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vertical component to the enhancement filter, making the overall filter separable with
3 × 3 support.

11.2 MOTION ESTIMATION AND MOTION COMPENSATION
Motion compensation (MC) is very useful in video filtering to remove noise and
enhance signal. It is useful since it allows the filter or coder to process through the
video on a path of near-maximum correlation based on following motion trajectories
across the frames making up the image sequence or video. Motion compensation
is also employed in all distribution-quality video coding formats, since it is able to
achieve the smallest prediction error, which is then easier to code. Motion can be
characterized in terms of either a velocity vector v or displacement vector d and is
used to warp a reference frame onto a target frame. Motion estimation is used to
obtain these displacements, one for each pixel in the target frame.

Several methods of motion estimation are commonly used:

• Block matching
• Hierarchical block matching
• Pel-recursive motion estimation
• Direct optical flow methods
• Mesh-matching methods

Optical flow is the apparent displacement vector field d = (d1,d2) we get from
setting (i.e., forcing) equality in the so-called constraint equation

x(n1,n2,n)= x(n1− d1,n2− d2,n− 1). (11.2–1)

All five approaches start from this basic equation, which is really just an ide-
alization. Departures from the ideal are caused by the covering and uncovering of
objects in the viewed scene, lighting variation both in time and across the objects in
the scene, movement toward or away from the camera, as well as rotation about
an axis (i.e., 3-D motion). Often the constraint equation is only solved approxi-
mately in the least-squares sense. Also, the displacement is not expected to be an
integer as assumed in (11.2–1), often necessitating some type of interpolation to
be used.

Motion cannot be determined on a pixel-by-pixel basis since there are two compo-
nents for motion per pixel, and hence twice the number of unknowns as equations. A
common approach then is to assume the motion is constant over a small region called
the aperture. If the aperture is too large, then we will miss detailed motion and only
get an average measure of the movement of objects in our scene. If the aperture is too
small, the motion estimate may be poor to very wrong. In fact, the so-called aperture
problem concerns the motion estimate in the square region shown in Figure 11.2–1.



422 CHAPTER 11 Digital Video Processing

v

FIGURE 11.2–1

Illustration of the aperture problem with the square indicating the aperture size.
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FIGURE 11.2–2

Illustration of covering and uncovering of background by an object moving in the
foreground.

If the motion of the uniform dark region is parallel to its edge, then this motion can-
not be detected. Since this situation would typically only hold for small regions in
natural images, the aperture effect leads us to choose a not-too-small aperture size.
Thus, finding the right aperture size is an important problem that depends on the
video content.

Another issue is covering and uncovering, as illustrated in Figure 11.2–2, show-
ing a 1-D depiction of two successive frames n and n− 1, with an object moving to
the right. We assume a simple object translating in the foreground over a fixed back-
ground, not an unreasonable local approximation of video frames. We see that part of
the background region in target frame n is uncovered, while part of the background
region in reference frame n− 1 is covered. Motion estimation that tries to match
regions in the two frames will not be able to find good matches in either the cov-
ered or uncovered regions. However, within the other background regions, matches
should be good and matching should also be good within a textured object, at least if
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Illustration of simple block matching.

it moves in a trackable way, and the pixel samples are dense enough. The problem in
the relatively small covered/uncovered regions is that there are two motions present
there.

Block-Matching Method
We intend to estimate a displacement vector at the location (n1,n2,n) in the target
frame. In block matching (BM) [5], we use template matching of the block centered
on this point to blocks in a specified search area in the reference frame, as illustrated
in Figure 11.2–3, where we take the immediately prior frame as reference.

Often the search area size is given as (±M1,±M2) and centered on the current
pixel location (n1,n2) in the reference frame, then a total of (2M1+ 1)(2M2+ 1)
searches must be done in a full search, and this must be done for each pixel where
the motion is desired. Often the block matching is not conducted at every pixel in the
target frame and an interpolation method is used to estimate the motion in between
these points. Common error criteria are mean-square error (MSE), mean-absolute
error (MAE),2 or even number of pixels in the block actually disagreeing for discrete-
amplitude or digital data.

2Actually preferred in practical applications because MAE works a bit better than MSE owing to
being more robust, and it only involves additions. MAE goes by other acronyms, too: mean absolute
difference (MAD) and sum absolute difference (SAD).
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We express the MSE in block matching as

E(d),
∑

k

(
x(n+ k,n)− x(n+ k− d,n− 1)

)2, (11.2–2)

for a square block centered at position n= (n1,n2)
T as a function of the vector

displacement d = (d1,d2)
T . We seek the displacement vector that minimizes this

error
do,argmin

d
E(d).

Since the MSE in (11.2–2) is susceptible to outliers, often the MAE is used
in applications. In addition to its being less sensitive to statistical outliers, another
advantage of MAE is that it is simpler to compute.

In addition to the computationally demanding full-search method, there are sim-
pler approximations involving a much reduced number of evaluations of the error
(11.2–2). The methods either involve sampling the possible locations in the search
region or sampling the elements in the block when calculating (11.2–2). Two exam-
ples of the former strategy are 2-D log search and three-step search. With reference to
Figure 11.2–4, the three-step search proceeds as follows: First, the search window is
broken up into four quadrants, and motion vectors are tested on a 3× 3 grid with cor-
ners centered in the four quadrants. Here, we illustrate a case where the lower right
corner is the best match at the first step, the top right corner is best at the second step,
and the top right corner is best at the third and final step. A performance comparison
is shown in Figure 11.2–5 from [6].

