
CHAPTER

3Introduction to the Tcl
Language

The next five chapters constitute a Tcl language tutorial. This chapter provides an overview of the
Tcl syntax, data structures, and enough commands to develop applications. Chapter 4 discusses Tcl
I/O support for files, pipes, and sockets. Chapters 5–8 introduce more commands and techniques and
provide examples showing how Tcl data constructs can be used to create complex data constructs such
as structures and trees. Chapters 9 and 10 introduce the TclOO object-oriented support package and
explain some tricks in using dynamic and introspective object-oriented programming effectively.

This introduction to the Tcl language will give you an overview of how to use Tcl, rather than
be a complete listing of all commands and all options. The on-line reference pages are the complete
reference for the commands. See Chapter 1 for a discussion on how to access the on-line help on
UNIX, Macintosh, and Windows platforms. The companion website contains a Tcl/Tk reference guide
that contains brief listings of all commands and all options.

If you prefer a more extensive tutorial, see the tutorials list on the companion website. You will
find a copy of TclTutor, a computer-assisted instruction program that covers all of the commands in
Tcl, and most of the command options.

Chapters 11 through 14 constitute the Tk tutorial. If you are performing graphics programming,
you may be tempted to skip ahead to those chapters and just read about the GUIs. Don’t do it! Tcl
is the glue that holds the graphic widgets together. Tk and the other Tcl extensions build on the Tcl
foundation. If you glance ahead for the Tk tutorial, plan on coming back to fill in the gaps.

This book will print the command syntax using the font conventions used by the Tcl on-line manual
and help pages. This convention is as follows.

commandname The command name appears first in this type font.

subcommandname If the command supports subcommands, they will also be in this
type font.

-option Options appear in italics. The first character is a dash (-).

argument Arguments to a command appear in italics.

?-option? Options that are not required are bounded by question marks.

?argument? Arguments that are not required are bounded by question marks.
The following is an example.

Syntax: puts ?-nonewline? ?channel? outputString

The command name is puts. The puts command will accept the options -nonewline and
channel as arguments, and must include an outputString argument.

35

36 CHAPTER 3 Introduction to the Tcl Language

3.1 OVERVIEW OF THE BASICS
The Tcl language has a simple and regular syntax. You can best approach Tcl by learning the overall
syntax and then learning the individual commands. Because all Tcl extensions use the same base inter-
preter, they all use the same syntax. This consistency makes it easy to learn new sets of commands
when the need arises.

3.1.1 Syntax
Tcl is a position-based language, not a keyword-based language. Unlike languages such as C, FOR-
TRAN, and Java, there are no reserved strings. The first word of a Tcl command line must always be
a Tcl command; either a built-in command, a procedure name, or (when tclsh is in interactive mode)
an external command.

A complete Tcl command is a list of words. The first word must be a Tcl command name or a
procedure name. The words that follow may be subcommands, options, or arguments to the command.
The command is terminated by a newline or a semicolon.

For example, the word puts at the beginning of a command is a command name, but puts in the
second position of a command could be a subcommand or a variable name. The Tcl interpreter keeps
separate hash tables for the command names and the variable names, so you can have both a command
puts and a variable named puts in the same procedure. The Tcl syntax rules are as follows.

. The first word of a command line is a command name.. Each word in a command line is separated from the other words by one or more spaces.. Words can be grouped with double quotes or curly braces.. A list can be ungrouped with the three-character {*} operator.. Commands are terminated with a newline or semicolon.. A word starting with a dollar sign ($) must be a variable name. This string will be replaced by the
value of the variable.. A variable name followed by a value within parentheses (no spaces) is an associative array:
arrayName(index). Words enclosed within square brackets must be a legal Tcl command. This string will be replaced
by the results of evaluating the command.

The Tcl interpreter treats a few characters as having special meaning. These characters are as
follows.

Substitution Symbols

$ The word following the dollar sign must be a variable name. Tcl will
substitute the value assigned to that variable for the $varName string.

[] The words between the square brackets must be a Tcl command string.
The Tcl interpreter will evaluate the string as a command. The value
returned by the command will replace the brackets and string.

3.1 Overview of the Basics 37

Grouping Symbols

”” Groups multiple words into a single string. Substitutions will occur within
this string.

{} Groups multiple words into a single string. No special character
interpretation will occur within this string. A newline within curly braces
does not denote the end of a command, and no variable or command
substitutions will occur.

Other

\ Escapes the single character following the backslash. This character will
not be treated as a special character. This can be used to escape a dollar
sign to inhibit substitution, or to escape a newline character to continue a
command across multiple lines.

; Marks the end of a command.
<newline> Marks the end of a command.
Marks the rest of the line as a comment. Note that the # must be in a

position where a Tcl command name could be: either the first character on
a line or following a semicolon (;).

Example 1
x=4 Not valid: The string x=4 is interpreted as the first word on a line and

will be evaluated as a procedure or command name. This is not an
assignment statement.

Error Message: invalid command name "x=4"

puts "This command has one argument";

Valid: This is a complete command.

puts one; puts two;

Valid: This line has two commands.

puts one puts two

Not valid: The first puts command is not terminated with a
semicolon, so Tcl interprets the line as a puts command with three
arguments.

Error Message: bad argument "two": should be
"nonewline"

3.1.2 Grouping Words
The spaces between words are important. Since Tcl does not use keywords, it scans commands by
checking for symbols separated by white space. Tcl uses spaces to determine which words are com-
mands, subcommands, options, or data. If a data string has multiple words that must be treated as a
single set of data, the string must be grouped with quotes (“ ”) or curly braces ({}).

38 CHAPTER 3 Introduction to the Tcl Language

Example 2
if { $x > 2} {

set greater true
}

Valid: If the value of x is greater than 2, the value of greater is set
to ”true.”

if{ $x > 2} {
set greater true

}

Not valid: No space between if and test left brace.
Error Message: invalid command name "if{"

if {$x > 2} {
set greater true

}

Not valid: No space between test and body left brace.
Error Message: invalid command name "}"

set x "a b" Valid: The variable x is assigned the value a b.

set x {a b} Valid: The variable x is assigned the value a b.

set x a b Not valid: Too many arguments to set.

Error Message: wrong # args: should be "set varName

?newValue?"

The Tcl interpreter treats quotes and braces differently. These differences are discussed later in this
chapter, and in more detail in Chapter 4.

3.1.3 Comments
A comment is denoted by putting a pound sign (#) in the position where a command name could be.
The Tcl Style Guide recommends that this be the first character on a line, but the pound sign could be
the first character after a semicolon.

Example 3
This is a comment Valid: This is a valid comment.

puts "test" ; # Comment after a command.

Valid: But not Recommended style.

puts "test" # this is a syntax error.

Not valid: The puts command was not
terminated.

3.1.4 Data Representation
Tcl does not require that you declare variables before using them. The first time you assign a value to a
variable name, the Tcl interpreter allocates space for the data and adds the variable name to the internal
tables.

A variable name is an arbitrarily long sequence of letters, numbers, or punctuation characters.
Although any characters (including spaces) can be used in variable names, the convention is to follow
naming rules similar to those in C and Pascal; start a variable name with a letter, followed by a sequence
of alphanumeric characters.

The usual convention is to start variable names with a lowercase letter.

3.1 Overview of the Basics 39

The Tcl Style Guide recommends that you start variable and procedure names that are exported
from a namespace with a lowercase letter and start variable and procedure names that are only for
internal use with an uppercase letter. The rationale for this is that items that are intended for internal
use should require more keystrokes than items intended for external use. This document is available at
the Tcl/Tk resource (www.tcl.tk/doc/styleGuide.pdf) and on the companion website.

A variable is referenced by its name. Placing a dollar sign ($) in front of the variable name causes
the Tcl interpreter to replace the $varName string with the value of that variable. The Tcl interpreter
always represents the value of a Tcl variable as a printable string within your script. (Internally, it may
be a floating-point value or an integer. Tcl interpreter internals are described in Chapter 15.)

Example 4
set x four Set the value of a variable named x to four.

set pi 3.14 Set the value of a variable named pi to 3.14.

puts "pi is $pi" Display the string: ”pi is 3.14”.

set pi*2 6.28 Set the value of a variable named pi*2 to 6.28.

set "bad varname" "Don’t Do This"

Set the value of a variable named bad varname to Don’t
Do This.

Note that the * symbol in the variable name pi*2 does not mean to multiply. Since the * is embed-
ded in a word, it is simply another character in a variable name. The last example shows how spaces
can be embedded in a variable name. This is not recommended style.

3.1.5 Command Results
All Tcl commands return either a data value or an empty string. The data can be assigned to a variable,
used in a conditional statement such as an if, or passed to another command.

The Tcl interpreter will evaluate a command enclosed within square brackets immediately, and
replace that string with the value returned when the command is evaluated. This is the same as putting
a command inside backquotes in UNIX shell programming.

For example, the set command always returns the current value of the variable being assigned
a value. In the example that follows, when x is assigned the value of "apple", the set command
returns "apple". When the command set x "pear" is evaluated within the square brackets, it
returns "pear", which is then assigned to the variable y.

Example 5
The set x command returns the contents of the variable.
% set x "apple"
apple
% set y [set x "pear"]
pear
% puts $y
pear
% puts $x
pear

40 CHAPTER 3 Introduction to the Tcl Language

In the previous example, the quotes around the words apple and pear are not required by the Tcl
interpreter. However, it is good practice to place strings within quotes.

3.1.6 Errors
Like other modern languages, Tcl has separate mechanisms for the status and data returns from com-
mands and functions. If a Tcl command fails to execute for a syntactic reason (incorrect arguments,
and so on), the interpreter will generate an error and invoke an error handler. The default error handler
will display a message about the cause of the error and stop evaluating the current Tcl script.

A script can disable the default error handling by catching the error with the catch command, and
can generate an error with the error command.

The catch command is used to catch an error condition without causing a script to abort
processing.

Syntax: catch script ?varName?
script A script to evaluate
?varName? An optional variable name to receive the results of evaluating the script.

If the script generates an error, the catch command will return a true (1). If the script runs without
error, the catch command will return a false (0). If an optional variable name is provided, the return
value from running the command (either an error message or a return value) is set as that variable’s
value.

3.2 COMMAND EVALUATION AND SUBSTITUTIONS
Much of the power of the Tcl language is in the mechanism used to evaluate commands. The evaluation
process is straightforward and elegant but, like a game of Go, it can catch you by surprise if you do not
understand how it works.

Tcl processes commands in two steps. First, it performs command and variable substitutions, and
then it evaluates the resulting string. Note that everything goes through this evaluation procedure. Both
internal commands (such as set) and subroutines you write are processed by the same evaluation code.
A while command, for example, is treated just like any other command. It takes two arguments: a test
and a body of code to execute if the test is true.

