
CHAPTER

Two-Dimensional Systems
and Z-Transforms 3
In this chapter we look at the 2-D Z-transform. It is a generalization of the 1-D
Z-transform used in the analysis and synthesis of 1-D linear constant coefficient dif-
ference equation-based systems. In two and higher dimensions, the corresponding
linear systems are partial difference equations. The analogous continuous parameter
systems are partial differential equations. In fact, one big application of partial dif-
ference equations is in the numerical or computer solution of the partial differential
equations of physics. We also look at LSI stability in terms of its Z-transform system
function and present several stability conditions in terms of the zero-root locations of
the system function.

3.1 LINEAR SPATIAL OR 2-D SYSTEMS
The spatial or 2-D systems we will mainly be concerned with are governed by dif-
ference equations in the two variables n1 and n2. These equations can be realized by
logical interconnection of multipliers, adders, and shift or delay elements via either
software or hardware. For the most part, the coefficients of such equations will be
constant, hence the name linear constant coefficient difference equations (LCCDEs).
The study of 2-D or partial difference equations is much more involved than that
of the corresponding 1-D LCCDEs, and much less is known about the general case.
Nevertheless, many practical results have emerged, the most basic of which will be
presented here. We start with the general input/output equation:∑

(k1,k2)∈Ra

ak1,k2y(n1− k1,n2− k2)=
∑

(k1,k2)∈Rb

bk1,k2x(n1− k1,n2− k2), (3.1–1)

where x is the known input and y is the output to be determined. We consider the
coefficients ak1,k2 and bk1,k2 to be arrays of real numbers and call bk1,k2 the feedfor-
ward coefficients and ak1,k2 the feedback coefficients. We wish to solve (3.1–1) by
finding output value y for every point in a prescribed region Ry given needed input
values x plus output values y on the boundary ofRy. We denote this boundary region
somewhat imprecisely as Rbc. The highest values of k1 and k2 on the left-hand side
of (3.1–1) determine the order of the difference equation. In general, such equations
have to be solved via matrix or iterative methods, but our main interest is 2-D filters

Multidimensional Signal, Image, and Video Processing and Coding
c© 2012 Elsevier Inc. All rights reserved.

75

76 CHAPTER 3 Two-Dimensional Systems and Z-Transforms

n1

n2

bc

bc

bc

a

y

FIGURE 3.1–1

An example of the solution region of a spatial difference equation solution region using a
nonsymmetric half-plane (NSHP) coefficient support Ra.

for which the output y can be calculated in a recursive manner from the input x by
scanning through the data points (n1,n2).

Keeping only the output value y(n1,n2) on the left-hand side of (3.1–1), assuming
a0,0 6= 0 and (0,0) ∈Ra, we can write

y(n1,n2)=−
∑

(k1,k2)∈Ra

a′k1,k2
y(n1− k1,n2− k2) +

∑
(k1,k2)∈Rb

b′k1,k2
x(n1− k1,n2− k2),

(3.1–2)

where the a′k1,k2
and b′k1,k2

are the normalized coefficients (i.e., those divided by a0,0).
Then, depending on the shape of the regionRa, we may be able to calculate the solu-
tion recursively. For example, we would say that the direction of recursion of (3.1–2)
is “downward and to the right” in Figure 3.1–1, which shows a scan proceeding left-
to-right and top-to-bottom.1 Note that the special shape of the output mask Ra in
Figure 3.1–1 permits such a recursion because of its property of not including any
outputs that have not already been scanned and processed in the past (i.e., “above
and to the left”).

Example 3.1–1 shows how such a recursion proceeds in the case of a simple
first-order 2-D difference equation.

Example 3.1–1: Simple Difference Equation
We now consider the simple LCCDE

y(n1,n2)= x(n1,n2)+
1

2
[y(n1− 1,n2)+ y(n1,n2− 1)] (3.1–3)

1The vertical axis is directed downward, as is common in image processing, where typically the
processing proceeds from top to bottom of the image.

3.1 Linear Spatial or 2-D Systems 77

to be solved over the first quadrant (i.e., Ry = {n1 ≥ 0,n2 ≥ 0}). In this example, we
assume that the input x is everywhere zero, but that the boundary conditions given on
Rbc = {n1 =−1} ∪ {n2 =−1} are nonzero and specified by

y(−1,1)= y(−1,2)= y(−1,3)= 1,

y(−1,else)= 0,

y(else,−1)= 0.

