
CHAPTER 4

The First Law of Thermodynamics
and Energy Transport Mechanisms
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4.1 INTRODUCCIÓN (INTRODUCTION)
In this chapter, we begin the formal study of the first law of thermodynamics. The theory is presented first, and
in subsequent chapters, it is applied to a variety of closed and open systems of engineering interest. In Chapter 4,
the first law of thermodynamics and its associated energy balance are developed along with a detailed discussion
of the energy transport mechanisms of work and heat. To understand the usefulness of the first law of thermo-
dynamics, we need to study the energy transport modes and investigate the energy conversion efficiency of
common technologies.

In Chapter 5, the focus is on applying the theory presented in Chapter 4 to a series of steady state closed sys-
tems, such as sealed, rigid containers; electrical apparatuses; and piston-cylinder devices. Chapter 5 ends with a
brief discussion of the behavior of unsteady state closed systems.

The first law of thermodynamics is expanded in Chapter 6 to cover open systems, and the conservation of mass
law is introduced as a second independent basic equation. Then, appropriate applications are presented, dealing
with a variety of common open system technologies of engineering interest, such as nozzles, diffusers, throttling
devices, heat exchangers, and work-producing or work-absorbing machines. Chapter 6 ends with a brief discus-
sion of the behavior of unsteady state open systems.

4.2 EMMY NOETHER AND THE CONSERVATION LAWS OF PHYSICS
Throughout the long history of physics and engineering, we believed that the conservation laws of momentum,
energy, and electric charge were unique laws of nature that had to be discovered and verified by physical experi-
ments. And, in fact, these laws were discovered in this way. They are the heart and soul of mechanics, thermody-
namics, and electronics, because they deal with things (momentum, energy, charge) that cannot be created nor
destroyed and therefore are “conserved.” These conservation laws have broad application in engineering and
physics and are considered to be the most fundamental laws in nature.

We have never been able explain where these laws came from because they seem to have no logical source. They
seemed to be part of the mystery that is nature. However, almost 100 years ago, the mathematician Emmy
Noether developed a theorem that uncovered their source,1 yet few seem to know of its existence. Emmy
Noether’s theorem is fairly simple. It states that:

For every symmetry exhibited by a system, there is a corresponding observable quantity that is conserved.

The meaning of the word symmetry here is probably not what you think it is. The symmetry that everybody
thinks of is called bilateral symmetry, when two halves of a whole are each other’s mirror images (bilateral sym-
metry is also called mirror symmetry). For example, a butterfly has bilateral symmetry. Emmy Noether was talk-
ing about symmetry with respect to a mathematical operation. We say that something has mathematical
symmetry if, when you perform some mathematical operation on it, it does not change in any way. For exam-
ple, everyone knows that the equations of physics remain the same under a translation of the coordinate system.
This really says that there are no absolute positions in space. What matters is not where an object is in absolute
terms, but where it is relative to other objects, that is, its coordinate differences.

The impact of Emmy Noether’s studies on symmetry and the behavior of the physical world is nothing less than
astounding. Virtually every theory, including relativity and quantum physics, is based on symmetry principles.
To quote just one expert, Dr. Lee Smolin, of the Perimeter Institute for Theoretical Physics, “The connection
between symmetries and conservation laws is one of the great discoveries of twentieth century physics. But very
few non-experts will have heard either of it or its maker—Emily Noether, a great German mathematician. But it
is as essential to twentieth century physics as famous ideas like the impossibility of exceeding the speed of
light.”2

Noether’s theorem proving that symmetries imply conservation laws has been called the most important theo-
rem in engineering and physics since the Pythagorean theorem. These symmetries define the limit of all possible
conservation laws. Is it possible that, had Emmy Noether been a man, all the conservation laws of physics
would be called Noether’s laws?

1 Noether, E., 1918. Invariante variationsprobleme. Nachr. D. König. Gesellsch. D. Wiss. Zu Göttingen, Math-phys. Klasse 1918, pp. 235–257.
An English translation can be found at http://arxiv.org/PS_cache/physics/pdf/0503/0503066v1.pdf.
2 Dr. Lee Smolin was born in New York City in 1955. He held faculty positions at Yale, Syracuse, and Penn State Universities, where
he helped to found the Center for Gravitational Physics and Geometry. In September 2001, he moved to Canada to be a founding
member of the Perimeter Institute for Theoretical Physics.
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In summary, Emmy Noether’s theorem shows us that (Table 4.1)

■ Symmetry under translation produces the conservation of linear momentum.
■ Symmetry under rotation produces the conservation of angular momentum.
■ Symmetry in time produces the conservation of energy.
■ Symmetry in magnetic fields produces the conservation of charge.

4.3 THE FIRST LAW OF THERMODYNAMICS
In this chapter, we focus our attention on the detailed structure of the first law of thermodynamics. To completely
understand this law, we need to study a variety of work and heat energy transport modes and to investigate the
basic elements of energy conversion efficiency. An effective general technique for solving thermodynamics pro-
blems is presented and illustrated. This technique is used in Chapters 5 and 6 and the remainder of the book.

The simplest, most direct statement of the first law of thermodynamics is that energy is conserved. That is, energy
can be neither created nor destroyed. The condition of zero energy production was expressed mathematically in
Eq. (2.15):

EP = 0 (2.15)

By differentiating this with respect to time, we obtain an equation for the condition of a zero energy production
rate:

dEP
dt

= _Ep = 0 (2.16)

Whereas Eqs. (2.15) and (2.16) are accurate and concise statements of the first law of thermodynamics, they are
relatively useless by themselves, because they do not contain terms that can be used to calculate other variables.
However, if these equations are substituted into the energy balance and energy rate balance equations, then the
following equations result. For the energy balance,

EG = ET +EP ðas required by the first lawÞ

AN EXAMPLE OF MATHEMATICAL SYMMETRY

Here is a story about Carl Friedrich Gauss (1777–1855). When he was a young child, his teacher wanted to occupy him for
a while, so he asked him to add up all the numbers from 1 to 100. That is, find X = 1 + 2 + 3 + … + 100. To the teacher’s
surprise, Gauss returned a few minutes later and said that the sum was 5050.

Apparently Gauss noticed that the sum is the same regardless of whether the terms are added forward (from first to last) or
backward (from last to first). In other words, X = 1 + 2 + 3 + … + 100 = 100 + 99 + 98 + … + 1. If we then add these two
ways together, we get

X = 1+ 2+ 3+…+ 100
X = 100+99+98+…+1

2X = 101+101+…+ 101

So 2X = 100 × 101 and X = (100 × 101)/2 = 5050. Gauss had found a mathematical symmetry, and it tremendously
simplified the problem. What is conserved here? It is the sum, X. It does not change no matter how you add the numbers.

Table 4.1 Relation of Conservation Laws to Mathematical Symmetry

Conservation Law Mathematical Symmetry

Linear momentum
The laws of physics are the same regardless of where we are in space. This positional symmetry implies
that linear momentum is conserved.

Angular momentum
The laws of physics are the same if we rotate about an axis. This rotational symmetry implies that angular
momentum is conserved.