3.2.1 Substitution
The first phase in Tcl command processing is substitution. The Tcl interpreter scans commands from
left to right. During this scan, it replaces phrases that should be substituted with the appropriate values.
Tcl performs two types of substitutions:. A Tcl command within square brackets ([...]) is replaced by the results of that command. This is

referred to as command substitution.. A variable preceded by a dollar sign is replaced by the value of that variable. This is referred to as
variable substitution.

After these substitutions are done, the resulting command string is evaluated.

3.2 Command Evaluation and Substitutions 41

3.2.2 Controlling Substitutions with Quotes, Curly Braces, and the Backslash
Most Tcl commands expect a defined number of arguments and will generate an error if the wrong
number of arguments is presented to them. When you need to pass an argument that consists of multiple
words, you must group the words into a single argument with curly braces or with quotes.

The difference between grouping with quotes and grouping with braces is that substitutions will be
performed on strings grouped with quotes but not on strings grouped with braces. Examples 6 and 7
show the difference between using quotes and curly braces.

The backslash may be used to disable the special meaning of the character that follows the back-
slash. You can escape characters such as the dollar sign, quote, or brace to disable their special meaning
for Tcl. Examples 8 and 9 show the effects of escaping characters. A Tcl script can generate an error
message with embedded quotes with code, as in the following.

puts "ERROR: Did not get expected \"+OK\" prompt"

The following examples show how quotes, braces, and backslashes affect the substitutions. The
first example places the argument to puts within curly braces. No substitutions will occur.

Example 6
Script Example

set x 2
set y 3
puts {The sum of $x and $y is returned by [expr $x+$y]}

Script Output
The sum of $x and $y is returned by [expr $x+$y]

In Example 7, puts has its argument enclosed in quotes, so everything is substituted.

Example 7
Script Example

set x 2
set y 3
puts "The sum of $x and $y is [expr $x+$y]"

Script Output
The sum of 2 and 3 is 5

In Example 8, the argument is enclosed in quotes, so substitution occurs, but the square brackets
are escaped with backslashes to prevent Tcl from performing a command substitution.

42 CHAPTER 3 Introduction to the Tcl Language

Example 8
Script Example

set x 2
set y 3
puts "The sum of $x and $y is returned by \[expr $x+$y\]"

Script Output
The sum of 2 and 3 is returned by [expr 2+3]

Example 9 escapes the dollar sign on the variables to prevent them from being substituted and also
escapes a set of quotes around the expr string. If not for the backslashes before the quotes, the quoted
string would end with the second quote symbol, which would be a syntax error. Sets of square brackets
and curly braces nest, but quotes do not.

Example 9
Script Example

set x 2
set y 3
puts "The sum of \$x + \$y is returned by \"\[expr \$x+\$y\]\""

Script Output
The sum of $x + $y is returned by "[expr $x+$y]"

Splitting Lists
The {*} operator will convert a list to its component parts before evaluating a command. This is com-
monly used when one procedure returns a set of values that need to be passed to another procedure as
separate values, instead of as a single list.

The set command requires two arguments to assign a value to a variable - the name of the variable
and the value. You cannot assign the variable name and value to a string and then pass that string to
the set command.

This is an error
set nameANDvalue "a 2"
set $nameANDvalue

The {*} operator can split the string "a 2" into two components: the letter a and the number 2.

Example 10
Script Example

This works
set nameANDvalue "a 2"

3.2 Command Evaluation and Substitutions 43

set { ∗ }$nameANDvalue
puts $a

Script Output
2

3.2.3 Steps in Command Evaluation
When a Tcl interpreter evaluates a command, it makes only one pass over that command to perform
substitutions. It does not loop until a variable is fully resolved. However, if a command includes another
Tcl command within brackets, the command processor will be called recursively until there are no fur-
ther bracketed commands. When there are no more phrases to be substituted, the command is evaluated,
and the result is passed to the previous level of recursion to substitute for the bracketed string.

The next example shows how the interpreter evaluates a command. The indentation depth
represents the recursion level. Let’s examine the following command.

set x [expr [set a 3] + 4 + $a]

The expr command performs a math operation on the supplied arguments and returns the results.
For example, expr 2+2 would return the value 4.

The interpreter scans the command from left to right, looking for a phrase to evaluate and substitute.
The scanner encounters the left square bracket, and the command evaluator is reentered with that subset
of the command.

expr [set a 3] + 4 + $a

The interpreter scans the new command, and again there is a bracket, so the command evaluator is
called again with the following subset.

set a 3

There are no more levels of brackets and no substitutions to perform, so this command is evaluated,
the variable a is set to the value 3, and 3 is returned. The recursive call returned 3, so the value 3
replaces the bracketed command, and the command now resembles the following.

expr 3 + 4 + $a

The variables are now substituted, and $a is replaced by 3, making the following new command.

expr 3 + 4 + 3

The interpreter evaluates this string, and the result (10) is returned. The substitution is performed,
and the command is now as follows.

set x 10

The interpreter evaluates this string, the variable x is set to 10 , and tclsh returns 10. In partic-
ular, note that the variable a was not defined when this command started but was defined within the
first bracketed portion of the command. If this command had been written in another order, as in the
following,

set x [expr $a + [set a 3] + 4]

44 CHAPTER 3 Introduction to the Tcl Language

the Tcl interpreter would attempt to substitute the value of the variable a before assigning the value 3
to a.. If a had not been previously defined, it would generate an error.. If a had been previously defined, the command would return an unexpected result depending on

the value. For instance, if a contained an alphabetic string, expr would be unable to perform the
arithmetic operation and would generate an error.

A Tcl variable can contain a string that is a Tcl command string. Dealing with these commands is
discussed in Chapter 5.

3.3 DATA TYPES
The primitive data type in Tcl is the string (which may be a numeric value). The composite data types
are the list, dict and associative array. The Tcl interpreter manipulates some complex entities such as
graphic objects, I/O channels, and sockets via handles. Handles are introduced briefly here, with more
discussion in the following chapters.

Unlike C, C++, or Java, Tcl is a typeless language. However, certain commands can define what
sort of string data they will accept. Thus, the expr command, which performs math operations, will
generate an error if you try to add 5 to the string “You can’t do that.”

3.3.1 Assigning Values to Variables
The command to define the value of a variable is set. It allocates space for a variable and data and
assigns the data to that variable.

Syntax: set varName ?value?
Define the value of a variable.

varName The name of the variable to define.

value The data (value) to assign to the variable.

set always returns the value of the variable being referenced. When set is invoked with two argu-
ments, the first argument is the variable name and the second is a value to assign to that variable. When
set is invoked with a single argument, the argument is a variable name and the value of that variable
is returned.

Example 11
% set x 1
1
% set x
1
% set z [set x 2]
2
% set z

3.3 Data Types 45

2
% set y
can’t read "y": no such variable

Because Tcl is often used as a string processing language, it’s also useful to be able to add new
characters to the end of the value in a variable. The append command will append a string to the end
of a variable. If the variable was not previously defined, the append command will create the variable
and will assign the initial value to the string.

Syntax: append varName ?value1? ?value2?
Append one or more new values to a variable.

varName The name of the variable to which to append the data.

value The data to append to the variable content.

Note that append appends only the data you request. It does not add any
separators between data values.

Example 12
% set x 1
1
% append x 2
12
% append x
12
% append x 3 4
1234
% append y new value
newvalue

3.3.2 Strings
The Tcl interpreter represents all data as a string within a script. (Within the interpreter, the data may
be represented in the computer’s native format.) A Tcl string can contain alphanumeric, pure numeric,
Boolean, or even binary data.

Alphanumeric data can include any letter, number, or punctuation. Tcl uses 16-bit Unicode to repre-
sent strings, which allows non-Latin characters (including Japanese, Chinese, and Korean) to be used
in strings. A Tcl script can represent numeric data as integers, floating-point values (with a decimal
point), hexadecimal or octal values, or scientific notation.

You can represent a Boolean value as a 1 (for true) and 0 (for false), or as the string "true" or
"yes" and "false" or "no". Any capitalization is allowed in the Boolean string: "TrUe" is recog-
nized as a Boolean value. The command that receives a string will interpret the data as a numeric or
alphabetic value, depending on the command’s data requirements.

46 CHAPTER 3 Introduction to the Tcl Language

Example 13
Legitimate Strings

set alpha "abcdefg"

Assign the string "abcdefg" to the variable alpha.

set validString "this is a valid string"

Assign the string "this is a valid string" to the variable validString.

set number 1.234

Assign the number 1.234 to the variable number.

set octalVal 0755

Assign the octal value 755 to the variable octalVal. Commands that interpret values numer-
ically will convert this value to 493 (base 10). Support for the leading 0 to represent octal
numbers is still supported in Tcl 8.6, but may be removed in later releases.

set hexVal 0x1ed

Assign the hex value 1ED to the variable hexVal. Commands that interpret values numerically
will convert this value to 493 (base 10).

set scientificNotation 2e2

Assign the string 2e2 to the variable scientificNotation. Commands that interpret values
numerically will convert this value to 200.

set msg {Bad input: "Bogus". Try again.}

Assign the string Bad input: "Bogus". Try again. to the variable msg. Note the internal
quotes. Quotes within a braced string are treated as ordinary characters.

set msg "Bad input: \"Bogus\". Try again."

Assign the string Bad input: "Bogus". Try again. to the variable msg . Note that the
internal quotes are escaped.

Bad Strings
set msg "Bad input: "Bogus". Try again."

The quotes around Bogus are not escaped and are treated as quotes. The quote before Bogus
closes the string, and the rest of the line causes a syntax error.

Error Message: extra characters after close-quote

set badstring "abcdefg

Has only one quote. The error message for this will vary, depending on how the missing quote
is finally resolved.

set mismatch {this is not a valid string"

Quote and brace mismatch. The error message for this will vary, depending on how the missing
quote is finally resolved.

3.3 Data Types 47

set noquote this is not a valid string

This set of words must be grouped to be assigned to a variable.

Error Message: wrong # args: should be "set varName ?newValue?"

3.3.3 String Processing Commands
The string, format, and scan commands provide most of the tools a script writer needs for
manipulating strings. The regular expression commands are discussed in Section 5.6. The string
subcommands include commands for searching for substrings, identifying string matches, trimming
unwanted characters, determining the contents of a string, replacing substrings and converting case.
The format command generates formatted output from a format descriptor and a set of data (like the
C library sprintf function). The scan command will extract data from a string and assign values to
variables (like the C library scanf function).