To calculate the solution recursively, we first determine a scanning order. In this case, it is
the so-called raster scan used in video monitors: first we process the row n2 = 0, starting
at n1 = 0 and incrementing by one each time; then we increment n2 by one, and process
the next row. With this scanning order, the difference equation (3.1–3) is seen to only use
previous values of y at the “present time,” and so is recursively calculable. Proceeding to
work out the solution, we obtain

n2↓

0 0 1 1 1 0 0 · · ·

0 0 1
2

3
4

7
8

7
16

7
32 · · ·

0 0 1
4

1
2

11
16

18
32

25
64 · · ·

0 0 1
8

5
16

16
32

34
64 · · · · · ·

0 0 1
16 · · ·

→n1.

In Example 3.1–1 we have computed the solution to a spatial difference equation
by recursively calculating out the values in a suitable scanning order, for a nonzero
set of boundary “initial” conditions, but with zero input sequence. In Example 3.1–2
we consider the same 2-D difference equation to be solved over the same output
region, but with zero initial boundary conditions and a nonzero input. By linearity of
the partial difference equation, the general case of nonzero boundaries and nonzero
input follows by superposition of these two zero-input and zero-state solutions.

Example 3.1–2: Simple Difference Equation (cont’d)
We consider the simple LCCDE

y(n1,n2)= x(n1,n2)+
1

2
[y(n1− 1,n2)+ y(n1,n2− 1)] (3.1–4)

to be solved over output solution region Ry = {n1 ≥ 0,n2 ≥ 0}. The boundary condi-
tions given on Rbc = {n1 =−1} ∪ {n2 =−1} are taken as all zeros. The input sequence
is x(n1,n2)= δ(n1,n2). Starting at (n1,n2)= (0,0), we begin to generate the impulse
response of the difference equation. Continuing the recursive calculation for the next few

78 CHAPTER 3 Two-Dimensional Systems and Z-Transforms

columns and rows, we obtain

n2↓

0 0 0 0 0 0 0 · · ·

0 1 1
2

1
4

1
8

1
16 · · · · · ·

0 1
2

1
2

3
8

4
16

5
32 · · · · · ·

0 1
4

3
8

6
16

10
32 · · · · · · · · ·

0 1
8

4
16

10
32 · · · · · · · · · · · ·

→n1.

It turns out that this spatial impulse response has a closed-form analytic solution
[1, 2],

y(n1,n2)= h(n1,n2)=

(
n1+ n2

n1

)
2−(n1+n2)u++(n1,n2),

where

(
n1+ n2

n1

)
is the combinatorial symbol for “n1+ n2 things taken n1 at a time,”

(
n1+ n2

n1

)
=
(n1+ n2) !

n1!n2!
, for n1 ≥ 0,n2 ≥ 0,

with 0! taken as 1, and where u++(n1,n2)= u(n1,n2) is the first quadrant unit step
function.

Though it is usually the case that 2-D difference equations do not have a closed-
form impulse response, the first-order difference equation of Example 3.1–2 is one
of the few exceptions. From these two examples, we can see it is possible to write
the general solution to a spatial linear difference equation as a sum of a zero-input
solution given rise by the boundary values plus a zero-state solution driven by the
input sequence

y(n1,n2)= yZI(n1,n2)+ yZS(n1,n2).

This generalizes the familiar 1-D systems theory result. To see this, consider a third
example with both nonzero input and nonzero boundary conditions. Then note that
the sum of the two solutions from these examples will solve this new problem.

In general, and depending on the output coefficient support region Ra, there can
be different recursive directions for (3.1–1), which we can obtain by bringing other
terms to the left-hand side and recursing in other directions. For example, we can take
(3.1–4) from Example (3.1–2) and bring y(n1,n2− 1) to the left-hand side to yield

y(n1,n2− 1)=−2y(n1,n2)+ 2x(n1,n2)+ y(n1− 1,n2),

or equivalently,

y(n1,n2)=−2y(n1,n2+ 1)+ y(n1− 1,n2+ 1)+ 2x(n1,n2+ 1),

with direction of recursion upwards, to the right or left. So the direction in which a
2-D difference equation can be solved recursively, or recursed, depends on the
support of the output or feedback coefficients (i.e., Ra). For a given direction of
recursion, we can calculate the output points in particular orders that are constrained

3.2 Z-Transforms 79

by the shape of the coefficient support region Ra, resulting in an order of computa-
tion. In fact, there are usually several such orders of computation that are consistent
with a given direction of recursion. Further, usually several output points can be
calculated in parallel to speed the recursion.

