Pipeline Planning and Construction
Field Manual
1. Design Basis

 E. Shashi Menon, Ph.D., P.E.

 Introduction
 1.1 Units of Measurement
 1.1.1 Base Units
 1.1.2 Supplementary Units
 1.1.3 Derived Units
 1.2 Physical Properties of Liquids and Gases
 1.2.1 Liquid Properties
 1.2.2 Gas Properties
 Summary
 Bibliography

2. Route Selection

 Hal S. Ozanne

 Introduction
 2.1 Community and Local Agencies
 2.2 Population Density
 2.2.1 Subpart A: General
 2.3 Technical and Project Necessities
 2.4 Constructibility
 2.5 Right-of-Way
 2.6 Environmental Issues
 2.7 Route Beginning and Ending Points
 2.8 Connections
 2.9 Mapping System
 2.10 Field Review
 2.11 Parallel Other Lines
 2.12 Integrity
 2.13 Established Corridors
 Bibliography
3. Pipeline Regulatory and Environmental Permits
 William E. Bauer

 Introduction 57
 3.1 Regulation of Interstate Pipelines 58
 3.1.1 FERC-Regulated Natural Gas Pipelines 58
 3.1.2 FERC-Regulated Oil Pipelines 59
 3.1.3 Safety Regulations of Oil, Gas, and Hazardous Materials Pipelines 59
 3.2 Regulation of Intrastate Pipelines 59
 3.3 Environmental Permits for Interstate Pipelines 60
 3.4 Environmental Permits for Intrastate Pipelines 61
 3.5 Local Permits 62
 3.5.1 Identifying Permits and Determining Requirements along a Proposed Linear Facility 63

4. Right-of-Way
 William E. Bauer

 Introduction 67
 4.1 Right-of-Way Deliverables and Requirements 67
 4.1.1 Right-of-Way Deliverables 68
 4.1.2 Right-of-Way Requirements 69
 4.2 Project Planning 69
 4.3 Right-of-Way Budgeting 70
 4.4 Right-of-Way Database and Records 71
 4.4.1 Right-of-Way Database 71
 4.4.2 Land Title Research 73
 4.4.3 Right-of-Way Documents 74
 4.5 Field Support 75
 4.6 Right-of-Way Negotiations and Condemnation 75
 4.6.1 Negotiations 75
 4.6.2 Condemnation Through the Power of Eminent Domain (Provided the Project Qualifies) 76
 4.7 Construction Support 77
 4.8 Project Completion and Pipeline Operations 78
 4.8.1 Project Completion 78
 4.8.2 Pipeline Operations 78

5. Alignment Sheets
 Hal S. Ozanne

 Introduction 81
 5.1 Uses 81
 5.2 Alignment Sheet Development 83
 5.3 Quantity of Alignment Sheets 84
8. Pipeline Hydraulic Analysis
 E. Shashi Menon, Ph.D., P.E.

Introduction 123
8.1 Velocity of Flow in Liquid Pipelines 124
8.2 Reynolds Number in Liquid Flow 127
8.3 Pressure and Head of a Liquid 131
8.4 Pressure Drop in Liquid Flow 133
8.5 Friction Factor 135
8.6 Colebrook–White Equation 137
8.7 Moody Diagram 138
8.8 Hazen–Williams Equation 141
8.9 Minor Losses 151
8.10 Flow of Gas in Pipelines 153
8.11 Erosional Velocity 158
8.12 Reynolds Number in Gas Flow 160
8.13 Friction Factor in Gas Flow 163
8.14 Colebrook–White Equation for Gas Flow 164
8.15 Transmission Factor 165
8.16 Pressure Drop in Gas Flow 168
8.17 Effect of Pipe Elevations 171
8.18 The Average Gas Pressure 172
Summary 174
Bibliography 175

9. Series and Parallel Piping and Power Required
 E. Shashi Menon, Ph.D., P.E.

Introduction 177
9.1 Total Pressure Required to Transport Liquids 178
9.2 Hydraulic Pressure Gradient in Liquids 181
9.3 Series Piping in Liquid Pipelines 185
9.4 Parallel Piping in Liquid Pipelines 187
9.5 Transporting High Vapor Pressure Liquids 190
9.6 Pumping Power Required in Liquid Pipelines 190
 9.6.1 Hydraulic Horsepower 190
 9.6.2 Brake Horsepower 192
9.7 System Head Curves – Liquid Pipelines 193
9.8 Injections and Deliveries – Liquid Pipelines 196
9.9 Pipe Loops in Liquid Pipelines 197
9.10 Gas Pipelines 198
 9.10.1 Total Pressure Required to Transport Gases 198
9.11 Hydraulic Pressure Gradient in Gas Pipeline 199
9.12 Series Piping in Gas Pipelines 200
9.13 Parallel Piping in Gas Pipelines 201
Summary 203
Bibliography 204
10. Valve Stations
Barry G. Bubar, P.E.