All Tcl variables are represented as strings. You can use the string manipulation commands with
integers and floating-point numbers as easily as with alphabetic strings. When a command refers to a
position in a string, the character positions are numbered from 0, and the last position can be referred
to as end.

There is more detail on all of the string subcommands in the Tcl reference and the companion
website tutorials. The following subcommands are used in the examples in the next chapters.

The string match command searches a target string for a match to a pattern. The pattern is
matched using the glob match rules. The rules for glob matching are as follows.

* Matches 0 or more characters.

? Matches a single character.

[] Matches a character in the set defined within the brackets.

[abc] Defines abc as the set.

[m-y] Defines all characters alphabetically between m and y (inclusive) as the set.

\? Matches the single character ?.

Note that the glob rules use [] in a different manner than the Tcl evaluation code. You must protect
the brackets from tclsh evaluation, or tclsh will try to evaluate the phrase within the brackets as a
command and will probably fail. Enclosing a glob expression in curly braces will accomplish this.

Syntax: string match pattern string
Returns 1 if pattern matches string, else returns 0.

pattern The pattern to compare to string.

string The string to match against the pattern.

Example 14
% set str "This is a test, it is only a test"
This is a test, it is only a test
% string match "*test*" $str

48 CHAPTER 3 Introduction to the Tcl Language

1
% string match "not present" $str
0

The string tolower command converts a string to lowercase letters. Note that this is not done in
place. A new string of lowercase letters is returned. The string toupper command converts strings
to uppercase using the same syntax.

Syntax: string tolower string

Syntax: string toupper string
string The string to convert.

Example 15
% set upper [string toupper $str]
THIS IS A TEST, IT IS ONLY A TEST
% set lower [string tolower $upper]
this is a test, it is only a test

The string first command returns the location of the first instance of a substring in a test string,
or −1 if the pattern does not exist in the test string. The string last returns the character location
of the last instance of the substring in the test string.

Syntax: string first substr string

Syntax: string last substr string
Return the location of the first (or last) occurrence of substr in string.

substr The substring to search for.

string The string to search in.

Example 16
% set str "This is a test, it is only a test"
This is a test, it is only a test
% set st first [string first st $str]
12
% set st last [string last st $str]
31

The string length command returns the number of characters in a string. With Tcl 8.0 and
newer, strings are represented internally as 2-byte Unicode characters. The value returned by string
length is the number of characters, not bytes.

3.3 Data Types 49

Syntax: string length string
Return the number of characters in string.

string The string.

Example 17
set len [string length $str]
33

The string range command returns the characters between two points in the string.

Syntax: string range string first last
Returns the characters in string between first and last.

string The string.

first The position of the first character to return

last The position of the last character to return

Example 18
% set subset [string range $str $st first $st last]
st, it is only a tes

The string map command replaces one or more substrings within a string with new values.

Syntax: string map map string
Return a modified string based on values in the map.

map a set of string pairs that describe the changes to be
made to the string. Each string pair is an old string
and a new string which will replace old string.

string A string to be modified.

Example 19
% string map {"a test" "an exam"} $str
This is an exam, it is only an exam
The map may contain multiple pairs as
{old1 new1 old2 new2 ...}
% string map \

{This These is are a {} test tests it they} $str
These are tests, they are only tests

50 CHAPTER 3 Introduction to the Tcl Language

The string is command will report what type of data is in a string. It can test to see if a string
is an integer, double, printable string, boolean and more. See the man page for all the types of tests the
string is command can perform.

Syntax: string is type string
Test to see if the string matches the type.

type The type of data that might be contained in string.
Options include:

digit Any unicode digit

integer An integer value. May include leading
or trailing whitespace.

double A number

alnum A letter or number

upper Uppercase letters

lower Lowercase letters

space Any unicode space character

Example 20
% string is integer "123"
1
% string is integer "123a"
0
% string is integer "123.0"
0
% string is double "123.0"
1
% string is alnum "123a"
1
% string is alnum "123.0a"
0

The format command generates formatted strings and can perform some data conversions. It is
equivalent to the C language sprintf command.

Syntax: format formatString ?data1? ?data2? ...
Return a new formatted string.

formatString A string that defines the format of the string being
returned.

data# Data to substitute into the formatted string.

The first argument must be a format description. The format description can contain text strings and
% fields. The text string will be returned exactly as it appears in the format description. The % fields
will be substituted with formatted strings derived from the data that follows the format descriptor. A
literal percent symbol can be generated with a %% field.

3.3 Data Types 51

The format for the % fields is the same as that used in the C library. The field definition is a string
consisting of a leading percent sign, two optional fields, and a ‘formatDefinition, as follows.

% ?justification? ?field width? formatDefinition. The first character in a % field is the % symbol.. The field justification may be a plus or minus sign. A minus sign causes the content of the
% field to be left justified. A plus sign causes the content to be right justified. By default the data is
right justified.. The field width is a numeric field. If it is a single integer, it defines the width of the field in
characters. If this value is two integers separated by a decimal point, the first integer represents the
total width of the field in characters, and the second represents the number of digits to the right of
the decimal point to display for floating-point formats.. The formatDefinition is the last character. It must be one of the following.

s The argument should be a string.

Replace the field with the argument.

% format %s 0xf

0xf

c The argument should be a decimal integer.

Replace the field with the ASCII character value of this integer.

% format %c 65

A

d or i The argument should be a decimal integer.

Replace the field with the decimal representation of this integer.

% format %d 0xff

255

u The argument should be an integer.

Replace the field with the decimal representation of this integer

treated as an unsigned value.

% format %u -1

4294967295

o The argument should be an decimal integer value.

Replace the field with the octal representation of the argument.

% format %o 0xf

17

X or x The argument should be a decimal integer.

Replace the field with the hexadecimal representation of this integer.

% format %x -1

ffffffff

52 CHAPTER 3 Introduction to the Tcl Language

f The argument should be a numeric value.

Replace the field with the decimal fraction representation.

% format %3.2f 1.234

1.23

E or e The argument should be a numeric value.

Replace the field with the scientific notation representation of this
integer.

% format %e 0xff

2.550000e+02

G or g The argument should be a numeric value.

Replace the field with the scientific notation or floating-point
representation.

% format %g 1.234e2

123.4

Example 21
% format {%5.3f} [expr 2.0/3]
0.667
% format {%c%c%c%c%c} 65 83 67 73 73
ASCII
% set def "%-12s %s"
% puts [format $def "Author" "Title"]
% puts [format $def "Clif Flynt" \

"Tcl/Tk: A Developers Guide"]

Author Title
Clif Flynt Tcl/Tk: A Developers Guide

The scan command is the flip side to format. Instead of formatting output, the scan command
will parse a string according to a format specifier. The scan command emulates the behavior of
the C sscanf function. The first argument must be a string to scan. The next argument is a format
description, and the following arguments are a set of variables to receive the data values.

Syntax: scan textString formatString ?varName1? ... ?varNameN?
Parse a text string into one or more variables.

textString The text data to scan for values.

formatString Describes the expected format for the data. The format
descriptors are the same as for the format command.

varName* The names of variables to receive the data.

The scan command returns the number of percent fields that were matched. If this is not the number
of percent fields in the formatString, it indicates that the scan command failed to parse the data.

3.3 Data Types 53

The format string of the scan command uses the same % descriptors as the format command, and
adds a few more.

[. . .] The value between the open and close square brackets will be a list of
characters that can be accepted as matches.

Characters can be listed as a range of characters ([a-z]). A leading or
trailing dash is considered a character, not a range marker.

All characters that match these values will be accepted until a
nonmatching character is encountered.

% scan "a scan test" {%[a-z]} firstword

1

% set firstword

a

[∧ . . .] The characters after the caret (∧) will be characters that cannot be
accepted as matches. All characters that do not match these values will be
accepted until a matching character is encountered.

% scan "a scan test" {%[∧t-z]} val

1
% set val

a scan
In the following example, the format string {%s %s %s %s}will match four sets of non-whitespace

characters (words) separated by whitespace.

Example 22
% set string {Speak, Friend and Enter}
Speak, Friend and Enter
% scan $string {%s %s %s %s} a b c d
4
% puts "The Password is: $b"
The Password is: Friend

A format string can also include literal characters that will be included in a format return, or must
be matched by the scan command. For instance, the scan command in the previous example could
also be written as follows.

% scan $string {Speak %s} password

This would extract the password from Speak Friend and Enter, but would not extract any
words from "The password is sesame", since the format string requires the word Speak to be the
first word in the string.

String and Format Command Examples
This example shows how you might use some string, scan, and format commands to extract the
size, from, and timestamp data from an e-mail log file entry and generate a formatted report line.

54 CHAPTER 3 Introduction to the Tcl Language

Example 23
Script Example

Define the string to parse.
set logEntry {Mar 25 14:52:50 clif sendmail[23755]:
from=<tcl-core-admin@lists.sourceforge.net>,
size=35362, class=-60, nrcpts=1

Extract "From" using string first and string range
set openAnglePos [string first "<" $logEntry]
set closeAnglePos [string first ">" $logEntry]
set fromField [string range $logEntry $openAnglePos $closeAnglePos]

Extract the date using scan
scan $logEntry {%s %d %d:%d} mon day hour minute
Extract the size using scan and string cmds.
set sizeStart [string first "size=" $logEntry]
set substring [string range $logEntry $sizeStart end]

The formatString looks for a word composed of the
letters ‘eisz’ (size will match) followed by an
equals sign, followed by an integer. The word
‘size’ gets placed in the variable discard,
and the numeric value is placed in the variable
sizeField.
scan $substring {%[eisz]=%d} discard sizeField

puts [format {%-12s %-40s %-s} "Timestamp" "From" "Size"]
puts [format {%s %d %d:%d %-40s %d} \

$mon $day $hour $minute $fromField $sizeField]

Script Output
Timestamp From Size
Mar 25 14:52 <tcl−core−admin@lists.sourceforge.net> 35362

3.3.4 Lists
A Tcl list can be represented as a string that follows some syntactic conventions. (Internally, a string is
represented as a list of pointers to Tcl objects, which are discussed later.). A list can be represented as a list of list elements enclosed within curly braces.. Each word is a list element.. A set of words may be grouped with curly braces.. A set of words grouped with curly braces is a list element within the larger list, and also a list in its

own right.. A list element can be empty (it will be displayed as {}).

3.3 Data Types 55

For example, the string {apple pear banana} can be treated as a list. The first element of this
list is apple, the second element is pear, and so on. The order of the elements can be changed with
Tcl commands for inserting and deleting list elements, but the Tcl interpreter will not modify the order
of list elements as a side effect of another operation.

