, we obtain

u1 = P10+P11u1+P12u2. (3.21)

The three terms on the right correspond to the contingencies X1 = 0,X1 = 1, and
X1 = 2, respectively, with the conditional probabilities

Pr{XT = 0|X1 = 0} = 1,

Pr{XT = 0|X1 = 1} = u1,

and

Pr{XT = 0|X1 = 2} = u2.

The law of total probability then applies to give (3.21), just as it was used in obtaining
(3.19). A similar equation is obtained for u2:

u2 = P20+P21u1+P22u2. (3.22)

The two equations in u1 and u2 are now solved simultaneously. To give a numerical
example, we will suppose

P=

∥∥∥∥∥∥∥∥∥

0 1 2 3

0 1 0 0 0

1 0.4 0.3 0.2 0.1

2 0.1 0.3 0.3 0.3

3 0 0 0 1

∥∥∥∥∥∥∥∥∥. (3.23)

The first step analysis equations (3.21) and (3.22) for u1 and u2 are

u1 = 0.4+ 0.3u1+ 0.2u2,

u2 = 0.1+ 0.3u1+ 0.3u2,

or

0.7u1− 0.2u2 = 0.4,

−0.3u1+ 0.7u2 = 0.1.
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The solution is u1 =
30
43 and u2 =

19
43 . Note that one cannot, in general, solve for u1

without bringing in u2, and vice versa. The result u2 =
19
43 tells us that once begun

in state X0 = 2, the Markov chain {Xn} described by (3.23) will ultimately end up in
state 0 with probability u2 =

19
43 , and alternatively, will be absorbed in state 3 with

probability 1− u2 =
24
43 .

The mean time to absorption also depends on the starting state. The first step analy-
sis equations for vi = E[T|X0 = i] are

v1 = 1+P11v1+P12v2,

v2 = 1+P21v1+P22v2.
(3.24)

The right side of (3.24) asserts that at least one step is always taken. If the first move is
to either X1 = 1 or X1 = 2, then additional steps are needed, and on the average, these
are v1 and v2, respectively. Weighting the contingencies X1 = 1 and X1 = 2 by their
respective probabilities and summing according to the law of total probability results
in (3.24).

For the transition matrix given in (3.23), the equations are

v1 = 1+ 0.3v1+ 0.2v2,

v2 = 1+ 0.3v1+ 0.3v2,

and their solutions are v1 =
90
43 and v2 =

100
43 . Again, v1 cannot be obtained without

also considering v2, and vice versa. For a process that begins in state X0 = 2, on the
average v2 =

100
43 = 2.33 steps will transpire prior to absorption.

To study the method in a more general context, let {Xn} be a finite-state Markov
chain whose states are labeled 0,1, . . . ,N. Suppose that states 0,1, . . . , r− 1 are tran-
sient∗ in that P(n)ij → 0 as n→∞ for 0≤ i, j< r, while states r, . . . ,N are absorbing
(Pii = 1 for r ≤ i≤ N). The transition matrix has the form

P=

∥∥∥∥Q R
0 I

∥∥∥∥ (3.25)

where 0 is an (N− r+ 1)× r matrix all of whose entries are zero, I is an (N− r+
1)× (N− r+ 1) identity matrix, and Qij = Pij for 0≤ i, j< r.

Started at one of the transient states X0 = i, where 0≤ i< r, such a process will
remain in the transient states for some random duration, but ultimately the process
gets trapped in one of the absorbing states i= r, . . . ,N. Functionals of importance are
the mean duration until absorption and the probability distribution over the states in
which absorption takes place.

Let us consider the second question first and fix a state k among the absorbing states
(r ≤ k ≤ N). The probability of ultimate absorption in state k, as opposed to some other
absorbing state, depends on the initial state X0 = i. Let Uik = ui denote this probability,
where we suppress the target state k in the notation for typographical convenience.

∗ The definition of a transient state is different for an infinite-state Markov chain. See Chapter 4, Section 4.3.
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We begin a first step analysis by enumerating the possibilities in the first transition.
Starting from state i, with probability Pik the process immediately goes to state k, there-
after to remain, and this is the first possibility considered. Alternatively, the process
could move on its first step to an absorbing state j 6= k, where r ≤ j≤ N, in which case
ultimate absorption in state k is precluded. Finally, the process could move to a tran-
sient state j< r. Because of the Markov property, once in state j, then the probability
of ultimate absorption in state k is uj = Ujk by definition. Weighting the enumerated
possibilities by their respective probabilities via the law of total probability, we obtain
the relation

ui = Pr{Absorption in k|X0 = i}

=

N∑
j=0

Pr{Absorption in k|X0 = i,X1 = j}Pij

= Pik+

N∑
j=r
j6=k

Pij× 0+
r−1∑
j=0

Pijuj.

To summarize, for a fixed absorbing state k, the quantities

ui = Uik = Pr{Absorption in k|X0 = i} for 0≤ i< r

satisfy the inhomogeneous system of linear equations

Uik = Pik+

r−1∑
j=0

PijUjk, i= 0,1, . . . ,r− 1. (3.26)

Example A Maze A white rat is put into the maze shown:

0 1

2 3 4

5 6

7
food

8
shock

In the absence of learning, one might hypothesize that the rat would move through the
maze at random; i.e., if there are k ways to leave a compartment, then the rat would
choose each of these with probability 1/k. Assume that the rat makes one change to
some adjacent compartment at each unit of time and let Xn denote the compartment
occupied at stage n. We suppose that compartment 7 contains food and compartment
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8 contains an electrical shocking mechanism, and we ask the probablity that the rat,
moving at random, encounters the food before being shocked. The appropriate transi-
tion probability matrix is

P=

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

0 1 2 3 4 5 6 7 8

0
1

2

1

2

1
1

3

1

3

1

3

2
1

3

1

3

1

3

3
1

4

1

4

1

4

1

4

4
1

3

1

3

1

3

5
1

3

1

3

1

3

6
1

2

1

2

7 1

8 1

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

.

Let ui = ui(7) denote the probability of absorption in the food compartment 7, given
that the rat is dropped initially in compartment i. Then, equation (3.26) becomes, in
this particular instance,

u0 =
1

2
u1+

1

2
u2,

u1 =
1

3
+

1

3
u0 +

1

3
u3,

u2 =
1

3
u0 +

1

3
u3,

u3 =
1

4
u1+

1

4
u2 +

1

4
u4+

1

4
u5,

u4 =
1

3
+

1

3
u3 +

1

3
u6,

u5 =
1

3
u3 +

1

3
u6,

u6 =
1

2
u4+

1

2
u5.

Turning to the solution, we see that the symmetry of the maze implies that u0 =

u6,u2 = u5, and u1 = u4. We also must have u3 =
1
2 . With these simplifications, the
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equations for u0,u1, and u2 become

u0 =
1

2
u1+

1

2
u2,

u1 =
1

2
+

1

3
u0,

u2 =
1

6
+

1

3
u0,

and the natural substitutions give u0 =
1
2

(
1
2 +

1
3 u0

)
+

1
2

(
1
6 +

1
3 u0

)
, or u0 =

1
2 ,u1 =

2
3 ,

and u2 =
1
3 .

One might compare these theoretical values under random moves with actual obser-
vations as an indication of whether or not learning is taking place.

3.4.2 The General Absorbing Markov Chain

Let {Xn} be a Markov chain whose transition probability matrix takes the form (3.25).
We turn to a more general form of the first question by introducing the random absorp-
tion time T . Formally, we define

T =min{n≥ 0;Xn ≥ r}.

Let us suppose that associated with each transient state i is a rate g(i) and that we wish
to determine the mean total rate that is accumulated up to absorption. Let wi be this
mean total amount, where the subscript i denotes the starting position X0 = i. To be
precise, let

wi = E

[
T−1∑
n=0

g(Xn)|X0 = i

]
.

The choice g(i)= 1 for all i yields
∑T−1

n=0 g(Xn)=
∑T−1

n=0 1= T , and then wi is iden-
tical to vi ≡ E[T|X0 = i], the mean time until absorption. For a transient state k, the
choice

g(i)=

{
1 if i= k,

0 if i 6= k,

gives wi =Wik, the mean number of visits to state k(0≤ k < r) prior to absorption.
We again proceed via a first step analysis. The sum

∑T−1
n=0 g(Xn) always includes the

first term g(X0)= g(i). In addition, if a transition is made from i to a transient state j,
then the sum includes future terms as well. By invoking the Markov property, we
deduce that this future sum proceeding from state j has an expected value equal to wj.
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Weighting this by the transition probability Pij and then summing all contributions in
accordance with the law of total probability, we obtain the joint relations

wi = g(i)+
r−1∑
j=0

Pijwj for i= 0, . . . ,r− 1. (3.27)

The special case in which g(i)= 1 for all i determines vi = E[T|X0 = i] as solving

vi = 1+
r−1∑
j=0

Pijvj for i= 0,1, . . . ,r− 1. (3.28)

The case in which

g(i)= δik =

{
1 if i= k,

0 if i 6= k,

determines Wik, the mean number of visits to state k prior to absorption starting from
state i, as solving

Wik = δik+

r−1∑
j=0

PijWjk for i= 0,1, . . . ,r− 1. (3.29)

Example A Model of Fecundity Changes in sociological patterns such as increase in
age at marriage, more remarriages after widowhood, and increased divorce rates have
profound effects on overall population growth rates. Here, we attempt to model the
lifespan of a female in a population in order to provide a framework for analyzing the
effect of social changes on average fecundity.

The general model we propose has a large number of states delimiting the age and
status of a typical female in the population. For example, we begin with the 12 age
groups 0–4 years, 5–9 years, . . . , 50–54 years, 55 years, and over. In addition, each
of these age groups might be further subdivided according to marital status: single,
married, separated, divorced, or widowed, and might also be subdivided according
to the number of children. Each female would begin in the (0–4, single) category
and end in a distinguished state 1 corresponding to death or emigration from the
population. However, the duration spent in the various other states might differ among
different females. Of interest is the mean duration spent in the categories of maximum
fertility, or more generally, a mean sum of durations weighted by appropriate fecundity
rates.

When there are a large number of states in the model, as just sketched, the relevant
calculations require a computer. We turn to a simpler model which, while less realistic,
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will serve to illustrate the concepts and approach. We introduce the states

E0: Prepuberty, E3: Divorced,

E1: Single, E4: Widowed,

E2: Married, E5:1,

and we are interested in the mean duration spent in state E2: Married, since this cor-
responds to the state of maximum fecundity. To illustrate the computations, we will
suppose the transition probability matrix is

P=

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

E0 E1 E2 E3 E4 E5

E0 0 0.9 0 0 0 0.1

E1 0 0.5 0.4 0 0 0.1

E2 0 0 0.6 0.2 0.1 0.1

E3 0 0 0.4 0.5 0 0.1

E4 0 0 0.4 0 0.5 0.1

E5 0 0 0 0 0 1.0

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
.

In practice, such a matrix would be estimated from demographic data.
Every person begins in state E0 and ends in state E5, but a variety of intervening

states may be visited. We wish to determine the mean duration spent in state E2: Mar-
ried. The powerful approach of first step analysis begins by considering the slightly
more general problem in which the initial state is varied. Let wi =Wi2 be the mean
duration in state E2 given the initial state X0 = Ei for i= 0,1, . . . ,5. We are interested
in w0, the mean duration corresponding to the initial state E0.

First step analysis breaks down, or analyzes, the possibilities arising in the first
transition, and using the Markov property, an equation that relates w0, . . . ,w5 results.

We begin by considering w0. From state E0, a transition to one of the states E1 or E5
occurs, and the mean duration spent in E2 starting from E0 must be the appropriately
weighted average of w1 and w5. That is,

w0 = 0.9w1+ 0.1w5.

Proceeding in a similar manner, we obtain

w1 = 0.5w1+ 0.4w2+ 0.1w5.

The situation changes when the process begins in state E2 because in counting the
mean duration spent in E2, we must count this initial visit plus any subsequent visits
that may occur. Thus, for E2, we have

w2 = 1+ 0.6w2+ 0.2w3+ 0.1w4+ 0.1w5.
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The other states give us

w3 = 0.4w2+ 0.5w3+ 0.1w5,

w4 = 0.4w2+ 0.5w4+ 0.1w5,

w5 = w5.

Since state E5 corresponds to death, it is clear that we must have w5 = 0. With this
prescription, the reduced equations become, after elementary simplification,

−1.0w0+ 0.9w1 = 0,
− 0.5w1+ 0.4w2 = 0,

− 0.4w2+ 0.2w3+ 0.1w4=−1,
0.4w2− 0.5w3 = 0,
0.4w2 − 0.5w4= 0.

The unique solution is

w0 = 4.5, w1 = 5.00, w2 = 6.25, w3 = w4 = 5.00.

Each female, on the average, spends w0 =W02 = 4.5 periods in the childbearing state
E2 during her lifetime.

Exercises

3.4.1 Find the mean time to reach state 3 starting from state 0 for the Markov chain
whose transition probability matrix is

P=

∥∥∥∥∥∥∥∥∥

0 1 2 3

0 0.4 0.3 0.2 0.1

1 0 0.7 0.2 0.1

2 0 0 0.9 0.1

3 0 0 0 1

∥∥∥∥∥∥∥∥∥.
3.4.2 Consider the Markov chain whose transition probablity matrix is given by

P=

∥∥∥∥∥∥∥
0 1 2

0 1 0 0

1 0.1 0.6 0.3

2 0 0 1

∥∥∥∥∥∥∥.
(a) Starting in state 1, determine the probability that the Markov chain ends in

state 0.
(b) Determine the mean time to absorption.
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3.4.3 Consider the Markov chain whose transition probability matrix is given by

P=

∥∥∥∥∥∥∥∥∥∥

0 1 2 3

0 1 0 0 0

1 0.1 0.6 0.1 0.2

2 0.2 0.3 0.4 0.1

3 0 0 0 1

∥∥∥∥∥∥∥∥∥∥
.

(a) Starting in state 1, determine the probability that the Markov chain ends in
state 0.

(b) Determine the mean time to absorption.
3.4.4 A coin is tossed repeatedly until two successive heads appear. Find the mean

number of tosses required.

Hint: Let Xn be the cumulative number of successive heads. The state space is
0,1,2, and the transition probability matrix is

P=

∥∥∥∥∥∥∥∥∥∥∥

0 1 2

0
1

2

1

2
0

1
1

2
0

1

2

2 0 0 1

∥∥∥∥∥∥∥∥∥∥∥
.

Determine the mean time to reach state 2 starting from state 0 by invoking a first
step analysis.

3.4.5 A coin is tossed repeatedly until either two successive heads appear or two suc-
cessive tails appear. Suppose the first coin toss results in a head. Find the prob-
ability that the game ends with two successive tails.

3.4.6 Consider the Markov chain whose transition probability matrix is given by

P=

∥∥∥∥∥∥∥∥∥∥

0 1 2 3

0 1 0 0 0

1 0.1 0.4 0.1 0.4

2 0.2 0.1 0.6 0.1

3 0 0 0 1

∥∥∥∥∥∥∥∥∥∥
.