Introduction
10.1 What to Expect 206
10.2 Valve Usage 206
10.3 Some Other Valves Not Listed by API-6D 210
10.4 Valve Pressure Class 211
10.5 Pipeline Design and Valve Selection 211
10.6 Mainline Valve Locations 212
10.7 Valve Station Design 212
10.8 Buried Valve Vaults 214
10.9 Direct Burial of Valves 216
10.10 Natural Gas Pipeline Valves 216
10.11 Valve Placement on Gas Pipelines 217
10.12 Block Valve Spacing on Gas Transmission Lines 217
10.13 Valve Maintenance for Liquid and Gas Pipelines
 as per Code 218
 10.13.1 Hazardous Liquid Pipeline Valves 218
10.14 Overpressure Safety Valves and Pressure Limiting Devices
 for Hazardous Liquid Pipelines 218
10.15 Natural Gas Pipeline Valves Maintenance 219
10.16 Pressure Limiting and Regulating Stations for Gas Pipelines 219
10.17 General Valve Station Protection 219
10.18 Pipeline Valve Selection – Ball or Gate? 219
References 222
Bibliography 222

11. Pump Stations
E. Shashi Menon, Ph.D., P.E.

Introduction 223
11.1 Multipump Station Pipelines 224
11.2 Hydraulic Balance and Pump Stations Required 224
11.3 Telescoping Pipe Wall Thickness 228
11.4 Change of Pipe Grade – Grade Tapering 229
11.5 Slack Line and Open Channel Flow 229
11.6 Batching Different Liquids 230
11.7 Centrifugal Pumps Versus Reciprocating Pumps 232
11.8 Centrifugal Pump Head and Efficiency Versus Flow Rate 236
11.9 BHP Versus Flow Rate 239
11.10 NPSH Versus Flow Rate 240
11.11 Specific Speed 241
11.12 Affinity Laws for Centrifugal Pumps 242
11.13 Effect of Specific Gravity and Viscosity on Pump
 Performance 244
11.14 Pump Configuration – Series and Parallel 246
11.15 Pump Head Curve Versus System Head Curve 249
11.16 Multiple Pumps Versus System Head Curve 250
11.17 NPSH Required Versus NPSH Available 250
11.18 Pump Station Configuration 253
11.19 Control Pressure and Throttle Pressure 254
11.20 Variable Speed Pumps 255
11.21 VSD Pump Versus Control Valve 255
Summary 258
Bibliography 258

12. Compressor Stations
E. Shashi Menon, Ph.D., P.E.

Introduction 259
12.1 Compressor Station Locations 260
12.2 Hydraulic Balance 265
12.3 Isothermal Compression 266
12.4 Adiabatic Compression 268
12.5 Polytropic Compression 270
12.6 Discharge Temperature of Compressed Gas 271
12.7 Compression Power Required 272
12.8 Optimum Compressor Locations 276
12.9 Compressors in Series and Parallel 281
12.10 Types of Compressors – Centrifugal and Positive Displacement 284
12.11 Compressor Performance Curves 286
12.12 Compressor Head and Gas Flow Rate 288
12.13 Compressor Station Piping Losses 288
12.14 Compressor Station Schematic 290
Summary 291
Bibliography 291

13. Corrosion Protection
E. Shashi Menon, Ph.D., P.E.

Introduction 293
13.1 Corrosion in Pipelines 293
13.2 Causes of Pipeline Failure 294
13.3 Types of Corrosion 297
 13.3.1 General Attack Corrosion 297
 13.3.2 Localized Corrosion 297
 13.3.3 Galvanic Corrosion 299
 13.3.4 Environmental Cracking 299
 13.3.5 Flow-Assisted Corrosion 300
 13.3.6 Intergranular Corrosion 300
 13.3.7 Dealloying 300
 13.3.8 Fretting Corrosion 300
 13.3.9 High-Temperature Corrosion 300
15.12 Smart Pig Types 330
15.13 Crack Detection 332
15.14 Preparation for Smart Pig Inspection 332
15.15 MFL Smart Pig 333
15.16 Post Smart Pig Inspection 335
15.17 Expert Data Evaluation 335
15.18 External Corrosion 336
15.19 Internal Corrosion 337
15.20 Postinspection Criteria 338
Summary 338
References 339
Bibliography 339

