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List of Symbols

Natural or counting numbers: N={1, 2, 3, 4, 5,...}

Prime numbers = {2, 3, 5, 7, 11, 13, ...}

Whole numbers=W=1{0, 1, 2, 3,4,5,...}

Integer numbers=2Z={..., -6, =5, -4, -3, -2, —-1,0, 1, 2, 3, ...}

Rational numbers = Q = {numbers of the form a/b with a and b integers and b # 0}

Irrational numbers = {numbers that cannot be represented as the quotient of two integers}

Real numbers = R = {all rational and irrational numbers}

Complex numbers = C = {numbers of the form a+ib with a and b real numbers and i such that = -1}
nl=nx(n—-1)x(n-2)x ... x3x2x1n! (read “n factorial”) is defined for all n > 0. By definition 0! =1.
{x | x has a certain property} gives the description of a set. In this context the symbol “I” is read “such
that.” All objects that have the required property are called “elements” of the set.

a € A: a is an element of the set A (see Section on Basic Set Theory in Chapter 4)

a & A: a is not an element of the set A (see Section on Basic Set Theory in Chapter 4)

A C B: the set A is contained (or equal to) in the set B (see Section on Basic Set Theory in Chapter 4)
A U B: read “A union B” (see Section on Basic Set Theory in Chapter 4)

A N B: read “A intersection B” (see Section on Basic Set Theory in Chapter 4)

A’ =C(A): read “complement of A” (see Section on Basic Set Theory in Chapter 4)

xwhen x>0

[x| = absolute value of x =distance from O to x =
—xwhen x<0

SOME FACTS AND PROPERTIES OF NUMBERS
Trichotomy Property of Real Numbers

Given two real numbers a and b, exactly one of the following three relations holds true: 1) a < b; 2) a=b;
3)a>b.

Selected Relations, Definitions, and Properties of Integer, Rational,
and Irrational Numbers

The following definitions are given only for integer numbers:
An integer number « is divisible by a nonzero integer number b if there exists an integer number n such
that @ = bn. The number « is said to be a multiple of b, and b is said to be a divisor (or a factor) of a.
Numbers that are multiples of 2 are called even. Therefore, for any even number a there exists an
integer number k such that a =2k. Numbers that are not divisible by 2 are said to be odd; thus, any odd
number ¢ can be written as t=2s+ 1 for some integer number s.
The following relations, definitions, and properties are given only for positive integer numbers:
A counting number larger than 1 is called prime if it is divisible only by two distinct counting num-
bers, itself and 1. Because of this definition, the number 1 is not a prime number.
The Icm(a, b) =least common multiple of a and b, call it L, is the smallest multiple that the positive
integers a and b have in common. Therefore,
i. there exist two positive integers n and m such that L=an and L= bm;
ii. if M is another common multiple of @ and b, then M is a multiple of L; and
iii.L>aand L > D.

vii
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The GCD(a, b) = greatest common divisor of a and b, call it D, is the largest divisor that the positive
integers a and b have in common. Therefore,
i. there exist two positive integers s and ¢ such that a = Ds and b = Dt; with s and ¢ relatively prime (i.e.,
having no common factors);
ii. if 7 is another common divisor of a and b, then T is a divisor of D; and
ili. D<a and D <b.

If GCD(a, b)=1, then a and b are said to be relatively prime.

There are two equivalent definitions that are usually employed when dealing with rational numbers.
The first is the one given above, with rational numbers considered to be the ratio (quotient) of two inte-
gers, where the divisor is not equal to zero. When using this definition, it might be useful to remember
that it is always possible to represent a rational number as a fraction whose numerator and denominator
have no common factors (relatively prime) (e.g., use 1/3 instead of (—6)/(—18) or 3/9). This kind of frac-
tion is said to be in reduced form.

The second definition states that a number is rational if it has either a finite decimal part OR an infi-
nite decimal part that exhibits a repeating pattern. The repeating set of digits is called the period of the
number. It can be proved that these two definitions are equivalent.

The two definitions used for rational numbers generate two definitions for irrational numbers. The
first one is the one given above. The second states that a number is irrational if its decimal part is infinite
AND does not exhibit a repeating pattern.

Well-Ordering Principle

Every nonempty set of nonnegative integers contains a smallest element.

Division Algorithm

Let a and b be two integers. Then there exist two integers ¢ and r such that
a=qgb+r

with 0 <r < 1bl. The number g is the quotient, the number r is the reminder. (For a proof of this fact see
the section on Existence Theorems in Chapter 3.)

SOME FACTS AND PROPERTIES OF FUNCTIONS

Let fand g be two real O valued functions. Then it is possible to construct the following functions:

. f+g defined as (f +g)(x) =f(x) +g(x)

. f—g defined as (£ — g)(x) = £(x) - g(x)

. fe defined as (fg) (x) = f(x)(x)

. flg defined as (f/g)(x) =f(x)/g(x) when g(x)#0
. fog defined as fog(x) = f(g(x))

The domains of these functions will be determined by the domains and properties of f and g.
A function f is said to be

OOPhWN =

1. Increasing if for every two real numbers x; and x, such that x; < x,_ it follows that

flx) <f(x).
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. Decreasing if for every two real numbers x; and x, such that x; < x,_ it follows that

flx) >f(x).

. Nondecreasing if for every two real numbers x; and x, such that x; < x,, it follows that

flx) <f(x).
Nonincreasing if for every two real numbers x; and x, such that x; <x,_ it follows that
flx) 2f(x2).

0dd if f(—x) = —f(x) for all x.

Even if f(—x) = f(x) for all x.

One-to-one if for every two real numbers x; and x, such that x; # x,_ it follows that f(x;) #f(x,).
Onto if for every value y there is at least one value x such that f(x) = y.
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