A list may be arbitrarily long, and list elements may be arbitrarily long. Any string that adheres to
these conventions can be treated as a list, but it is not guaranteed that any arbitrary string is a valid list.
For example, "this is invalid because of an unmatched brace {" is not a valid list.

With Tcl 8.0, lists and strings are treated differently within the interpreter. If you are dealing with
data as a list, it is more efficient to use the list commands. If you are dealing with data as a string, it is
better to use the string commands.

The following are valid lists.

{This is a six element list}
{This list has {a sublist} in it}
{Lists may {be nested {arbitrarily deep}}}
"A string like this may be treated as a list"

The following are invalid lists.
{This list has mismatched braces
{This list {also has mismatched braces

3.3.5 List Processing Commands
A list can be created in the following ways.. By using the set command to assign a list to a variable. By grouping several arguments into a single list element with the list command. By appending data to an unused variable with the lappend command. By splitting a single argument into list elements with the split command. By using a command that returns a list. (The array names command returns a list of associative

array indices. It will be discussed in Section 3.3.7.)

The list command takes several units of data and combines them into a single list. It adds whatever
braces may be necessary to keep the list members separate.

Syntax: list element1 ?element2? . . . ?elementN?
Creates a list in which each argument is a list element.

element* A unit of data to become part of the list

Example 24
% set mylist [list first second [list three element sublist] fourth]
first second {three element sublist} fourth

The lappend command appends new data to a list, creating and returning a new, longer list. Note
that this command will modify the existing list, unlike the string commands, which return new data
without changing the original.

56 CHAPTER 3 Introduction to the Tcl Language

Syntax: lappend listName ?element1? . . . ?elementN?
Appends the arguments onto a list.

listName The name of the list to append data to.

element* A unit of data to add to the list.

Example 25
% lappend mylist fifth
first second {three element sublist} fourth fifth

The split command returns the input string as a list. It splits the string wherever certain characters
appear. By default, the split location is a whitespace character: a space, tab, or newline.

Syntax: split data ?splitChar?
Split data into a list.

data The string data to split into a list.

?splitChar? An optional character (or list of characters) at which to
split the data.

Example 26
% set commaString "1,2.2,test"
1,2.2,test
% # Split on commas
% set lst2 [split $commaString ,]
1 2.2 test
% # Split on comma or period
% set lst2 [split $commaString {,.}]
1 2 2 test
% # Split on empty space between letters
% # (each character becomes a list element)
% set lst2 [split $commaString {}]
1 , 2 . 2 , t e s t

Tcl also includes several commands for manipulating lists. These include commands to convert a
list into a string, return the number of elements in a list, search a list for elements that match a pattern,
retrieve particular elements from a list, and insert and replace elements in a list.

The join command converts a list into a string.

Syntax: join list ?separator?
Joins the elements of a list into a string.

list The list to convert to a string.

separator An optional string that will be used to separate the list
elements. By default, this is a space.

3.3 Data Types 57

The join command can be used to convert a Tcl list into a comma-delimited list for import into a
spreadsheet.

Example 27
% set numbers [list 1 2 3 4]
1 2 3 4
% join $numbers :
1:2:3:4
% join $numbers ", "
1, 2, 3, 4

The llength command returns the number of list elements in a list. Note that this is not the number
of characters in a list, but the number of list elements. List elements may be lists themselves. These
lists within a list are each counted as a single list element.

Syntax: llength list
Returns the length of a list.

list The list.

Example 28
% set mylist [list first second [list three element sublist] fourth]
first second {three element sublist} fourth
% llength $mylist
4

The lsearch command will search a list for elements that match a pattern. The lsearch com-
mand uses the glob-matching rules by default. These are described with the previous string match
discussion. The regular expression rules are discussed in Chapter 5.

Syntax: lsearch ?-option? list pattern
Returns the index of the first list element that matches pattern or -1 if no
element matches the pattern. The first element of a list has an index of 0.

?-option? Controls how the lsearch command will behave. Multiple
options may be used together to control the behavior of the
lsearch command. Some of the modifiers include:

-exact List element must exactly match the pattern.

-glob List element must match pattern using the glob
rules. This is the default matching algorithm.

-regexp List element must match pattern using the
regular expression rules.

58 CHAPTER 3 Introduction to the Tcl Language

-all Return all the values that match the pattern,
instead of only the first element.

-inline Return the element instead of the index of the
element.

-start position Return the first value after position that
matches the pattern.

-not Inverts the test and returns values that do not
match the pattern.

list The list to search.

pattern The pattern to search for.

Example 29
% set mylist [list first second [list three element sublist] fourth]
first second {three element sublist} fourth
% lsearch $mylist second
1
% # three is not a list element - it’s a part of a list element
% lsearch $mylist three
-1
% lsearch $mylist "three*"
2
% lsearch $mylist "*ou*"
3
% lsearch -all $mylist "*s*"
0 1 2
% lsearch -all -inline $mylist "*s*"
first second {three element sublist}
% lsearch -start 1 -all -inline $mylist "*s*"
second {three element sublist}
% lsearch -not $mylist "*s*"
3

You can extract elements from a list with the lindex command.

Syntax: lindex list index
Returns a list element. The first element is element 0. If this value is larger
than the list, an empty string is returned.

list The list.

index The position of a list entry to return.

Example 30
% set mylist [list first second [list three element sublist] fourth]
first second {three element sublist} fourth

3.3 Data Types 59

% lindex $mylist 0
first
% lindex $mylist 2
three element sublist
% lindex $mylist [lsearch $mylist *ou*]
fourth

The linsert command returns a new list with the new elements inserted. It does not modify the
existing list.

Syntax: linsert list position element1 . . . ?elementN?
Inserts an element into a list at a given position.

list The list to receive new elements.

position The position in the list at which to insert the new list
elements. If this value is end or greater than the number of
elements in the list, the new values are added at the end of
the list.

element* One or more elements to be inserted into the list.

Example 31
% set mylist [list first second [list three element sublist] fourth]
first second {three element sublist} fourth
% set longerlist [linsert $mylist 0 zero]
zero first second {three element sublist} fourth
% puts $mylist
first second {three element sublist} fourth

Like linsert, the lreplace command returns a new list. It does not modify the existing list.
The difference between the first and last elements need not match the number of elements to be
inserted. This allows the lreplace command to be used to increase or decrease the length of a list.

Syntax: lreplace list first last element1 . . . ?elementN?
Replaces one or more list elements with new elements.

list The list to have data replaced.

first The first position in the list at which to replace elements. If
this value is end, the last element will be replaced. If the
value is greater than the number of elements in the list, an
error is generated.

last The last element to be replaced.

element* Zero or more elements to replace the elements between the
first and last elements.

60 CHAPTER 3 Introduction to the Tcl Language

Example 32
% set mylist [list first second [list three element sublist] fourth]
first second {three element sublist} fourth
% set newlist [lreplace $mylist 0 0 one]
one second {three element sublist} fourth
% set shortlist [lreplace $mylist 0 1]
{three element sublist} fourth

The next example demonstrates using the list commands to split a set of comma and newline delim-
ited data (a common export format for spreadsheet programs) into a Tcl list and then reformat the data
for display.

Example 33
List Commands Example
Define the raw data

set rawData {Package,Major,Minor,Patch
Tcl,8,6,0
math::geometry,1,0,3
math::complexnumbers,1,0,2}

Split the raw data into a list using the newlines
as list element separators.
This creates a list in which each line becomes a
list element
set dataList [split $rawData "\n"]

Create a list of the column headers.
set columns [split [lindex $dataList 0] ","]

foreach line [lrange $dataList 1 end] {
Convert the line of data into a list
set rowValues [split $line ","]\

Create a new list from $rowValues that includes
all the elements after the first (package name).
set revList [lrange $rowValues 1 end]

and rejoin them into a "." separated string
set revision [join $revList "."]

Display a reformatted version of the data line

3.3 Data Types 61

puts [format "%s: %s Revision: %s" [lindex $columns 0]\
[lindex $rowValues 0] $revision]

}

Script Output
Package: Tcl Revision: 8.6.0
Package: math::geometry Revision: 1.0.3
Package: math::complexnumbers Revision: 1.0.2

3.3.6 Dictionaries
The dict command was added to Tcl in version 8.5. Conceptually, a dictionary is an ordered list of
key-value pairs. A dict looks like this:

puts [dict create key1 val1 key2 val2]

key1 val1 key2 val2

The concept of key-value pairs is simple enough that you may be tempted to just write procedures
to handle such lists. Writing procedures to handle lists of key-value pairs will be demonstrated in
Chapter 6.

Unless you are constrained to use versions of Tcl that don’t have dictionary support, you should use
the dict command. The improvements of the dictionary over home-grown keyed-list procedures are:. the dict supports nesting dictionaries within a dictionary (just as lists can be nested).. the dict command is implemented in fast C code with hash tables.. there is a rich set of dict subcommands to search and manipulate dictionaries.. the dict command contains both field and value information, making it useful as a data construct

to use with a database extension.

As with Tcl lists, a dict variable can be initialized in several ways including dict create , dict
append and dict lappend.

The dict create command creates a complete dictionary without assigning the value to a
variable, just as you might use the format command to initialize a string.

Syntax: dict create key1 val1 key2 val2 ...
Create a dictionary of keys and values.

key* A key in the dictionary.

val* The value to associate with the previous key.

The next example creates a dictionary of movie titles and notable quotes. If you print the contents
of the $quotes variable it will look just like a list of movie titles and quotes.

62 CHAPTER 3 Introduction to the Tcl Language

Example 34
Creating a Dict
set quotes [dict create \
"Casablanca" "Play it, Sam." \
"Star Wars" "I get a bad feeling about this." \
"Indiana Jones" "Snakes, Why did it have to be snakes." \
"Looney Tunes" "What’s Up Doc?"]

set movie Casablanca
puts "A notable quote from $movie is: [dict get $quotes $movie]"

Script Output
A notable quote from Casablanca is: Play it, Sam.

In the previous example, the values associated with each key are a grouped set of words, but there
is no higher level of grouping. If we want each quote to be a single unit (so we can have multiple
quotes for some movies), the dict create command will need to add the grouping as shown in the
next example.

Example 35
Creating a Dict of Quotes
set quotes [dict create \
"Casablanca" [list "Play it, Sam." "Round up the usual suspects"] \
"Star Wars" [list "I get a bad feeling about this."] \
"Indiana Jones" [list "Snakes, Why did it have to be snakes."]]

set movie Casablanca
puts "A notable quote from $movie is: \

[lindex [dict get $quotes $movie] 0]"

Script Output
A notable quote from Casablanca is: Play it, Sam.