Such recursive solutions are appropriate when the boundary conditions are only
imposed “in the past” of the recursion—i.e., not on any points that must be calculated.
In particular, with reference to Figure 3.1–1, we see no boundary conditions on the
bottom of the solution region. In the more general case where there are both “initial”
and “final” conditions, we can fall back on the general matrix solution for a finite
region.

To solve LCCDE (3.1–1) in a finite solution region, we can use linear algebra and
form a vector of the solution y scanned across the region in any prespecified manner.
Doing the same for the input x and the boundary conditions ybc, we can write all the
equations with one very large dimensioned vector equation,

x= Ay+Bybc,

for appropriately defined coefficient matrices A and B. For a 1000× 1000 image, the
dimension of y would be 1,000,000. Here, Ay provides the terms of the equations
where y is on the region, and Bybc provides the terms when y is on the boundary. A
problem at the end of the chapter asks you to prove this fact.

If the solution region of the LCCDE is infinite, then as in the 1-D case, it is often
useful to express the solution in terms of a Z-transform, which is our next topic.

3.2 Z-TRANSFORMS

Definition 3.2–1: Z-Transform
The 2-D Z-transform of a two-sided sequence x(n1,n2) is defined as follows:

X(z1,z2),
+∞∑

n1=−∞

+∞∑
n2=−∞

x(n1,n2)z
−n1
1 z−n2

2 , (3.2–1)

where (z1,z2) ∈ C2, the “2-D” (really 4-D) complex Cartesian product space. In general,
there will be only some values of (z1,z2)

T , z for which this double sum will converge.
Only absolute convergence,

+∞∑
n1=−∞

+∞∑
n2=−∞

|x(n1,n2)z
−n1
1 z−n2

2 |

=

+∞∑
n1=−∞

+∞∑
n2=−∞

|x(n1,n2)| |z1|
−n1 |z2|

−n2 <∞,

is considered in the theory of complex variables [3, 4], so we look for joint values of |z1|

and |z2| that will yield absolute convergence. The set of z for which this occurs is called

80 CHAPTER 3 Two-Dimensional Systems and Z-Transforms

the region of convergence, denoted Rx. In summary, a 2-D Z-transform is specified by its
functional form X(z1,z2) and its convergence region Rx.

Similar to the 1-D case, the Z-transform is simply related to the Fourier transform,
when both exist:

X(z1,z2)|z1=ejw1

z2=ejw2

= X(ω1,ω2),

with the customary abuse of notation.2

A key difference from the 1-D case is that the 2-D complex variable z exists in
a 4-D space and is hard to visualize. The familiar unit circle becomes something a
bit more abstract, the unit bi-circle in C2 [4]. The unit disk then translates over to
the unit bi-disk, {|z1|

2
+ |z2|

2
≤ 1} ∈ C2. Another key difference for two and higher

dimensions is that the zeros of the Z-transform are no longer isolated. Two different
zero loci can intersect.

Example 3.2–1: Zero Loci
Consider the following signal x(n1,n2):

n2\n1 0 1

0 1 2
1 2 1

,

with assumed support {0,1}× {0,1}. This simple four-point signal could serve, after nor-
malization, as the impulse response of a simple directional spatial averager, giving an
emphasis to structures at 45◦. Proceeding to take the Z-transform, we obtain

X(z1,z2)= 1+ 2z−1
1 + 2z−1

2 + z−1
1 z−1

2 .

This Z-transform X is seen to exist for all C2 except for z1 = 0 or z2 = 0. Factoring X, we
obtain

X(z1,z2)= 1+ 2z−1
2 + z−1

1 (2+ z−1
2),

which upon equating to zero gives the zero (z1,z2) locus

z1 =−
2z2+ 1

z2+ 2
, for z2 6= −2,

z1 =+∞, otherwise.