We note that all three techniques perform much better than simple frame differ-
encing, which equivalently treats all displacement vectors as zero. While both fast

FIGURE 11.2–4

An illustration of three-step block matching.
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FIGURE 11.2–5

Illustration of PSNR performance of exhaustive, 2-D log, three-step search, and simple
frame difference. ([6] c©1995 Academic Press)

methods cut computation by a factor of 10 or more versus full-search block match-
ing, they can lose up to 1–2 dB in prediction peak SNR (PSNR), measured in decibels
(dB) as

PSNR= 10log10

(
2552

E(d)

)
,

for the 8-bit images being considered, since their peak value would be 255. For 10-bit
images, the formula would substitute 1023 for the peak value.

The other class of methods to speed up block matching involve sampling in the
calculation of the error (11.2–2). So the amount of computation in evaluating the dis-
tortion for each searched location is reduced. Liu and Zaccarin [7] presented a method
involving four phases of subsampling and alternated subsampling patterns among the
blocks, while using the MAE error criterion. This method achieved approximately a
four-fold reduction in the amount of computation, but only a slight increase in the
average prediction MSE.

There are some unavoidable problems with the block-matching approach. A small
block size can track small moving objects, but the resulting displacement estimate is
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then sensitive to image noise.3 For example, a small block might just span a flat
region in the image, where the displacement cannot be defined. A large block size is
less sensitive to noise, but cannot track the motion of small objects. Similarly, a large
search area can track fast motion but is computationally intensive. A small search
area may not be large enough to catch or track the real motion.

The best matching block is often good enough for a block-based predictive
video compression, where bits can be spent coding the prediction residual. How-
ever, in video filtering, when the estimated motion is not the true physical motion,
visible artifacts will often be created. Hence, we need an improvement on the
basic block-matching method for the filtering application. The same is true for MC
interpolation, frame-rate conversion, and pre- and postprocessing in video com-
pression. Also, some highly scalable video coders use MC in a temporal filtering
structure to generate lower frame-rate versions of the original video. Highly accu-
rate motion vectors are important in this case too. A variation of block matching,
called hierarchical block matching, can achieve a much better estimate of the “true
motion.” 4

Hierarchical Block Matching
The basic idea of hierarchical algorithms is to first estimate a coarse motion vec-
tor at low spatial resolution. Then this estimated motion is refined by increasingly
introducing higher spatial frequencies. Both subband/wavelet pyramids and Gaussian
pyramids have been used for this purpose. An often cited early reference on
hierarchical block matching (HBM) is Thoma and Bierling [8].

We start by creating a spatial pyramid, with resolution levels set at a power of
two. Typically three or four stages of resolution are employed. We start at the lowest
resolution level (highest pyramid level) and perform simple block matching. It has
been found helpful to have the block size there agree with the average size of the
largest moving areas in the video. Next, we start down the pyramid, increasing the
resolution by the factor 2× 2 at each level. We double the displacement vector from
the previous level to get the initial search location at the present level. We finish up at
the pyramid base level, which is full resolution. Both the block sizes and the search
regions can be chosen distinctly for each resolution and are generally in the range
from 4× 4 to 32× 32. The maximum search area is usually small at each resolution
(i.e.,±2), since only refinements are needed. The search area may also be small at the
initial pyramid level because of the low resolution. Thus we can expect considerable
savings in complexity for HBM. Some other improvements to block matching include
subpixel accuracy, variable-size block matching (VSBM), overlapping blocks, block
prediction of motion vectors, and hierarchical VSBM (HVSBM).

3By the way, it turns out that some amount of noise is always present in real images. This comes from
the common practice of setting the bit depth on sensors and scanners to reach the first one or two bits
of the physical noise level, caused by photons, film grains, etc.
4Really it is optical flow—i.e., the apparent movement that comes from our 2-D observations.
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FIGURE 11.2–6

An illustration of the refining and spliting process in HVSBM.

A diagram of HVSBM is shown in Figure 11.2–6. We start with a spatial pyramid
that can be obtained as a succession of LL subbands by subband/wavelet filtering
and 2× 2 decimation. Starting at the coarsest level, at the top of the pyramid, a
block-matching motion estimation is performed. Then this displacement estimate d0
is propagated down the pyramid one level, and 2d0 is used to initialize a search over
a small region to refine the motion value to d1. At this time, if the MC error measure
is too large, the block is split into four, and the process of refining is repeated to gen-
erate d1, and this process of refining and splitting is carried down the pyramid to the
bottom, resulting in a variable size block-based motion field. In a computationally
more demanding variation of HVSBM, we start at the coarsest resolution with the
smallest block size, and refine this motion field to the bottom of the pyramid (i.e., the
highest resolution level). Then this resulting motion field is pruned back by merging
nodes to a variable-size block-based motion field. This can be done using the BFOS
algorithm, and this bottom-up approach generally results in a more accurate motion
field than the top-down method mentioned in the previous paragraph, but it is more
computationally intensive.

In a video coding application, the error criteria can be composed of motion field
error, either MSE or MAE, to weigh the increase in motion-vector rate due to the
split (top-down) or decrease in motion-vector rate due to the merge (bottom-up). A
Lagrangian approach is often used to control the bitrate of the motion information.
More on coding motion vectors for video compression is contained in Chapter 12.