The dict append and dict lappend commands will modify an existing dict variable, or create
a new variable if the variable did not previously exist. This is the same way that the append and
lappend commands work with string and list variables.

Syntax: dict append dictName key value
Appends the given value to the given key.

dictName Name of the variable to be modified.

key Key within this dictionary to be modified.

value Value to append onto the current value of this key.

3.3 Data Types 63

Syntax: dict lappend dictName key value
Appends the given value to the given key.

dictName Name of the variable to be modified.

key Key within this dictionary to be modified.

value Value to lappend onto the current value of this key.

Example 36

Modifying a Dict

Add a new quote to the Star Wars quotes
dict lappend quotes "Star Wars" "Feel the Force, Luke."

Create a new entry for ET quotes.
dict lappend quotes "ET" "E.T. Phone Home."

set movie "Star Wars"
puts "Notable quotes from $movie include:"
foreach quote [dict get $quotes $movie] {
puts " $quote"
}

Script Output
Notable quotes from Star Wars include:
I get a bad feeling about this.
Feel the Force, Luke.

Because the values in this dictionary are lists, modifying an individual list element must be done
by extracting the value from the dictionary, modifying it and replacing it. For example, the complete
Casablanca quote is “Play it, Sam. Play As Time Goes By.”

The dict replace command will let us replace a value with a new value. Like the lreplace
command, this command does not replace the value in the dictionary, it returns a new dictionary with
the value modified.

Syntax: dict replace $dict key new value
Return a new dictionary with the value associated with a key replaced with

a new value.

$dict The dictionary to be modified.

key The key to be modified.

new value The new value for this key.

64 CHAPTER 3 Introduction to the Tcl Language

Example 37
Modifying a Dict Value
set vals [dict get $quotes Casablanca]
set val [lindex $vals 0]
append val " Play ‘As Time Goes By’."
set vals [lreplace $vals 0 0 $val]
set quotes [dict replace $quotes Casablanca $vals]

set movie Casablanca
puts "The full quote from $movie is: \

[lindex [dict get $quotes $movie] 0]"

Script Output
The full quote from Casablanca is:
Play it, Sam. Play ‘As Time Goes By’.

A dictionary value can be modified in place with the dict set command.

Syntax: dict set dictName key new value
Sets the contents of a dictionary key to a new value.

$dict The name of the dictionary to be modified.

key The key to be modified.

new value The new value for this key.

The previous example—adding a string to one movie quote—becomes a bit simpler by using the
dict set command instead of dict replace.

Example 38
Modify a Dict Value
set vals [dict get $quotes Casablanca]
set val [lindex $vals 0]
append val " Play ‘As Time Goes By’."
set vals [lreplace $vals 0 0 $val]
dict set quotes Casablanca $vals

set movie Casablanca
puts "The full quote from $movie is: \

[lindex [dict get $quotes $movie] 0]"

Script Output
The full quote from Casablanca is:
Play it, Sam. Play ‘As Time Goes By’.

3.3 Data Types 65

3.3.7 Associative Arrays
The associative array is an array that uses a string to index the array elements, instead of a numeric
index the way C, FORTRAN, and BASIC implement arrays. A variable is denoted as an associative
array by placing an index within parentheses after the variable name.

For example, price(apple) and price(pear) would be associative array variables that could
contain the price of an apple or pear. The associative array is a powerful construct in its own right and
can be used to implement composite data types resembling the C struct or even a C++ class object.
Using associative arrays is further explored in Chapter 6.

Example 39
set price(apple) .10 price is an associative array. The element referenced by the

index apple is set to .10.

set price(pear) .15 price is an associative array. The element referenced by the
index pear is set to .15.

set quantity(apple) 20 quantity is an associative array. The element referenced by
the index apple is set to 20.

set discount(12) 0.95 discount is an associative array. The element referenced by
the index 12 is set to 0.95.

3.3.8 Associative Array Commands
An array element can be treated as a simple Tcl variable. It can contain a number, string, list, or even the
name of another array element. As with lists, there is a set of commands for manipulating associative
arrays. You can get a list of the array indices, get a list of array indices and values, or assign many
array indices and values in a single command. Like the string commands, the array commands are
arranged as a set of subcommands of the array command.

The list of indices returned by the array names command can be used to iterate through the
content of an array.

Syntax: array names arrayName ?pattern?
Returns a list of the indices used in this array.

arrayName The name of the array.

pattern If this option is present, array names will return only
indices that match the pattern. Otherwise, array names
returns all the array indices.

Example 40
set fruit(apples) 10
set fruit(pears) 5
foreach item [array names fruit *] {
puts "There are $fruit($item) $item."
}

66 CHAPTER 3 Introduction to the Tcl Language

There are 5 pears.
There are 10 apples.

The array get command returns the array indices and associated values as a list. The list is a set
of pairs in which the first item is an array index and the second is the associated value. The third list
element will be another array index (first item in the next pair), the fourth will be the value associated
with this index, and so on.

Syntax: array get arrayName
Returns a list of the indices and values used in this associative array.

arrayName The name of the array.

Example 41
% array get fruit
pears 5 apples 10

The array set command accepts a list of values in the format that array get generates. The
array get and array set pair of commands can be used to copy one array to another, save and
restore arrays from files, and so on.

Syntax: array set arrayName {index1 value1 ... indexN valueN}
Assigns each value to the appropriate array index.

arrayName The name of the array.

index* An index in the array to assign a value to.

value* The value to assign to an array index.

Example 42
% array set fruit [list bananas 20 peaches 40]
% array get fruit
bananas 20 pears 5 peaches 40 apples 10

The next example shows some simple uses of an array. Note that while the Tcl array does not
explicitly support multiple dimensions the index is a string and you can define multidimensional arrays
by using a naming convention, such as separating fields with a comma, period, dash, and so on, that
does not otherwise appear in the index values.

Example 43
Array Example

Initialize some values with set
set fruit(apple.cost) .10
set fruit(apple.count) 5

3.3 Data Types 67

Initialize some more with array set
array set fruit {pear.cost .15 pear.count 3}
At this point the array contains:

Index Value
apple.cost .10
pear.cost .15
apple.count 5
pear.count 3

Count the number of different types of fruit in the
array by getting a list of unique indices, and then
using the llength command to count the number of
elements in the list.
set typeCount [llength [array names fruit *cost]]
puts "There are $typeCount types of fruit in the fruit array"
You can use another variable to hold all,
or a part of an array index.
set type apple
puts "There are $fruit($type.count) apples"
set type pear
puts "There are $fruit($type.count) pears"
array set new [array get fruit]
set type pear
puts "There are $new($type.count) pears in the new array"

Script Output
There are 2 types of fruit in the fruit array
There are 5 apples
There are 3 pears
There are 3 pears in the new array

3.3.9 Binary Data
Versions of Tcl prior to 8.0 (pre 1998) used null-terminated ASCII strings for the internal data repre-
sentation. This made it impossible to use Tcl with binary data that might have NULLs embedded in the
data stream.

With version 8.0, Tcl moved to a new internal data representation that uses a native-mode data
representation. An integer value is saved as a long integer, a real value is saved as an IEEE floating
point value, and so on. The new method of data representation supports binary data, and a command
was added to convert binary data to integers, floats, or strings. Tcl is still oriented around printable
ASCII strings but the binary command makes it possible to handle binary data easily.

The binary command supports two subcommands to convert data to and from a binary repre-
sentation. The format subcommand will transform an ASCII string to a binary value, and the scan
subcommand will convert a string of binary data to one or more printable Tcl variables. These sub-
commands require a descriptor to define the format of the binary data. Examples of these descriptors
follow the command syntax.

68 CHAPTER 3 Introduction to the Tcl Language

Syntax: binary format format arg1 ?arg2? ... ?argN?
Returns a binary string created by converting one or more printable ASCII strings to
binary format.
format A string that describes the format of the ASCII data.

arg* The printable ASCII to convert.

Syntax: binary scan binaryData format arg1 ?varName1? ...
?varNameN?
Converts a string of binary data to one or more printable ASCII strings.
binaryData The binary data.

format A string that describes the format of the ASCII data.

varName* Names of variables to accept the printable
representation of the binary data.

The components of format are similar to the format strings used by scan and format in that they
consist of a descriptor (a letter) and an optional count. If the count is defined, it describes the number
of items of the previous type to convert. The count defaults to 1. Common descriptors include the
following.

Example 44
Script Example

binary scan "Tk" H4 x
puts "X: $x"
Assign three integer values to variables
set a 1415801888
set b 1769152615
set c 1919246708
Convert the integers to ASCII equivalent
puts [binary format {I I2} $a [list $b $c]]

Script Output
X: 546b
Tcl is great

The string used to define the format of the binary data is very powerful, and allows a script to
extract fields from complex C structures.

h Converts between binary and hexadecimal digits in little endian order.

binary format h2 34 - returns “C” (0x43).

binary scan "4" h2 x - stores 0x43 in the variable x

H Converts between binary and hexadecimal digits in big endian order.

binary format H2 34 - returns “4” (0x34).

binary scan "4" H2 x - stores 0x34 in the variable x

3.3 Data Types 69

c Converts an 8-bit value to/from ASCII.

binary format c 0x34 - returns “4” (0x34).

binary scan "4" c x - stores 0x34 in the variable x

s Converts a 16-bit value to/from ASCII in little endian order.

binary format s 0x3435 - returns “54” (0x35 0x34).

binary scan "45" s x - stores 13620 (0x3534) in the variable x

S Converts a 16-bit value to/from ASCII in big endian order.

binary format S 0x3435 - returns ”45” (0x34 0x35).

binary scan "45" S x - stores 13365 (0x3435) in the variable x

i Converts a 32-bit value to/from ASCII in little endian order.

binary format i 0x34353637 - returns ”7654” (0x37 0x36 0x35 0x34).

binary scan "7654" ix - stores 875902519 (0x34353637) in the variable x

I Converts a 32-bit value to/from ASCII in big endian order.

binary format I 0x34353637 - returns ”4567” (0x34 0x35 0x36 0x37).

binary scan "7654" Ix - stores 926299444 (0x37363534) in the variable x

f Converts 32-bit floating point values to/from ASCII.

binary format f 1.0 - returns the binary string ”0x00803f”.

binary scan "0x00803f" f x - stores 1.0 in the variable x

Example 45
Script Examples

C Code to Generate a Structure Tcl Code to Read the Structure
#include <stdio.h> # Open the input file, and read data

#include <fcntl.h> set if [open tstStruct r]

main () { set d [read $if]

struct a { close $if

int i;

float f[2]; # scan the binary data into variables.

char s[20];

} aa; binary scan $d "i f2 a*" i f s

FILE *of; # The string data includes any binary

garbage after the NULL byte.

aa.i = 100; # Strip off that junk.

aa.f[0] = 2.5;

aa.f[1] = 3.8; set 0pos [string first\

[binary format c 0x00] $s]

strcpy(aa.s, "This is a test"); incr 0pos -1

set s [string range $s 0 $0pos]

70 CHAPTER 3 Introduction to the Tcl Language

of = fopen("tstStruct", "w");

fwrite(sizeof(aa), 1, of); # Display the results

fclose(of); puts $i

} puts $f

puts $s

Script Output
100
2.5 3.79999995232
This is a test

3.3.10 Handles
Tcl uses handles to refer to certain special-purpose objects. These handles are returned by the Tcl
command that creates the object and can be used to access and manipulate the object. When you open
a file, a handle is returned for accessing that file. The graphic objects created by a wish script are
also accessed via handles, which will be discussed in the wish tutorial. The following are types of
handles.

channel A handle that references an I/O device such as a file, serial port, or TCP
socket. A channel is returned by an open or socket call and can be
an argument to a puts, read, close, flush, or gets call.

graphic A handle that refers to a graphic object created by a wish command.
This handle is used to modify or query an object.

http A handle that references data returned by an http::geturl operation.
An http handle can be used to access the data that was returned from
the http::geturl command or otherwise manipulate the data.