2To avoid confusion, when the same symbol X is being used for two different functions, we note that
the Fourier transform X(ω1,ω2) is a function of real variables, while the Z-transform X(z1,z2) is a
function of complex variables. A pitfall, for example X(1,0), can be avoided by simply writing either
X(ω1,ω2)|ω1=1

ω2=0
or X(z1,z2)|z1=1

z2=0
, whichever is appropriate, in cases where confusion could arise.

3.3 Regions of Convergence 81

We notice that for each value of z2 there is a corresponding value of z1 for which the
Z-transform X takes on the value of zero. Notice also that, with the possible exception of
z2 =−2, the zero locus value z1 = f (z2) is a continuous function of the complex variable
z2. This first-order 2-D system thus has one zero locus.

We next look at a more complicated second-order case where there are two root
loci that intersect, but without being identical; therefore, we cannot just cancel the
factors out. In the 1-D case that we are familiar with, the only way there can be a
pole and zero at the same z location is when the numerator and denominator have
a common factor. Example 3.2–2 shows that this is not true in general for higher
dimensions.

Example 3.2–2: Intersecting Zero Loci
Consider the Z-transform

X(z1,z2)= (1+ z1)/(1+ z1z2),

for which the zero locus is easily seen to be (z1,z2)= (−1,∗), and the pole locus is
(z1,z2)= (α,−1/α), where ∗ represents an arbitrary complex number and α is any
nonzero complex number. These two distinct zero sets are seen to intersect at (z1,z2)=

(−1,1). One way to visualize these root loci is root mapping, which we will introduce later
when we study the stability of 2-D filters (see Section 3.5).

Next, we turn to the topic of convergence for the 2-D Z-transform. As in the 1-D
case, we expect that knowledge of the region in z space where the series converges
will be essential to the uniqueness of the transform, and hence to its inversion.

3.3 REGIONS OF CONVERGENCE
Given a 2-D Z-transform X(z1,z2), its region of convergence (ROC) is given as the
set of z for which

=

+∞∑
n1=−∞

+∞∑
n2=−∞

|x(n1,n2)|
∣∣z1|
−n1

∣∣z2|
−n2

=

+∞∑
n1=−∞

+∞∑
n2=−∞

|x(n1,n2)| r
−n1
1 r−n2

2 <∞, (3.3–1)

where r1 , |z1| and r2 , |z2| are the moduli of the complex numbers z1 and z2. The
ROC can then be written in terms of such moduli values as

Rx , {(z1,z2)| |z1| = r1, |z1| = r2, and (3.3− 1) holds}.

82 CHAPTER 3 Two-Dimensional Systems and Z-Transforms

0
|z1|

|z2|

1

1 |z1
0|

|z2
0| +

FIGURE 3.3–1

The 2-D complex magnitude plane. Here, (•) denotes the unit bi-circle and (+) denotes an
arbitrary point at (z0

1,z0
2).

Since this specification only depends on magnitudes, we can plot ROCs in the
convenient magnitude plane (Figure 3.3–1).

Example 3.3–1: Z-Transform Calculation
We consider the spatial, first quadrant step function

x(n1,n2)= u++(n1,n2)= u(n1,n2).

Taking the Z-transform, we have the following from (3.2–1):

X(z1,z2)=

+∞∑
n1=−∞

+∞∑
n2=−∞

u(n1,n2)z
−n1
1 z−n2

2

=

+∞∑
n1=0

+∞∑
n2=0

z−n1
1 z−n2

2

=

+∞∑
n1=0

z−n1
1 ·

+∞∑
n2=0

z−n2
2

=
1

1− z−1
1

1

1− z−1
2

for |z1|> 1 and |z2|> 1,

=
z1

z1− 1

z2

z2− 1
with Rx = {|z1|> 1, |z2|> 1}.

We can plot this ROC on the complex z-magnitude plane as in Figure 3.3–2. Note that
we have shown the ROC as the gray region and moved it slightly outside the lines |z1| = 1
and |z2| = 1 in order to emphasize that this open region does not include these lines. The
zero loci for this separable signal are the manifold z1 = 0 and the manifold z2 = 0. These
two distinct loci intersect at the complex point z1 = z2 = 0. The pole loci are also two in
number and occur at the manifold z1 = 1 and the manifold z2 = 1. We note that these two
pole loci intersect at the single complex point z1 = z2 = 1.