Overlapped Block Motion Compensation
The motivation to overlap the blocks used in a conventional block-matching estimate
is to increase the smoothness of the resulting velocity field. This can be considered as
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a method to reduce the spatial frequency aliasing in sampling the underlying velocity
field. While one could simply overlap the blocks used in a simple block-matching
estimate, this could mean much more computation. For example, if the blocks were
overlapped by 50% horizontally and vertically, it would be four times more com-
putation if the block-matching estimation were done independently, as well as four
times more velocity information to transmit in the video compression application
of Chapter 12. So, effectively we are more interested in smoothing than in alias
reduction, and the overlapped block motion compensation (OBMC) technique [9, 10]
simply weights each velocity vector with four neighbor velocity estimates from the
four nearest neighbor nonoverlapping blocks. Thus we effectively overlap the veloc-
ity vectors without overlapping the blocks themselves. This is usually done with a
few prescribed weighting windows.

A theoretical motivation for the overlapping can be obtained from (4) of [10],

x̂(n, n)= E{x(n, n) |X(n− 1),Vn}

=

∫
fn(n |Vn)x(n− v1t,n− 1)dv,

only slightly changed for our notation. Here, we are performing a motion-
compensated estimate of frame X(n), as a conditional mean over shifted versions
of frame X(n− 1), with interframe interval 1t, making use of the conditional pdf
fn(v |Vn), which depends on Vn, the motion vector data sent in this and neighboring
blocks. Assuming linear weights (i.e., no dependence on the data values in Vn), they
obtain

x̂n(n)=
∑

Nb(x)

wb(n)x(n− vb1t,n− 1), (11.2–3)

where the sum is over velocity vectors in the neighboring blocks Nb(n). A formula
for obtaining an optimized block weighting function wb(n) is given in [10]. Simple
weighting windows are given there too.

The initial estimate obtained in this way can be improved upon by iteratively
updating the velocity estimates from the various blocks, one at a time, by utilizing
the resulting overlapped estimate (11.2–3) in the error calculation (11.2–2). OBMC
is used in the H.263 video compression standard for visual conversation and has also
been adapted for use in some SWT video coders. In the compression application, it
can smooth the velocity field without the need to transmit additional motion vector
bits, since the block overlapping can be done separately at the receiver given the
transmitted motion vectors, still only one for each block. The overlapping of the
blocks makes the velocity field smoother and removes the artificial blocked structure.
This is especially important for SWT coders, where a blocky motion vector field
could lead, through motion compensation, to a blocky prediction residual that would
have false and excessively high spatial frequency information.
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Pel-Recursive Motion Estimation
This iterative method recursively calculates a displacement vector for each pixel
(a.k.a. pel) in the current frame. We start with an estimate d = (d1,d2)

T for the
current displacement. Then we use the iterative method,

d̂ (k+1)
1 = d̂ (k)1 − ε

∂E
∂d1
|
d=d̂

(k) ,

d̂ (k+1)
2 = d̂ (k)2 − ε

∂E
∂d2
|
d=d̂

(k) ,

with initial value supplied by the final value at the previously scanned pixel,

d̂
(0)
(n1,n2)= d̂

(final)
(n1− 1,n2).

A key reference is [11]; see also [6]. The method works well with just a few iterations
when the motion is small, but often fails to converge when the displacements are
large. In [12], this differential displacement approach was extended to hierarchically
structured motion estimation, with application to image sequence frame interpolation.

Optical Flow Methods
Optical flow is a differential method that works by approximating the derivatives
rather than the function error itself, as in block matching. It is a least-squares
approximation to the spatiotemporal constraint equation,

vx
∂f

∂x
+ vy

∂f

∂y
+
∂f

∂t
= 0, (11.2–4)

which is derived by partial differentiation of the optical flow equation (11.2–1),
rewritten as a function of real variables (x,y) with velocity parameters vx and vy,

f (x,y, t)= f (x− vxdx,y− vydy, t−1t).

Because of noise in the frame, (11.2–4) is then subjected to least squares approximation
to give the optical flow velocity estimate. Specifically, we form the error criteria

EMV ,

(
vx
∂f

∂x
+ vy

∂f

∂y
+
∂f

∂t

)2

,

to be minimized over local regions.
In practice, a smoothing term must be added to this error term to regularize the

estimate, which otherwise would be much too rough—i.e., too much high-frequency
energy in the estimate v̂(x,y, t). In the Horn and Schunck method [13], a gradient
smoothness term is introduced via a Lagrange multiplier as

λES , λ
[
‖∇vx‖

2
+
∥∥∇vy

∥∥2
]

= λ

[(
∂vx

∂x

)2

+

(
∂vx

∂y

)2

+

(
∂vy

∂x

)2

+

(
∂vy

∂x

)2
]

,
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which, for large values of the positive parameter λ, makes the velocity estimate
change slowly as a function of the spatial variables x and y.

Integrating over the area of the image, we get the total error to be minimized as

ET =

∫ ∫
(EMV + λES)dxdy

=

∫ ∫ {(
vx
∂f

∂x
+ vy

∂f

∂y
+
∂f

∂t

)2

+ λ

[(
∂vx

∂x

)2

+

(
∂vx

∂y

)2

+

(
∂vy

∂x

)2

+

(
∂vy

∂x

)2
]}

dxdy.

We seek the minimizing velocity vector

v̂ , argminET(v).