Energy
The laws of physics do not depend on what time it is. This temporal symmetry implies the conservation of
energy.

Electric charge
The interactions of charged particles with an electromagnetic field remain the same if we multiply the fields
by a complex number eiφ. This implies the conservation of charge.

4.3 The First Law of Thermodynamics 101



or

EG = ET (4.1)

The energy rate balance is

_EG = _ET + _EP ðas required by the first lawÞ
or

_EG = _ET (4.2)

From now on, we frequently use the phrases energy balance and energy rate balance in identifying the proper
equation to use in an analysis. So, for simplicity, we introduce the following abbreviations:

EB = energy balance

and

ERB = energy rate balance

In Chapter 3, we introduce the components of the total system energy E as the internal energy U, the kinetic
energy mV2/2gc, and the potential energy mgZ/gc, or

3

E = U+ mV2

2gc
+

mgZ
gc

(3.9)

In this equation, V is the magnitude of the velocity of the center of mass of the entire system, Z is the height of
the center of mass above a ground (or zero) potential datum, and gc is the dimensional proportionality factor
(see Table 1.2 of Chapter 1). In Chapter 3, we also introduce the abbreviated form of this equation:

E = U+KE+PE (3.10)

and similarly for the specific energy e,

e = E
m

= u+ V2

2gc
+

gZ
gc

(3.12)

and

e = u+ ke+pe (3.13)

In these equations, we continue the practice introduced in Chapter 2 of using uppercase letters to denote extensive
properties and lowercase letters to denote intensive (specific) properties. The energy concepts described in these
equations are illustrated in Figure 4.1.

In equilibrium thermodynamics, the proper energy balance is given by Eq. (4.1),
where the gain in energy EG is to be interpreted as follows. The system is initially
in some equilibrium state (call it state 1), and after the application of some “pro-
cess,” the system ends up in a different equilibrium state (call it state 2). If we
now add a subscript to each symbol to denote the state at which the property is
to be evaluated (E1 is the total energy of the system in state 1 and so forth), then
we can write the energy gain of the system as

EG = Final total energy− Initial total energy (4.3)

or

EG = E2 −E1 (4.4)

and extending this to Eq. (3.9), we obtain

EG = U2 −U1 +
m
2gc

ðV2
2 −V2

1 Þ+
mg
gc

� �
ðZ2 −Z1Þ (4.5)

or

EG = m u2 − u1 +
V2
2 −V2

1

2gc
+

g
gc
ðZ2 −Z1Þ

� �
(4.6)

System boundary

System (either
open or closed)

Center of
mass

Velocity V

Internal
energy

U

Height = Z

Z = 0

FIGURE 4.1
System energy components.

3 In this text, we use the symbol V to represent the magnitude of the average velocity |V|, and the symbol V to represent volume.
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alternatively,

EG = U2 −U1 +KE2 −KE1 +PE2 −PE1 (4.7)

and

EG = mðu2 − u1 + ke2 − ke1 +pe2 −pe1Þ (4.8)

In most of the engineering situations we encounter, either the system is not moving at all or it is moving without
any change in velocity or height. In these cases,

EG = U2 −U1 = mðu2 − u1Þ = ET

EXAMPLE 4.1
Figure 4.2 shows that 3.00 lbm of saturated water vapor at 10.0 psia is sealed in a rigid container aboard a spaceship traveling
at 25,000. mph at an altitude of 200. mi. What energy transport is required to decelerate the water to zero velocity and bring
it down to the surface of the Earth such that its final specific internal energy is 950.0 Btu/lbm? Neglect any change in the
acceleration of gravity over this distance.

p1 = 10.0 psia, x1 = 1.00

V1 = 2500. mph

Z1 = 200. miles
Sealed rigid

container

State 1 State 2

u2 = 950.0 Btu/1bm
Z2 = V2 = 0

FIGURE 4.2
Example 4.1.

Solution
Let the system in this example be just the water in the container, then the process followed by the water is a constant
volume process (the water is in a “rigid, sealed container”). Therefore, the problem statement can be outlined as follows:

State 1 m = 3:0 lbm, V = constant��������������������! State 2

p1 = 10:0psia u2 = 950:0Btu/lbm
x1 = 1:00 saturated vaporð Þ v2 = v1 = 38:42 ft3/lbm

v1 = vg at 10:0psiað Þ = 38:42 ft3/lbm

Notice how the process path gives us the value of a property (v2) in the final state. To determine the required energy
transport, we use the energy balance Eq. (4.1), along with the definition of the energy gain term EG from Eq. (4.5):

EB: EG = ET + EP0 ðas required by the first lawÞ

and, assuming g is constant during this process,

EG = ET = U2 −U1 +
m
2gc

V2
2 −V2

1

� �
+

mg
gc

Z2 −Z1ð Þ

Here, V2= Z2= 0, so

ET = U2 −U1 −
m
2gc

V2
1 −

mg
gc

Z1

Table C.2a in Thermodynamic Tables to accompany Modern Engineering Thermodynamics gives

u1 = ug 10:0psiað Þ = 1072:2Btu/lbm

and the problem statement requires that u2= 950.0 Btu/lbm. Therefore,

U1 = mu1 = 3:00 lbmð Þ 1072:2Btu/lbmð Þ = 3216:6Btu

(Continued )

4.3 The First Law of Thermodynamics 103



EXAMPLE 4.1 (Continued )

and

U2 = mu2 = 3:00 lbmð Þ 950:0Btu/lbmð Þ = 2850Btu

so

ET = ð2850 − 3216:6Þ Btu− 3:00 lbm
2

ð25,000: mile/hÞ 5280 ft/mile
3600 s/h

� �� �2

×

1 Btu
778:16 ft .lbf

32:174 lbm
.ft

lbf .s2

−
3:00 lbmð32:174 ft/s2Þ

32:174 lbm
.ft

lbf .s2

	 
 ð200: milesÞð5280 ft/mileÞ 1 Btu
778:16 ft .lbf

	 


= −366:6−80,550−4071 = −85,000Btu ðto three significant figuresÞ
Therefore, 85,000 Btu of energy must be transferred out of the water (ET is negative here) by some mechanism. This can be
done, for example, by having the spaceship (and the water) do work on the atmosphere by aerodynamic drag as it lands.

Exercises
1. What would be the value of u2 in Example 4.1 if ET were zero? Answer: u2= 29,300 Btu/lbm. (What is the physical state

of the water now?)
2. Which causes the larger change in EG:

a. A velocity increase from 0 to 1 ft/s or an increase in height from 0 to 1 ft?
b. A velocity increase from 0 to 100 ft/s or a height increase from 0 to 100 ft?
Answers: (a) height, (b) velocity.

3. Determine the value of ET that must occur when you stop a 1300. kg automobile traveling at 100. km/h on a level road
with no change in internal energy. Answer: ET = 502 kJ.

