DIFFERENTIAL EQUATIONS, DYNAMICAL SYSTEMS, AND AN INTRODUCTION TO CHAOS

Morris W. Hirsch
University of California, Berkeley

Stephen Smale
University of California, Berkeley

Robert L. Devaney
Boston University
Contents

Preface to the Third Edition ix
Preface xi

CHAPTER 1 First-Order Equations 1
 1.1 The Simplest Example 1
 1.2 The Logistic Population Model 4
 1.3 Constant Harvesting and Bifurcations 7
 1.4 Periodic Harvesting and Periodic Solutions 10
 1.5 Computing the Poincaré Map 11
 1.6 Exploration: A Two-Parameter Family 15

CHAPTER 2 Planar Linear Systems 21
 2.1 Second-Order Differential Equations 23
 2.2 Planar Systems 24
 2.3 Preliminaries from Algebra 26
 2.4 Planar Linear Systems 29
 2.5 Eigenvalues and Eigenvectors 30
 2.6 Solving Linear Systems 33
 2.7 The Linearity Principle 36
CHAPTER 3 Phase Portraits for Planar Systems 39
3.1 Real Distinct Eigenvalues 39
3.2 Complex Eigenvalues 44
3.3 Repeated Eigenvalues 47
3.4 Changing Coordinates 49

CHAPTER 4 Classification of Planar Systems 61
4.1 The Trace–Determinant Plane 61
4.2 Dynamical Classification 64
4.3 Exploration: A 3D Parameter Space 71

CHAPTER 5 Higher-Dimensional Linear Algebra 73
5.1 Preliminaries from Linear Algebra 73
5.2 Eigenvalues and Eigenvectors 82
5.3 Complex Eigenvalues 85
5.4 Bases and Subspaces 88
5.5 Repeated Eigenvalues 93
5.6 Genericity 100

CHAPTER 6 Higher-Dimensional Linear Systems 107
6.1 Distinct Eigenvalues 107
6.2 Harmonic Oscillators 114
6.3 Repeated Eigenvalues 120
6.4 The Exponential of a Matrix 123
6.5 Nonautonomous Linear Systems 130

CHAPTER 7 Nonlinear Systems 139
7.1 Dynamical Systems 140
7.2 The Existence and Uniqueness Theorem 142
7.3 Continuous Dependence of Solutions 147
7.4 The Variational Equation 149
7.5 Exploration: Numerical Methods 153
7.6 Exploration: Numerical Methods and Chaos 156

CHAPTER 8 Equilibria in Nonlinear Systems 159
8.1 Some Illustrative Examples 159
8.2 Nonlinear Sinks and Sources 165
8.3 Saddles 168
8.4 Stability 174
8.5 Bifurcations 175
8.6 Exploration: Complex Vector Fields 182

CHAPTER 9 Global Nonlinear Techniques 187

9.1 Nullclines 187
9.2 Stability of Equilibria 192
9.3 Gradient Systems 202
9.4 Hamiltonian Systems 206
9.5 Exploration: The Pendulum with Constant Forcing 209

CHAPTER 10 Closed Orbits and Limit Sets 213

10.1 Limit Sets 213
10.2 Local Sections and Flow Boxes 216
10.3 The Poincaré Map 218
10.4 Monotone Sequences in Planar Dynamical Systems 220
10.5 The Poincaré–Bendixson Theorem 222
10.6 Applications of Poincaré–Bendixson 225
10.7 Exploration: Chemical Reactions that Oscillate 228

CHAPTER 11 Applications in Biology 233

11.1 Infectious Diseases 233
11.2 Predator–Prey Systems 237
11.3 Competitive Species 244
11.4 Exploration: Competition and Harvesting 250
11.5 Exploration: Adding Zombies to the SIR Model 251

CHAPTER 12 Applications in Circuit Theory 257

12.1 An RLC Circuit 257
12.2 The Liénard Equation 261
12.3 The van der Pol Equation 263
12.4 A Hopf Bifurcation 270
12.5 Exploration: Neurodynamics 272
16.4 Homoclinic Bifurcations 377
16.5 Exploration: The Chua Circuit 381

CHAPTER 17 Existence and Uniqueness Revisited 385

17.1 The Existence and Uniqueness Theorem 385
17.2 Proof of Existence and Uniqueness 387
17.3 Continuous Dependence on Initial Conditions 394
17.4 Extending Solutions 397
17.5 Nonautonomous Systems 401
17.6 Differentiability of the Flow 404

Bibliography 411
Index 415
The main new features in this edition consist of a number of additional explo-
lations together with numerous proof simplifications and revisions. The new
explorations include a sojourn into numerical methods that highlights how
these methods sometimes fail, which in turn provides an early glimpse of
chaotic behavior. Another new exploration involves the previously treated
SIR model of infectious diseases, only now considered with zombies as the
infected population. A third new exploration involves explaining the motion
of a glider.

This edition has benefited from numerous helpful comments from a variety
of readers. Special thanks are due to Jamil Gomes de Abreu, Eric Adams, Adam
Leighton, Tiennyu Ma, Lluis Fernand Mello, Bogdan Przeradzki, Charles
Pugh, Hal Smith, and Richard Venti for their valuable insights and corrections.
Preface

In the thirty years since the publication of the first edition of this book, much has changed in the field of mathematics known as dynamical systems. In the early 1970s, we had very little access to high-speed computers and computer graphics. The word chaos had never been used in a mathematical setting. Most of the interest in the theory of differential equations and dynamical systems was confined to a relatively small group of mathematicians.