3.3 Regions of Convergence 83

0

1

1
|z1|

|z2|

FIGURE 3.3–2

The gray area illustrates the ROC for the Z-transform of the first quadrant unit step function
u(n1,n2)= u++(n1,n2).

Next, we consider how the Z-transform changes when the unit step switches to
another quadrant.

Example 3.3–2: Unit Step Function in the Fourth Quadrant
Here, we consider a unit step function that has support on the fourth quadrant. We denote
it as u+−(n1,n2):

u+−(n1,n2),

{
1, n1 ≥ 0,n2 ≤ 0,
0, else.

So, setting x(n1,n2)= u+−(n1,n2), we next compute

X(z1,z2)=

+∞∑
n1=−∞

+∞∑
n2=−∞

u+−(n1,n2)z
−n1
1 z−n2

2

=

+∞∑
n1=0

z−n1
1 ·

0∑
n2=−∞

z−n2
2

=

+∞∑
n1=0

z−n1
1 ·

+∞∑
n′2=0

z
n′2
2 with n′2 ,−n2

=
1

1− z−1
1

1

1− z2
for |z1|> 1 and |z2|< 1,

=−
z1

z1− 1

1

z2− 1
with Rx = {|z1|> 1, |z2|< 1}.

The ROC is shown as the gray area in Figure 3.3–3.

All four quarter-plane support, unit step sequences have the special property of
separability. Since the Z-transform is a separable operator, this makes the calculation
split into the product of two 1-D transforms in the n1 and n2 directions, as we have

84 CHAPTER 3 Two-Dimensional Systems and Z-Transforms

0

1

1 |z1|

|z2|

FIGURE 3.3–3

The ROC (gray area) for the fourth quadrant unit step function u+−(n1,n2).

just seen. The ROC then factors into the Cartesian product of the two 1-D ROCs. We
look at a more general case next.

More General Case
In general, we have the Z-transform

X(z1,z2)=
B(z1,z2)

A(z1,z2)
,

where both B and A are polynomials in coefficients of some partial difference
equation,

B(z1,z2)=

+N1∑
n1=−N1

+N2∑
n2=−N2

b(n1,n2)z
−n1
1 z−n2

2 and

A(z1,z2)=

+N1∑
n1=−N1

+N2∑
n2=−N2

a(n1,n2)z
−n1
1 z−n2

2 .

To study the existence of this Z-transform, we focus on the denominator and rewrite
A as

A(z1,z2)= z−N1
1 z−N2

2 Ã(z1,z2),

where Ã is a strict-sense polynomial in z1 and z2 (i.e., no negative powers of z1 or
z2). Grouping together terms in zn

1, we can write

Ã(z1,z2)=

Ñ1∑
n=0

an(z2)z
n
1,

yielding Ñ1 poles (N1 at most!) for each value of z2,

zi
1 = fi(z2), i= 1, . . . , Ñ1.

A sketch of such a pole surface is plotted in Figure 3.3–4. Note that we are only
plotting the magnitude of one surface here, and this plot therefore does not tell the

3.4 Some Z-Transform Properties 85

Re(z2)

Im(z2)

|zi
1|= |fi(z2)|

0

FIGURE 3.3–4

Sketch of pole magnitude |zi
1| surface as a function of a point in the z2 complex plane.

whole story. Also there are Ñ1 such sheets. Of course, there will be a similar number
of zero loci or surfaces that come about from the numerator

B̃(z1,z2)=

Ñ1∑
n=0

bn(z2)z
n
1,

where B(z1,z2)= z−N1
1 z−N2

2 B̃(z1,z2). Note that these zero surfaces can intersect the
pole surfaces (as well as each other) without being identical. Thus indeterminate
0
0 situations can arise that cannot be simply canceled out. One classic example
is [5]

z1+ z2− 2

(z1− 1)(z2− 1)
,

which evaluates to 0
0 at the point (z1,z2)= (1,1), and yet has no cancelable factors.

3.4 SOME Z-TRANSFORM PROPERTIES
Here, we list some useful properties of the 2-D Z-transform that we will use in the
sequel. Many are easy extensions of known properties of the 1-D Z-transform, but
some are essentially new. In listing these properties, we introduce the symbol Z for
the 2-D Z-transform operator.

Linearity property:

Z{ax(n1,n2)+ by(n1,n2)} = aX(z1,z2)+ bY(z1,z2), with ROC=Rx ∩Ry.