In nonequilibrium systems, we use the energy rate balance equation with _EG defined as

_EG = d
dt

U+ m
2gc

V2 +
mg
gc

Z

� �
system

= _ET (4.9)

Equation (4.9) can become quite complicated for open systems whose total mass is rapidly changing (such as
with rockets), because it expands as follows (using U=mu):

_EG = m _u + V
gc
ð _V Þ+ g

gc
ð _Z Þ

� �
+ u+ V2

2gc
+

gZ
gc

� �
_m = _ET (4.10)

Notice that, in this equation, _V = dV/dt is the magnitude of the instantaneous acceleration, and _Z is the
magnitude of the instantaneous vertical velocity.

The equilibrium thermodynamics energy balance and the nonequilibrium energy rate balance are fairly simple
concepts; however, their implementation can be quite complex. Each of the gain, transport, and production
terms may expand into many separate terms, all of which must be evaluated in an analysis. Next, we investigate
the structure of the energy transport and energy transport rate terms.

4.4 ENERGY TRANSPORT MECHANISMS
There are three energy transport mechanisms, any or all of which may be operating in any given system: (1) heat,
(2) work,4 and (3) mass flow. These three mechanisms and their sign conventions are illustrated in Figure 4.3.

Note that the sign conventions for heat and work shown in Figure 4.3 are not the same. Heat transfer into
a system is taken as positive, whereas work must be produced by or come out of a system to be positive. This is
the conventional mechanical engineering sign convention and reflects the traditional view that heat coming out

4 The types of work transports of energy included here are only those due to dissipative or nonconservative forces. For example, the
work associated with gravitational or electrostatic forces is not considered a work mode because it is conservative (i.e., it is
representable by the gradient of a scalar quantity) and is consequently nondissipative. Energy transports resulting from the actions of
conservative forces have their own individual terms in the energy balance equation (such as mgZ/gc for the gravitational potential
energy).
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of a system is “lost” (i.e., negative), while work produced by a system (such as an engine) should be assigned a posi-
tive value.

By definition, a closed system has no mass crossing its system boundary, so it can experience only work and
heat transport mechanisms. Also, since the gain, transport, and production terms in the balance equation are
defined to be net values (see Eq. (2.10)), we define

1. The net heat transport of energy into a system=∑iQi=Q and the net heat transport rate of energy into a

system=∑i _Q i = _Q :

2. The net work transport of energy out of a system=∑iWi=W and the net work transport rate of energy out of

a system=∑i _Wi = _W :

3. The net mass transport of energy into the system=∑iEi = ∑Emass flow and the net mass transport rate of

energy into the system=∑i _Ei = ∑ _Emass flow:

Thus, for a closed system, the total energy transport becomes

ET = Q−W (4.11)

and the total energy transport rate is

_ET = _Q − _W (4.12)

For open systems, the same quantities are

ET = Q−W +∑Emass
flow

(4.13)

and

_ET = _Q − _W +∑ _Emass
flow

(4.14)

In Eqs. (4.13) and (4.14), note that we write the summation signs on the net mass transport of energy terms,
but for simplicity, we do not write the summation signs on the work or heat transport terms. This is because
you often have open systems with more than one mass flow stream, but seldom do you have more than one

WHAT ARE HEAT AND WORK ANYWAY?

Heat is usually defined as energy transport to or from a system due to a temperature difference between the system and its
surroundings. This can occur by only three modes: conduction, convection, and radiation.

Work is more difficult to define. It is often defined as a force moving through a distance, but this is only one type of work;
there are many other work modes as well. Since the only energy transport modes for moving energy across a system’s
boundary are heat, mass flow, and work, the simplest definition of work is that it is any energy transport mode that is
neither heat nor mass flow.5

5 Work can also be defined using the concept of a “generalized” force moving through a “generalized” displacement, see Table 4.2 later in this chapter.

(a) Closed system

−W

+W

+Q

−Q

System
boundary

ET

(b) Open system

ET

System
boundary

+Q
−Q

+E
−E

Mass
flow

−W
+W

FIGURE 4.3
Energy transport mechanisms.
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type of work or heat transport present. However, you must always remember that W, _W, Q, and _Q are also net
terms and represent a summation of all the different types of work and heat transports of energy present. This is
illustrated in the following example.

EXAMPLE 4.2
Determine the energy transport rate for the system shown in Figure 4.4.

Top heat loss
180,000 Btu/h

Fuel flow
Efuel = 15,000 Btu/min

Exhaust flow
Eexhaust = 500. Btu/min

200. hp

Bottom heat loss
54,000 Btu/h

System
boundary

50.0 hp
Electrical workout

Engine−generator set

FIGURE 4.4
Example 4.2

Solution
From Eq. (4.14), the total energy transport rate is

_E T = _Q − _W +∑ _Emass
flow

where

_Q = net heat transfer into the system
= − 180:× 103 Btu/h−54:0×103 Btu/h = −234×103 Btu/h

and

_W = net work rate out of the system = 200:hp+50:0hp = 250:hp

while

∑ _Emass
flow

= net mass flow of energy into the system

= 15:0×103Btu/min− 500:Btu/min = 14:5× 103Btu/min

So

_E T = ð‒234×103Btu/hÞ 1h/ 60minð Þ½ �− 250:hpð Þ 42:4Btu/ hp.minð Þ½ �+14:5× 103Btu/min = 0:00Btu/min

Exercises
4. Determine the energy transport rate that occurs in Example 4.2 when the work mode directions are reversed.

Answer: _E T = 21:2×103 Btu/min:
5. Determine the net rate of energy gain of a closed system that receives heat at a rate of 4500. kJ/s and produces work at a

rate of 1500. kJ/s. Answer: _EG = 3000:KJ/s:
6. An insulated open system has a net gain of 700. Btu of energy while producing 500. Btu of work. Determine the mass

flow energy transport. Answer: Emass flow= 1.20 × 103 Btu.

The system of Example 4.2 has no net energy transport rate, even though it has six energy transport rates. Note
that the energy rate balance (Eq. (4.2)) for this system is _EG = _ET ; therefore, this system also has no net gain of
energy. That is, the total energy E of this system is constant in time.
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4.5 POINT AND PATH FUNCTIONS
A quantity, say y, that has a value at every point within its range is called a point function. Its derivative is written
as dy, and its integral from state 1 to state 2 is Z 2

1
dy = y2 − y1

Thus, the value of the integral depends only on the values of y at the end points of the integration path and is
independent of the actual path taken between these end points. This is a fundamental characteristic of point
functions. All intensive and extensive thermodynamic properties are point functions. Therefore, we can writeZ 2

1
dE = E2 − E1;

Z 2

1
du = u2 − u1;

Z 2

1
dm = m2 −m1

and so forth.

A quantity, say x, whose value depends on the path taken between two points within its range is called a path
function. Since path functions do not differentiate or integrate in the same manner as point functions, we cannot
use the same differential and integral notation for both path and point functions. Instead, we let dx denote the
differential of the path function x, and we define its integral over the path from state 1 to state 2 asZ 2

1
dx = 1x2 Note:

Z 2

1
dx ≠ ðx2 − x1Þ

� �
(4.15)

A path function does not have a value at a point. It has a value only for a path of points, and this value is
directly determined by all the points on the path, not just its end points. For example, the area A under the
curve of the point function w= f(y) is a path function because

dA = wdy = f ðyÞ dy
and Z 2

1
dA = 1A2 =

Z Y2

Y1
f ðyÞ dy = area under f yð Þ between the points y1 and y2

Clearly, if the path f(y) is changed, then the area 1A2 is also changed. Consequently, we say that 1A2 is a path function.