(a) Starting in state 1, determine the probability that the Markov chain ends in
state 0.

(b) Determine the mean time to absorption.
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3.4.7 Consider the Markov chain whose transition probability matrix is given by

P=

∥∥∥∥∥∥∥∥∥

0 1 2 3

0 1 0 0 0

1 0.1 0.2 0.5 0.2

2 0.1 0.2 0.6 0.1

3 0 0 0 1

∥∥∥∥∥∥∥∥∥.

Starting in state 1, determine the mean time that the process spends in state 1
prior to absorption and the mean time that the process spends in state 2 prior to
absorption. Verify that the sum of these is the mean time to absorption.

3.4.8 Consider the Markov chain whose transition probability matrix is given by

P=

∥∥∥∥∥∥∥∥∥

0 1 2 3

0 1 0 0 0

1 0.5 0.2 0.1 0.2

2 0.2 0.1 0.6 0.1

3 0 0 0 1

∥∥∥∥∥∥∥∥∥.

Starting in state 1, determine the mean time that the process spends in state 1
prior to absorption and the mean time that the process spends in state 2 prior to
absorption. Verify that the sum of these is the mean time to absorption.

3.4.9 Consider the Markov chain whose transition probability matrix is given by

P=

∥∥∥∥∥∥∥∥∥

0 1 2 3

0 1 0 0 0

1 0.1 0.2 0.5 0.2

2 0.1 0.2 0.6 0.1

3 0 0 0 1

∥∥∥∥∥∥∥∥∥.

Starting in state 1, determine the probability that the process is absorbed into
state 0. Compare this with the (1,0)th entry in the matrix powers P2,P4,P8,
and P16.

Problems

3.4.1 Which will take fewer flips, on average: successively flipping a quarter until
the pattern HHT appears, i.e., until you observe two successive heads followed
by a tails; or successively flipping a quarter until the pattern HTH appears? Can
you explain why these are different?
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3.4.2 A zero-seeking device operates as follows: If it is in state m at time n, then at
time n+ 1, its position is uniformly distributed over the states 0,1, . . . ,m− 1.
Find the expected time until the device first hits zero starting from state m.

Note: This is a highly simplified model for an algorithm that seeks a maxi-
mum over a finite set of points.

3.4.3 A zero-seeking device operates as follows: If it is in state j at time n, then at
time n+ 1, its position is 0 with probability 1/j, and its position is k (where
k is one of the states 1,2, . . . , j− 1) with probability 2k/j2. Find the expected
time until the device first hits zero starting from state m.

3.4.4 Consider the Markov chain whose transition probability matrix is given by

P=

∥∥∥∥∥∥∥∥∥

0 1 2 3

0 1 0 0 0

1 0.1 0.2 0.5 0.2

2 0.1 0.2 0.6 0.1

3 0.2 0.2 0.3 0.3

∥∥∥∥∥∥∥∥∥.
Starting in state X0 = 1, determine the probability that the process never visits
state 2. Justify your answer.

3.4.5 A white rat is put into compartment 4 of the maze shown here:

1 2

4 5 6

3
food

7
shock

It moves through the compartments at random; i.e., if there are k ways to leave
a compartment, it chooses each of these with probability 1/k. What is the prob-
ability that it finds the food in compartment 3 before feeling the electric shock
in compartment 7?

3.4.6 Consider the Markov chain whose transition matrix is

P=

∥∥∥∥∥∥∥∥∥∥∥∥

0 1 2 3 4

0 q p 0 0 0

1 q 0 p 0 0

2 q 0 0 p 0

3 q 0 0 0 p

4 0 0 0 0 1

∥∥∥∥∥∥∥∥∥∥∥∥
,
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where p+ q= 1. Determine the mean time to reach state 4 starting from state 0.
That is, find E[T|X0 = 0], where T =min{n≥ 0;Xn = 4}.

Hint: Let vi = E[T|X0 = i] for i= 0,1, . . . ,4. Establish equations for
v0,v1, . . . ,v4 by using a first step analysis and the boundary condition v4 = 0.
Then, solve for v0.

3.4.7 Let Xn be a Markov chain with transition probabilities Pij. We are given a
“discount factor” β with 0< β < 1 and a cost function c(i), and we wish to
determine the total expected discounted cost starting from state i, defined by

hi = E

[
∞∑

n=0

βnc(Xn)|X0 = i

]
.

Using a first step analysis show that hi satisfies the system of linear equations

hi = c(i)+β
∑

j

Pijhj for all states i.

3.4.8 An urn contains five red and three green balls. The balls are chosen at random,
one by one, from the urn. If a red ball is chosen, it is removed. Any green ball
that is chosen is returned to the urn. The selection process continues until all
of the red balls have been removed from the urn. What is the mean duration of
the game?

3.4.9 An urn contains five red and three yellow balls. The balls are chosen at ran-
dom, one by one, from the urn. Each ball removed is replaced in the urn by a
yellow ball. The selection process continues until all of the red balls have been
removed from the urn. What is the mean duration of the game?

3.4.10 You have five fair coins. You toss them all so that they randomly fall heads
or tails. Those that fall tails in the first toss you pick up and toss again. You
toss again those that show tails after the second toss, and so on, until all show
heads. Let X be the number of coins involved in the last toss. Find Pr{X = 1}.

3.4.11 An urn contains two red and two green balls. The balls are chosen at random,
one by one, and removed from the urn. The selection process continues until
all of the green balls have been removed from the urn. What is the probability
that a single red ball is in the urn at the time that the last green ball is chosen?

3.4.12 A Markov chain X0,X1,X2, . . . has the transition probability matrix

P=

∥∥∥∥∥∥∥
0 1 2

0 0.3 0.2 0.5

1 0.5 0.1 0.4

2 0 0 1

∥∥∥∥∥∥∥
and is known to start in state X0 = 0. Eventually, the process will end up in
state 2. What is the probability that when the process moves into state 2, it
does so from state 1?
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Hint: Let T =min{n≥ 0;Xn = 2}, and let

zi = Pr{XT−1 = 1|X0 = i} for i= 0,1.

Establish and solve the first step equations

z0= 0.3z0+ 0.2z1,

z1= 0.4+ 0.5z0+ 0.1z1.

3.4.13 A Markov chain X0,X1,X2, . . . has the transition probability matrix

P=

∥∥∥∥∥∥∥
0 1 2

0 0.3 0.2 0.5

1 0.5 0.1 0.4

2 0 0 1

∥∥∥∥∥∥∥
and is known to start in state X0 = 0. Eventually, the process will end up in
state 2. What is the probability that the time T =min{n≥ 0;Xn = 2} is an odd
number?

3.4.14 A single die is rolled repeatedly. The game stops the first time that the sum of
two successive rolls is either 5 or 7. What is the probability that the game stops
at a sum of 5?

3.4.15 A simplified model for the spread of a rumor goes this way: There are N = 5
people in a group of friends, of which some have heard the rumor and the
others have not. During any single period of time, two people are selected at
random from the group and assumed to interact. The selection is such that an
encounter between any pair of friends is just as likely as between any other
pair. If one of these persons has heard the rumor and the other has not, then
with probability α = 0.1 the rumor is transmitted. Let Xn denote the number of
friends who have heard the rumor at the end of the nth period.

Assuming that the process begins at time 0 with a single person knowing
the rumor, what is the mean time that it takes for everyone to hear it?

3.4.16 An urn contains five tags, of which three are red and two are green. A tag is
randomly selected from the urn and replaced with a tag of the opposite color.
This continues until only tags of a single color remain in the urn. Let Xn denote
the number of red tags in the urn after the nth draw, with X0 = 3. What is the
probability that the game ends with the urn containing only red tags?

3.4.17 The damage Xn of a system subjected to wear is a Markov chain with the
transition probability matrix

P=

∥∥∥∥∥∥∥
0 1 2

0 0.7 0.3 0

1 0 0.6 0.4

2 0 0 1

∥∥∥∥∥∥∥.
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The system starts in state 0 and fails when it first reaches state 2. Let T =
min{n≥ 0;Xn = 2} be the time of failure. Use a first step analysis to evalu-
ate φ(s)= E

[
sT
]

for a fixed number 0< s< 1. (This is called the generating
function of T . See Section 3.9.)

3.4.18 Time-dependent transition probabilities. A well-disciplined man, who smokes
exactly one half of a cigar each day, buys a box containing N cigars. He cuts
a cigar in half, smokes half, and returns the other half to the box. In general,
on a day in which his cigar box contains w whole cigars and h half cigars, he
will pick one of the w+ h smokes at random, each whole and half cigar being
equally likely, and if it is a half cigar, he smokes it. If it is a whole cigar, he
cuts it in half, smokes one piece, and returns the other to the box. What is the
expected value of T , the day on which the last whole cigar is selected from
the box?

Hint: Let Xn be the number of whole cigars in the box after the nth smoke.
Then, Xn is a Markov chain whose transition probabilities vary with n. Define
vn(w)= E[T|Xn = w]. Use a first step analysis to develop a recursion for vn(w)
and show that the solution is

vn(w)=
2Nw+ n+ 2w

w+ 1
−

w∑
k=1

1

k
,

whence

E[T]= v0(N)= 2N−
N∑

k=1

1

k
.

3.4.19 Computer Challenge. Let N be a positive integer and let Z1, . . . ,ZN be inde-
pendent random variables, each having the geometric distribution

Pr{Z = k} =

(
1

2

)k

, for k = 1,2, . . . .

Since these are discrete random variables, the maximum among them may be
unique, or there may be ties for the maximum. Let pN be the probability that
the maximum is unique. How does pN behave when N is large? (Alternative
formulation: You toss N dimes. Those that are heads you set aside; those that
are tails you toss again. You repeat this until all of the coins are heads. Then,
pN is the probability that the last toss was of a single coin.)

3.5 Some Special Markov Chains

We introduce several particular Markov chains that arise in a variety of applications.
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3.5.1 The Two-State Markov Chain

Let

P=

∥∥∥∥∥
0 1

0 1− a a

1 b 1− b

∥∥∥∥∥, where 0< a,b< 1, (3.30)

be the transition matrix of a two-state Markov chain.
When a= 1− b so that the rows of P are the same, then the states X1,X2, . . . are

independent identically distributed random variables with Pr{Xn = 0} = b and Pr{Xn =

1} = a. When a 6= 1− b, the probability distribution for Xn varies depending on the
outcome Xn−1 at the previous stage.

For the two-state Markov chain, it is readily verified by induction that the n-step
transition matrix is given by

Pn
=

1

a+ b

∥∥∥∥b a
b a

∥∥∥∥+ (1− a− b)n

a+ b

∥∥∥∥ a −a
−b b

∥∥∥∥. (3.31)

To verify this general formula, introduce the abbreviations

A=

∥∥∥∥b a
b a

∥∥∥∥ and B=

∥∥∥∥ a −a
−b b

∥∥∥∥
so that (3.31) can be written

Pn
= (a+ b)−1 [A+ (1− a− b)nB

]
.

Next, check the multiplications

AP=

∥∥∥∥b a
b a

∥∥∥∥× ∥∥∥∥1− a a
b 1− b

∥∥∥∥= ∥∥∥∥b a
b a

∥∥∥∥= A

and

BP =

∥∥∥∥ a −a
−b b

∥∥∥∥× ∥∥∥∥1− a a
b 1− b

∥∥∥∥
=

∥∥∥∥ a− a2
− ab a2

− a+ ab
−b+ ab+ b2

−ab+ b− b2

∥∥∥∥= (1− a− b)B.
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Now, (3.31) is easily seen to be true when n= 1, since then

P1
=

1

a+ b

∥∥∥∥b a
b a

∥∥∥∥+ (1− a− b)

a+ b

∥∥∥∥ a −a
−b b

∥∥∥∥
=

1

a+ b

∥∥∥∥b+ a− a2
− ab a− a+ a2

+ ab
b− b+ ab+ b2 a+ b− ab− b2

∥∥∥∥
=

∥∥∥∥1− a a
b 1− b

∥∥∥∥= P.

To complete an induction proof, assume that the formula is true for n. Then,

PnP= (a+ b)−1 [A+ (1− a− b)nB
]

P

= (a+ b)−1 [AP+ (1− a− b)nBP
]

= (a+ b)−1
[
A+ (1− a− b)n+1B

]
= Pn+1.

We have verified that the formula holds for n+ 1. It, therefore, is established for all n.
Note that |1− a− b|< 1 when 0< a,b< 1, and thus |1− a− b|n→ 0 as n→∞

and

lim
n→∞

Pn
=

∥∥∥∥∥∥∥∥
b

a+ b

a

a+ b
b

a+ b

a

a+ b

∥∥∥∥∥∥∥∥ . (3.32)

This tells us that such a system, in the long run, will be in state 0 with probability
b/(a+ b) and in state 1 with probability a/(a+ b), irrespective of the initial state in
which the system started.

For a numerical example, suppose that the items produced by a certain worker are
graded as defective or not and that due to trends in raw material quality, whether or
not a particular item is defective depends in part on whether or not the previous item
was defective. Let Xn denote the quality of the nth item with Xn = 0 meaning “good”
and Xn = 1 meaning “defective.” Suppose that {Xn} evolves as a Markov chain whose
transition matrix is

P=

∥∥∥∥∥
0 1

0 0.99 0.01

1 0.12 0.88

∥∥∥∥∥.
Defective items would tend to appear in bunches in the output of such a system.

In the long run, the probability that an item produced by this system is defective is
given by a/(a+ b)= 0.01/(0.01+ 0.12)= 0.077.
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3.5.2 Markov Chains Defined by Independent Random Variables

Let ξ denote a discrete-valued random variable whose possible values are the non-
negative integers and where Pr{ξ = i} = ai ≥ 0, for i= 0,1, . . . , and

∑
∞

i=0 ai = 1. Let
ξ1,ξ2, . . . , ξn, . . . represent independent observations of ξ .

We shall now describe three different Markov chains connected with the sequence
ξ1,ξ2, . . . . In each case, the state space of the process is the set of nonnegative integers.

Example Independent Random Variables Consider the process Xn,n= 0,1,2, . . . ,
defined by Xn = ξn (X0 = ξ0 prescribed). Its Markov matrix has the form

P=

∥∥∥∥∥∥∥∥∥
a0 a1 a2 · · ·

a0 a1 a2 · · ·

a0 a1 a2 · · ·

...
...

...

∥∥∥∥∥∥∥∥∥ . (3.33)

That all rows are identical plainly expresses the fact that the random variable Xn+1 is
independent of Xn.

Example Successive Maxima The partial maxima of ξ1,ξ2, . . . define a second
important Markov chain. Let

θn =max{ξ1, . . . , ξn}, for n= 1,2, . . . ,

with θ0 = 0. The process defined by Xn = θn is readily seen to be a Markov chain, and
the relation Xn+1 =max{Xn,ξn+1} allows the transition probabilities to be computed
to be

P=

∥∥∥∥∥∥∥∥∥∥∥

A0 a1 a2 a3 · · ·

0 A1 a2 a3 · · ·

0 0 A2 a3 · · ·

0 0 0 A3 · · ·

...
...

...
...