16. Pipeline Construction
Glenn A. Wininger

Introduction 341
16.1 Pipeline Construction Sequence 342
16.1.1 Clearing and Grading Crew 343
16.1.2 Soil Classifications and Considerations 347
16.1.3 Trenching Crew 348
16.1.4 Stringing Crew 350
16.1.5 Bending Crew 350
16.1.6 Pipe Gang and Firing Line Welders 351
16.1.7 Coating Crew 351
16.1.8 Lowering-In Crew 352
16.1.9 Backfill Crew 352
16.1.10 Tie-In Crew 353
16.1.11 Testing Crew 353
16.1.12 Clean-Up Crew 354
16.2 Restoration of Disturbed Construction R.O.W. 355

17. Welding and NDT
Barry G. Bubar, P.E.

Introduction 357
17.1 Pipeline Welding Procedures 358
17.2 Specimen Preparation 359
17.3 Testing 359
17.4 Criteria for Weld Acceptance 359
17.5 Classic Pipeline Welding 361
17.6 Double Joints 362
17.7 Using Higher X-Grade Pipe 364
17.8 Welders’ Qualification 366
17.9 Welders’ Responsibility 367
17.10 Automatic Pipeline Welding 368
17.11 Verifying Automatic Weld Integrity 370
17.12 Semiautomatic Welding 370
18. Hydrostatic Testing

Barry G. Bubar, P.E.

Introduction, Including Risk-Based Alternatives to Testing 379
18.1 Testing Pipe 382
18.2 Classifying in Service Pipelines 383
18.3 Intrastate Pipelines 383
18.4 Pretest Planning for an Intrastate Pipeline 384
18.5 Test Water Disposal 389
18.6 Safety and Equipment Procedures During Test 389
18.7 Turning and Operating Valves 389
18.8 Training and Judgment 389
18.9 Back to Test Procedure 390
18.10 Pressurization 391
18.11 List of Equipment for Hydrostatic Test 392
18.12 Test On 393
18.13 Posttest Results 393
18.14 Posttest Leak Analysis 394
18.15 Entrained Air and Vapor 396
18.16 Leaking Isolation Valves and Fittings 396
18.17 Changing Test Water Temperature 397
18.18 Posttest Report 397
18.19 Volume Analysis 397
18.20 Testing Interstate Liquid and Natural Gas Transmissions Lines 398
18.21 Test Section 12 401
18.22 Cross-Country Pipeline Testing 402
18.23 Pipeline Rupture 402
References 404

19. Commissioning

Hal S. Ozanne

Introduction 405
19.1 Plan 411
19.2 Plan Sequence 411
19.3 Operations and Maintenance Manuals 412
19.4 Completion of Construction 412
19.5 Sizing or Gauging Pigs 412
19.6 System Checkout 413
20. Specification Writing, Data Sheet Production, Requisition Development, and Bid Analysis

Glenn A. Wininger

Introduction 421

20.1 Specification Writing 421

20.2 Material Specifications 422

20.2.1 Pipe 422

20.2.2 External Coating of Line Pipe 425

20.2.3 Fittings, Valves, and Components 435

20.2.4 Induction Bends 435

20.3 Construction Specifications 438

20.4 Material Requisition Development 461

20.5 Bid Quotation and Bid Analysis 461

20.5.1 Bid Quotation 461

20.5.2 Bid Analysis and Evaluation 463

21. Operations and Maintenance Manuals

Hal S. Ozanne

Introduction 466

21.1 Operating Manuals 466

21.2 Regulations 466

21.3 Written Emergency Procedures 467

21.4 Training Program 468

21.5 Details 474

21.5.1 Operating Pressures 474

21.5.2 Communications 474

21.5.3 Line Location and Markers 474

21.5.4 ROW Maintenance 474

21.5.5 Patrolling 475

21.5.6 Integrity Assessments and Repair 475

21.5.7 Pump Station, Terminal, and Tank Farm Maintenance and Operations 475

21.5.8 Controls and Protective Equipment 476

21.5.9 Storage Vessels 476

21.5.10 Fencing 476

21.5.11 Signs 476

21.5.12 Prevention of Accidental Ignition 476

21.5.13 Corrosion Control 477

21.5.14 Emergency Plan 477

21.5.15 Records 477

21.5.16 Training 478

21.5.17 Modification to Plans 478
Contents

21.6 Maintenance Manuals 478
21.7 Preventative Maintenance 478
21.8 Project Data Book 478
21.9 Startup Sequential Process 481
21.10 Shutdown Sequential Process 481
Bibliography 482