We see in the next sections that both the work and heat transports of energy are path functions. Therefore, we write
the differentials of these quantities as dW and dQ, and their integrals asZ 2

1
dW = 1W2 (4.16)

and Z 2

1
dQ = 1Q2 (4.17)

Since the associated rate equations contain the time differential, we define power as the work rate, or

_W = dW/dt (4.18)

and, similarly, the heat transfer rate is

_Q = dQ/dt (4.19)

Each of the different types of work or heat transport of energy is called a mode. A system that has no operating work
modes is said to be aergonic. Similarly, a system that changes its state without any work transport of energy having

NOTE!

Since work and heat are not thermodynamic properties and therefore not point functions,
Z 2

1
dW ≠W2 −W1 andZ 2

1
dW ≠ΔW: Similarly,

Z 2

1
dQ≠Q2 −Q1, and

Z 2

1
dQ≠ΔQ: Equations (4.16) and (4.17) are the only correct ways to write these

path function integrals.
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occurred is said to have undergone an aergonic process. While there are only three modes of heat transport, there
are many modes of work transport. In the following segments, four mechanical work modes and five nonmecha-
nical work modes are studied in detail.

4.6 MECHANICAL WORK MODES OF ENERGY TRANSPORT
In mechanics, we recognize that work is done whenever a force moves through a distance. When this force is a
mechanical force F

!
, we call this work mode mechanical work and define it as

dW
� �

mechanical = ð F!applied by the systemÞ.d x!− ð F!applied on the systemÞ.d x! (4.23)

WHAT IS AERGONIC ANYWAY?

The term aergonic comes from the Greek roots a meaning “not” and ergon meaning “work,” and it should be interpreted to
mean “no work has occurred.” It is the analog of the word adiabatic, meaning no heat transfer has occurred, introduced
later in this chapter.

Substituting Eqs. (4.8) and (4.11) into Eq. (4.1) and rearranging gives the general closed system energy balance equation
for a system undergoing a process from state 1 to state 2 as

General closed system energy balance:
1Q2 − 1W2 = ðE2 −E1Þsystem

= m½ðu2 − u1Þ+ ðV2
2 −V2

1 Þ/ð2gcÞ+ ðZ2 −Z1Þg/gc�system
(4.20)

and substituting Eq. (4.10) with m = constant and Eq. (4.12) into Eq. (4.2) gives the general closed system energy rate balance as

General closed system energy rate balance:
_Q − _W = ðdE/dtÞsystem = ðm _u +mV _V/gc +mg _Z /gcÞsystem (4.21)

Similarly, substituting Eqs. (4.9) and (4.14) into Eq. (4.2) gives the general open system energy rate balance as

General open system energy rate balance:

_Q − _W +∑ _Emass
flow

= d/dtð Þ mu+mV2/2gc +mZg/gcð Þsystem
(4.22)

where the mass of the system is no longer required to be constant.

CAN YOU ANSWER THIS QUESTION FROM 1936?

On page 66 of the October 1936 issue of Modern Mechanix is a discussion of the oddities of science that reads: “Modern
science states that energy cannot be destroyed. Scientists are now wondering what happens to the energy contained in a
compressed spring destroyed in acid.” How would you answer this question more than 70 years later?

The person who wrote this in 1936 did not understand the concept of internal energy. Then, neglecting any changes in
kinetic or potential energy, an energy balance on the system gives

1Q2 − 1W2 = ðE2 − E1Þsystem = ðU2 −U1Þsystem
where U1 = Uacid + Uspring = (maciduacid + mspringuspring). Now, Uspring = F(ΔX), the work done in compressing the spring. Finally,
U2 = Uacid+spring = (macid + mspring)uacid+spring. If we make the reasonable assumption that the spring dissolved without any heat
transfer (1Q2 = 0) and aergonically (1W2 = 0), then the energy balance equation gives U2 = U1, and solving it for the final
specific internal energy of the acid-spring solution, we find that

uacid+ spring =
maciduacid +mspringuspring

macid +mspring

So the answer to the 1936 question is this: The energy contained in the compressed spring ends up as part of the energy of the
combined acid-spring solution. That is, since the mechanical work that went into compressing the spring ended up as part of
the spring’s internal energy, when the spring was dissolved in the acid, the internal energy in the spring became part of the
internal energy of the acid-spring solution.

Also, if we assume that the acid-spring solution is a simple incompressible liquid with an internal energy that depends only
on temperature, then we can write uacid+spring = cT, and we see that the energy contained in the compressed spring reappears
as an increase in the temperature of the resulting acid-spring solution.
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or

ð1W2Þmechanical =
Z x2

x1
ð F!applied by the systemÞ.d x! −

Z x2

x1
ð F!applied on the systemÞ.d x! (4.24)

Note that our sign convention requires that work done by the system be positive, while work done on the system
be negative.

In thermodynamics, the four classical types of mechanical work (Figure 4.5) are

1. Moving system boundary work.
2. Rotating shaft work.
3. Elastic work.
4. Surface tension work.

These are very important work modes in engineering analysis and the following material provides a detailed
discussion of their major characteristics.

4.6.1 Moving System Boundary Work
Whenever a system boundary moves such that the total volume of the system changes, moving system boundary
work occurs. This is sometimes called expansion or compression work, and it has wide application in mechanical
power technology. In this case, the force is applied by the system through the pressure p (see Figure 4.5a), so
F
!

= pA
!

and F
!.d x! = pA

!.d x! = pdV , where p is the pressure acting on the system boundary, A
!

is the area vector
(defined to be normal to the system boundary and pointing outward), d x! is the differential boundary move-
ment, and dV is the differential volume A

!.d x!: Consequently,

ðdWÞ
moving
boundary

= p dV (4.25)

and for moving boundary work,

Moving boundary work:

ð1W2Þmoving
boundary

=
Z 2

1
p dV (4.26)

EXAMPLE 4.3
The sealed, rigid tank shown in Figure 4.6 contains air at 0.100 MPa and 20.0 °C. The tank is then heated until the pressure
in the tank reaches 0.800 MPa. Determine the mechanical moving boundary work produced in this process.

(Continued )

Fp

x
Area A

dx

(a) Moving system boundary 

x

± F

Area AL

± dx

(c) Elastic work

(d) Surface tension work

x

Moving slider

Filmb

Wire frame

± F

± dx

(b) Shaft work

dΘ

T

FIGURE 4.5
Four classical types of mechanical work.
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EXAMPLE 4.3 (Continued )

Solution
Let the system be the material inside the tank. The process of
heating the tank is one of constant volume (the tank is “rigid”).
Therefore, since the system volume, V , is constant, dV = 0 and
the moving boundary work is:

ð1W2Þmoving
boundary

=
Z 2

1
pdV = 0

Therefore, no moving boundary work occurs during this process.