∥∥∥∥∥∥∥∥∥∥∥
, (3.34)

where Ak = a0+ ·· ·+ ak for k = 0,1, . . . .
Suppose ξ1,ξ2, . . . represent successive bids on a certain asset that is offered for

sale. Then, Xn =max{ξ1, . . . , ξn} is the maximum that is bid up to stage n. Suppose
that the bid that is accepted is the first bid that equals or exceeds a prescribed level M.
The time of sale is the random variable T =min{n≥ 1;Xn ≥M}. A first step analysis
shows that the mean µ= E[T] satisfies

µ= 1+µPr{ξ1 <M}, (3.35)



Markov Chains: Introduction 115

orµ= 1/Pr{ξ1 ≥M} = 1/(aM + aM+1+ ·· ·). The first step analysis invoked in estab-
lishing (3.35) considers the two possibilities {ξ1 <M} and {ξ1 ≥M}. With this break-
down, the law of total probability justifies the sum

E[T]= E[T|ξ1 ≥M]Pr{ξ1 ≥M}+E[T|ξ1 <M]Pr{ξ1 <M}. (3.36)

Clearly, E[T|ξ1 ≥M]= 1, since no further bids are examined in this case. On the other
hand, when ξ1 <M, we have the first bid, which was not accepted, plus some future
bids. The future bids ξ2,ξ3, . . . have the same probabilistic properties as in the original
problem, and they are examined until the first acceptable bid appears. This reasoning
leads to E[T|ξ1 <M]= 1+µ. Substitution into (3.36) then yields (3.35) as follows:

E[T]= 1×Pr{ξ1 ≥M}+ (1+µ)Pr{ξ1 <M}

= 1+µPr{ξ1 <M}.

To restate the argument somewhat differently, one always examines the first bid ξ1. If
ξ1 <M, then further bids are examined in a future that is probabilistically similar to
the original problem. That is, when ξ1 <M, then on the average µ bids in addition to
ξ1 must be examined before an acceptable bid appears. Equation (3.35) results.

Example Partial Sums Another important Markov chain arises from consideration
of the successive partial sums ηn of the ξi, i.e.,

ηn = ξ1+ ·· ·+ ξn, n= 1,2, . . . ,

and by definition, η0 = 0. The process Xn = ηn is readily seen to be a Markov chain via

Pr{Xn+1 = j|X1 = i1, . . . ,Xn−1 = in−1,Xn = i}

= Pr{ξn+1 = j− i|ξ1 = i1,ξ2 = i2− i1, . . . , ξn = i− in−1}

= Pr{ξn+1 = j− i} (independence of ξ1,ξ2, . . .)

= Pr{Xn+1 = j|Xn = i}.

The transition probability matrix is determined by

Pr{Xn+1 = j|Xn = i} = Pr{ξ1+ ·· ·+ ξn+1 = j|ξ1+ ·· ·+ ξn = i}

= Pr{ξn+1 = j− i}

=

{
aj−i for j≥ i,

0 for j< i,

where we have used the independence of the ξi.
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Schematically, we have

P=

∥∥∥∥∥∥∥∥∥
a0 a1 a2 a3 · · ·

0 a0 a1 a2 · · ·

0 0 a0 a1 · · ·

...
...

...
...

∥∥∥∥∥∥∥∥∥ . (3.37)

If the possible values of the random variable ξ are permitted to be the positive and
negative integers, then the possible values of ηn for each n will be contained among
the totality of all integers. Instead of labeling the states conventionally by means of
the nonnegative integers, it is more convenient to identify the state space with the
totality of integers, since the transition probability matrix will then appear in a more
symmetric form. The state space consists then of the values . . .−2,−1,0,1,2, . . . .

The transition probability matrix becomes

P=

∥∥∥∥∥∥∥∥∥∥∥∥

...
...

...
...

...

· · · a−1 a0 a1 a2 a3 · · ·

· · · a−2 a−1 a0 a1 a2 · · ·

· · · a−3 a−2 a−1 a0 a1 · · ·

...
...

...
...

...

∥∥∥∥∥∥∥∥∥∥∥∥
,

where Pr{ξ = k} = ak for k = 0,±1,±2, . . . , and ak ≥ 0,
∑
+∞

k=−∞ ak = 1.

3.5.3 One-Dimensional Random Walks

When we discuss random walks, it is an aid to intuition to speak about the state of the
system as the position of a moving “particle.”

A one-dimensional random walk is a Markov chain whose state space is a finite
or infinite subset a,a+ 1, . . . ,b of the integers, in which the particle, if it is in state i,
can in a single transition either stay in i or move to one of the neighboring states
i− 1, i+ 1. If the state space is taken as the nonnegative integers, the transition matrix
of a random walk has the form

P=

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

0 1 2 i− 1 i i+ 1

0 r0 p0 0 . . . 0 . . .

1 q1 r1 p1 . . . 0 . . .

2 0 q2 r2 . . . 0 . . .

...
. . .

i 0 qi ri pi 0
. . .

. . .

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
, (3.38)



Markov Chains: Introduction 117

where pi > 0,qi > 0,ri ≥ 0, and qi+ ri+ pi = 1, i= 1,2, . . . (i≥ 1),p0 ≥ 0,r0 ≥ 0,
r0+ p0 = 1. Specifically, if Xn = i, then for i≥ 1,

Pr{Xn+1 = i+ 1|Xn = i} = pi,

Pr{Xn+1 = i− 1|Xn = i} = qj,

Pr{Xn+1 = i|Xn = i} = ri,

with the obvious modifications holding for i= 0.
The designation “random walk” seems apt, since a realization of the process

describes the path of a person (suitably intoxicated) moving randomly one step for-
ward or backward.

The fortune of a player engaged in a series of contests is often depicted by a random
walk process. Specifically, suppose an individual (player A) with fortune k plays a
game against an infinitely rich adversary and has probability pk of winning one unit
and probability qk = 1− pk(k ≥ 1) of losing one unit in the next contest (the choice
of the contest at each stage may depend on his fortune), and r0 = 1. The process Xn,
where Xn represents his fortune after n contests, is clearly a random walk. Note that
once the state 0 is reached (i.e., player A is wiped out), the process remains in that
state. The event of reaching state k = 0 is commonly known as the “gambler’s ruin.”

If the adversary, player B, also starts with a limited fortune l and player A has an
initial fortune k(k+ l= N), then we may again consider the Markov chain process Xn

representing player A’s fortune. However, the states of the process are now restricted to
the values 0,1,2, . . . ,N. At any trial, N−Xn is interpreted as player B’s fortune. If we
allow the possibility of neither player winning in a contest, the transition probability
matrix takes the form

P=

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

0 1 2 3 N

0 1 0 0 0 · · ·

1 q1 r1 p1 0 · · ·

2 0 q2 r2 p2 · · ·

. . .

qN−1 rN−1 pN−1

N 0 · · · · · · 0 0 1

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
. (3.39)

Again pi(qi), i= 1,2, . . . ,N− 1, denotes the probability of player A’s fortune increas-
ing (decreasing) by 1 at the subsequent trial when his present fortune is i, and ri may
be interpreted as the probability of a draw. Note that, in accordance with the Markov
chain given in (3.39), when player A’s fortune (the state of the process) reaches 0 or
N, it remains in this same state forever. We say player A is ruined when the state of
the process reaches 0, and player B is ruined when the state of the process reaches N.

The probability of gambler’s ruin (for player A) is derived in the next section
by solving a first step analysis. Some more complex functionals on random walk
processes are also derived in the next section.
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The random walk corresponding to pk = p,qk = 1− p= q for all k ≥ 1 and r0 = 1
describes the situation of identical contests. There is a definite advantage to player A
in each individual trial if p> q, and conversely, an advantage to player B if p< q. A
“fair” contest corresponds to p= q= 1

2 . Suppose the total of both players’ fortunes
is N. Then, the corresponding walk, where Xn is player A’s fortune at stage n, has the
transition probability matrix

P=

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

0 1 2 3 N− 1 N

0 1 0 0 0 · · · 0 0

1 q 0 p 0 · · · 0 0

2 0 q 0 p · · · 0 0
...

...
...

...
...

...
...

N− 1 0 0 0 0 · · · 0 p

N 0 0 0 0 · · · 0 1

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
. (3.40)

Let ui = Ui0 be the probability of gambler’s ruin starting with the initial fortune i.
Then, ui is the probability that the random walk reaches state 0 before reaching state
N, starting from X0 = i. The first step analysis of Section 3.4, as used in deriving
equation (3.26), shows that these ruin probabilities satisfy

ui = pui+1+ qui−1 for i= 1, . . . ,N− 1 (3.41)

together with the obvious boundary conditions

u0 = 1 and uN = 0.

These equations are solved in the next section following a straight-forward but
arduous method. There it is shown that the gambler’s ruin probabilities corresponding
to the transition probability matrix given in (3.40) are

ui = Pr{Xn reaches state 0 before state N|X0 = i}

=


N− i

N
when p= q=

1

2
,

(q/p)i− (q/p)N

1− (q/p)N
when p 6= q.

(3.42)

The ruin probabilities ui given by (3.42) have the following interpretation. In a
game in which player A begins with an initial fortune of i units and player B begins
with N− i units, the probability that player A loses all his money before player B goes
broke is given by ui, where p is the probability that player A wins in a single contest.
If player B is infinitely rich (N→∞), then passing to the limit in (3.42) and using
(q/p)N→∞ as N→∞ if p< q, while (q/p)N→ 0 if p> q, we see that the ruin
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probabilities become

ui =


1 if p≤ q,(

q

p

)i

if p> q.
(3.43)

(In passing to the limit, the case p= q= 1
2 must be treated separately.) We see that

ruin is certain (ui = 1) against an infinitely rich adversary when the game is unfavor-
able (p< q), and even when the game is fair (p= q). In a favorable game (p> q),
starting with initial fortune i, then ruin occurs (player A goes broke) with probability
(q/p)i. This ruin probability decreases as the initial fortune i increases. In a favorable
game against an infinitely rich opponent, with probability 1− (q/p)i player A’s fortune
increases, in the long run, without limit.

More complex gambler’s-ruin-type problems find practical relevance in certain
models describing the fluctuation of insurance company assets over time.

Random walks are not only useful in simulating situations of gambling but fre-
quently serve as reasonable discrete approximations to physical processes describing
the motion of diffusing particles. If a particle is subjected to collisions and random
impulses, then its position fluctuates randomly, although the particle describes a con-
tinuous path. If the future position (i.e., its probability distribution) of the particle
depends only on the present position, then the process Xt, where Xt is the position at
time t, is Markov. A discrete approximation to such a continuous motion corresponds
to a random walk. A classical discrete version of Brownian motion (VIII) is provided
by the symmetric random walk. By a symmetric random walk on the integers (say all
the integers) we mean a Markov chain with state space the totality of all integers and
whose transition probability matrix has the elements

Pij =


p if j= i+ 1,
p if j= i− 1,
r if j= i,
0 otherwise,

i, j= 0,1,2, . . . ,

where p> 0,r ≥ 0, and 2p+ r = 1. Conventionally, “simple random walk” refers only
to the case r = 0,p= 1

2 .
The classical simple random walk in n dimensions admits the following formu-

lation. The state space is identified with the set of all integral lattice points in En

(Euclidean n space); that is, a state is an n-tuple k = (k1,k2, . . . ,kn) of integers. The
transition probability matrix is defined by

Pkl =


1

2n
if

n∑
i=0
|li− ki| = 1,

0 otherwise.

Analogous to the one-dimensional case, the simple random walk in En represents a
discrete version of n-dimensional Brownian motion.
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3.5.4 Success Runs

Consider a Markov chain on the nonnegative integers with transition probability
matrix of the form

P=

∥∥∥∥∥∥∥∥∥∥∥∥

0 1 2 3 4

0 p0 q0 0 0 0 · · ·

1 p1 r1 q1 0 0 · · ·

2 p2 0 r2 q2 0 · · ·

3 p3 0 0 r3 q3 · · ·

...
...

...
...

...

∥∥∥∥∥∥∥∥∥∥∥∥
, (3.44)

where qi > 0, pi > 0, and pi+ qi+ ri = 1 for i= 0,1,2, . . . . The zero state plays a
distinguished role in that it can be reached in one transition from any other state, while
state i+ 1 can be reached only from state i.

This example arises surprisingly often in applications and at the same time is very
easy to compute with. We will frequently illustrate concepts and results in terms of it.

A special case of this transition matrix arises when one is dealing with success runs
resulting from repeated trials, each of which admits two possible outcomes, success S
or failure F. More explicitly, consider a sequence of trials with two possible outcomes,
S or F. Moreover, suppose that in each trial, the probability of S is α and the probability
of F is β = 1−α. We say a success run of length r happened at trial n if the outcomes
in the preceding r+ 1 trials, including the present trial as the last, were respectively
F,S,S, . . . ,S. Let us now label the present state of the process by the length of the
success run currently under way. In particular, if the last trial resulted in a failure, then
the state is zero. Similarly, when the preceding r+ 1 trials in order have the outcomes
F,S,S, . . . ,S, the state variable would carry the label r. The process is clearly Markov
(since the individual trials were independent of each other), and its transition matrix
has the form (3.44), where

pn = β, rn = 0, and qn = α for n= 0,1,2, . . . .

A second example is furnished by the current age in a renewal process. Consider a
light bulb whose lifetime, measured in discrete units, is a random variable ξ , where

Pr{ξ = k} = ak > 0 for k = 1,2, . . . ,
∞∑

k=1

ak = 1.

Let each bulb be replaced by a new one when it burns out. Suppose the first bulb lasts
until time ξ1, the second bulb until time ξ1+ ξ2, and the nth bulb until time ξ1+ ·· ·+

ξn, where the individual lifetimes ξ1,ξ2, . . . are independent random variables each
having the same distribution as ξ . Let Xn be the age of the bulb in service at time n.
This current age process is depicted in Figure 3.2.
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Figure 3.2 The current age Xn in a renewal process. Here, ξ1 = 3,ξ2 = 2, and ξ3 = 3.

By convention, we set Xn = 0 at the time of a failure.
The current age is a success run Markov process for which

pk =
ak+1

ak+1+ ak+2+ ·· ·
, rk = 0,qk = 1− pk,

for k = 0,1, . . . .
(3.45)

We reason as follows: The age process reverts to zero upon failure of the item in
service. Given that the age of the item in current service is k, then failure occurs in the
next time period with conditional probability pk = ak+1/(ak+1+ ak+2+ ·· ·). Given
that the item has survived k periods, it survives at least to the next period with the
remaining probability qk = 1− pk.

Renewal processes are extensively discussed in Chapter 7.

Exercises

3.5.1 The probability of the thrower winning in the dice game called “craps” is p=
0.4929. Suppose Player A is the thrower and begins the game with $5, and
Player B, his opponent, begins with $10. What is the probability that Player A
goes bankrupt before Player B? Assume that the bet is $1 per round.

Hint: Use equation (3.42).
3.5.2 Determine the gambler’s ruin probability for Player A when both players begin

with $50, bet $1 on each play, and where the win probability for Player A in
each game is
(a) p= 0.49292929
(b) p= 0.5029237
(See Chapter 2, Section 2.2.)