Appendix 1 483
Appendix 2 495
Appendix 3 501
Appendix 4 517
Appendix 5 523
Appendix 6 533
Appendix 7 537
Appendix 8 541
Appendix 9 545
Index 549
List of Contributors

E. Shashi Menon, Ph.D., P.E.
William E. Bauer
Barry G. Bubar, P.E.
Hal S. Ozanne
Glenn A. Wininger
E. Shashi Menon, Ph.D., P.E.

E. Shashi Menon is the vice president of SYSTEK Technologies, Inc. in Lake Havasu City, Arizona, USA. He has worked in the oil and gas and manufacturing industry for over 37 years. He held positions of design engineer, project engineer, engineering manager, and chief engineer with major oil and gas companies in the United States. He has authored four technical books for major publishers and coauthored over a dozen engineering software applications. He conducts training workshops in liquid and gas pipeline hydraulics at various locations in the United States and South America.

Barry G. Bubar, P.E.

Barry Bubar graduated from University of California with a BS degree in mechanical engineering. He has worked in the petroleum pipeline industry as a district engineer, project engineer and staff engineer and has over 35 years experience in oil, gas, and power companies. He has taught classes in pipeline hydraulics and pipeline welding and now works as a mechanical engineering consultant.

William E. Bauer

Bill Bauer has been associated with right-of-way acquisition projects for over 35 years. He has managed the acquisition of pipeline rights-of-way, regulatory permits, and associated actions throughout the continental United States, Alaska, Europe, and Russia. He is a graduate of Lamar University, Beaumont, Texas, with a BS degree in Math and has written and/or edited numerous books, articles, and videos relating to right-of-way. He is also a certified instructor for the International Right-of-Way Association. Bill has seen right-of-way acquisition move from a hand shake, a signature, and a nominal payment to a highly technical effort sometimes approaching 25% or more of the total cost of a pipeline project.

Hal S. Ozanne

Hal S. Ozanne, BSME, is the vice president of Denver Operations of ENGlobal Engineering, Inc. in Denver, Colorado, USA.
He has worked in the oil and gas industry for over 42 years. His experience has included managing a division office for a consulting engineering firm providing engineering services to the oil and gas industry, serving as project manager for various pipeline projects throughout the United States, and working for a pipeline operating company in various capacities.

Glenn A. Wininger

Glenn Wininger graduated from Oklahoma State University with a BS degree in civil engineering in 1984 and a BS degree in biology in 1990 from Ohio State University. He worked for numerous engineering firms with emphasis in cross-country pipeline projects and as a consultant for engineering firms related to local area gas distribution companies. He held positions within gas companies in engineering and construction management, as well as operations. He assisted companies in compiling data for the Federal Energy Regulatory Committee (FERC) applications, as well as providing support for Draft Environmental Impact Statement (DEIS) and Final Environmental Impact Statement (FEIS) response related to various requests. He held a Registered Professional Land Surveyor (RPLS) license from 1986 to 1990.
There are thousands of pipelines crisscrossing the globe, both onshore and offshore. Designing, constructing, and operating these pipelines and their appurtenant facilities require special skills along with experience. Design criteria and construction techniques differ from area to area and knowing where and how to access such criteria is essential for pipeline professionals.

This book was prepared in order to give engineers and technicians a working knowledge of the processes of planning, designing, and construction of a pipeline system. The idea for the book was conceived by Elsevier Senior Acquisitions Editor, Kenneth McCombs, in consultation with Shashi Menon, a professional engineer with over 37 years of experience in the US Oil and Gas industry. In addition, we assembled a team of experts with over 180 years combined experience throughout the United States and the world to collaborate on the book and produce a relevant and useful reference manual for pipeline planning and construction.

Chapter 1 covers the design basis that forms the foundation for the design of pipelines, pump stations, compressor stations, valves, and other facilities that comprise the pipeline system.

Chapter 2 introduces the various things that must be taken into consideration in selecting a pipeline route and how a route may be selected and changed as it is being developed.

Chapter 3 reviews pipeline regulatory and environmental permits. This includes numerous permits and approvals that must be obtained from state, federal, and local agencies.