Since a “rigid” container cannot change its volume, its moving boundary work is always zero regardless of the
process it undergoes.

EXAMPLE 4.4
The weather balloon in Figure 4.7 is inflated from a constant pressure, compressed gas source at 20.0 psia. Determine the
moving system boundary work as the balloon expands from a diameter of 1.00 ft to 10.0 ft.

Solution
Assume the balloon is a sphere, then V = 4 3πR

3 = 1 6 πD3
��

. The process here
is one of constant pressure, so p= constant, and

ð1W2Þmoving
boundary

=
Z 2

1
pdV = p

Z 2

1
dV = pðV

2
−V

1
Þ

= 20:0 lbf
in2

	 

144 in2

ft2

� �
π
6

	 

½ð10:03 −1:003Þ ft3�

= 1:51×106 ft .lbf

The work is positive because the balloon does work on the atmosphere as
it expands and pushes the atmosphere out of the way.

Exercises
7. In Example 4.3, is the moving boundary work always zero for a sealed, rigid container? Are any other work modes

always zero for this type of system? Could a piston-cylinder apparatus be modeled as a sealed, rigid system? Answers:
Yes, no, no. (It is sealed and the components, the piston and the cylinder, are rigid, but the piston can move, producing
a change in the enclosed volume.)

8. Determine the moving boundary work for the balloon in Example 4.4 as it deflates from a diameter of 10. ft to a dia-
meter of 5.0 ft at a constant pressure of 20. psia. What does the work on the balloon? Answer: (1W2)moving boundary= –1.3 ×
106 ft · lbf. The surrounding atmosphere does work on the balloon as it deflates, that is why the work is negative.

9. If the pressure inside a system depends on volume according to the relation p = K1 +K2V +K3/V , where K1, K2, and K3

are constants, determine the appropriate equation for the moving boundary work done as the volume changes from
V
1
to V

2
: Answer: 1W2ð Þmoving boundary = K1ðV2

−V
1
Þ+K2ðV2

2
−V2

1
Þ/2+K3 ln ðV

2
/V

1
Þ:

To carry out the integration indicated in Eq. (4.26), the exact p = pðVÞ pressure volume function must be
known. This function is usually given in the process path specification of a problem statement. For example, in
Example 4.3, the process is one of constant volume (the container is rigid), so dV = 0; and in Example 4.4, the
filling process is isobaric (p = constant), so the integral of Eq. (4.26) is very easy. In general, outside of these
two cases, the integration of Eq. (4.26) is not trivial and must be determined with great care.

As an example of a nontrivial integration of Eq. (4.26), consider a process that obeys the relation

pVn = constant (4.27)

Heated sealed
rigid container

Work = ?

State 1 State 2

p1 = 0.100 MPa

T1 = 20°C
p2 = 0.800 MPa

FIGURE 4.6
Example 4.3.

State 1 State 2

p1 = 20.0 psia

D1 = 1.00 ft dia
D2 = 10.0 ft dia

p2 = 20.0 psia

FIGURE 4.7
Example 4.4.
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or

p1V
n
1
= p2V

n
2

where the exponent n is a constant. Such processes are called polytropic processes.6 The moving system boundary
work of any substance undergoing a polytropic process is

ð1W2Þpolytropic
moving boundary

=
Z 2

1
pdV =

Z 2

1

constant
Vn dV

For n= 1, this integral becomes

ð1W2Þpolytropic ðn=1Þ
moving boundary

= p1V1 ln
V2

V1
= p2V

2
ln

V2

V1
(4.28)

and for n ≠ 1, it becomes

ð1W2Þpolytropic ðn≠1Þ,
moving boundary

=
p2V2 − p1V1

1− n
(4.29)

If the material undergoing a polytropic process is an ideal gas, then it must simultaneously satisfy both of the
following equations:

1. The ideal gas equation of state, pV = mRT:
2. The polytropic process equation, pVn = constant:

Combining these two equations by eliminating the pressure p gives

mRTVn−1 = constant

or, for a fixed mass system,

T1V
n−1
1 = T2V

n−1
2

or

T2
T1

=
V2

V1

 !1−n
= v2

v1

� �1−n
(4.30)

Similarly, eliminating V in these two equations (for a fixed mass system) gives the polytropic process equations
for an ideal gas:

Polytropic process equations for an ideal gas

T2
T1

=
p2
p1

� �ðn−1Þ/n
= v2

v1

� �1−n (4.31)

Finally, if we have an ideal gas undergoing a polytropic process with n ≠ 1, then its moving system boundary work
is given by Eq. (4.29), with p2V2 − p1V1 = mR T2 −T1ð Þ as the polytropic work equation for an ideal gas (n ≠ 1):

Polytropic work equation for an ideal gas n≠1ð Þ

ð1W2Þpolytropic ðn≠1Þ
ideal gas
moving boundary

= mR
1− n

ðT2 −T1Þ (4.32)

6 The term polytropic comes from the Greek roots poly meaning “many” and trope meaning “turns” or “paths.”
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EXAMPLE 4.5
Figure 4.8 shows a new process in which 0.0100 kg of methane (an ideal gas) is compressed from a pressure of 0.100 MPa
and a temperature of 20.0 °C to a pressure of 10.0 MPa in a polytropic process with n= 1.35. Determine the moving bound-
ary work required.

Methane
m1 = 0.0100 kg
p1 = 0.100 MPa

T1 = 20.0°C

Methane
m2 = 0.0100 kg
p2 = 10.0 MPa

1W2 = ?
State 1 State 2

Polytropic process
with n = 1.35

FIGURE 4.8
Example 4.5.

Solution
Since the methane behaves as an ideal gas and n ≠ 1, we can find the work required from Eq. (4.32):

ð1W2Þpolytropic ðn≠1Þ
ideal gas
moving boundary

= mR
1− n

ðT2 −T1Þ

where the value of T2 can be found from Eq. (4.31):

T2 = T1
p2
p1

� �ðn−1Þ/n
= ð20:0+ 273:15KÞ 10:0MPa

0:100MPa

	 
ð1:35−1Þ/1:35
= 967K = 694 °C

Using Table C.13b of Thermodynamic Tables to accompany Modern Engineering Thermodynamics to find the value of the gas
constant for methane, Rmethane= 0.518 kJ/kg ·K, Eq. (4.32) then gives

ð1W2Þpolytropic ðn≠1Þ
ideal gas
moving boundary

=
ð0:0100 kgÞð0:518 kJ=kg .KÞ

1−1:35
ð967−293:15Þ = −9:98 kJ

The work comes out negative, because it is being done on the system.