What are the gambler’s ruin probabilities when each player begins with
$500?
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3.5.3 Determine Pn for n= 2,3,4,5 for the Markov chain whose transition probabil-
ity matrix is

P=

∥∥∥∥0.4 0.6
0.7 0.3

∥∥∥∥ .
3.5.4 A coin is tossed repeatedly until three heads in a row appear. Let Xn record the

current number of successive heads that have appeared. That is, Xn = 0 if the
nth toss resulted in tails; Xn = 1 if the nth toss was heads and the (n− 1)st toss
was tails; and so on. Model Xn as a success runs Markov chain by specifying
the probabilities pi and qi.

3.5.5 Suppose that the items produced by a certain process are each graded as defec-
tive or good and that whether or not a particular item is defective or good
depends on the quality of the previous item. To be specific, suppose that a defec-
tive item is followed by another defective item with probability 0.80, whereas a
good item is followed by another good item with probability 0.95. Suppose that
the initial (zeroth) item is good. Using equation (3.31), determine the probabil-
ity that the eighth item is good, and verify this by computing the eighth matrix
power of the transition probability matrix.

3.5.6 A baseball trading card that you have for sale may be quite valuable. Suppose
that the successive bids ξ1,ξ2, . . . that you receive are independent random vari-
ables with the geometric distribution

Pr{ξ = k} = 0.01(0.99)k for k = 0,1, . . . .

If you decide to accept any bid over $100, how many bids, on the average, will
you receive before an acceptable bid appears?

Hint: Review the discussion surrounding equation (3.35).
3.5.7 Consider the random walk Markov chain whose transition probability matrix is

given by

P=

∥∥∥∥∥∥∥∥∥

0 1 2 3

0 1 0 0 0

1 0.3 0 0.7 0

2 0 0.3 0 0.7

3 0 0 0 1

∥∥∥∥∥∥∥∥∥.
Starting in state 1, determine the probability that the process is absorbed into
state 0. Do this first using the basic first step approach of equations (3.21)
and (3.22) and second using the particular results for a random walk given in
equation (3.42).

3.5.8 As a special case, consider a discrete-time queueing model in which at most a
single customer arrives in any period and at most a single customer completes
service. Suppose that in any single period, a single customer arrives with proba-
bility α, and no customers arrive with probability 1−α. Provided that there are
customers in the system, in a single period a single customer completes service
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with probability β, and no customers leave with probability 1−β. Then Xn, the
number of customers in the system at the end-of-period n, is a random walk in
the sense of Section 3.5.3. Referring to equation (3.38), specify the transition
probabilities pi,qi, and ri for i= 0,1, . . . .

3.5.9 In a simplified model of a certain television game show, suppose that the con-
testant, having won k dollars, will at the next play have k+ 1 dollars with prob-
ability q and be put out of the game and leave with nothing with probability
p= 1− q. Suppose that the contestant begins with one dollar. Model her win-
nings after n plays as a success runs Markov chain by specifying the transition
probabilities pi,qi, and ri in equation (3.44).

Problems

3.5.1 As a special case of the successive maxima Markov chain whose transition prob-
abilities are given in equation (3.34), consider the Markov chain whose transi-
tion probability matrix is given by

P=

∥∥∥∥∥∥∥∥∥

0 1 2 3

0 a0 a1 a2 a3

1 0 a0+ a1 a2 a3

2 0 0 a0+ a1+ a2 a3

3 0 0 0 1

∥∥∥∥∥∥∥∥∥.
Starting in state 0, show that the mean time until absorption is v0 = 1/a3.

3.5.2 A component of a computer has an active life, measured in discrete units, that is
a random variable T , where Pr{T = k} = ak for k = 1,2, . . . . Suppose one starts
with a fresh component, and each component is replaced by a new component
upon failure. Let Xn be the age of the component in service at time n. Then, {Xn}

is a success runs Markov chain.
(a) Specify the probabilities pi and qi.
(b) A “planned replacement” policy calls for replacing the component upon

its failure or upon its reaching age N, whichever occurs first. Specify the
success runs probabilities pi and qi under the planned replacement policy.

3.5.3 A Batch Processing Model. Customers arrive at a facility and wait there until
K customers have accumulated. Upon the arrival of the Kth customer, all are
instantaneously served, and the process repeats. Let ξ0,ξ1, . . . denote the arrivals
in successive periods, assumed to be independent random variables whose dis-
tribution is given by

Pr{ξk = 0} = α, Pr{ξk = 1} = 1−α,

where 0< α < 1. Let Xn denote the number of customers in the system at time n.
Then, {Xn} is a Markov chain on the states 0,1, . . . ,K− 1. With K = 3, give the
transition probability matrix for {Xn}. Be explicit about any assumptions you
make.
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3.5.4 Martha has a fair die with the usual six sides. She throws the die and records the
number. She throws the die again and adds the second number to the first. She
repeats this until the cumulative sum of all the tosses first exceeds 10. What is
the probability that she stops at a cumulative sum of 13?

3.5.5 Let {Xn} be a random walk for which zero is an absorbing state and such that
from a positive state, the process is equally likely to go up or down one unit.
The transition probability matrix is given by (3.38) with r0 = 1 and pi = qi =

1
2

for i≥ 1. (a) Show that {Xn} is a nonnegative martingale. (b) Use the maximal
inequality in Chapter 2, (2.53) to limit the probability that the process ever gets
as high as N > 0.

3.6 Functionals of Random Walks and Success Runs

Consider first the random walk on N+ 1 states whose transition probability matrix is
given by

P=

∥∥∥∥∥∥∥∥∥∥∥∥

0 1 2 3 · · · N

0 1 0 0 0 · · · 0

1 q 0 p 0 · · · 0

2 0 q 0 p · · · 0
...
...

...
...

...
...

N 0 0 0 0 · · · 1

∥∥∥∥∥∥∥∥∥∥∥∥
.

“Gambler’s ruin” is the event that the process reaches state 0 before reaching state N.
This event can be stated more formally if we introduce the concept of hitting time. Let
T be the (random) time that the process first reaches, or hits, state 0 or N. In symbols,

T =min{n≥ 0;Xn = 0 or Xn = N}.

The random time T is shown in Figure 3.3 in a typical case.
In terms of T , the event written as XT = 0 is the event of gambler’s ruin, and the

probability of this event starting from the initial state k is

uk = Pr{XT = 0|X0 = k}.

0

1

N

k

nT

Figure 3.3 The hitting time to 0 or N. As depicted here, state 0 was reached first.
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Figure 3.4 First step analysis for the gambler’s ruin problem.

Figure 3.4 shows the first step analysis that leads to the equation

uk = puk+1+ quk−1, for k = 1, . . . ,N− 1, (3.46)

with the obvious boundary conditions

u0 = 1, uN = 0.

Equation (3.46) yields to straightforward but tedious manipulations. Because the
approach has considerable generality and arises frequently, it is well worth pursuing
in this simplest case.

We begin the solution by introducing the differences xk = uk− uk−1 for k =
1, . . . ,N. Using p+ q= 1 to write uk = (p+ q)uk = puk+ quk, equation (3.46)
becomes

k = 1; 0= p(u2− u1)− q(u1− u0)= px2− qx1;

k = 2; 0= p(u3− u2)− q(u2− u1)= px3− qx2;

k = 3; 0= p(u4− u3)− q(u3− u2)= px4− qx3;

...

k = N− 1; 0= p(uN − uN−1)− q(uN−1− uN−2)= pxN − qxN−1;

or

x2 = (q/p)x1,

x3 = (q/p)x2 = (q/p)2x1,

x4 = (q/p)x3 = (q/p)3x1

...

xk = (q/p)xk−1 = (q/p)k−1x1,

...

xN = (q/p)xN−1 = (q/p)N−1x1.
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We now recover u0,u1, . . . ,uN by invoking the conditions u0 = 1,uN = 0 and sum-
ming the xk’s:

x1 = u1− u0 = u1− 1,
x2 = u2− u1, x1+ x2 = u2− 1,
x3 = u3− u2, x1+ x2+ x3 = u3− 1,

...
...

xk = uk− uk−1, x1+ ·· ·+ xk = uk− 1,
...

...

xN = uN − uN−1 =−uN−1, x1+ ·· ·+ xN = uN − 1=−1.

The equation for general k gives

uk = 1+ x1+ x2+ ·· ·+ xk

= 1+ x1+ (q/p)x1+ ·· ·+ (q/p)
k−1x1 (3.47)

= 1+ [1+ (q/p)+ ·· ·+ (q/p)k−1]x1,

which expresses uk in terms of the as yet undetermined x1. But uN = 0 gives

0= 1+ [1+ (q/p)+ ·· ·+ (q/p)N−1]x1,

or

x1 =−
1

1+ (q/p)+ ·· ·+ (q/p)N−1
,

which substituted into (3.47) gives

uk = 1−
1+ (q/p)+ ·· ·+ (q/p)k−1

1+ (q/p)+ ·· ·+ (q/p)N−1
.

The geometric series sums to

1+ (q/p)+ ·· ·+ (q/p)k−1
=


k if p= q=

1

2
,

1− (q/p)k

1− (q/p)
if p 6= q,

whence

uk =


1− (k/N)= (N− k)/N when p= q=

1

2
,

1−
1− (q/p)k

1− (q/p)N
=
(q/p)k− (q/p)N

1− (q/p)N
when p 6= q.

(3.48)
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A similar approach works to evaluate the mean duration

vi = E[T|X0 = i]. (3.49)

The time T is composed of a first step plus the remaining steps. With probability p,
the first step is to state i+ 1, and then, the remainder, on the average, is vi+1 additional
steps. With probability q, the first step is to i− 1, and then, on the average, there are
vi−1 further steps. Thus, for the mean duration, a first step analysis leads to the equation

vi = 1+ pvi+1+ qvi−1 for i= 1, . . . ,N− 1. (3.50)

Of course, the game ends in states 0 and N, and thus,

v0 = 0, vN = 0.

We will solve equation (3.50) when p= q= 1
2 . The solution for other values of p

proceeds in a similar manner, and the solution for a general random walk is given later
in this section.

Again, we introduce the differences xk = vk− vk−1 for k = 1, . . . ,N, writing (3.50)
in the form

k = 1; −1=
1

2
(v2− v1)−

1

2
(v1− v0)=

1

2
x2−

1

2
x1;

k = 2; −1=
1

2
(v3− v2)−

1

2
(v2− v1)=

1

2
x3−

1

2
x2;

k = 3; −1=
1

2
(v4− v3)−

1

2
(v3− v2)=

1

2
x4−

1

2
x3;

...

k = N− 1; −1=
1

2
(vN − vN−1)−

1

2
(vN−1− vN−2)=

1

2
xN −

1

2
xN−1.

The right side forms a collapsing sum. Upon adding, we obtain

k = 1; −1=
1

2
x2−

1

2
x1;

k = 2; −2=
1

2
x3−

1

2
x1;

k = 3; −3=
1

2
x4−

1

2
x1;

...

k = N− 1; −(N− 1)=
1

2
xN −

1

2
x1.
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The general line gives xk = x1− 2(k− 1) for k = 2,3, . . . , N. We return to the vk’s by
means of

x1 = v1− v0 = v1;

x2 = v2− v1; x1+ x2 = v2;

x3 = v3− v2; x1+ x2+ x3 = v3;

...

xk = vk− vk−1; x1+ ·· ·+ xk = vk;

or

vk = kv1− 2[1+ 2+ ·· ·+ (k− 1)]= kv1− k(k− 1), (3.51)

which gives vk in terms of the as yet unknown v1. We impose the boundary condition
vN = 0 to obtain 0= Nv1−N(N− 1) or v1 = (N− 1). Substituting this into (3.51), we
obtain

vk = k(N− k), k = 0,1, . . . ,N, (3.52)

for the mean duration of the game. Note that the mean duration is greatest for initial
fortunes k that are midway between the boundaries 0 and N, as we would expect.

3.6.1 The General Random Walk

We give the results of similar derivations on the random walk whose transition
matrix is

P=

∥∥∥∥∥∥∥∥∥∥∥∥

0 1 2 3 · · · N

0 1 0 0 0 · · · 0

1 q1 r1 p1 0 · · · 0

2 0 q2 r2 p2 · · · 0
...

...
...

...
...

...

N 0 0 0 0 · · · 1

∥∥∥∥∥∥∥∥∥∥∥∥
,

where qk > 0 and pk > 0 for k = 1, . . . ,N− 1. Let T =min{n≥ 0; Xn = 0 or Xn = N}
be the hitting time to states 0 and N.

Example As a sample calculation of these functionals, we consider the special case
in which the transition probabilities are the same from row to row. That is, we study
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the random walk whose transition probability matrix is

P=

∥∥∥∥∥∥∥∥∥∥∥∥

0 1 2 3 · · · N

0 1 0 0 0 · · · 0

1 q r p 0 · · · 0

2 0 q r p · · · 0
...
...

...
...

...
...

N 0 0 0 0 1

∥∥∥∥∥∥∥∥∥∥∥∥
,

with p> 0, q> 0, and p+ q+ r = 1. Let us abbreviate by setting θ = (q/p), and then
ρk, as defined in (3.63), simplifies according to

ρk =
q1q2 · · ·qk

p1p2 · · ·pk
=

(
q

p

)k

= θk for k = 1, . . . ,N− 1.

The probability of gambler’s ruin, as defined in (3.61) and evaluated in (3.62),
becomes

uk = Pr{XT = 0|X0 = k}

=
θk
+ ·· ·+ θN−1

1+ θ + ·· ·+ θN−1

=


θk
− θN

1− θN
if θ ≡ (q/p) 6= 1,

N− k

N
if θ ≡ (q/p)= 1.

This, of course, agrees with the answer given in (3.48).
We turn to evaluating the mean time

vk = E[T|X0 = k] for k = 1, . . . ,N = 1

by first substituting ρi = θ
i into (3.67) to obtain

8i =

(
1

q
+

1

qθ
+ ·· ·+

1

qθ i−1

)
θ i

=
1

q
(θ i
+ θ i−1

+ ·· ·+ θ)

=
1

p
(1+ θ + ·· ·+ θ i−1)
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=


i

p
when p= q(θ = 1),

1

p

(
1− θ i

1− θ

)
when p 6= q(θ 6= 1).

Now observe that

1+ ρ1+ ·· ·+ ρi−1 = 1+ θ + ·· ·+ θ i−1

= p8i

so that (3.66) reduces to

vk =
8k

8N
(81+ ·· ·+8N−1)− (81+ ·· ·+8k−1). (3.53)

In order to continue, we need to simplify the terms of the form 81+ ·· ·+8j−1. We
consider the two cases θ ≡ (q/p)= 1 and θ ≡ (q/p) 6= 1 separately.

When p= q, or equivalently, θ = 1, then 8i = i/p, whence

81+ ·· ·+8j−1 =
1+ ·· ·+ ( j− 1)

p
=

j( j− 1)

2p
,

which inserted into (3.53) gives

vi ≡ E[T|X0 = i]

=
i

N

[
N(N− 1)

2p

]
−

i(i− 1)

2p

=
i(N− i)

2p
if p= q.