Things have changed dramatically in the ensuing three decades. Computers are everywhere, and software packages that can be used to approximate solutions of differential equations and view the results graphically are widely available. As a consequence, the analysis of nonlinear systems of differential equations is much more accessible than it once was. The discovery of complicated dynamical systems, such as the horseshoe map, homoclinic tangles, the Lorenz system, and their mathematical analysis, convinced scientists that simple stable motions such as equilibria or periodic solutions were not always the most important behavior of solutions of differential equations. The beauty and relative accessibility of these chaotic phenomena motivated scientists and engineers in many disciplines to look more carefully at the important differential equations in their own fields. In many cases, they found chaotic behavior in these systems as well.

Now dynamical systems phenomena appear in virtually every area of science, from the oscillating Belousov–Zhabotinsky reaction in chemistry to the chaotic Chua circuit in electrical engineering, from complicated motions in celestial mechanics to the bifurcations arising in ecological systems.
As a consequence, the audience for a text on differential equations and
dynamical systems is considerably larger and more diverse than it was in the
1970s. We have accordingly made several major structural changes to this
book, including:

1. The treatment of linear algebra has been scaled back. We have dispensed
with the generalities involved with abstract vector spaces and normed lin-
ear spaces. We no longer include a complete proof of the reduction of all
$n \times n$ matrices to canonical form. Rather, we deal primarily with matrices
no larger than 4×4.
2. We have included a detailed discussion of the chaotic behavior in the
Lorenz attractor, the Shil’nikov system, and the double-scroll attractor.
3. Many new applications are included; previous applications have been
updated.
4. There are now several chapters dealing with discrete dynamical systems.
5. We deal primarily with systems that are C^∞, thereby simplifying many of
the hypotheses of theorems.

This book consists of three main parts. The first deals with linear systems of
differential equations together with some first-order nonlinear equations. The
second is the main part of the text: here we concentrate on nonlinear systems,
primarily two-dimensional, as well as applications of these systems in a wide
variety of fields. Part three deals with higher dimensional systems. Here we
emphasize the types of chaotic behavior that do not occur in planar systems,
as well as the principal means of studying such behavior—the reduction to a
discrete dynamical system.

Writing a book for a diverse audience whose backgrounds vary greatly poses
a significant challenge. We view this one as a text for a second course in differ-
etial equations that is aimed not only at mathematicians, but also at scientists
and engineers who are seeking to develop sufficient mathematical skills to
analyze the types of differential equations that arise in their disciplines.

Many who come to this book will have strong backgrounds in linear algebra
and real analysis, but others will have less exposure to these fields. To make
this text accessible to both groups, we begin with a fairly gentle introduction
to low-dimensional systems of differential equations. Much of this will be a
review for readers with a more thorough background in differential equations,
so we intersperse some new topics throughout the early part of the book for
those readers.

For example, the first chapter deals with first-order equations. We begin
it with a discussion of linear differential equations and the logistic popula-
tion model, topics that should be familiar to anyone who has a rudimentary
acquaintance with differential equations. Beyond this review, we discuss the
logistic model with harvesting, both constant and periodic. This allows us to
introduce bifurcations at an early stage as well as to describe Poincaré maps
and periodic solutions. These are topics that are not usually found in elementary differential equations courses, yet they are accessible to anyone with a background in multivariable calculus. Of course, readers with a limited background may wish to skip these specialized topics at first and concentrate on the more elementary material.

Chapters 2 through 6 deal with linear systems of differential equations. Again we begin slowly, with Chapters 2 and 3 dealing only with planar systems of differential equations and two-dimensional linear algebra. Chapters 5 and 6 introduce higher dimensional linear systems; however, our emphasis remains on three- and four-dimensional systems rather than completely general \(n \)-dimensional systems, even though many of the techniques we describe extend easily to higher dimensions.

The core of the book lies in the second part. Here, we turn our attention to nonlinear systems. Unlike linear systems, nonlinear systems present some serious theoretical difficulties such as existence and uniqueness of solutions, dependence of solutions on initial conditions and parameters, and the like. Rather than plunge immediately into these difficult theoretical questions, which require a solid background in real analysis, we simply state the important results in Chapter 7 and present a collection of examples that illustrate what these theorems say (and do not say). Proofs of all of the results are included in the final chapter of the book.

In the first few chapters in the nonlinear part of the book, we introduce important techniques such as linearization near equilibria, nullcline analysis, stability properties, limit sets, and bifurcation theory. In the latter half of this part, we apply these ideas to a variety of systems that arise in biology, electrical engineering, mechanics, and other fields.

Many of the chapters conclude with a section called “Exploration.” These sections consist of a series of questions and numerical investigations dealing with a particular topic or application relevant to the preceding material. In each Exploration we give a brief introduction to the topic at hand and provide references for further reading about this subject. But, we leave it to the reader to tackle the behavior of the resulting system using the material presented earlier. We often provide a series of introductory problems as well as hints as to how to proceed, but in many cases, a full analysis of the system could become a major research project. You will not find “answers in the back of the book” for the questions; in many cases, nobody knows the complete answer. (Except, of course, you!)

The final part of the book is devoted to the complicated nonlinear behavior of higher dimensional systems known as chaotic behavior. We introduce these ideas via the famous Lorenz system of differential equations. As is often the case in dimensions three and higher, we reduce the problem of comprehending the complicated behavior of this differential equation to that of understanding the dynamics of a discrete dynamical system or iterated
function. So we then take a detour into the world of discrete systems, dis-
cussing along the way how symbolic dynamics can be used to describe certain
chaotic systems completely. We then return to nonlinear differential equations
to apply these techniques to other chaotic systems, including those that arise
when homoclinic orbits are present.

We maintain a website at math.bu.edu/hsd devoted to issues regarding
this text. Look here for errata, suggestions, and other topics of interest to
teachers and students of differential equations. We welcome any contributions
from readers at this site.