Exercises
10. Determine the work required in Example 4.5 if the final pressure of the methane is 0.500 MPa. Answer: −2.25 kJ.
11. If the work required in Example 4.5 is −5.00 kJ, determine the final temperature and pressure of the methane. Answer:

T2= 631 K, p2= 1.92 MPa.
12. If the gas used in Example 4.5 were air, determine the work required to compress it polytropically from 14.7 psia, 70.0°F

to 150.°F with n= 1.33. Answer: 1W2=−285.1 ft · lbf

4.6.2 Rotating Shaft Work
Whenever a rotating shaft carrying a torque load crosses a system boundary, rotating shaft work is done. In this
case (see Figure 4.5b),

ðdWÞrotating
shaft

= T
!.d θ

!
(4.33)

and, for rotating shaft work,

Rotating shaft work

ð1W2Þrotating
shaft

=
Z 2

1
T
!.d θ

!
(4.34)

where T
!

is the torque vector produced by the system on the shaft and d θ
!

is its angular displacement vector.
These two vectors are in the direction of the shaft axis. Normally, thermodynamic problem statements do not
require rotating shaft work to be calculated from Eq. (4.34). The rotating shaft work is usually openly given
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as part of the problem statement. For example, if you are analyzing an automobile internal combustion
engine producing 150. ft · lbf of work at the crankshaft, you must be able to recognize that (1W2)rotating shaft =
150. ft · lbf.

WHEN IS SHAFT WORK NOT SHAFT WORK?

Suppose you have a system that contains a fluid, and this fluid is in contact with
a mixing blade or an impeller driven by a shaft passing through the system
boundary (see Figure 4.9). This would constitute an example of shaft work.

The shaft and the blade or impeller are inside the system and their physical and
thermodynamic properties are part of the system’s properties. You have a hetero-
genous system made up of the fluid and the solid shaft and blade. If the mass of
the fluid is large enough and the size of the shaft and blade is small enough, then
their impact on the system’s properties can be neglected and the system can be
considered to consist of the fluid alone. However, this is not always the case. Sup-
pose now you exclude the shaft and the blade or impeller from the system by
restricting the system to be only the fluid and redraw the system boundaries so
that they pass along the surface of the shaft and blade (see Figure 4.10). Now,
your system consists of a pure substance (the fluid), but what kind of work mode
do you now have?

Since the only work modes we can analyze are “reversible,” the fluid medium cannot
possess viscosity (fluid friction), and consequently, there can be no shear forces on
the blade. The only force a viscousless fluid can exert on the blades is a pressure
force, p. As the blade moves, the system boundary must move accordingly to keep up
with it, and the pressure force on the blade must also move. This is just the definition
of the moving boundary work mode. Consequently, this type of shaft work is not really
shaft work at all, it is really moving boundary work.

Another example is the shaft work from an internal combustion engine. It is produced
inside the engine by moving boundary piston-cylinder work, and in a frictionless
reversible engine, these two work modes are equivalent. However, in a real engine,
where friction and other losses are present, these two work modes are not equivalent
(see Figure 4.11).

Not all shaft work can be viewed as moving boundary work. The shaft work from an electric motor or a mechanical gearbox
is not equivalent to moving boundary work (see Figure 4.12).

Reversible
engine Wrev Wirr < Wrev

Real
(irreversible)

engine

Shaft work Shaft work

FIGURE 4.11
Reversible and irreversible work in an IC engine.

Electric motor

Wshaft Wshaft−in

Welect

Mechanical gearbox

Wshaft−out

FIGURE 4.12
Shaft work from systems without internal moving boundaries.

System
boundary

Fluid

Shaft work crosses the
system boundary

FIGURE 4.9
Shaft work in a system containing a fluid.

System
boundary

Fluid

No shaft work crosses
the system boundary

FIGURE 4.10
A new system boundary that omits the
shaft and the blade.
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4.6.3 Elastic Work
Whenever we compress or extend an elastic solid (like a spring), we perform elastic work. Consider a force ± F

!
applied on the end of an elastic rod (see Figure 4.5c). The normal stress σ in the rod is

σ = ±
j F!j
A

(4.35)

where j F!j is the magnitude of the force and A is the cross-sectional area of the rod. Since the force F
!

and its
corresponding displacement d x! are always in the same direction, the vector dot product F

!.d x! always reduces
to Fdx, where F = j F!j and dx = jd x!j , and when the force is applied on the system from the surroundings
rather than being produced by the system, the work is negative and its increment is

dW = − F
!.d x! = − Fdx = − σAdx (4.36)

The strain ε in the rod is defined as

dε = dx
L

= A dx
AL

= A dx
V

=
dV

V
(4.37)

where L is the length of the rod and AL is its volume V : Then,

Adx = dV = Vdε (4.38)

and Eq. (4.36) becomes

dW = −σAdx = −σVdε (4.39)

Therefore, for elastic work,

Elastic work

1W2ð Þelastic = −
Z 2

1
σVdε

(4.40)

EXAMPLE 4.6
Determine an expression for the work involved in deforming a constant volume elastic solid that obeys Hooke’s law of elasti-
city (see Figure 4.13).

L

State 1

1W2 = ?L + ΔL

State 2

F = EA(ΔL/L)

FIGURE 4.13
Example 4.6.

Solution
Here we have V = constant. Also, from strength of materials we can write Hooke’s law as σ= Eε, where E is Young’s modulus
of elasticity. Then, Eq. (4.40) becomes

ð1W2Þelastic = −
Z 2

1
σV dε = −

Z 2

1
EVε dε = − EV

Z 2

1
ε dε

= −EV
ε22 − ε21

2

� �
= −

V

2E
ðσ22 − σ21Þ

Thus, if ε22 > ε21, then ð1W2Þelastic is negative and work is being put into the system; and if ε22 < ε21, then ð1W2Þelastic is positive
and work is being produced by the system. Note that both tensile strains (ε > 0) and compressive strains (ε < 0) are possi-
ble here. But, the resulting work formula deals only with ε2 and consequently gives the correct result regardless of the strain
direction.
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Exercises
13. What type of rigid system has zero elastic work regardless of the loading? Answer: A perfectly rigid system (E=∞).
14. If the system analyzed in Example 4.6 was a rectangular steel bar, 1.0 inch square by 12 inches long, determine the elastic

work required to stress it from 0.0 to 10. × 103 lbf/in2. Use Esteel= 30.× 106 lbf/in2. Answer: (1W2)elastic=− 1.7 ft · lbf.
15. Ten joules of elastic work is applied to a circular brass rod 0.0100 m in diameter and 1.00 m long. Determine the

resulting stress and strain in the bar if it is initially unloaded. Use Ebrass= 1.05 × 1011 Pa. Answer: σ= 164 MPa and
ε= 1.56 × 10−3 m/m.

4.6.4 Surface Tension Work
Surface tension work is the two-dimensional analog of the elastic work just considered. Figure 4.5d shows a
soap film on a wire loop. One side of the loop has a movable wire slider that can either compress or extend the
film. As in the case of the elastic solid, the force and deflection are always in the same direction and the force is
applied to the system, so we can modify Eq. (4.36) to read

dW = − F
!.d x! = − F dx = −ð2σsbÞ dx (4.41)

where σs is the surface tension of the film, and b is the length of the moving part of the film. The factor of 2
appears because the film normally has two surfaces (top and bottom) in contact with air. Now, 2b ·dx = dA =
change in the film’s surface area, so Eq. (4.41) becomes

dW = − σsdA (4.42)

and, for the surface tension work,

Surface tension work

ð1W2Þsurface
tension

= −
Z 2

1
σs dA

(4.43)

EXAMPLE 4.7
Determine the amount of surface tension work required to inflate the soap
bubble shown in Figure 4.14 from a diameter of zero to 0.0500 m. The surface
tension of the soap film can be taken to be a constant 0.0400 N/m.