There will be detailed discussion of the commands to manipulate handles in sections that discuss
that type of handle.

3.4 ARITHMETIC AND BOOLEAN OPERATIONS
The commands discussed so far directly manipulate particular types of data. Tcl also has a rich set
of commands for performing arithmetic and Boolean operations and for using the results of those
operations to control program flow.

3.4.1 Math Operations
Math operations are performed using the expr and incr commands. The expr command provides an
interface to a general-purpose calculation engine, and the incr command provides a fast method of
changing the value of an integer.

The expr command will perform arbitrarily complex math operations. Unlike most Tcl commands,
expr does not expect a fixed number of arguments. It can be invoked with the arguments grouped as
a string or as individual values and operators. The expr command is optimized to handle arithmetic

3.4 Arithmetic and Boolean Operations 71

strings. You will see a performance improvement if you pass the expr command a string enclosed in
curly braces, rather than using quotes which pushes some processing into the Tcl interpreter, instead of
the expr command code.

The arithmetic arguments to expr may be grouped with parentheses to control the order of math
operations. The expr command can also evaluate Boolean expressions and is used to test conditions
by the Tcl branching and looping commands.

Syntax: expr mathExpression

Tcl supports the following math operations (grouped in decreasing order of precedence).
−+ ∼ ! Unary minus, unary plus, bitwise NOT, logical NOT.

∗/% Multiply, divide, modulo (return the remainder).

+− Add, subtract.

�� Left shift, right shift.

<><=>= Less than, greater than, less than or equal, greater than or equal.

== != Equality, inequality.

& Bitwise AND.
∧ Bitwise exclusive OR.

| Bitwise OR.

&& Logical AND. Produces a 1 result if both operands are nonzero; 0
otherwise.

‖ Logical OR. Produces a 0 result if both operands are zero; 1
otherwise.

x?y:z If-then-else, as in C. If x evaluates to nonzero, the result is the value
of y. Otherwise, the result is the value of z. The x operand must
have a numeric value. The y and z operands may be variables or Tcl
commands.

Note that the bitwise operations are valid only if the arguments are integers (not floating-point or
scientific notation). The expr command also supports the following math functions and conversions.

Trigonometric Functions
sin sin(radians)

set sin [expr sin($degrees/57.32)]

cosine cos (radians)

set cosine [expr cos(3.14/2)]

tangent tan (radians)

set tan [expr tan($degrees/57.32)]

arcsin asin (float)

set angle [expr asin(.7071)]

72 CHAPTER 3 Introduction to the Tcl Language

arccosine acos (float)

set angle [expr acos(.7071)]

arctangent atan (float)

set angle [expr atan(.7071)]

hyperbolic sin sinh (radians)

set hyp sin [expr cosh(3.14/2)]

hyperbolic cosine cosh (radians)

set hyp cos [expr cosh(3.14/2)]

hyperbolic tangent tanh (radians)

set hyp tan [expr tanh(3.14/2)]

hypotenuse hypot (float,float)

set len [expr hypot($side1, $side2)]

arctangent of ratio atan2 (float,float)

set radians [expr atan2($numerator, $denom)]

Exponential Functions
natural log log (float)

set two [expr log(7.389)]

log base 10 log10 (float)

set two [expr log10(100)]

square root sqrt (float)

set two [expr sqrt(4)]

exponential exp (float)

set seven [expr exp(1.946)]

power pow (float, float)

set eight [expr pow(2, 3)]

Conversion Functions
Return closest int round (float)

set duration [expr round($distance / $speed)]

Largest integer less than a
float

floor (float)
set overpay [expr ceil($cost / $count)]

Smallest integer greater than
a float

ceil (float)
set each [expr ceil($cost/$count)]

Floating Point remainder fmod (float, float)

set missing [expr fmod($cost, $each)]

3.4 Arithmetic and Boolean Operations 73

Convert int to float double (int)

set average [expr $total / double($count)]

Convert float to int int (float),

set leastTen [expr (int($total) / 10) * 10]

Absolute Value abs (num)

set xDistance [expr abs($x1 - $x2)]

Random Numbers
Seed random number srand (int)

expr srand([clock seconds])

Generate random number rand()

set randomFloat [expr rand()]

Example 46
% set card [expr rand()]
0.557692307692
% set cardNum [expr int($card * 52)]
29
% set cardSuit [expr int($cardNum / 13)]
2
% set cardValue [expr int($cardNum % 13)]
3
% expr floor(sin(3.14/2) * 10)
9.0
% set x [expr int(rand() * 10)]
4
% expr atan(((3 + $x) * $x)/100.)
0.273008703087

The incr command provides a shortcut to modify the content of a variable that contains an integer
value. The incr command adds a value to the current content of a given variable. The value may be
positive or negative, thus allowing the incr command to perform a decrement operation. The incr
command is used primarily to adjust loop variables.

Syntax: incr varName ?incrValue?
incr Add a value (default 1) to a variable.

varName The name of the variable to increment.

NOTE: This is a variable name, not a value. Do not start
the name with a $. This variable must contain an integer
value, not a floating-point value.

?incrValue? The value to increment the variable by. May be a positive
or negative number. The value must be an integer between
−65,536 and 65,535, not a floating-point value.

74 CHAPTER 3 Introduction to the Tcl Language

Example 47
% set x 4
4
% incr x
5
% incr x -3
2
% set y [incr x]
3
% puts "x: $x y: $y"
x: 3 y: 3

3.4.2 Conditionals
The if Command
Tcl supports both a single-choice conditional (if) and a multiple-choice conditional (switch). The if
command tests a condition, and if that condition is true, the script associated with this test is evaluated.
If the condition is not true, an alternate choice is considered, or alternate script is evaluated.

Syntax: if {testExpression1} {
body1
} ?elseif {testExpression2} {
body2
}? ?else {
bodyN
}?

if Determine whether a code body should be evaluated
based on the results of a test. If the test returns true,
the first body is evaluated. If the test is false and a
body of code exists after the else, that code will be
evaluated.

testExpression1 If this expression evaluates to true, the first body of
code is evaluated. The expression must be in a form
acceptable to the expr command. These forms
include the following.

An arithmetic comparison

{$a < 2}.

A string comparison

{ $string ne "OK"}.

The results of a command

{ [eof $inputFile]}.

3.4 Arithmetic and Boolean Operations 75

A variable with a numeric value.

Zero (0) is considered false, and nonzero values
are true.

body1 The body of code to evaluate if the first test evaluates
as true.

elseif If testExpression1 is false, evaluate
testExpression2.

testExpression2 A second test to evaluate if the first test evaluates to
false.

body2 The body of code to evaluate if the second test
evaluates as true.

?else bodyN? If all tests evaluate false, this body of code will be
evaluated.

In the following example, note the placement of the curly braces ({}). The Tcl Style Guide describes
the preferred format for if, for, proc, and while commands. It recommends that you place the
left curly brace of the body of these commands on the line with the command and place the body on
the next lines, indented two spaces. The final, right curly brace should go on a line by itself, indented
even with the opening command. This makes the code less dense (and more easily read).

Putting the test and action on a single line is syntactically correct Tcl code but can cause mainte-
nance problems later. You will need to make some multiline choice statements, and mixing multiline
and single-line commands can make the action statements difficult to find. Also, what looks simple
when you start writing some code may need to be expanded as you discover more about the problem
you are solving. It is recommended practice to lay out your code to support adding new lines of code.

A Tcl command is normally terminated by a newline character. Thus, a left curly brace must be at
the end of a line of code, not on a line by itself. Alternatively, you can write code with the new line
escaped, and the opening curly brace on a new line, but this style makes code difficult to maintain.

Example 48
A Simple Test

set x 2
set y 3
if {$x < $y} {

puts "x is less than y"
}

Script Output
x is less than y

The switch Command
The switch command allows a Tcl script to choose one of several patterns. The switch command
is given a variable to test and several patterns. The first pattern that matches the test phrase will be
evaluated, and all other sets of code will not be evaluated.

76 CHAPTER 3 Introduction to the Tcl Language

Syntax: switch ?opt? str pat1 bod1 ?pat2 bod2 ...? ?default defaultBody?

Evaluate 1 of N possible code bodies, depending on the value of a string.

?opt? One of the following possible options.

-exact Match a pattern string exactly to the test string,
including a possible "-" character.

-glob Match a pattern string to the test string using
the glob string match rules. These are the
default matching rules.

-regexp Match a pattern string to the test string using
the regular expression string match rules.

-- Absolutely the last option. The next string will
be the string argument. This allows strings that
start with a dash (-) to be used as arguments
without being interpreted as options.

str The string to match against patterns.

patN A pattern to compare with the string.

bodN A code body to evaluate if patN matches string.

default A pattern that will match if no other patterns have
matched.

defaultBody The script to evaluate if no other patterns were matched.

The options -exact, -glob, and -regexp control how the string and pattern will be com-
pared. By default, the switch command matches the patterns using the glob rules described previously
with string match.

You can use regular expression match rules by including the -regexp flag. The regular expression
rules are similar in that they allow you to define a pattern of characters in a string but are more complex
and more powerful. The regexp command, which is used to evaluate regular expressions, is discussed
in Chapter 5. The switch command can also be written with curly braces around the patterns and
body.