(3.54)

When p= 1
2 , then vi = i(N− i) in agreement with (3.52).

When p 6= q, so that θ ≡ q/p 6= 1, then

8i =
1

p

(
1− θ i

1− θ

)
,

whence

81+ ·· ·+8j−1 =
1

p(1− θ)

[
( j− 1)−

(
θ + θ2

+ ·· ·+ θ j−1
)]

=
1

p(1− θ)

[
( j− 1)− θ

(
1− θ j−1

1− θ

)]
,
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and

vi = E[T|X0 = i]

=

(
1− θ i

1− θN

)
1

p(1− θ)

[
N−

(
1− θN

1− θ

)]
−

1

p(1− θ)

[
i−

(
1− θ i

1− θ

)]

=
1

p(1− θ)

[
N

(
1− θ i

1− θN

)
− i

]
,

when θ ≡ (q/p) 6= 1.
Finally, we evaluate Wik, expressed verbally as the mean number of visits to state k

starting from X0 = i and defined formally in (3.68). Again, we consider the two cases
θ ≡ (q/p)= 1 and θ ≡ (q/p) 6= 1.

When θ = 1, then ρj = θ
j
= 1 and 1+ ·· ·+ ρi−1 = i,ρk+ ·· ·+ ρN−1 = N− k, and

(3.69) simplifies to

Wik =


i(N− k)

qN
for 0< i≤ k < N,

1

q

[
i(N− k)

N
− (i− k)

]
=

k(N− i)

qN
for 0< k < i< N,

=
i(N− k)

qN
−

max{o, i− k}

q
. (3.55)

When θ = (q/p) 6= 1, then ρj = θ
j and

1+ ·· ·+ ρi−1 =
1− θ i

1− θ
,

ρk+ ·· ·+ ρN−1 =
θk
− θN

1− θ
,

and

qρk−1 = pρk = pθk.

In this case, (3.69) simplifies to

Wik =

(
1− θ i

)(
θk
− θN

)
(1− θ)

(
1− θN

) ( 1

pθk

)
for 0< i≤ k < N,

and

Wik =

(
1− θk

)(
θ i
− θN

)
(1− θ)

(
1− θN

) ( 1

pθk

)
for 0< k < i< N.
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We may write the expression for Wik in a single line by introducing the notation
(i− k)+ =max{0, i− k}. Then,

Wik =

(
1− θ i

)(
1− θN−k

)
p(1− θ)

(
1− θN

) − 1− θ (i−k)+

p(1− θ)
. (3.56)

3.6.2 Cash Management

Short-term cash management is the review and control of a corporation’s cash bal-
ances, short-term loan balances, and short-term marketable security holdings. The
objective is to maintain the smallest cash balances that are adequate to meet future
disbursements. The corporation cashier tries to eliminate idle cash balances (e.g., by
reducing short-term loans or buying treasury bills) but to cover potential cash short-
ages (by selling treasury bills or increasing short-term loans). The analogous problem
for an individual is to maintain an optimal balance between a checking and a savings
account.

In the absence of intervention, the corporation’s cash level fluctuates randomly as
the result of many relatively small transactions. We model this by dividing time into
successive, equal length periods, each of short duration, and by assuming that from
period to period, the cash level moves up or down one unit, each with a probability
of one-half. Let Xn be the cash on hand in period n. We are assuming that {Xn} is the
random walk in which

Pr{Xn+1 = k± 1|Xn = k} =
1

2
.

The cashier’s job is to intervene if the cash level ever gets too low or too high. We
consider cash management strategies that are specified by two parameters, s and 6,
where 0< s< 6. The policy is as follows: If the cash level ever drops to zero, then
sell sufficient treasury bills to replenish the cash level up to s. If the cash level ever
increases up to 6, then invest in treasury bills in order to reduce the cash level to s. A
typical sequence of cash levels {Xn} when s= 2 and 6 = 5 is depicted in Figure 3.5.

We see that the cash level fluctuates in a series of statistically similar cycles, each
cycle beginning with s units of cash on hand and ending at the next intervention,

Xn

4

3
s = 2

= 5

1
0

Third
cycle

Second
cycle

First
cycle

n

Figure 3.5 Several typical cycles in a cash inventory model.
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whether a replenishment or reduction in cash. We begin our study by evaluating the
mean length of a cycle and the mean total unit periods of cash on hand during a cycle.
Later, we use these quantities to evaluate the long run performance of the model.

Let T denote the random time at which the cash on hand first reaches the level 6
or 0. That is, T is the time of the first transaction. Let vs = E[T|X0 = s] be the mean
time to the first transaction, or the mean cycle length. From (3.52), we have

vs = s(6− s). (3.57)

Next, fix an arbitrary state k(0< k < 6) and let Wsk be the mean number of visits to k
up to time T for a process starting at X0 = s. From (3.55), we have

Wsk = 2
[ s

6
(6− k)− (s− k)+

]
. (3.58)

Using this we obtain the mean total unit periods of cash on hand up to time T starting
from X0 = s by weighting Wsk by k and summing according to

Ws =

6−1∑
k=1

kWsk

= 2

 s

6

6−1∑
k=1

k(6− k)−
s−1∑
k=1

k(s− k)


= 2

{
s

6

[
6(6− 1)(6+ 1)

6

]
−

s(s− 1)(s+ 1)

6

}∗
=

s

3

[
62
− s2

]
.

(3.59)

Having obtained these single cycle results, we will use them to evaluate the long run
behavior of the model. Note that each cycle starts from the cash level s, and thus, the
cycles are statistically independent. Let K be the fixed cost of each transaction. Let Ti

be the duration of the ith cycle and let Ri be the total opportunity cost of holding cash
on hand during that time. Over n cycles the average cost per unit time is

Average cost=
nK+R1+ ·· ·+Rn

T1+ ·· ·+Tn
.

Next, divide the numerator and denominator by n, let n→∞, and invoke the law of
large numbers to obtain

Long run average cost=
K+E[Ri]

E[Ti]
.

∗ Use the sum
∑a−1

k=1 k(a− k)= 1
6 a(a+ 1)(a− 1).



134 An Introduction to Stochastic Modeling

Let r denote the opportunity cost per unit time of cash on hand. Then, E[Ri]= rWs,
while E[Ti]= vs. Since these quantities were determined in (3.57) and (3.59), we have

Long run average cost=
K+ (1/3)rs

(
62
− s2

)
s(6− s)

. (3.60)

In order to use calculus to determine the cost-minimizing values for 6 and s, it simpli-
fies matters if we introduce the new variable x= s/6. Then, (3.60) becomes

Long run average cost=
K+ (1/3)r63x

(
1− x2

)
62x(1− x)

,

whence

d(average cost)

dx
= 0=−

K(1− 2x)

62x2(1− x)2
+

1

3
r6,

d(average cost)

d6
= 0=−

2K

63x(1− x)
+

r(1+ x)

3
,

which yield

xopt =
1

3
and 6opt = 3sopt = 3 3

√
3K

4r
.

Implementing the cash management strategy with the values sopt and 6opt results in
the optimal balance between transaction costs and the opportunity cost of holding cash
on hand.

3.6.3 The Success Runs Markov Chain

Consider the success runs Markov chain on N+ 1 states whose transition matrix is

P=

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

0 1 2 3 · · · N

0 1 0 0 0 · · · 0

1 p1 r1 q1 0 · · · 0

2 p2 0 r2 q2 · · · 0
...

...
...

...
...

...

N− 1 pN−1 0 0 0 · · · qN−1

N 0 0 0 0 · · · 1

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
.

Note that states 0 and N are absorbing; once the process reaches one of these two states
it remains there.

Let T be the hitting time to states 0 or N,

T =min{n≥ 0;Xn = 0 or Xn = N}.
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Exercises

3.6.1 A rat is put into the linear maze as shown:

0
shock

1 2 3 4 5
food

(a) Assume that the rat is equally likely to move right or left at each step. What
is the probability that the rat finds the food before getting shocked?

(b) As a result of learning, at each step the rat moves to the right with prob-
ability p> 1

2 and to the left with probability q= 1− p< 1
2 . What is the

probability that the rat finds the food before getting shocked?
3.6.2 Customer accounts receivable at Smith Company are classified each month

according to

0: Current
1: 30–60 days past due
2: 60–90 days past due
3: Over 90 days past due

Consider a particular customer account and suppose that it evolves month to
month as a Markov chain {Xn} whose transition probability matrix is

P=

∥∥∥∥∥∥∥∥∥

0 1 2 3

0 0.9 0.1 0 0

1 0.5 0 0.5 0

2 0.3 0 0 0.7

3 0.2 0 0 0.8

∥∥∥∥∥∥∥∥∥.
Suppose that a certain customer’s account is now in state 1: 30–60 days past due.
What is the probability that this account will be paid (and thereby enter state 0:
Current) before it becomes over 90 days past due? That is, let T =min{n≥ 0;
Xn = 0 or Xn = 3}. Determine Pr{XT = 0|X0 = 1}.

3.6.3 Players A and B each have $50 at the beginning of a game in which each player
bets $1 at each play, and the game continues until one player is broke. Suppose
there is a constant probability p= 0.492929 . . . that Player A wins on any given
bet. What is the mean duration of the game?

3.6.4 Consider the random walk Markov chain whose transition probability matrix is
given by

P=

∥∥∥∥∥∥∥∥∥∥

0 1 2 3

0 1 0 0 0

1 0.3 0 0.7 0

2 0 0.3 0 0.7

3 0 0 0 1

∥∥∥∥∥∥∥∥∥∥
.
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Starting in state 1, determine the mean time until absorption. Do this first using
the basic first step approach of equation (3.24), and second using the particular
formula for vi that follows equation (3.54), which applies for a random walk in
which p 6= q.

Problems

3.6.1 The probability of gambler’s ruin

ui = Pr{XT = 0|X0 = i} (3.61)

satisfies the first step analysis equation

ui = qiui−1+ riui+ piui+1 for i= 1, . . . ,N− 1,

and

u0 = 1, uN = 0.

The solution is

ui =
ρi+ ·· ·+ ρN−1

1+ ρ1+ ρ2+ ·· ·+ ρN−1
, i= 1, . . . ,N− 1, (3.62)

where

ρk =
q1q2 · · ·qk

p1p2 · · ·pk
, k = 1, . . . ,N− 1. (3.63)

3.6.2 The mean hitting time

vk = E[T|X0 = k] (3.64)

satisfies the equations

vk = 1+ qkvk−1+ rkvk+ pkvk+1 and v0 = vN = 0. (3.65)

The solution is

vk =

(
81+ ·· ·+8N−1

1+ ρ1+ ·· ·+ ρN−1

)
(1+ ρ1+ ·· ·+ ρk−1)

− (81+ ·· ·+8k−1) for k = 1, . . . ,N− 1,
(3.66)

where ρi is given in (3.63) and

8i =

(
1

q1
+

1

q2ρ1
+ ·· ·+

1

qiρi−1

)
ρi

=
q2 · · ·qi

p1 · · ·pi
+

q3 · · ·qi

p2 · · ·pi
+ ·· ·+

qi

pi−1pi
+

1

pi
for i= 1, . . . ,N− 1.

(3.67)
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3.6.3 Fix a state k, where 0< k < N, and let Wik be the mean total visits to state k
starting from i. Formally, the definition is

Wik = E

[
T−1∑
n=0

1{Xn = k}|X0 = i

]
, (3.68)

where

1{Xn = k} =

{
1 if Xn = k,

0 if Xn 6= k.

Then, Wik satisfies the equations

Wik = δik+ qiWi−1,k+ riWik+ piWi+1,k for i= 1, . . . ,N− 1

and

W0k =WNk = 0,

where

δik =

{
1 if i= k,

0 if i 6= k.

The solution is

Wik =



(1+ ·· ·+ ρi−1)(ρk+ ·· ·+ ρN−1)

1+ ·· ·+ ρN−1

(
1

qkρk−1

)
for i≤ k,

[
(1+ ·· ·+ ρi−1)(ρk+ ·· ·+ ρN−1)

1+ ·· ·+ ρN−1

−(ρk+ ·· ·+ ρi−1)

](
1

qkρk−1

)
for i≥ k.

(3.69)

3.6.4 The probability of absorption at 0 starting from state k

uk = Pr{XT = 0|X0 = k} (3.70)

satisfies the equation

uk = pk+ rkuk+ qkuk+1,

for k = 1, . . . ,N− 1 and u0 = 1,uN = 0.
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The solution is

uk = 1−

(
qk

pk+ qk

)
· · ·

(
qN−1

pN−1+ qN−1

)
for k = 1, . . . ,N− 1. (3.71)

3.6.5 The mean hitting time

vk = E[T|X0 = k] (3.72)

satisfies the equation

vk = 1+ rkvk+ qkvk+1 for k = 1, . . . ,N− 1 and v0 = vN = 0.

The solution is

vk =
1

pk+ qk
+

πk,k+1

pk+1+ qk+1
+ ·· ·+

πk,N−1

pN−1+ qN−1
, (3.73)

where

πkj =

(
qk

pk+ qk

)(
qk+1

pk+1+ qk+1

)
· · ·

(
qj−1

pj−1+ qj−1

)
(3.74)

for k < j.

3.6.6 Fix a state j(0< j< N) and let Wij be the mean total visits to state j starting
from state i [see equation (3.68)]. Then,

WiJ =



1

pi+ qi
for j= i,(

qi

pi+ qi

)
· · ·

(
qj−1

pj−1+ qj−1

)
1

pj+ qj
for i< j,

0 for i> j.

(3.75)

3.6.7 Consider the random walk Markov chain whose transition probability matrix is
given by

P=

∥∥∥∥∥∥∥∥∥

0 1 2 3

0 1 0 0 0

1 0.3 0 0.7 0

2 0 0.1 0 0.9

3 0 0 0 1

∥∥∥∥∥∥∥∥∥.
Starting in state 1, determine the mean time until absorption. Do this first using
the basic first step approach of equation (3.24) and second using the particular
results for a random walk given in equation (3.66).



Markov Chains: Introduction 139

3.6.8 Consider the Markov chain {Xn} whose transition matrix is

P=

∥∥∥∥∥∥∥∥∥

0 1 2 3

0 α 0 β 0

1 α 0 0 β

2 α β 0 0

3 0 0 0 1

∥∥∥∥∥∥∥∥∥,

where α > 0,β > 0, and α+β = 1. Determine the mean time to reach state 3
starting from state 0. That is, find E[T|X0 = 0], where T =min{n≥ 0;Xn = 3}.

3.6.9 Computer Challenge. You have two urns: A and B, with a balls in A and b
balls in B. You pick an urn at random, each urn being equally likely, and move
a ball from it to the other urn. You do this repeatedly. The game ends when
either of the urns becomes empty. The number of balls in A at the nth move is
a simple random walk, and the expected duration of the game is E[T]= ab [see
equation (3.52)]. Now consider three urns, A,B, and C, with a,b, and c balls,
respectively. You pick an urn at random, each being equally likely, and move a
ball from it to one of the other two urns, each being equally likely. The game
ends when one of the three urns becomes empty. What is the mean duration of
the game? If you can guess the general form of this mean time by computing it
in a variety of particular cases, it is not particularly difficult to verify it by a first
step analysis. What about four urns?