The calculus of variations is then used to find the minimum of this integral in terms
of the unknown functions vx(x,y, t) and vy(x,y, t) for each fixed frame t. The result-
ing equations are then approximated using first-order approximations for the various
derivatives involved. Longer digital filters may provide improved estimates of these
derivatives of the, assumed bandlimited, analog image frames [14]. An iterative
solution is then obtained using Gauss-Seidel iterations.

While this estimate has been used extensively in computer vision, it is not often
used in video compression because of its rather dense velocity estimate. However,
optical flow estimates have been used extensively in video filtering, where the need
to transmit the resulting motion vectors does not occur. There it can give a smooth
and consistent performance, with few motion artifacts. A modern optical flow method
is presented in Section 5.4 of Chapter 5 in The Essential Guide to Video [15]. The
main problem with optical flow methods is that the smoothness of their motion does
not allow discontinuities of motion across object boundaries in the scene.

Mesh-Based Methods
In a mesh-based method, similar to block-based, a regular grid of velocity points
called control points is set up in the target frame and the corresponding matched
points in a reference frame. But unlike block matching, the motion is not consid-
ered constant between the control points. Rather, these points are used to set up an
affine motion model. An affine model has six parameters and represents rotation and
translation, projected onto the image plane, as

d1(x1,x2)= a11x1+ a12x2+ a13,

d2(x1,x2)= a21x1+ a22x2+ a23,

where the position vector x= (x1,x2)
T and d(x) is the displacement vector. We can

see translational motion as the special case where only a13 and a23 are nonzero and
the displacement is constant at (d1,d2)= (a13,a23) in this block. The motion warping
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FIGURE 11.2–7

Illustration of regular triangular mesh grid on target frame.

effect of an affine motion model has been found to well approximate the apparent
motion or optical flow of pixels on rigid objects. If we break up the squares of the
regular grid in the target frame into triangles, we get triangular patches, with three
control points at the vertices of each triangle, as seen in Figure 11.2–7, and a separate
affine model can be determined for each triangle patch—i.e., six linear equations in
the six unknowns (a11,a21,a12,a22,a13,a23).

Because the control points are shared between two adjoining patches, the resulting
velocity field will be continuous across the patch boundaries unlike the case in block
matching. In the reference frame, when the control points are properly matched, the
triangular grid will appear warped. This grid shape indicates that spatially warped
prediction is being applied from the reference frame to the target frame. The con-
tinuity of the velocity field makes the prediction more subjectively acceptable but
does not usually lead to better objective error performance in either an MSE or MAE
sense. Basically, a small geometric error is hardly noticeable, but it can affect the
objective error a lot. Pseudo code for performing mesh matching follows:

FOR each grid point
Do block matching, with block centered by grid point, to find di.
Ti = 1;

END FOR
WHILE not exceed maximum iterations

FOR each grid point Vi
IF Ti == 1

Refine the motion vector by mindi

∑
k Ek, where Ek is

the prediction error of each triangle that connected
to this grid point

IF di does not change
Ti = 0;

ELSE
Ti = 1;
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FOR any grid point Vj that edge-connects with Vi
Tj = 1;
END FOR

END FOR
IF

∑
Ti < 1 BREAK

END WHILE

This algorithm first performs block matching to get initial displacement estimates
for the control grid points. It then iteratively visits all the grid points in succession,
looking for better affine model fits. The Ti variable keeps track of whether the con-
trol vector at that grid point is converged or not. The following example has used
this algorithm with the MAE error criteria to perform a mesh-based motion estima-
tion. The max number of iterations was set to three, and the search area was set at
(±31,±31).

Example 11.2–1: Mesh Matching Versus Block Matching
We look at two examples of warping frame 93 of the CIF5 clip foreman at 30 fps to match
the next frame 94. There is enough motion between these two frames to illustrate the
shortcomings of each approach. We use fixed-size 32 × 32 blocks here. Figure 11.2–8
shows frame 94 with the fixed-size triangular grid overlaid upon it. Figure 11.2–9 shows
frame 93 with the found warped triangular mesh overlaid. We see that there is consid-
erable movement between these two frames, and it is mainly in the foreman’s mouth
and chin region. Figure 11.2–10 shows the resulting spatially warped estimate of frame
94. It clearly displays warping errors, most obvious in the lower facial region. Finally, in

FIGURE 11.2–8

Frame 94 of the foreman clip with fixed-size triangular grid overlaid.

5See appendix on video formats at the end of this chapter.
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FIGURE 11.2–9

Frame 93 of the foreman clip with warped grid overlaid.

FIGURE 11.2–10

Warped prediction of frame 94 of the foreman clip from the preceding frame using
triangular fixed-size mesh matching (see color insert).

Figure 11.2–11 we show the corresponding block-matching estimate for the same 32 ×
32 fixed size grid. We can see obvious blocking artifacts here. We see evident distortions
in each prediction of frame 94, mostly near the mouth region of the foreman’s face. You
can watch the full videos included in a folder on this book’s Web site.

The mesh may be fixed size or variable size, and the motion parameters aij may
be estimated hierarchically or not. A popular choice is variable-size mesh matching
(VSMM). Use of variable size blocks can reduce both the blocking and warping
artifacts in this example. Finally, and distinct from mesh matching, there also exist
generalized block models with affine or more general polynomial motion models
within each block [16].
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FIGURE 11.2–11

Fixed-size block-matching prediction of frame 94 of the foreman clip from the preceding
frame.