Solution
Here, σs = constant = 0.0400 N/m. Note that we are not calculating the
surface area of the bubble here from its geometric elements, but wish
only to find the change in area between states 1 and 2. Consequently,
the area integral in this instance can be treated as a point function rather
than as a path function. So Eq. (4.43) becomes

ð1W2Þ surface
tension

= − σs

Z 2

1
dA = − σsðA2 −A1Þ

where A1 = 0. Now, since a soap bubble has two surfaces (the outside and inside films),

A2 = 2ð4πR2Þ = 2ð4πÞ 0:0500m
2

	 
2
= 0:0157m2

and

ð1W2Þ surface
tension

= − ð0:0400N/mÞð0:0157− 0m2Þ

= −6:28 × 10− 4 N.m = − 6:28 × 10−4 J

= − ð6:28 × 10− 4 JÞð1Btu/1055 JÞ = −5:96 × 10− 7 Btu

State 1

Wsurf. tension = ?

State 2

D1 = 0
D2 = 0.0500 m

FIGURE 4.14
Example 4.7.
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Example 4.7 shows that it would take all of the surface tension energy stored in nearly 2 million 5 cm diameter
soap bubbles to raise the temperature of one pound-mass of water by one degree Fahrenheit.

Notice that, in each of the four cases of classical mechanical work, the work differential dW was given by the
product of what we can call a generalized force F and a generalized displacement dχ; that is,

dW = Fdχ (4.44)

where F and dχ for each of the four classical mechanical work modes are identified in Table 4.2. In Eq. (4.44),
the scalar or dot product is implied if F and dχ are vectors.

The application of these work modes may change the thermodynamic state of the system and thus may produce
a change in the system’s thermodynamic properties. Finally, note that the generalized forces are all intensive
properties, whereas the generalized displacements are all extensive properties.

We can generalize the work concept to nonmechanical systems by including any work mode given by Eq. (4.44)
when the generalized force F is an intensive property forcing function and the generalized displacement dχ is an
extensive property response function. We are now in a position to analyze the remaining work mode energy
transport mechanisms.

4.7 NONMECHANICAL WORK MODES OF ENERGY TRANSPORT
Of the wide variety of nonmechanical work modes available, the following five are of significant engineering
value:

1. Electrical current flow.
2. Electrical polarization.
3. Magnetic.
4. Chemical.
5. Mechanochemical.

Materials are electrically classified as conductors, nonconductors (dielectrics or insulators), and semiconductors. A pure
conductor is a substance that has mobile charges (electrons) free to move in an applied electric field. They constitute the
flow of electrical current. Pure nonconductors have no free electrons whatsoever, and a semiconductor is a material that
behaves as a dielectric (nonconductor) at low temperatures but becomes conducting at higher temperatures.

As an electric field E is applied to a pure conductor, the free electrons migrate to the conductor’s outer surface,
where they create their own electric field, which opposes the applied field. As more and more electrons reach
the outer surface, the electric field inside the object grows weaker and weaker, eventually vanishing altogether.
At equilibrium, there is no electric field within a pure conductor.

A pure nonconductor has no free electrons with which to neutralize the applied electric field. The externally
applied field therefore acts on the internal molecules, and normally nonpolar molecules become polar and
develop electric dipoles. Some molecules are naturally polar in the absence of an electric field (e.g., water). The
applied electric field rotates and aligns the newly created or naturally polar molecules. Complete alignment is
normally prevented by molecular vibrations. But, when the applied field is strong enough to overcome the
vibration randomizing effects and further increases in field strength have no effect on the material, the material
is said to be saturated by the applied field. The process of electric dipole creation, rotation, and alignment in an
applied electric field is known as dielectric polarization.

Therefore, two work modes arise from the application of an electric field to a material. The first is the work asso-
ciated with the free electron (current) flow, and the second is the work associated with dielectric polarization.
For a pure conductor, the polarization work is always zero; and for a pure nonconductor, the current flow work
is always zero. We always treat these as separate work modes.

Table 4.2 Generalized Forces and Generalized Displacements

Work Mode Generalized Force F Generalized Displacement dχ

Moving system boundary p (pressure) dV (volume)

Shaft T (torque) dθ (angular displacement)

Elastic −σ (stress) Vdε (volume)

Surface tension −σs (surface tension) dA (surface area)
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4.7.1 Electrical Current Flow Work
Electrical current flow work occurs whenever current-carrying wires (pure conductors) cross the system boundary.
This is the most common type of nonmechanical work mode encountered in thermodynamic system analysis.
The generalized force here is the intensive property voltage (the electric potential) ϕ, and the extensive property
generalized displacement is the charge q.7 Then, assuming the voltage is applied to the system,

ðdWÞ
electrical
current

= −ϕdq

and

ð1W2Þ electrical
current

= −
Z 2

1
ϕ dq (4.45)

Electrical current i is defined as

i =
dq
dt

so dq= i dt, and

ðdWÞ
electrical
current

= −ϕi dt (4.46)

Then, electric current work is

Electrical current work

ð1W2Þ electrical
current

=
Z 2

1
ϕi dt (4.47)

From Ohm’s law, the instantaneous voltage ϕ across a pure resistance R carrying an alternating current, described
by i= imax sin(2πft), is

ϕ = Ri = Rimax sin ð2πftÞ
where f is the frequency and ϕmax = Rimax. Thus, Eq. (4.47) gives the electrical current work of n cycles of an
alternating electrical current applied to a pure resistance from time 0 to time t= n/f as

ð1W2Þelectrical
current

= −ϕmaximax

Z t = n/f

0
sin 2ð2πftÞ dt

= −ϕmaximaxðt/2Þ

= −ϕeiet = −ϕ2
e ðt/RÞ = − i2e Rt

(4.48)

where ϕe and ie are the effective voltage and current defined by ϕe= ϕmax/
ffiffiffi
2

p
and ie = imax/

ffiffiffi
2

p
:

Electrical work can exist in either open or closed systems (we do not consider the flow of electrons across a sys-
tem boundary to be a mass flow term). When the electron supply is going into a finite system, such as a battery
or a capacitor, Eq. (4.45) or (4.47) is convenient to use. But, when an essentially infinite supply of voltage and
current is used, it is more convenient to use the instantaneous rate at which electrical work is done, or the elec-
trical power, defined as

ð _WÞ
electrical
current

= dW
dt

= −ϕi (4.49)

OHM’S LAW

This law was discovered experimentally by George Simon Ohm (1787–1854) in 1826. Basically, it states that, for a given
conductor, the current is directly proportional to the potential difference, usually written as ϕ = Ri, where R is the electrical
resistance in units of ohms, where 1 ohm = 1 volt/ampere.