3.7 Another Look at First Step Analysis∗

In this section, we provide an alternative approach to evaluating the functionals treated
in Section 3.4. The nth power of a transition probability matrix having both transient
and absorbing states is directly evaluated. From these nth powers, it is possible to
extract the mean number of visits to a transient state j prior to absorption, the mean
time until absorption, and the probability of absorption in any particular absorbing
state k. These functionals all depend on the initial state X0 = i, and as a by-product of
the derivation, we show that, as functions of this initial state i, these functionals satisfy
their appropriate first step analysis equations.

Consider a Markov chain whose states are labeled 0,1, . . . ,N. States 0,1, . . . , r− 1
are transient in that P(n)ij → 0 as n→∞ for 0≤ i, j< r, while states r, . . . , N are
absorbing, or trap, and here Pii = 1 for r ≤ i≤ N. The transition matrix has the form

P=

∥∥∥∥Q R
0 I

∥∥∥∥ , (3.76)

∗ This section contains material at a more difficult level. It is not prerequisite to what follows.
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where 0 is an (N− r+ 1)× r matrix all of whose components are zero, I is an (N−
r+ 1)× (N− r+ 1) identity matrix, and Qij = Pij for 0≤ i, j< r.

To illustrate the calculations, begin with the four-state transition matrix

P=

∥∥∥∥∥∥∥∥∥

0 1 2 3

0 Q00 Q01 R02 R03

1 Q10 Q11 R12 R13

2 0 0 1 0

3 0 0 0 1

∥∥∥∥∥∥∥∥∥. (3.77)

Straightforward matrix multiplication shows the square of P to be

P2
=

∥∥∥∥Q2 R+QR
0 I

∥∥∥∥ . (3.78)

Continuing on to the third power, we have

P3
=

∥∥∥∥Q R
0 I

∥∥∥∥× ∥∥∥∥Q2 R+QR
0 I

∥∥∥∥= ∥∥∥∥Q3 R+QR+Q2R
0 I

∥∥∥∥ ,
and for higher values of n,

Pn
=

∥∥∥∥∥∥Qn
(

I+Q+ ·· ·+Qn−1
)

R

0 I

∥∥∥∥∥∥ . (3.79)

The consideration of four states was for typographical convenience only. It is straight-
forward to verify that the nth power of P is given by (3.79) for the general (N+ 1)-
state transition matrix of (3.76) in which states 0,1, . . . ,r− 1 are transient (P(n)ij → 0
as n→∞ for 0≤ i, j< r) while states r, . . . ,N are absorbing (Pii = 1 for r ≤ i≤ N).

We turn to the interpretation of (3.79). Let W(n)
ij be the mean number of visits to

state j up to stage n for a Markov chain starting in state i. Formally,

W(n)
ij = E

[
n∑

l=0

1{Xl = j}|X0 = i

]
, (3.80)

where

1{Xl = j} =

{
1 if Xl = j,

0 if Xl 6= j.
(3.81)



Markov Chains: Introduction 141

Now, E[1{Xl = j}|X0 = i]= Pr{Xl = j|X0 = i} = P(l)ij , and since the expected value of
a sum is the sum of the expected values, we obtain from (3.80) that

W(n)
ij =

n∑
i=0

E[1{Xl = j}|X0 = i]

=

n∑
l=0

P(l)ij .

(3.82)

Equation (3.82) holds for all states i, j, but it has the most meaning when i and j are
transient. Because (3.79) asserts that P(l)ij = Q(l)ij when 0≤ i, j< r, then

W(n)
ij = Q(0)ij +Q(1)ij + ·· ·+Q(n)ij , 0≤ i, j< r,

where

Q(0)ij =

{
1 if i= j,

0 if i 6= j.

In matrix notation, Q(0)
= I, and because Q(n)

=Qn, the nth power of Q, then

W(n)
= I+Q+Q2

+ ·· ·+Qn

= I+Q
(

I+Q+ ·· ·+Qn−1
)

= I+QW(n−1).

(3.83)

Upon writing out the matrix equation (3.83) in terms of the matrix entries, we recog-
nize the results of a first step analysis. We have

W(n)
ij = δij+

r−1∑
k=0

QikW(n−1)
kj

= δij+

r−1∑
k=0

PikW(n−1)
kj .

In words, the equation asserts that the mean number of visits to state j in the first n
stages starting from the initial stage i includes the initial visit if i= j(δij) plus the
future visits during the n− 1 remaining stages weighted by the appropriate transition
probabilities.

We pass to the limit in (3.83) and obtain for

Wij = lim
n→∞

W(n)
ij = E[Total visits to j|X0 = i], 0≤ i, j< r,
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the matrix equations

W= I+Q+Q2
+ ·· ·

and

W= I+QW. (3.84)

In terms of its entries, (3.84) is

Wij = δij+

r−1∑
l=0

PilWlj for i, j= 0, . . . ,r− 1. (3.85)

Equation (3.85) is the same as equation (3.29), which was derived by a first step
analysis.

Rewriting equation (3.84) in the form

W−QW= (I−Q)W= I, (3.86)

we see that W= (I−Q)−1, the inverse matrix to I−Q. The matrix W is often called
the fundamental matrix associated with Q.

Let T be the time of absorption. Formally, since states r,r+ 1, . . . ,N are the absorb-
ing ones, the definition is

T =min{n≥ 0;r ≤ Xn ≤ N}.

Then, the (i, j)th element Wij of the fundamental matrix W evaluates

Wij = E

[
T−1∑
n=0

1{X = j}|X0 = i

]
for 0≤ i, j< r. (3.87)

Let vi = E[T|X0 = i] be the mean time to absorption starting from state i. The time to
absorption is composed of sojourns in the transient states. Formally,

r−1∑
j=0

T−1∑
n=0

1{Xn = j} =
T−1∑
n=0

r−1∑
j=0

1{Xn = j}

=

T−1∑
n=0

1= T.

It follows from (3.87), then, that

r−1∑
j=0

Wij =

r−1∑
j=0

E

[
T−1∑
n=0

1{Xn = j}|X0 = i

]
= E[T|X0 = i]= vi for 0≤ i< r.

(3.88)
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Summing equation (3.85) over transient states j as follows,

r−1∑
j=0

Wij =

r−1∑
j=0

δij+

r−1∑
j=0

r−1∑
k=0

PijWkj for i= 0,1, . . . ,r− 1,

and using the equivalence vi =6
r−1
j=0 Wij leads to

vi = 1+
r−1∑
k=0

Pijvk for i= 0,1, . . . ,r− 1. (3.89)

This equation is identical with that derived by first step analysis in (3.28). We turn
to the hitting probabilities. Recall that states k = r, . . . ,N are absorbing. Since such a
state cannot be left once entered, the probability of absorption in a particular absorbing
state k up to time n, starting from initial state i, is simply

P(n)ik = Pr{Xn = k|X0 = i}

= Pr{T ≤ n and XT = k|X0 = i}

for i= 0, . . . ,r− 1;k = r, . . . ,N,

(3.90)

where T =min{n≥ 0: r ≤ Xn ≤ N} is the time of absorption. Let

U(n)
ik = Pr{T ≤ n and XT = k|X0 = i}

for 0≤ i< r and r ≤ k ≤ N.
(3.91)

Referring to (3.79) and (3.90), we give the matrix U(n) by

U(n) =
(

I+Q+ ·· ·+Qn−1
)

R

=W(n−1)R [by (3.83)].
(3.92)

If we pass to the limit in n, we obtain the hitting probabilities

Uik = lim
n→∞

U(n)
ik = Pr{XT = k|X0 = i} for 0≤ i< r and r ≤ k ≤ N.

Equation (3.92) then leads to an expression of the hitting probability matrix U in terms
of the fundamental matrix W as simply U=WR, or

Uik =

r−1∑
j=0

WijRjk for 0≤ i< r and r ≤ k ≤ N. (3.93)
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Equation (3.93) may be used in conjunction with (3.85) to verify the first step analysis
equation for Uik. We multiply (3.85) by Rjk and sum, obtaining thereby

r−1∑
j=0

WijRjk =

r−1∑
j=0

δijRjk+

r−1∑
j=0

r−1∑
l=0

PilWljRjk,

which with (3.93) gives

Uik = Rik+

r−1∑
l=0

PilUlk

= Pik+

r−1∑
l=0

PilUlk for 0≤ i< r and r ≤ k ≤ N.

This equation was derived earlier by first step analysis in (3.26).

Exercises

3.7.1 Consider the Markov chain whose transition probability matrix is given by

P=

∥∥∥∥∥∥∥∥∥

0 1 2 3

0 1 0 0 0

1 0.1 0.2 0.5 0.2

2 0.1 0.2 0.6 0.1

3 0 0 0 1

∥∥∥∥∥∥∥∥∥.
The transition probability matrix corresponding to the nonabsorbing states is

Q=

∥∥∥∥∥
1 2

0 0.2 0.5

1 0.2 0.6

∥∥∥∥∥.
Calculate the matrix inverse to I−Q, and from this determine
(a) the probability of absorption into state 0 starting from state 1;
(b) the mean time spent in each of states 1 and 2 prior to absorption.

3.7.2 Consider the random walk Markov chain whose transition probability matrix is
given by

P=

∥∥∥∥∥∥∥∥∥

0 1 2 3

0 1 0 0 0

1 0.3 0 0.7 0

2 0 0.3 0 0.7

3 0 0 0 1

∥∥∥∥∥∥∥∥∥.
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The transition probability matrix corresponding to the nonabsorbing states is

Q=

∥∥∥∥∥
1 2

0 0 0.7

1 0.3 0

∥∥∥∥∥.
Calculate the matrix inverse to I−Q, and from this determine
(a) the probability of absorption into state 0 starting from state 1;
(b) the mean time spent in each of states 1 and 2 prior to absorption.

Problems

3.7.1 A zero-seeking device operates as follows: If it is in state m at time n, then at
time n+ 1 its position is uniformly distributed over the states 0,1, . . . ,m− 1.
State 0 is absorbing. Find the inverse of the I−Q matrix for the transient states
1,2, . . . ,m.

3.7.2 A zero-seeking device operates as follows: If it is in state j at time n, then at
time n+ 1 its position is 0 with probability 1/j, and its position is k (where k
is one of the states 1,2, . . . , j− 1) with probability 2k/j2. State 0 is absorbing.
Find the inverse of the I−Q matrix.

3.7.3 Let Xn be an absorbing Markov chain whose transition probability matrix takes
the form given in equation (3.76). Let W be the fundamental matrix, the matrix
inverse of I−Q. Let

T =min{n≥ 0;r ≤ n≤ N}

be the random time of absorption (recall that states r,r+ 1, . . . ,N are the absorb-
ing states). Establish the joint distribution

Pr{XT−1 = j,XT = k|X0 = i} =WijPjk for 0≤ i, j< r;r ≤ k ≤ N,

whence

Pr{XT−1 = j|X0 = i} =
N∑

k=r

WijPjk for 0≤ i, j< r.

3.7.4 The possible states for a Markov chain are the integers 0,1, . . . ,N, and if the
chain is in state j, at the next step it is equally likely to be in any of the states
0,1, . . . , j− 1. Formally,

Pij =


1, if i= j= 0,

0 if 0< i≤ j≤ N,

1/i, if 0≤ j< i≤ N.
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(a) Determine the fundamental matrix for the transient states 1,2, . . . ,N.
(b) Determine the probability distribution for the last positive integer that the

chain visits.
3.7.5 Computer Challenge. Consider the partial sums:

S0 = k and Sm = k+ ξ1+ ·· ·+ ξm, k > 0,

where ξ1,ξ2, . . . are independent and identically distributed as

Pr{ξ = 0} = 1−
2

π

and

Pr{ξ =±j} =
2

π(4j2− 1)
, j= 1,2, . . . .

Can you find an explicit formula for the mean time vk for the partial sums start-
ing from S0 = k to exit the interval [0,N]= {0,1, . . . ,N}? In another context,
the answer was found by computing it in a variety of special cases.

Note: A simple random walk on the integer plane moves according to the rule:
If (Xn,Yn)= (i, j), then the next position is equally likely to be any of the four
points (i+ 1, j), (i− 1, j), (i, j+ 1), or (i, j− 1). Let us suppose that the process
starts at the point (X0,Y0)= (k,k) on the diagonal, and we observe the process
only when it visits the diagonal. Formally, we define

τ1 =min{n> 0;Xn = Yn},

and

τm =min{n> τm−1;Xn = Yn}.

It is not hard to show that

S0 = k, Sm = Xτm = Yτm , m> 0,

is a version of the above partial sum process.

3.8 Branching Processes∗

Suppose an organism at the end of its lifetime produces a random number ξ of off-
spring with probability distribution

Pr{ξ = k} = pk for k = 0,1,2, . . . , (3.94)

∗ Branching processes are Markov chains of a special type. Sections 3.8 and 3.9 are not prerequisites to the
later chapters.
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where as usual, pk ≥ 0 and
∑
∞

k=0 pk = 1. We assume that all offspring act indepen-
dently of each other and at the ends of their lifetimes (for simplicity, the lifespans of
all organisms are assumed to be the same) individually have progeny in accordance
with the probability distribution (3.94), thus propagating their species. The process
{Xn}, where Xn is the population size at the nth generation, is a Markov chain of spe-
cial structure called a branching process.

The Markov property may be reasoned simply as follows. In the nth generation, the
Xn individuals independently give rise to numbers of offspring ξ (n)1 ,ξ

(n)
2 , . . . , ξ

(n)
Xn

, and
hence the cumulative number produced for the (n+ 1)st generation is

Xn+1 = ξ
(n)
1 + ξ

(n)
2 + ·· ·+ ξ

(n)
Xn
. (3.95)

3.8.1 Examples of Branching Processes

There are numerous examples of Markov branching processes that arise naturally in
various scientific disciplines. We list some of the more prominent cases.

Electron Multipliers

An electron multiplier is a device that amplifies a weak current of electrons. A series of
plates are set up in the path of electrons emitted by a source. Each electron, as it strikes
the first plate, generates a random number of new electrons, which in turn strike the
next plate and produce more electrons, and so forth. Let X0 be the number of electrons
initially emitted and X1 be the number of electrons produced on the first plate by the
impact due to the X0 initial electrons; in general, let Xn be the number of electrons
emitted from the nth plate due to electrons emanating from the (n− 1)st plate. The
sequence of random variables X0,X1,X2, . . . ,Xn, . . . constitutes a branching process.

Neutron Chain Reaction

A nucleus is split by a chance collision with a neutron. The resulting fission yields
a random number of new neutrons. Each of these secondary neutrons may hit some
other nucleus, producing a random number of additional neutrons, and so forth. In
this case, the initial number of neutrons is X0 = 1. The first generation of neutrons
comprises all those produced from the fission caused by the initial neutron. The size
of the first generation is a random variable X1. In general, the population Xn at the
nth generation is produced by the chance hits of the Xn−1 individual neutrons of the
(n− 1)st generation.