11.3 MOTION-COMPENSATED FILTERING
If the motion is slow or there is no motion at all, then simple temporal filtering can be
very effective for estimation, restoration, frame-rate change, interpolation, or pre- or
postprocessing. In the presence of strong motion, however, artifacts begin to appear
in the simple temporal filter outputs and the needed coherence in the input signal
begins to break down. Such coherence is needed to distinguish the signal from the
noise, distortion, interference, and artifacts that may also be present. A solution is to
modify the filter trajectory so that it follows along the trajectory of motion. In this
way, signal coherence is maintained, even with moderate to fast motion.

The basic idea is to modify an LSI filter as follows:

y(n1,n2,n)=
∑
k1,k2

h(k1,k2,0)x(n1− k1,n2− k2,n)

+

∑
k1,k2

h(k1,k2,1)x(n1− d1− k1,n2− d2− k2,n− 1) (11.3–1)

+ etc.

Here, d1 = d1(n1,n2,n) is the horizontal component of the displacement vector
between frames n and n− 1, and d2 is the vertical component of displacement. In
order to get the corresponding terms for frame n− 2, we must add the displacement
vectors from the frame pair n− 1 and n− 2 to get the correct displacement. We should
add them vectorially:

d′1(n1,n2)= d1(n1,n2,n)+ d1
(
n1− d1(n1,n2,n),n2− d2(n1,n2,n),n− 1

)
,

d′2(n1,n2)= d2(n1,n2,n)+ d2
(
n1− d1(n1,n2,n),n2− d2(n1,n2,n),n− 1

)
.
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FIGURE 11.3–1

An illustration of motion-compensated filtering along a motion path.

Here, we assume that the displacement vectors are known, most likely because they
were estimated previously, and that they are integer valued. If they are not inte-
ger valued, which is most of the time, then the corresponding signal value, such as
x(n1− d1− k1,n2− d2− k2,n− 1), must itself be estimated via interpolation. Most
often, spatial interpolation is used based on the use of various lowpass filters. Effec-
tively, in (11.3–1) we are filtering along the motion paths rather than simply filtering
straight forward (or backward) in time (n) at each spatial location. One way to
conceptualize this is via the diagram in Figure 11.3–1.

MC-Wiener Filter
In Figure 11.3–2, MC denotes motion-compensated warping performed on the noisy
observations y(n1,n2,n). The Wiener filtering is then done on the warped data in
the MC domain, with signal and noise PSDs calculated from some similar MC data.
Finally, the inverse motion compensation (IMC) operator dewarps the frames back
to original shape to produce the output estimate x̂(n1,n2,n). Three-dimensional MC-
Wiener filtering was introduced in [17]. The concept of IMC depends on the motion
field being one-to-one. In a real image sequence, there is a relatively small number of
pixels where this is not true due to coverings and uncoverings of objects in the scene,
the so-called occlusion problem. In these areas, some approximation must be used in
Figure 11.3–2 in order to avoid introducing artifacts into the final video estimate. It
is common to resort to intraframe filtering in these occluded areas.

Because of the strong correlation in the temporal direction in most video, there
is often a lot to gain by processing the video jointly in both the temporal and spatial
directions. Since a Wiener filter is usually implemented as an FIR filter, exploitingthe
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FIGURE 11.3–2

Illustration of MC warping followed by Wiener filter followed by IMC warping (IMC).

temporal direction in this way means that several to many frames must be kept in
active memory. An alternative to this method is the spatiotemporal Kalman filter,
which can use just one frame of memory to perform its recursive estimate, a motion-
compensated version of which is presented next. Of course, both methods require the
estimation of a suitable image sequence model and noise model. The signal model
spectra can be obtained via estimation on similar noise-free data for the Wiener filter,
while the Kalman filter needs parameter estimation of an autoregressive model. Both
models must be trained or estimated on data that have been warped by the motion
compensator, since this warped domain is where their estimate is performed.

MC-Kalman Filter
The basic idea here is that we can apply the totally ordered temporal 3-D RUKF of
Chapter 10 along the motion trajectory using a good motion estimator that approxi-
mates true motion. As before, we can use multiple models for both motion and image
estimation. To reduce object blurring and sometimes even double images, we effec-
tively shift the temporal axis of the filter to be aligned with motion trajectories. When
a moderate-sized moving object is so aligned, we can then apply the filter along the
object’s trajectory of motion by filtering the MC video. Since the MC video has a
strong temporal correlation, its image sequence model will have a small prediction
error variance. This suggests that high spatial frequencies can be retained even at low
input SNRs via motion-compensated Kalman filtering. The overall block diagram of
a motion compensated 3-D Kalman filter of Woods and Kim [1], or MC-RUKF, is
shown in Figure 11.3–3.

This motion-compensated spatiotemporal filter consists of three major parts: the
motion estimator, the motion compensator, and the 3-D RUKF. While filtering a
video, two different previous frames could be used for motion estimation; one could
use either the previous smoothed frame E{x(n− 1)|y(n),y(n− 1), . . .} or the previ-
ous noisy frame y(n− 1). In our work, we have generally found it best to use the
smoothed previous frame, since it is the best estimate currently available. For motion
estimation, we used an HBM method.