Syntax: switch ?option? string {
pattern1 body1
?pattern2 body2?
?default defaultBody?

}

When the switch command is used without braces (as shown in the first switch statement below
that follows), the pattern strings may be variables, allowing a script to modify the behavior of a
switch command at runtime. When the braces are used (the second example following), the pattern
strings must be hard-coded patterns.

3.4 Arithmetic and Boolean Operations 77

Example 49
Script Example

set x 7
set y 7
Using no braces substitution occurs before the switch
command looks for matches.
Thus a variable can be used as a match pattern:

switch $x \
$y {puts "X=Y"} \
{[0-9]} {puts "< 10"} \
default {puts "> 10"}

With braces, the $y is not substituted to 7, and switch looks
for a match to the literal string $y

switch -glob $x {
"1" {puts "one"}
"2" {puts "two"}
"3" {puts "three"}
"$y" {puts "X=Y"}
{[4-9]} {puts "greater than 3"}
default {puts "Not a value between 1 and 9"}

}

Script Output
X=Y
greater than 3

If you wish to evaluate the same script when more than one pattern is matched, you can use a dash
(-) in place of the body to cause the switch command to evaluate the next body, instead of the body
associated with the current pattern. Part of a folk music quiz might resemble the following.

Example 50
Script Example

puts "Who recorded ‘Mr Tambourine Man’ "
gets stdin artist ;# User types Bob Dylan
switch $artist {
{Bob Dylan} -
{Judy Collins} -
{Glen Campbell} -
{William Shatner} -
{The Chipmunks} -
{The Byrds} {

78 CHAPTER 3 Introduction to the Tcl Language

puts "$artist recorded ‘Mr Tambourine Man’ "
}

default {
puts "$artist probably recorded ‘Mr Tambourine Man’ "

}

}

Script Output
Who recorded ‘Mr Tambourine Man’
Bob Dylan
Bob Dylan recorded ‘Mr Tambourine Man’

3.4.3 Looping
Tcl provides commands that allow a script to loop on a counter, loop on a condition, or loop through
the items in a list. These three commands are as follows.

for A numeric loop command

while A conditional loop command

foreach A list-oriented loop command

The for Command
The for command is the numeric loop command.

Syntax: for start test next body
Set initial conditions and loop until the test fails.
start Tcl statements that define the start conditions for the loop.

test A statement that tests an end condition. This statement must be in
a format acceptable to expr.

next A Tcl statement that will be evaluated after each pass through the
loop. Normally this increments a counter.

body The body of code to evaluate on each pass through the loop.

The for command is similar to the looping for in C, FORTRAN, BASIC, and others. The for
command requires four arguments; the first (start) sets the initial conditions, the next (test) tests
the condition, and the third (next) modifies the state of the test. The last argument (body) is the
body of code to evaluate while the test returns true.

Example 51
Script Example

for {set i 0} {$i < 2} {incr i} {
puts "I is: $i"

}

3.4 Arithmetic and Boolean Operations 79

Script Output
I is: 0
I is: 1

The while Command
The while command is used to loop until a test condition becomes false.

Syntax: while test body
Loop until a condition becomes false.
test A statement that tests an end condition. This statement must be in a

format acceptable to expr.

body The body of code to evaluate on each pass through the loop.

Example 52
While Loop Example

set x 0;
while {$x < 5} {

set x [expr $x+$x+1]
puts "X: $x"

}

Script Output
X: 1
X: 3
X: 7

The foreach Command
The foreach command is used to iterate through a list of items.

Syntax: foreach listVar list body
Evaluate body for each of the items in list.
listVar This variable will be assigned the value of the list element

currently being processed.

list A list of data to step through.

body The body of code to evaluate on each pass through the loop.

Example 53
Script Example

set total 0
foreach num {1 2 3 4 5} {

set total [expr $total + $num]
}

puts "The total is: $total"

80 CHAPTER 3 Introduction to the Tcl Language

Script Output
The total is: 15

With Tcl release 7.5 (1996) and later, the foreach command was extended to handle multiple sets
of list variables and list data.

Syntax: foreach valueList1 dataList1 ?valueList2 dataList2?. . . {
body
}

If the valueList contains more than one variable name, the Tcl interpreter will take enough values
from the dataList to assign a value to each variable on each pass. If the dataList does not contain
an even multiple of the number of valueList elements, the variables will be assigned an empty string.

Example 54
Script Example

foreach {pres date} { {George Washington} {1789-1797}
{John Adams} {1797-1801}
{Thomas Jefferson} {1801-1809}
{James Madison} {1809-1817}
{James Monroe} {1817-1825}

} state {Virginia Massachusetts Virginia Virginia Virginia} {
puts "$pres was from $state and served from $date"

}

Script Output
George Washington was from Virginia and served from 1789−1797
John Adams was from Massachusetts and served from 1797−1801
Thomas Jefferson was from Virginia and served from 1801−1809
James Madison was from Virginia and served from 1809−1817
James Monroe was from Virginia and served from 1817−1825

3.4.4 Exception Handling in Tcl
When the Tcl interpreter hits an exception condition the default action is to halt the execution of the
script and display the data in the errorInfo global variable. The information in errorInfo will
describe the command that failed and will include a stack dump for all the procedures that were in
process when this failure occurred. The simplest method of modifying this behavior is to use the
catch command to intercept the exception condition before the default error handler is invoked.

Syntax: catch script ?varName?
Catch an error condition and return the results rather than aborting the
script.

script The Tcl script to evaluate.

varName Variable to receive the results of the script.

3.4 Arithmetic and Boolean Operations 81

The catch command catches an error in a script and returns a success or failure code rather than
aborting the program and displaying the error conditions. If the script runs without errors, catch
returns 0. If there is an error, catch returns 1, and the errorCode and errorInfo variables are set
to describe the error.

Sometimes a program should generate an exception. For instance, while checking the validity of
user-provided data, you may want to abort processing if the data is obviously invalid. The Tcl command
for generating an exception is error.

Syntax: error informationalString ?Info? ?Code?

error Generate an error condition. If not caught,
display the informationalString and stack
trace and abort the script evaluation.

informationalString Information about the error condition.

Info A string to initialize the errorInfo string.
Note that the Tcl interpreter may append more
information about the error to this string.

Code A machine-readable description of the error
that occurred. This will be saved in the global
errorCode variable.

The next example shows some ways of using the catch and error commands.

Example 55
Script Example

proc errorProc {first second } {
global errorInfo
$fail will be non−zero if $first is non−numeric.
set fail [catch {expr 5 ∗ $first } result]
if $fail is set, generate an error
if {$fail } {
error "Bad first argument"
}

This will fail if $second is non−numeric or 0
set fail [catch {expr $first/$second } dummy]
if {$fail } {
error "Bad second argument" \
"second argument fails math test\cback n\$errorInfo"
}

error "errorProc always fails" "evaluating error" \
[list USER {123} {Non−Standard User−Defined Error}]

}

Example Script
puts "call errorProc with a bad first argument"
set fail [catch {errorProc X 0} returnString]

82 CHAPTER 3 Introduction to the Tcl Language

if {$fail } {
puts "Failed in errorProc"
puts "Return string: $returnString"
puts "Error Info: $errorInfo\n"
}

puts "call errorProc with a 0 second argument"
if {[catch {errorProc 1 0} returnString]} {
puts "Failed in errorProc"
puts "Return string: $returnString"
puts "Error Info: $errorInfo\n"
}

puts "call errorProc with valid arguments"
set fail [catch {errorProc 1 1} returnString]
if {$fail } {

if {[string first USER $errorCode] == 0} {
puts "errorProc failed as expected"
puts "returnString is: $returnString"
puts "errorInfo: $errorInfo"
} else {
puts "errorProc failed for an unknown reason"
}

}

Script Output
call errorProc with a bad first argument
Failed in errorProc
Return string: Bad first argument
Error Info: Bad first argument

while executing
"error "Bad first argument""

(procedure "errorProc" line 10)
invoked from within

"errorProc X 0"
call errorProc with a 0 second argument
Failed in errorProc
Return string: Bad second argument
Error Info: second argument fails math test
divide by zero

while executing
"expr \$first/\$second"

(procedure "errorProc" line 15)
invoked from within

"errorProc 1 0"
call errorProc with valid arguments
errorProc failed as expected
returnString is: errorProc always fails
errorInfo: evaluating error

(procedure "errorProc" line 1)

3.5 Modularization 83

invoked from within }
"errorProc 1 1"

Note the differences in the stack trace returned in errorInfo in the error returns. The first, gener-
ated with error message, includes the error command in the trace, whereas the second, generated
with error message Info, does not.

If there is an Info argument to the error command, this string is used to initialize the error-
Info variable. If this variable is not present, Tcl uses the default initialization, which is a description
of the command that generated the exception. In this case, that is the error command. If your appli-
cation needs to include information that is already in the errorInfo variable, you can append that
information by including $errorInfo in your message, as done with the second test.

The errorInfo variable contains what should be human-readable text to help a developer debug a
program. The errorCode variable contains a machine-readable description to enable a script to handle
exceptions intelligently. The errorCode data is a list in which the first field identifies the class of error
(ARITH, CHILDKILLED, POSIX, and so on), and the other fields contain data related to this error.
The gory details are in the on-line manual/help pages under tclvars.

If you are used to Java, you are already familiar with the concept of separating data returns from
status returns. If your background is C/FORTRAN/BASIC type programming, you are probably more
familiar with the C/FORTRAN paradigm of returning status as a function return, or using special values
to distinguish valid data from error returns. For example, the C library routines return a valid pointer
when successful, and a NULL pointer for failure.

If you want to use function return values to return status in Tcl, you can. Using the error com-
mand (particularly in low-level procedures that application programs will invoke) provides a better
mechanism. The following are reasons for using error instead of status returns.. An application programmer must check a procedure status return. It is easy to forget to check a

status return and miss an exception. It takes extra code (the catch command) to ignore bad status
generated by error.. This makes the fast and dirty techniques for writing code (not checking for status, or not catching
errors) the more robust technique. If a low-level procedure has a failure, the intermediate code
must propagate the failure to the top level. Doing this with status returns requires special code to
propagate the error, which means all functions must adhere to the error-handling policy.. The error command automatically propagates the error. Procedures that use a function that may
fail need not include exception propagation code. This moves the policy decisions for how to handle
an exception to the application level, where it is more appropriate.

3.5 MODULARIZATION
Tcl has support for all modern software modularization techniques.. Subroutines (with the proc command). Multiple source files (with the source command). Libraries (with the package command)

The package commands are discussed in detail in Chapter 8.