Survival of Family Names

The family name is inherited by sons only. Suppose that each individual has prob-
ability pk of having k male offspring. Then, from one individual there result the
1st,2nd, . . . ,nth, . . . generations of descendants. We may investigate the distribution
of such random variables as the number of descendants in the nth generation, or the
probability that the family name will eventually become extinct. Such questions will
be dealt with beginning in Section 3.8.3.
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Survival of Mutant Genes

Each individual gene has a chance to give birth to k offspring, k = 1,2, . . . , which
are genes of the same kind. Any individual, however, has a chance to transform into
a different type of mutant gene. This gene may become the first in a sequence of
generations of a particular mutant gene. We may inquire about the chances of survival
of the mutant gene within the population of the original genes. In this example, the
number of offspring is often assumed to follow a Poisson distribution.

The rationale behind this choice of distribution is as follows. In many populations a
large number of zygotes (fertilized eggs) are produced, only a small number of which
grow to maturity. The events of fertilization and maturation of different zygotes obey
the law of independent binomial trials. The number of trials (i.e., number zygotes) is
large. The law of rare events then implies that the number of progeny that mature will
approximately follow the Poisson distribution. The Poisson assumption seems quite
appropriate in the model of population growth of a rare mutant gene. If the mutant
gene carries a biological advantage (or disadvantage), then the probability distribution
is taken to be the Poisson distribution with mean λ > 1 or (< 1).

All of the preceding examples possess the following structure. Let X0 denote the
size of the initial population. Each individual gives birth to k new individuals with
probability pk independently of the others. The totality of all the direct descendants of
the initial population constitutes the first generation, whose size we denote by X1. Each
individual of the first generation independently bears a progeny set whose size is gov-
erned by the probability distribution (3.94). The descendants produced constitute the
second generation, of size X2. In general, the nth generation is composed of descen-
dants of the (n− 1)st generation, each of whose members independently produces k
progeny with probability pk,k = 0,1,2, . . . . The population size of the nth generation
is denoted by Xn. The Xn forms a sequence of integer-valued random variables that
generate a Markov chain in the manner described by (3.95).

3.8.2 The Mean and Variance of a Branching Process

Equation (3.95) characterizes the evolution of the branching process as successive ran-
dom sums of random variables. Random sums were studied in Chapter 2, Section 2.3,
and we can use the moment formulas developed there to compute the mean and
variance of the population size Xn. First some notation. Let µ= E[ξ ] and σ 2

= Var[ξ ]
be the mean and variance, respectively, of the offspring distribution (3.94). Let M(n)
and V(n) be the mean and variance of Xn under the initial condition X0 = 1. Then,
direct application of Chapter 2, (2.30) with respect to the random sum (3.95) gives the
recursions

M(n+ 1)= µM(n) (3.96)

and

V(n+ 1)= σ 2M(n)+µ2V(n). (3.97)



Markov Chains: Introduction 149

The initial condition X0 = 1 starts the recursions (3.96) and (3.97) at M(0)= 1 and
V(0)= 0. Then, from (3.96), we obtain M(1)= µ1= µ,M(2)= µM(1)= µ2, and,
in general,

M(n)= µn for n= 0,1, . . . . (3.98)

Thus, the mean population size increases geometrically whenµ > 1, decreases geo-
metrically when µ < 1, and remains constant when µ= 1.

Next, substitution of M(n)= µn into (3.97) gives V(n+ 1)= σ 2µn
+µ2V(n),

which with V(0)= 0 yields

V(1)= σ 2,

V(2)= σ 2µ+µ2V(1)= σ 2µ+ σ 2µ2,

V(3)= σ 2µ2
+µ2V(2)

= σ 2µ2
+ σ 2µ3

+ σ 2µ4,

and, in general,

V(n)= σ 2
[
µn−1

+µn
+ ·· ·+µ2n−2

]
= σ 2µn−1

[
1+µ+ ·· ·+µn−1

]
= σ 2µn−1

×


n if µ= 1,
1−µn

1−µ
if µ 6= 1.

(3.99)

Thus, the variance of the population size increases geometrically ifµ > 1, increases
linearly if µ= 1, and decreases geometrically if µ < 1.

3.8.3 Extinction Probabilities

Population extinction occurs when and if the population size is reduced to zero. The
random time of extinction N is thus the first time n for which Xn = 0, and then, obvi-
ously, Xk = 0 for all k ≥ N. In Markov chain terminology, 0 is an absorbing state, and
we may calculate the probability of extinction by invoking a first step analysis. Let

un = Pr{N ≤ n} = Pr{Xn = 0} (3.100)

be the probability of extinction at or prior to the nth generation, beginning with a
single parent X0 = 1. Suppose that the single parent represented by X0 = 1 gives rise
to ξ (0)1 = k offspring. In turn, each of these offspring will generate a population of its
own descendants, and if the original population is to die out in n generations, then each
of these k lines of descent must die out in n− 1 generations. The analysis is depicted
in Figure 3.6.
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n − 1

X0= 1

n

0

1

2

3

Generation

k subsequent subpopulations

X1= ξ1
(0)= k

Figure 3.6 The diagram illustrates that if the original population is to die out by generation
n, then the subpopulations generated by distinct initial offspring must all die out in n− 1
generations.

Now, the k subpopulations generated by the distinct offspring of the original parent
are independent, and they have the same statistical properties as the original popu-
lation. Therefore, the probability that any particular one of them dies out in n− 1
generations is un−1 by definition, and the probability that all k subpopulations die out
in n− 1 generations is the kth power (un−1)

k because they are independent. Upon
weighting this factor by the probability of k offspring and summing according to the
law of total probability, we obtain

un =

∞∑
k=0

pk(un−1)
k, n= 1,2, . . . . (3.101)

Of course u0 = 0, and u1 = p0, the probability that the original parent had no offspring.

Example Suppose a parent has no offspring with probability 1
4 and two offspring with

probability 3
4 . Then, the recursion (3.101) specializes to

un =
1

4
+

3

4
(un−1)

2
=

1+ 3(un−1)
2

4
.

Beginning with u0 = 0, we successively compute

u1 = 0.2500, u6 = 0.3313,
u2 = 0.2969, u7 = 0.3323,
u3 = 0.3161, u8 = 0.3328,
u4 = 0.3249, u9 = 0.3331,
u5 = 0.3292, u10 = 0.3332.

We see that the chances are very nearly 1
3 that such a population will die out by the

tenth generation.
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Exercises

3.8.1 A population begins with a single individual. In each generation, each individual
in the population dies with probability 1

2 or doubles with probability 1
2 . Let Xn

denote the number of individuals in the population in the nth generation. Find
the mean and variance of Xn.

3.8.2 The number of offspring of an individual in a population is 0,1, or 2 with
respective probabilities a> 0, b> 0, and c> 0, where a+ b+ c= 1. Express
the mean and variance of the offspring distribution in terms of b and c.

3.8.3 Suppose a parent has no offspring with probability 1
2 and has two offspring with

probability 1
2 . If a population of such individuals begins with a single parent and

evolves as a branching process, determine un, the probability that the population
is extinct by the nth generation, for n= 1,2,3,4,5.

3.8.4 At each stage of an electron multiplier, each electron, upon striking the plate,
generates a Poisson distributed number of electrons for the next stage. Suppose
the mean of the Poisson distribution is λ. Determine the mean and variance for
the number of electrons in the nth stage.

Problems

3.8.1 Each adult individual in a population produces a fixed number M of offspring
and then dies. A fixed number L of these remain at the location of the parent.
These local offspring will either all grow to adulthood, which occurs with a
fixed probability β, or all will die, which has probability 1−β. Local mortal-
ity is catastrophic in that it affects the entire local population. The remaining
N =M−L offspring disperse. Their successful growth to adulthood will occur
statistically independently of one another, but at a lower probability α = pβ,
where p may be thought of as the probability of successfully surviving the dis-
persal process. Define the random variable ξ to be the number of offspring of a
single parent that survive to reach adulthood in the next generation. According
to our assumptions, we may write ξ as

ξ = v1+ v2+ ·· ·+ vN + (M−N)2,

where 2,v1,v2, . . . ,vN are independent with Pr{vk = 1} = α,Pr{vk = 0} = 1−
α, and with Pr{2= 1} = β and Pr{2= 0} = 1−β. Show that the mean number
of offspring reaching adulthood is E[ξ ]= αN+β(M−N), and since α < β, the
mean number of surviving offspring is maximized by dispersing none (N = 0).
Show that the probability of having no offspring surviving to adulthood is

Pr{ξ = 0} = (1−α)N(1−β)

and that this probability is made smallest by making N large.
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3.8.2 Let Z =
∑x

n=0 Xn be the total family size in a branching process whose offspring
distribution has a mean µ= E[ξ ]< 1. Assuming that X0 = 1, show that E[Z]=
1/(1−µ).

3.8.3 Families in a certain society choose the number of children that they will have
according to the following rule: If the first child is a girl, they have exactly one
more child. If the first child is a boy, they continue to have children until the
first girl, and then cease childbearing.
(a) For k = 0,1,2, . . . , what is the probability that a particular family will have

k children in total?
(b) For k = 0,1,2, . . . , what is the probability that a particular family will have

exactly k male children among their offspring?
3.8.4 Let {Xn} be a branching process with mean family sizeµ. Show that Zn = Xn/µ

n

is a nonnegative martingale. Interpret the maximal inequality as applied to {Zn}.

3.9 Branching Processes and Generating Functions∗

Consider a nonnegative integer-valued random variable ξ whose probability distribu-
tion is given by

Pr{ξ = k} = pk for k = 0,1, . . . . (3.102)

The generating function φ(s) associated with the random variable ξ (or equivalently,
with the distribution {pk}) is defined by

φ(s)= E
[
sξ
]
=

∞∑
k=0

pksk for 0≤ s≤ 1. (3.103)

Much of the importance of generating functions derives from the following three
results.

First, the relation between probability mass functions (3.102) and generating func-
tions (3.103) is one-to-one. Thus, knowing the generating function is equivalent, in
some sense, to knowing the distribution. The relation that expresses the probability
mass function {pk} in terms of the generating function φ(s) is

pk =
1

k!

dkφ(s)

dsk

∣∣∣∣
s=0

. (3.104)

For example,

φ(s)= p0+ p1s+ p2s2
+ ·· · ,

∗ This topic is not prerequisite to what follows.
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whence

p0 = φ(0),

and

dφ(s)

ds
= p1+ 2p2s+ 3p3s2

+ ·· · ,

whence

p1 =
dφ(s)

ds

∣∣∣∣
s=0
.

Second, if ξ1, . . . , ξn are independent random variables having generating functions
φ1(s), . . . ,φn(s), respectively, then the generating function of their sum X = ξ1+ ·· ·+

ξn is simply the product

φX(s)= φ1(s)φ2(s) · · ·φn(s). (3.105)

This simple result makes generating functions extremely helpful in dealing with prob-
lems involving sums of independent random variables. It is to be expected, then, that
generating functions might provide a major tool in the analysis of branching processes.

Third, the moments of a nonnegative integer-valued random variable may be found
by differentiating the generating function. For example, the first derivative is

dφ(s)

ds
= p1+ 2p2s+ 3p3s2

+ ·· · ,

whence

dφ(s)

ds

∣∣∣∣
s=1
= p1+ 2p2+ 3p3+ ·· · = E[ξ ], (3.106)

and the second derivative is

d2φ(s)

ds2
= 2p2+ 3(2)p3s+ 4(3)p4s2

+ ·· · ,

whence

d2φ(s)

ds2

∣∣∣∣
s=1
= 2p2+ 3(2)p3+ 4(3)p4+ ·· ·

=

∞∑
k=2

k(k− 1)pk = E[ξ(ξ − 1)]

= E
[
ξ2]
−E[ξ ].
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Thus

E
[
ξ2
]
=

d2φ(s)

ds2

∣∣∣∣
s=1
+E[ξ ]

=
d2φ(s)

ds2

∣∣∣∣
s=1
+

dφ(s)

ds

∣∣∣∣
s=1

and

Var[ξ ]= E
[
ξ2
]
−{E[ξ ]}2

=
d2φ(s)

ds2

∣∣∣∣
s=1
+

dφ(s)

ds

∣∣∣∣
s=1
−

{
dφ(s)

ds

∣∣∣∣
s=1

}2

.

(3.107)

Example If ξ has a Poisson distribution with mean λ for which

pk = Pr{ξ = k} =
λke−λ

k!
for k = 0,1, . . . ,

then,

φ(s)= E
[
sξ
]
=

∞∑
k=0

sk λ
ke−λ

k!

= e−λ
∞∑

k=0

(λs)k

k!

= e−λeλs
= e−λ(1−s) for |s|< 1.

Then,

dφ(s)

ds
= λe−λ(1−s)

;
dφ(s)

ds

∣∣∣∣
s=1
= λ;

d2φ(s)

ds2
= λ2e−λ(1−s)

;
d2φ(s)

ds2

∣∣∣∣
s=1
= λ2.

From (3.106) and (3.107), we verify that

E[ξ ]= λ,

Var[ξ ]= λ2
+ λ− (λ)2 = λ.

3.9.1 Generating Functions and Extinction Probabilities

Consider a branching process whose population size at stage n is denoted by Xn.
Assume that the offspring distribution pk = Pr{ξ = k} has the generating function
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φ(s)= E
[
sξ
]
=
∑

k skpk. If un = Pr{Xn = 0} is the probability of extinction by stage n,
then the recursion (3.101) in terms of generating functions becomes

un =

∞∑
k=0

pk(un−1)
k
= φ(un−1).

That is, knowing the generating function φ(s), we may successively compute the
extinction probabilities un beginning with u0 = 0 and then u1 = φ(u0),u2 = φ(u1),
and so on.

Example The extinction probabilities when there are no offspring with probability
p0 =

1
4 and two offspring with probability p2 =

3
4 were computed in the example in

Section 3.8.3. We now reexamine this example using the offspring generating function
φ(s)= 1

4 +
3
4 s2. This generating function is plotted as Figure 3.7. From the figure, it

is clear that the extinction probabilities converge upward to the smallest solution of
the equation u= φ(u). This, in fact, occurs in the most general case. If u∞ denotes
this smallest solution to u= φ(u), then u∞ gives the probability that the population
eventually becomes extinct at some indefinite, but finite, time. The alternative is that
the population grows infinitely large, and this occurs with probability 1− u∞.

For the example at hand, φ(s)= 1
4 +

3
4 s2, and the equation u= φ(u) is the simple

quadratic u= 1
4 +

3
4 u2, which gives

u=
4±
√

16− 12

6
= 1,

1

3
.

φ (s)

u = φ (u)

(1, 1)

u2= φ (u1)

u1= φ (u0)

u0= 0 u1

Figure 3.7 The generating function corresponding to the offspring distribution p0 =
1
4 and p2 =

3
4 . Here uk = Pr{Xk = 0} is the probability of extinction by generation k.
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φ (u) (1, 1)

u2= φ (u1)

u1= φ (u0)

u1 u2 u

Figure 3.8 The generating function corresponding to the offspring distribution p0 =
3
4 and

p2 =
1
4 .