The motion estimate is used to align a set of local frames along the motion
trajectory. To effect this local alignment, the smoothed previous frame estimate is
displaced to align with the current frame. In an iterative method extension shown
in Figure 11.3–3, two smoothed frames are used to improve on the initial motion
estimates. These smoothed frames retain spatial high frequencies and have reduced
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FIGURE 11.3–3

System diagram for motion-compensated spatiotemporal Kalman filter.

noise, so that these frames can now be used for motion estimation with a smaller
size block. A motion vector field is then estimated from these two frames (i.e.,
E{x(n− 1)|y(n),y(n− 1), . . .} and E{x(n)|y(n+ 1),y(n),y(n− 1), . . .}), followed by a
second application of the steady-state 3-D RUKF. A few iterations suffice.

Multimodel MC-RUKF
The local correlation between two MC frames depends on the accuracy of the motion
estimation. Since the SNR of the noisy observed video will be low, the motion esti-
mation has a further limitation on its accuracy, due to statistical variations. To deal
with the resulting limited motion vector accuracy, we can use a variable number of
models to match the various motion regions in the image; for example, we can use
three motion models: still, predictable, and unpredictable. The motivation here is that
in the still region, we can perform unlimited temporal smoothing at each pixel loca-
tion. In the predictable region, there is motion, but it is motion that can be tracked
well by our motion estimator. Here, we can smooth along the found motion trajectory
with confidence. Finally, in the unpredictable region, we find that our motion estimate
is unreliable and so fall back on the spatial RUKF there. This multiple model version
(MM MC-RUKF) results in a very high temporal coherence in the still region, high
temporal coherence in the predictable region, and no motion blurring in the unpre-
dictable region. The segmentation is based on local variance of the displaced frame
difference (DFD).

As mentioned earlier, we employ a block-matching method for motion estimation.
Even when there is no correspondence between two motion-compensated frames,
the block-matching method chooses a pixel in the search area that minimizes the
displaced frame difference measure. However, the estimate will probably not have
much to do with the real motion, and this can lead to low temporal correlation in
the unpredictable region. This is the so-called noisy motion vectors problem. We can
compensate for this, in the case of still regions, by detecting them with an extra step,
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based on the frame difference. We filter the frame difference and use a simple 7× 7
box filter to reduce the effect of the observation noise. Also, a 3× 3 box filter is
used on the MC output to detect the predictable region. The outputs are then fed
into local variance detectors. We found that when a pixel in a still region was miss-
detected as in the predictable region, a visual error in the filtered image sequence
was noticeable, while in the opposite case, the error was not noticeable. Hence, we
detect the still region again in the filtering step. Three spatiotemporal AR models
are obtained from the residual video of the original sequence for our simulation. For
more details, see [1].

Example 11.3–1: MM MC-RUKF Experimental Result
We used the CIF video salesman, which is monochrome and of size 360 × 280 pixels at
15 fps. We then added white Gaussian noise to achieve a 10-dB SNR. The processing
parameters of the MC-RUKF were as follows: image model order 1 × 1 × 1, update
region 2 × 2 × 1, and final MC block sizes of both 9 × 9 and 5 × 5. The 3-D AR
model obtained from the original (modified) video was used. This model could also have
been obtained from the noisy video or from a prototype noise-free, with some loss of
performance. (Based on existing work in the identification of 2-D image models, it is our
feeling that the additional loss would not be great.) We used a steady-state gain array,
calculated off-line on a small fictitious image sequence. The SNR improvement achieved
was 6–8 dB with the 3-D RUKF alone, with an additional MC-RUKF improvement of about
1 dB. Using the multimodel feature, a further MM MC-RUKF improvement of about 1 dB
was achieved, totaling to an 8- to 10-dB improvement or an output SNR of 18–20 dB.

FIGURE 11.3–4

A frame from the MC-RUKF.
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The restored video in Figures 11.3–4 and 11.3–5 showed motion artifacts visible in some
motion areas but was generally quite visually pleasing.

The resulting SNR improvement curves are given in Figure 11.3–6. We notice that
the MM MC-RUKF provides the best objective performance by this MSE-based measure.
We can see an initial start-up transient of about 10 frames. We notice also how the up

FIGURE 11.3–5

A frame from the MM MC-RUKF.

10

9

8

7

6

5dB

4

3

2

1

0
0 10 20 30 40

Frame number

MC 3-D RUKF with three models
MC 3-D RUKF with one model
3-D RUKF with one model

50 60 70 80 90

Solid line:
Dashed line:
Dashdot line:

FIGURE 11.3–6

Plot of SNR improvements versus frame number for the MM MC-RUKF (3 models),
MC-RUKF, and 3-D RUKF on the noisy salesman clip.
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to 10-dB improvement varies across the frame number; this is caused by the motion of
objects and moving shadows in the scene. Videos are available for download at the book’s
Web site.

Frame-Rate Conversion
Frame-rate conversion is needed today due to the coexistence of multiple standard
frame rates (60, 30, 25, and 24 fps), and also leads to a convenient separation of
acquisition format, transmission standard, and viewing or display format. Frame-rate
up-conversion is also often used to double (or quadruple) the frame rate for display
(e.g., 25 fps to 50 or 100 fps). There are various methods for increasing the frame rate,
the simplest being frame repeat (i.e., sample and hold-in time). Somewhat more com-
plicated is making use of a straight temporal average, without motion compensation.
The filtering is a 1-D interpolation (i.e., linear filtering) in the temporal direction,
done for each pixel separately. A potentially more accurate method for frame-rate
increase is MC-based frame interpolation, first suggested in [8].