84 CHAPTER 3 Introduction to the Tcl Language

3.5.1 Procedures
The procedure is the most common technique for code modularization. Tcl procedures:. Can be invoked recursively.. Can be defined to accept specific arguments.. Can be defined to accept arguments that have default values.. Can be defined to accept a variable number of arguments.

The proc command defines a Tcl procedure.

Syntax: proc procName argList body
Defines a new procedure.
procName The name of the procedure to define.

argList The list of arguments for this procedure.

body The body to evaluate when this procedure is invoked.

Note how the argument list and body are enclosed in curly braces in the following example. This is
the normal way for defining a procedure, since you normally do not want any substitutions performed
until the procedure body is evaluated. Procedures are discussed in depth in Chapter 7.

Example 56
Proc Example

Define the classic recursive procedure to find the
n’th position in a Fibonacci series.
proc fib {num} {

if {$num <= 2} {return 1}
return [expr [fib [expr $num -1]] + [fib [expr $num -2]]]

}

for {set i 1} {$i < 6} {incr i} {
puts "Fibonacci series element $i is: [fib $i]"

}

Script Output
fibonacci series element 1 is: 1
fibonacci series element 2 is: 1
fibonacci series element 3 is: 2
fibonacci series element 4 is: 3
fibonacci series element 5 is: 5

3.5.2 Loading Code from a Script File
Splitting functionality into separate files, so that each file contains closely related procedures, makes
code easier to maintain. The source command loads a file into an existing Tcl script. It is similar to
the #include in C, the source in C-shell programming, and the require in Perl. This command lets
you build source code modules you can load into your scripts when you need particular functionality.

3.5 Modularization 85

This allows you to modularize your programs. This is the simplest of the Tcl commands that implement
libraries and modularization. The package command is discussed in Chapter 8.

Syntax: source fileName
Load a file into the current Tcl application and evaluate it.

fileName The file to load.

Macintosh users have two options to the source command that are not available on other platforms.

Syntax: source -rsrc resourceName ?fileName?

Syntax: source -rsrcid resourceId ?fileName?

These options allow one script to source another script from a TEXT resource. The resource may
be specified by resourceName or resourceID.

3.5.3 Examining the State of the Tcl Interpreter
Any Tcl script can query the Tcl interpreter about its current state. The interpreter can report whether
a procedure or variable is defined, what a procedure body or argument list is, the current level in the
procedure stack, and so on. The next examples will only use a few of the info subcommands. See the
on-line documentation for details of the other subcommands.

Syntax: info subCommand arguments
Provide information about the interpreter state.

subCommand Defines the interaction. Interactions include:

exists varName Returns True if a variable has been
defined.

proc globPattern Returns a list of procedure names that
match the glob pattern.

body procName Returns the body of a procedure.

args procName Returns the names of the arguments for a
procedure.

nameofexecutable Returns the full path name of the binary
file from which the application was
invoked.

This example shows a procedure that counts the number of times values appear in a list and returns
a list of values and the number of times they occur. It uses the info exists command to determine
whether or not a value has been found (and counted) yet.

Example 57

Using info Commands
proc countListElements {lst } {
Step through each element in the list
foreach l $lst {

86 CHAPTER 3 Introduction to the Tcl Language

If the index exists, increment the count
if {[info exists counts($l)]} {

incr counts($l)
} else {
If the index did not exist, initialize it
set counts($l) 1
}

}

return [array get counts]
}

if {[info proc countListElements] eq "countListElements"} {
set testList {a b a a c b a }
puts "The countListElements procedure is defined."
puts "The countListElements procedure returns"
puts [countList $testList]
puts "for the list {$testList}"
}

Script Output
The countListElements procedure is defined.
The countListElements procedure returns
a 4 b 2 c 1
for the list {a b a a c b a }

3.6 BOTTOM LINE
This covers the basics of the Tcl language. The next chapter introduces the Tcl I/O calls, techniques for
using these commands, and a few more commands.. Tcl is a position-based language rather than a keyword-based language.. A Tcl command consists of. A command name. Optional subcommand, flags, or arguments. A command terminator [either a newline or semicolon (;)]. Words and symbols must be separated by at least one whitespace (space, tab, or escaped newline)

character.. Multiple words or variables can be grouped into a single argument with braces ({}) or quotes ("").. Substitution will be performed on strings grouped with quotes.. Substitutions will not be performed on strings grouped with curly braces ({}).. A Tcl command is evaluated in a single pass.. The Tcl evaluation routine is called recursively to evaluate commands enclosed within square
brackets.

3.6 Bottom Line 87

. Some Tcl commands can accept flags to modify their behavior. A flag will always start with a
hyphen. It may proceed or follow the arguments (depending on the command) and may require an
argument itself.. Values are assigned to a variable with the set command.
Syntax: set varName value. Math operations are performed with the expr and incr commands.
Syntax: expr mathExpression
Syntax: incr varName ?incrValue?. The branch commands are if and switch.
Syntax: if {test} {bodyTrue} ?elseif {test2} {body2}? ?else {bodyFalse}?
Syntax: switch ?option? string pattern1 body1\

?pattern2 body2? ?default defaultBody?. The looping commands are for, while, and foreach.
Syntax: for start test next body
Syntax: while test body
Syntax: foreach listVar list body. The list operations include list, split, llength, lindex, and lappend.
Syntax: list element1 ?element2? . . . ?elementN?
Syntax: linsert list position element1 ... ?elementN?
Syntax: lappend listName ?element1? . . . ?elementN?
Syntax: split data ?splitChar?
Syntax: join list ?joinString?
Syntax: llength list
Syntax: lindex list index
Syntax: lsearch list pattern
Syntax: lreplace list position1 position2 element1 ?... elementN?. The string processing subcommands include first, last, length, match, toupper,
tolower, and range.
Syntax: string first substr string
Syntax: string last substr string
Syntax: string length string
Syntax: string match pattern string
Syntax: string toupper string
Syntax: string tolower string
Syntax: string range string first last. Formatted strings can be generated with the format command.
Syntax: format format ?data? ?data2? The scan command will perform simple string parsing.
Syntax: scan textstring format ?varName1? ?varName2? The array processing subcommands include array names, array set, and array get.
Syntax: array names arrayName ?pattern?
Syntax: array set arrayName {index1 value1 ...}
Syntax: array get arrayName

88 CHAPTER 3 Introduction to the Tcl Language

. Values can be converted between various ASCII and binary representations with binary scan
and binary format.. The source command loads and evaluates a script.
Syntax: source fileName. The info command returns information about the current state of the interpreter.
Syntax: info proc
Syntax: info args
Syntax: info body
Syntax: info exists
Syntax: info nameofexecutable

3.7 PROBLEMS
The following numbering convention is used in all Problem sections:

Number Range Description of Problems

100–199 Short comprehension problems review material covered in the chapter. They can be
answered in a few words or a 1–5-line script. These problems should each take under
a minute to answer.

200–299 These quick exercises require some thought or information beyond that covered in the
chapter. They may require reading a man page, or making a web search. A short script
of 1–50 lines should fulfill the exercises, which may take 10–20 minutes each to
complete.

300–399 Long exercises may require reading other material, or writing a few hundred lines of
code. These exercises may take several hours to complete.

. 100 What will the following code fragments display?. set a 1
puts "$a". set a 1
puts {$a}. set a 1
puts [expr $a + 1]. set a b
set $a 2
puts "$b". set a 1
puts "\$$a". 101 What are the Tcl’s three looping commands?. 102 What conditional commands does Tcl support?. 103 What command will define a Tcl procedure?

3.7 Problems 89

. 104 Can a Tcl procedure be invoked recursively?. 105 What is the first word in a Tcl command line?. 106 How are Tcl commands terminated?. 107 Can you use binary data in Tcl?. 108 How does a Tcl procedure return a failure status?. 109 What commands can modify the content of a variable?. 110 How could you change an integer to a floating-point value with the append command?. 111 Write a pattern for string match to match:. Strings starting with the letter A.. Strings starting with the letter A followed by a number.. Strings starting with a lowercase letter followed by a number.. Strings in which the second character is a number.. Three character strings of uppercase letters.. A question.. 112 What characters are returned by:. string range "testing" 0 0. string range "testing" 0 1. string range "testing" 0 99. string range "testing" 0 end. string range "testing" 99 end. string range "testing" end end. 113 Write a format definition that will:. Use 20 spaces to display a string, and left justify the string.. Use 20 spaces to display a string, and right justify the string.. Display a floating point number less than 100 with 2 digits to the right of the decimal point.. Display a floating point number in scientific notation.. Convert an integer to an ASCII character (i.e., convert 48 to ”0”, 49 to ”1”, and so on).. 114 What is the second list element in the following lists?. {one two three four}. {one {two three} four}. { {} one two three}. { {one two} {three four} }. 115 Which array command will return a list of the indices in an associative array?. 116 Which Tcl command could be used to assign a value to a single element in an associative
array?. 117 Which Tcl command could be used to assign values to multiple elements in an associative
array?

90 CHAPTER 3 Introduction to the Tcl Language

. 118 What binary scan format definition would read data that was written as this C structure?:
struct { int i[4]; char c[25]; float f; }. 119 If x and y are two Tcl variables containing the length of the opposite and adjacent sides of a
triangle, write the expr command that would calculate the hypotenuse of this angle.. 120 Write a procedure that uses info commands to report all the procedures and arguments that
exist in an interpreter.. 200 The classic recursive function is a Fibonacci series, in which each element is the sum of the
two preceding elements, as in the following.
1 1 2 3 5 8 13 21 ..

Write a Tcl proc that will accept a single integer, and will generate that many elements of a
Fibonacci series.. 201 Write a procedure that will accept a string of text, and will generate a histogram of how many
times each unique word is used in that text.. 202 Write a procedure that will accept a set of comma-delimited lines, and will generate a
formatted table from that data.. 203 Write a procedure that will check to see whether a string is a palindrome (if it reads the same
backward and forward). Examples of palindromes include the words noon and radar, and the
classic sentence Able was I ere I saw Elba.. 300 The bubble sort works by stepping through a list and comparing two adjacent members and
swapping them if they are not in ascending order. The list is scanned repeatedly until there are no
more elements in the wrong position.
a. Write a recursive procedure to perform a bubble sort on a list of data.
b. Write a loop-based procedure to perform a bubble sort on a list of data.. 301 Tcl has an lsort command that will sort a list. Use the lsort command to check the results
of the bubble sort routines constructed in the previous exercise.. 302 A trivial encryption technique is to group characters in sets of four, convert that to an integer,
and print out the integers. Write a pair of Tcl procedures that will use the binary command to
convert a plaintext message to a list of integers, and convert a list of integers into a readable string.