The smaller solution is u∞ =
1
3 , which is to be compared with the apparent limit of

the sequence un computed in the example in Section 3.8.3.
It may happen that u∞ = 1, i.e., the population is sure to die out at some time. An

example is depicted in Figure 3.8: The offspring distribution is p0 =
3
4 and p2 =

1
4 . We

solve u= φ(u)= 3
4 +

1
4 u2 to obtain

u=
4±
√

16− 12

2
= 1,3.

The smaller solution is u∞ = 1, the probability of eventual extinction.
In general, the key is whether or not the generating function φ(s) crosses the 45◦

line φ(s)= s, and this, in turn, can be determined from the slope

φ′(1)=
dφ(s)

ds

∣∣∣∣
s=1

of the generating function at s= 1. If this slope is less than or equal to one, then no
crossing takes place, and the probability of eventual extinction is u∞ = 1. On the other
hand, if the slope φ′(1) exceeds one, then the equation u= φ(u) has a smaller solution
that is less than one, and extinction is not a certain event.

But the slope φ′(1) of a generating function at s= 1 is the mean E[ξ ] of the corre-
sponding distribution. We have thus arrived at the following important conclusion: If
the mean offspring size E[ξ ]≤ 1, then u∞ = 1 and extinction is certain. If E[ξ ]> 1,
then u∞ < 1 and the population may grow unboundedly with positive probability.
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The borderline case E[ξ ]= 1 merits some special attention. Here, E[Xn|X0=1]=1
for all n, so the mean population size is constant. Yet the population is sure to die out
eventually! This is a simple example in which the mean population size alone does not
adequately describe the population behavior.

3.9.2 Probability Generating Functions and Sums of Independent
Random Variables

Let ξ and η be independent nonnegative integer-valued random variables having the
probability generating functions (p.g.f.s)

φ(s)= E
[
sξ
]

and ψ(s)= E
[
sη
]

for |s|< 1.

The probability generating function of the sum ξ + η is simply the product φ(s)ψ(s)
because

E
[
sξ+η

]
= E

[
sξ sη

]
= E

[
sξ
]

E
[
sη
]

(because ξ and η are independent)

= φ(s)ψ(s).

(3.108)

The converse is also true. Specifically, if the product of the p.g.f.s of two indepen-
dent random variables is a p.g.f. of a third random variable, then the third random
variable equals (in distribution) the sum of the other two.

Let ξ1,ξ2, . . . be independent and identically distributed nonnegative integer-valued
random variables with p.g.f. φ(s)= E

[
sξ
]
. Direct induction of (3.108) implies that the

sum ξ1+ ·· ·+ ξm has p.g.f.

E
[
sξ1+···+ξm

]
= [φ(s)]m. (3.109)

We extend this result to determine the p.g.f. of a sum of a random number of indepen-
dent summands. Accordingly, let N be a nonnegative integer-valued random variable,
independent of ξ1,ξ2, . . . , with p.g.f. gN(s)= E

[
sN
]
, and consider the random sum

(see Chapter 2, Section 2.3).

X = ξ1+ ·· ·+ ξN .

Let hX(s)= E
[
sX
]

be the p.g.f. of X. We claim that hX(s) takes the simple form

hX(s)= gN[φ(s)]. (3.110)
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To establish (3.110), consider

hX(s)=
∞∑

k=0

Pr{X = k}sk

=

∞∑
k=0

(
∞∑

n=0

Pr{X = k|N = n}Pr{N = n}

)
sk

=

∞∑
k=0

(
∞∑

n=0

Pr{ξ1+ ·· ·+ ξn = k|N = n}Pr{N = n}

)
sk

=

∞∑
k=0

∞∑
n=0

Pr{ξ1+ ·· ·+ ξn = k}Pr{N = n}sk

[because N is independent of ξ1,ξ2, . . .]

=

∞∑
n=0

(
∞∑

k=0

Pr{ξ1+ ·· ·+ ξn = k}sk

)
Pr{N = n}

=

∞∑
n=0

φ(s)n Pr{N = n} [using (3.109)]

= gn[φ(s)] [by the definition of gn(s)].

With the aid of (3.110), the basic branching process equation

Xn+1 = ξ
(n)
1 + ·· ·+ ξ

(n)
Xn

(3.111)

can be expressed equivalently and succinctly by means of generating functions. To this
end, let φn(s)= E[sXn ] be the p.g.f. of the population size Xn at generation n, assuming
that X0 = 1. Then easily, φ0(s)= E[s1]= s, and φ1(s)= φ(s)= E[sξ ]. To obtain the
general expression, we apply (3.110) to (3.111) to yield

φn+1(s)= φn[φ(s)]. (3.112)

This expression may be iterated in the manner

φn+1(s)= φn−1{φ[φ(s)]}

= φ{· · ·φ[φ(s)]}︸ ︷︷ ︸
(n+1) iterations

= φ[φn(s)].

(3.113)

That is, we obtain the generating function for the population size Xn at generation n,
given that X0 = 1, by repeated substitution in the probability generating function of
the offspring distribution.
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For general initial population sizes X0 = k, the p.g.f. is

∞∑
j=0

Pr{Xn = j|X0 = k}s j
= [φn(s)]

k, (3.114)

exactly that of a sum of k independent lines of descents. From this perspective, the
branching process evolves as the sum of k independent branching processes, one for
each initial parent.

Example Let φ(s)= q+ ps, where 0< p< 1 and p+ q= 1. The associated branch-
ing process is a pure death process. In each period, each individual dies with prob-
ability q and survives with probability p. The iterates φn(s) in this case are readily
determined, e.g., φ2(s)= q+ p, (q+ ps)= 1− p2

+ p2s, and generally, φn(s)= 1−
pn
+ pns. If we follow (3.114), the nth generation p.g.f. starting from an initial popu-

lation size of k is [φn(s)]k
= [1− pn

+ pns]k.
The probability distribution of the time T to extinction may be determined from the

p.g.f. as follows:

Pr{T = n|X(0)= k} = Pr{Xn = 0|X0 = k}−Pr{Xn−1 = 0|X0 = k}

= [φn(0)]
k
− [φn−1(0)]

k

=
(
1− pn)k

−

(
1− pn−1

)k
.

3.9.3 Multiple Branching Processes

Population growth processes often involve several life history phases (e.g., juvenile,
reproductive adult, senescence) with different viability and behavioral patterns. We
consider a number of examples of branching processes that take account of this char-
acteristic.

For the first example, suppose that a mature individual produces offspring accord-
ing to the p.g.f. φ(s). Consider a population of immature individuals, each of which
grows to maturity with probability p and then reproduces independently of the status
of the remaining members of the population. With probability 1− p, an immature indi-
vidual will not attain maturity and thus will leave no descendants. With probability p,
an individual will reach maturity and reproduce a number of offspring determined
according to the p.g.f. φ(s). Therefore, the progeny size distribution (or equivalently
the p.g.f.) of a typical immature individual taking account of both contingencies is

(1− p)+ pφ(s). (3.115)

If a census is taken of individuals at the adult (mature) stage, the aggregate number
of mature individuals contributed by a mature individual will now have p.g.f.

φ(1− p+ ps). (3.116)

(The student should verify this finding.)
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It is worth emphasis that the p.g.f.s (3.115) and (3.116) have the same mean pφ′(1)
but generally not the same variance, the first being

p
[
φ′′(1)+φ′(1)− (φ′(1))2

]
as compared with

p2φ′′(1)+ pφ′(1)− p2(φ′(1))2.

Example A second example leading to (3.116), as opposed to (3.115), concerns the
different forms of mortality that affect a population. We appraise the strength (stabil-
ity) of a population as the probability of indefinite survivorship = 1− probability of
eventual extinction.

In the absence of mortality, the offspring number X of a single individual has the
p.g.f. φ(s). Assume, consistent with the postulates of a branching process, that all off-
spring in the population behave independently governed by the same probability laws.
Assume also an adult population of size X = k. We consider three types of mortality:

(a) Mortality of Individuals Let p be the probability of an offspring surviving to reproduce,
independently of what happens to others. Thus, the contribution of each litter (family) to the
adult population of the next generation has a binomial distribution with parameters (N,p),
where N is the progeny size of the parent with p.g.f. φ(s). The p.g.f. of the adult numbers
contributed by a single parent is, therefore, φ(q+ ps),q= 1− p, and for the population as
a whole is

ψ1(s)= [φ(q+ ps)]k. (3.117)

This type of mortality might reflect predation on adults.
(b) Mortality of Litters Independently of what happens to other litters, each litter survives with

probability p and is wiped out with probability q= 1− p. That is, given an actual litter size
ξ , the effective litter size is ξ with probability p, and 0 with probability q. The p.g.f. of
adults in the following generation is accordingly

ψ2(s)= [q+ pφ(s)]k. (3.118)

This type of mortality might reflect predation on juveniles or on nests and eggs in the case
of birds.

(c) Mortality of Generations An entire generation survives with probability p and is wiped
out with probability q. This type of mortality might represent environmental catastro-
phes (e.g., forest fire, flood). The p.g.f. of population size in the next generation in this
case is

ψ3(s)= q+ p[φ(s)]k. (3.119)

All the p.g.f.s (3.117) through (3.119) have the same mean but usually different variances.
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It is interesting to assess the relative stability of these three models. That is, we need
to compare the smallest positive roots of ψi(s)= s, i= 1,2,3, which we will denote
by s∗i , i= 1,2,3, respectively.

We will show by convexity analysis that

ψ1(s)≤ ψ2(s)≤ ψ3(s).

A function f (x) is convex in x if for every x1 and x2 and 0< λ < 1, then f [λx1+

(1− λ)x2]≤ λf (x1)+ (1− λ)f (x2). In particular, the function φ(s)=
∑
∞

k=0 pksk for
0< s< 1 is convex in s, since for each positive integer k, [(λs1)+ (1− λ)s2]k

≤ λsk
1+

(1− λ)sk
2 for 0< λ,s1,s2 < 1. Now,ψ1(s)= [φ(q+ ps)]k < [qφ(1)+ pφ(s)]k

= [q+
pφ(s)]k

= ψ2(s), and then s∗1 < s∗2. Thus, the first model is more stable than the second
model.

Observe further that due to the convexity of f (x)= xk,x> 0,ψ2(s)= [pφ(s)+
q]k < p[φ(s)]k

+ q× 1k
= ψ3(s), and thus s∗2 < s∗3, implying that the second model is

more stable than the third model. In conjunction we get the ordering s∗1 < s∗2 < s∗3.

Exercises

3.9.1 Suppose that the offspring distribution is Poisson with mean λ= 1.1. Compute
the extinction probabilities un = Pr{Xn = 0|X0 = 1} for n= 0,1, . . . ,5. What is
u∞, the probability of ultimate extinction?

3.9.2 Determine the probability generating function for the offspring distribution in
which an individual either dies, with probability p0, or is replaced by two
progeny, with probability p2, where p0+ p2 = 1.

3.9.3 Determine the probability generating function corresponding to the offspring
distribution in which each individual produces 0 or N direct descendants, with
probabilities p and q, respectively.

3.9.4 Let φ(s) be the generating function of an offspring random variable ξ . Let Z
be a random variable whose distribution is that of ξ , but conditional on ξ > 0.
That is,

Pr{Z = k} = Pr{ξ = k|ξ > 0} for k = 1,2, . . . .

Express the generating function for Z in terms of φ.

Problems

3.9.1 One-fourth of the married couples in a far-off society have no children at all.
The other three-fourths of couples have exactly three children, with each child
equally likely to be a boy or a girl. What is the probability that the male line of
descent of a particular husband will eventually die out?
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3.9.2 One-fourth of the married couples in a far-off society have exactly three chil-
dren. The other three-fourths of couples continue to have children until the
first boy and then cease childbearing. Assume that each child is equally likely
to be a boy or girl. What is the probability that the male line of descent of a
particular husband will eventually die out?

3.9.3 Consider a large region consisting of many subareas. Each subarea contains
a branching process that is characterized by a Poisson distribution with para-
meter λ. Assume, furthermore, that the value of λ varies with the subarea, and
its distribution over the whole region is that of a gamma distribution. Formally,
suppose that the offspring distribution is given by

π(k|λ)=
e−λλk

k!
for k = 0,1, . . . ,

where λ itself is a random variable having the density function

f (λ)=
θαλα−1e−θλ

0(α)
for λ > 0,

where θ and α are positive constants. Determine the marginal offspring distri-
bution pk =

∫
π(k|λ)f (λ)dλ.

Hint: Refer to the last example of Chapter 2, Section 2.4.
3.9.4 Let φ(s)= 1− p(1− s)β , where p and β are constants with 0< p,β < 1.

Prove that φ(s) is a probability generating function and that its iterates are

φn(s)= 1− p1+β+···+βn−1
(1− s)β

n
for n= 1,2, . . . .

3.9.5 At time 0, a blood culture starts with one red cell. At the end of 1 min, the
red cell dies and is replaced by one of the following combinations with the
probabilities as indicated:

Two red cells
1

4

One red, One white
2

3

Two white
1

12

Each red cell lives for 1 min and gives birth to offspring in the same way as
the parent cell. Each white cell lives for 1 min and dies without reproducing.
Assume that individual cells behave independently.
(a) At time n+ 1

2 min after the culture begins, what is the probability that no
white cells have yet appeared?

(b) What is the probability that the entire culture eventually dies out entirely?
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3.9.6 Let φ(s)= as2
+ bs+ c, where a,b,c are positive and φ(1)= 1. Assume that

the probability of extinction is u∞, where 0< u∞ < 1. Prove that u∞ = c/a.
3.9.7 Families in a certain society choose the number of children that they will have

according to the following rule: If the first child is a girl, they have exactly one
more child. If the first child is a boy, they continue to have children until the
first girl and then cease childbearing. Let ξ be the number of male children in
a particular family. What is the generating function of ξ? Determine the mean
of ξ directly and by differentiating the generating function.

3.9.8 Consider a branching process whose offspring follow the geometric distribu-
tion pk = (1− c)ck for k = 0,1, . . . , where 0< c< 1. Determine the probabil-
ity of eventual extinction.

3.9.9 One-fourth of the married couples in a distant society have no children at all.
The other three-fourths of couples continue to have children until the first girl
and then cease childbearing. Assume that each child is equally likely to be a
boy or girl.
(a) For k = 0,1,2, . . . , what is the probability that a particular husband will

have k male offspring?
(b) What is the probability that the husband’s male line of descent will cease

to exist by the fifth generation?
3.9.10 Suppose that in a branching process the number of offspring of an initial par-

ticle has a distribution whose generating function is f (s). Each member of the
first generation has a number of offspring whose distribution has generating
function g(s). The next generation has generating function f , the next has g,
and the distributions continue to alternate in this way from generation to gen-
eration.
(a) Determine the extinction probability of the process in terms of f (s)

and g(s).
(b) Determine the mean population size at generation n.
(c) Would any of these quantities change if the process started with the g(s)

process and then continued to alternate?