Example 11.3–2: Frame-rate Up Conversion
We have applied the method of [8] to the test clip Miss America, which is color and
SIF sized6, with 150 frames at 30 fps. To perform our simulation, we first decimated it
down to 5 fps and used only this low frame rate as input. Then we used the following
strategies to interpolate the missing frames (i.e., raise the frame rate back up to 30 fps):
frame replication, linear averaging, and motion-compensated interpolation. As a motion
estimation method, we employed HBM, with the result smoothed by a simple lowpass
filter.

Figure 11.3–7 shows a frame from temporal up-conversion using a simple linear aver-
aging filter. Note that during this time period, there was motion that has caused a double
image effect on the up-converted frame. Figure 11.3–8 shows the result of using the
motion-compensated up-conversion at a frame number near to that of the linear result in
Figure 11.3–7. We do not see any double image, and the up-conversion result is generally
artifact-free.

In this case our translational motion model worked very well, in part because of the
rather simple motion displayed in this Miss America test clip. However, it does not always
work this well, and MC up-conversion remains a challenging problem. Videos are available
for download at the book’s Web site.

Deinterlacing
As mentioned in Example 2.2–5 of Chapter 2, deinterlacing is used to convert from
a conventional interlaced format to one that is progressive or noninterlaced. In so

6Please see appendix on video formats.
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FIGURE 11.3–7

A frame from a linearly interpolated temporal up-conversion of the Miss America clip from
5 to 30 fps.

FIGURE 11.3–8

A frame from the motion-compensated temporal up-conversion of the Miss America clip
from 5 to 30 fps.

doing, the deinterlacer must estimate the missing data—i.e., the odd lines in the so-
called even frames and the even lines in the odd frames. A conventional deinterlacer
uses a diamond v–t multidimensional filter in upsampling the data to progressive
format. If the interlaced video had been prefiltered prior to its original sampling on
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this lattice to avoid spatial frequency aliasing, then using an ideal filter, the progres-
sive reconstruction can be exact, but still with the original spatiotemporal frequency
response. If proper prefiltering had not been done at the original interlaced sampling,
then aliasing error may be present in both the interlaced and progressive data. In this
case, a nonideal frequency response for the conversion filter can help to suppress
the alias energy that usually occurs at locations of high spatiotemporal frequency.
While interlaced video is not as ubiquitous as it once was, the ATSC broadcast inter-
laced standard 1080i is common and needs conversion to 1080p for a progressive
display.

Example 11.3–3: Conventional Deinterlacer
This example uses a 9× 9 diamond-shaped support in the v× t plane. The filter coef-
ficients, shown in Table 11.3–1, were obtained via window-based FIR filter design. The
frequency response of this filter is shown in Figure 11.3–9, where we can see a broader
response along both temporal and vertical frequency axes than along diagonals, hence
approximating a diamond pattern in the v× t (n2× n) frequency domain.

Figure 11.3–10 shows one field from the interlaced salesman sample, obtained by fil-
tering and downsampling from the corresponding progressive clip. It serves as the starting
point for our deinterlacing experiments. Figure 11.3–11 shows a frame from the result-
ing progressive (noninterlaced) output. We note that the result is generally pleasing, if
somewhat soft (slightly blurred). From the frequency response in Figure 11.3–9, we can
see that the image frame sharpness should be generally preserved for low temporal fre-
quencies (i.e., slowly moving or stationary objects). Fast-moving objects, corresponding
to diagonal support on the v× t filter frequency response function, will be blurred. Videos
are available for download at the book’s Web site.

While blurring of fast-moving objects is generally consistent with the limitations
of the human visual system response function, coherent motion can be tracked by
the viewer. As such, it appears as low temporal frequency on the tracking viewer’s
retina, and hence the blurring of medium- to fast-moving objects can be detected for
so-called trackable motion.

Table 11.3–1 Diamond Filter Coefficients

0 0 0 0 0.001247 0 0 0 0
0 0 0 0.004988 −0.005339 0.004988 0 0 0
0 0 0.007481 −0.016016 −0.013060 −0.016016 0.007481 0 0
0 0.004988 −0.016016 −0.036095 0.162371 −0.036095 −0.016016 0.004988 0
0.001247 −0.005339 −0.013060 0.162371 0.621808 0.162371 −0.013060 −0.005339 0.001247
0 0.004988 −0.016016 −0.036095 0.162371 −0.036095 −0.016016 0.004988 0
0 0 0.007481 −0.016016 −0.013060 −0.016016 0.007481 0 0
0 0 0 0.004988 −0.005339 0.004988 0 0 0
0 0 0 0 0.001247 0 0 0 0
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FIGURE 11.3–9

Sketch of diamond filter response in the vertical–temporal frequency domain.

FIGURE 11.3–10

One field from the interlaced version of the salesman clip.

Example 11.3–4: Median Deinterlacer
An alternative to the use of the classic multdimensional filter is the vertical–temporal
median filter. The most common method uses a three-pixel median filter, with one pixel
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FIGURE 11.3–11

A progressive frame from the diamond filter (v× t) output for an interlaced input.
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FIGURE 11.3–12

Illustration of pixels input (B, C, and D) to the median filter deinterlacer.

above and below the current pixel, and one pixel right behind it in the previous field. On
the progressive lattice, this median operation can be written as follows:

for odd frames,

x̂(n1,2n2,n)=median{x(n1,2n2+ 1,n),x(n1,2n2− 1,n),x(n1,2n2,n− 1)},

for even frames,

x̂(n1,2n2+ 1,n)=median{x(n1,2(n2+ 1),n),x(n1,2n2,n),x(n1,2n2+ 1,n− 1)}.