Chapter 4 covers the right-of-way (ROW) aspects including the responsibility of ROW team to provide the project a continuous constructible strip of land for the construction of the pipeline and all related surface facilities, including a continuous pipeline right-of-way, all additional work spaces, surface sites for compressor stations, pump stations, meters, valves, and storage sites.

Chapter 5 describes how pipeline alignment sheets are prepared, the information that is included on them and their use.

Chapter 6 is an overview of pipeline materials. The chapter describes how materials for a pipeline are selected taking into consideration the pipeline service, operating conditions, and the appropriate regulations that must be followed.

Chapter 7 is a discussion of the strength capabilities of a pipeline that is subject to internal pressure and how the required pipe wall thickness is calculated.

Chapter 8 explains pipeline hydraulic analysis for both liquid and gas pipelines. The chapter reviews the different types of flow, Reynolds number, and
pressure drop due to friction and determining pumping pressure requirements and location of pump stations and compressor stations.

Chapter 9 covers the calculation of the pressure required in series and parallel piping. In addition, the pumping power required and the number of pumps or compressor stations needed for a long transmission pipeline are discussed.

Chapter 10 reviews requirements of multiple valve stations along a pipeline necessary for isolating segments of pipelines for repair work and in case of a leak, damage, or rupture. In addition, valves installed at pipeline branch connections for delivery or receipt of product being shipped on the mainline are also discussed.

Chapter 11 explains the pump stations and pumping configurations in liquid pipelines along with the optimum locations of pump stations for hydraulic balance. Centrifugal pumps and positive displacement pumps and their performance characteristics are reviewed. The use of variable speed pumps to save pumping power under different operating conditions is also discussed.

Chapter 12 explains the approach to sizing compressor stations in gas pipelines. The optimum locations and pressures at which compressor stations operate are reviewed. Centrifugal and positive displacement compressors used in natural gas transportation are compared with reference to their performance characteristics and cost.

Chapter 13 discusses pipeline corrosion, how corrosion occurs, and the method employed to protect liquid and gas pipelines and associated facilities from corrosion damage.

Chapter 14 introduces the provisions for leak detection for a pipeline. Pipeline operators must take the necessary preparations to eliminate or greatly reduce the possibility of a leak from their system.

Chapter 15 discusses pipeline pigging and internal inspection. Pigging of a pipeline is essential for effective and efficient operation and maintenance. This results in increased pipeline efficiency and extends its useful life.

Chapter 16 discusses pipeline construction with reference to federal, state, district, and local regulations.

Chapter 17 discusses welding and nondestructive testing (NDT) of liquid and gas pipelines. Pipe welding procedures, double jointing, welder qualification, automatic welding, radiography, weld rejection criteria are reviewed.

Chapter 18 discusses hydrostatic testing to ensure integrity of pipeline in service. The federal regulations such as CFR Title 49, Part 195 for Hazardous Liquid Pipelines and CFR Title 49, Part 192 for Gas Pipelines are reviewed.

Chapter 19 describes the preparation and steps to commission or place a pipeline into operation.

Chapter 20 covers specification writing, data sheet production, requisition development, and bid analysis for pipeline materials and equipment.

Chapter 21 describes the information that is included in operations and maintenance manuals and the preparation of these manuals.
The authors would like to acknowledge the many suggestions and constructive comments received from their peers who reviewed portions of the manuscript. Special thanks to David W. Sinclair for his assistance in the review of Chapters 3 and 4 of this manual. Mr. Sinclair, a right-of-way executive for more than 30 years, has been a strong supporter of education and professionalism through the International Right of Way Association (IRWA). In addition, the authors would like to thank their families for being understanding during the many hours spent writing, revising, and proofreading the manuscript and subsequent page proofs.

We would like to take this opportunity to thank Kenneth McCombs, Senior Acquisitions Editor of Elsevier Publishing, for suggesting the subject matter and format for the book. We enjoyed working with him, as well as others, at Elsevier such as Jill Leonard (Editorial Project Manager) and Heather Tighe (Associate Project Manager).

Authors have exercised care and diligence to contact copyright holders for permission to use published reference materials. We have also worked hard to eliminate errors and omissions. Readers are encouraged to independently check calculations and verify results prior to using them in their projects. We welcome notifications of corrections and suggestions for improvement of this field manual in subsequent edition.

E. Shashi Menon
Barry G. Bubar
William E. Bauer
Hal S. Ozanne
Glenn A. Wininger