In Figure 11.3–12, circles indicate pixels (lines) present in a field, while ×’s rep-
resent missing pixels (lines). We see three input pixels (B, C, and D) and one output
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FIGURE 11.3–13

A deinterlaced frame of the salesman clip by the adaptive median filter.

pixel (A), which represent a missing pixel at field n. The statistical median of the three
input values (B, C, and D) will tend to favor D if there is no motion, but to favor B or
C in the case of motion. Thus this simple median deinterlacer switches back and forth
between temporal and spatial (vertical) interpolation to fill in the missing pixel lines in
the even and odd fields. A vertical–temporal median deinterlaced frame is shown in
Figure 11.3–13. While the result is sharper than that of the multidimensional filter, this
sharpness is obtained at the cost of small artifacts occurring on fast-moving objects.
Videos are available for download at the book’s Web site.

A more powerful alternative is motion-compensated deinterlacing. It uses motion
estimation to find the best pixels in the previous field or fields for the prediction of
the current pixel in the missing lines of the current field.

Example 11.3–5: Motion-Compensated Deinterlacer
In this example we try to detect and track motion [18] and then use it to perform the
deinterlacing. Using an HBM motion estimator based on a QMF SWT, we first determine
if the velocity is zero or not, based on looking at a local average of the mean-square frame
difference and comparing it to a threshold. A simple three-tap vertical interpolation filter
was used to deinterlace at this first stage. The motion is then said to be “trackable” if the
local motion-compensated MSE is below a second threshold. The algorithm then proceeds
as follows:

• When no motion is detected, we smooth in the temporal direction only (i.e., use the
pixel at the same position in the previous field).
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• When motion is detected, and with reference to Figure 11.3–14, we project the motion
path onto the previous two fields, with a cone of uncertainty opening to 0.1–0.2 pixels
at the just prior field. If the cone includes a pixel in the first prior field, then that pixel
is copied to the missing pixel location A in the current field. Otherwise, we look to the
second prior field. If no such previous pixels exist in the “cone regions,” we perform
linear spatiotemporal interpolation.

The result in Figure 11.3–15 is potentially the best of these examples shown, albeit the
most computationally demanding due to the motion estimation. It is sharp and clear, but
unfortunately suffers from some motion artifacts, which could at least be partially ame-
liorated by more sophisticated motion estimation and compensation methods. The frame
rate of the salesman clip was 15 fps.

Time

Vertical

n

Ax

n-1n-2

FIGURE 11.3–14

An illustration of the cone approach to motion-compensated deinterlacing.

FIGURE 11.3–15

An MC deinterlaced frame from the salesman clip.
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One last comment on deinterlacing: Of course, missing data not sampled cannot
be recovered without some assumptions on the original continuous-parameter data. In
the specific case of deinterlacing, and in the worst case, one can imagine a small fea-
ture one pixel high, moving at certain critical velocities, such that it is either always
or never present on the interlaced grid. In real life, the velocity would not exactly
match a critical velocity and so the feature would appear and disappear at a nonzero
temporal frequency. If this feature is the edge of a rectangle or part of a straight line,
the flickering can be noticed by the eye, but may be very hard to correct. Therefore,
an issue in MC deinterlacers is the consistency of the estimate. A recursive block
estimate showing a high degree of visual consistency is given in de Haan et al. [19].

11.4 BAYESIAN METHOD FOR ESTIMATING MOTION
In Chapter 8 we introduced Bayesian methods for image estimation and restoration,
which use a Gibbs-Markov signal model together with some, most often iterative,
solution method, such as simulated annealing (SA). Other methods used include
deterministic iterative methods such as iterated conditional mode (ICM) and mean
field annealing (MFA). ICM is a method that sweeps through the sites (pixels) and
maximizes the conditional probability of each pixel in sequence. It is fast but tends
to get stuck at local optima of the joint conditional probability, rather than find the
global maxima. MFA is an annealing technique that assumes that the effect of a neigh-
boring clique’s potential function can be well modeled with its mean value. While
this changes the detailed global energy function, the iteration proceeds much more
quickly and reportedly provides very nice results, generally classified as being some-
where between ICM and SA. A general review of these approaches is contained in
the review article by Stiller and Konrad [20].

To extend the Gibbs-Markov model, we need to model the displacement vector
or motion field d, which can be done as

fd(D)= K exp[−Ud(D)] ,

where the matrix D contains the values of the vector field d on the image region or
frame. The energy function Ud(D) is the sum of potential function over all the pixels
(sites) n and their corresponding cliques,

Ud(D),
∑

n

∑
cn∈C

Vcn(D),

where Cn denotes the clique system for the displacement field d, over frame n.
A common setup calls for the estimation of the displacement between two frames,

Xn and Xn−1, and using the MAP approach, we seek the estimate

D̂= argmax
D

f (D|Xn,Xn−1). (11.4–1)

This simple model can be combined with a line field on an interpixel grid, as in
Chapter 8, to allow for smooth estimates of displacement that respect the sharp