7 The electrical potential ϕ and the electric field strength vector E are related by E=−∇(φ), where ∇( ) is the gradient operator.
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The instantaneous electrical power −ϕi of an alternating current circuit varies in time with the excitation
frequency f. However, it is common to report the electrical power of an ac device as the instantaneous power
averaged over one cycle of oscillation, or

ð _WÞ
electrical
ðpure resistanceÞ

= − f
Z 1/f

0
ϕi dt = − fϕmaximax

Z 1/f

0
sin 2ð2πftÞ dt

= −ϕmaximax/2 = −ϕeie = −ϕ2
e /R = − i2e R

(4.50)

where ϕe and ie are the effective voltage and current defined earlier.

EXAMPLE 4.8
Consider the 120. V, 144 Ω (ohm), alternating current incandescent lightbulb shown in Figure 4.15 to be a pure resistance.
Determine

a. The electrical current work when the bulb is operated for 1.50 h.
b. Its electrical power consumption.

Solution
a. Since the voltage and current ratings of ac devices are always given in terms of their

effective values, φe= 120. V and, from Ohm’s law, ie=ϕe/R= 120./144= 0.833 A.
Then, from Eq. (4.48),

ð1W2Þelectrical
current

= −ϕeiet = − ð120:VÞð0:833AÞð1:50hÞ

= −150:V .A .h = − 150:W .h

b. From Eq. (4.50),

ð _WÞ
electrical
current

= −ϕeie = − ð120:VÞð0:833AÞ = − 100:V .A = −100:W

The minus signs appear because electrical work and power go into the system.

Exercises
16. Determine the work and power consumption in Example 4.8 when the bulb is operated for 8.00 h instead of 1.50 h.

Answer: (1W2)electrical=−800. W ·h, and _Welectrical =−100. W.
17. Determine the effective current drawn by a 1.00 hp ac electric motor operating on a standard 120. V effective power line.

Answer: ie= 6.22 A.
18. Determine the electrical power dissipated by an 8-bit microprocessor computer chip that draws 90.0 mA at 5.00 V dc.

Answer: _Welectrical =−450. mW.

4.7.2 Electrical Polarization Work
The electric dipole formation, rotation, and alignment that occur when an electric field is applied to a noncon-
ductor or a semiconductor constitutes an electric polarization work mode. The generalized force is the intensive
property E

!
(in V/m), the electric field strength vector, and the generalized displacement is the extensive property

P
!

(in A · s/m2), the polarization vector of the medium (defined to be the sum of the electric dipole rotation
moments of all the molecules in the system). Then, assuming the electric field is applied to the system,

ðdWÞ
electrical
polarization

= − E
!.dP

!
(4.51)

and

ð1W2Þ electrical
polarization

= −
Z 2

1
E
!.d P

!
(4.52)

144 ohm

120 .V

a) Welect = ? for 1.50 hour

b) W = ?

FIGURE 4.15
Example 4.8.
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Since the effect of the electric field is to orient the dipoles coincident with the field, then E
!

and P
!

are always
parallel and point in the same direction. Therefore, if we let the magnitude of E

!
be E and the magnitude of P

!
be P, then Eqs. (4.51) and (4.52) reduce to

ðdWÞ
electrical
polarization

= −E dP (4.53)

and

ð1W2Þ electrical
polarization

= −
Z 2

1
E dP (4.54)

Many substances (particularly gases) correlate well with the following dielectric equation of state:

P = ε0χeVE (4.55)

where V is the volume of the dielectric substance, ε0 is the electric permittivity of vacuum (8.85419 × 10−12 N/V2),
and χe is the electric susceptibility (a dimensionless number) of the material. Table 4.3 gives values of χe for various
materials.

EXAMPLE 4.9
The parallel plate capacitor shown in Figure 4.16 is charged to a potential
difference of 120. V at 25.0°C. The plates are square with a side length of
0.100 m and are separated by 0.0100 m. If the gap between the plates is filled
with water, determine the polarization work required in the charging of the
capacitor.

Solution
Here, we can use the dielectric equation of state, Eq. (4.55). Then, Eq. (4.54)
becomes

1W2ð Þ
electric
po1arization

= −
Z 2

1
E dP = −

Z 2

1
ðε0χeVEÞ dE = − ε0χeV E22 −E21

� �
/2

From the problem statement, we have

V = AL = 0:100mð Þ2 0:0100mð Þ = 1:00 × 10−4 m3

If we assume that the electrical potential ϕ varies linearly between the plates, then
we can write

E = j−∇ðϕÞ j = ðvoltage differenceÞ/ðplate gapÞwith E1 = 0 ðuncharged platesÞ
and

E2 = 120:V
0:0100m

= 1:20 × 104 V/m charged platesð Þ

(Continued )

0.100 m
square

0.0100 m

120. volts

Water at
25.0°C

FIGURE 4.16
Example 4.9.

Table 4.3 The Electric Susceptibility of Various Materials

Material Temperature (°C/°F) χe (dimensionless)

Air (14.7 psia) 20/68 5.36 × 10−4

Plexiglass 27/81 2.40

Neoprene rubber 24/75 5.7

Glycerine 25/77 41.5

Water 25/77 77.5

Source: Reprinted by permission of the publisher from Zemansky, M. W., Abbott, M. M., Van Ness, H. C., 1975. Basic Engineering
Thermodynamics, second ed. McGraw-Hill, New York.
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EXAMPLE 4.9 (Continued )

From Table 4.3, we find that, for water, χe= 77.5. Then,

ð1W2Þelectric
polarization

= − ð8:85419×10− 12 N/V2Þð77:5Þð1:00 × 10− 4m3Þ × ½ð1:20×104Þ2 − 02V2/m2�/2

= −4:94×10−6 N.m¼ −4:94× 10− 6 J

The work is negative since it went into the capacitor (the system).

Exercises
19. How much voltage would be required to store 1.00 MJ of electrical polarization work in the capacitor of Example 4.9?

Answer: V= 3.82 × 107 V.
20. Determine the electrical polarization work in Example 4.9 when the gap between the capacitor plates is filled with air at

20.0°C. Answer: (1W2)polarization =−3.42 × 10−11 J.
21. A capacitor is made from two concentric cylinders 0.100 m long. The diameter of the outer cylinder is 0.0200 m and the

diameter of the inner cylinder is 0.0100 m. The gap between the cylinders is filled with glycerine at 25.0°C. Determine the
electrical polarization work required to charge the capacitor when 120. V is applied. Answer: (1W2)polarization=−1.04 × 10−10 J.

The polarization work is a small fraction of the total energy required to charge an entire capacitor. The total
work required to charge a capacitor is divided into two parts. The largest fraction goes into increasing the electric
field strength E

!
itself, and the remaining goes into the polarization of the material exposed to the electric field.

Consequently, if the thermodynamic system you are analyzing is just the material between the plates of a capaci-
tor, then the only polarization work is done on the material and Eq. (4.54) gives the correct electrical work
mode value. On the other hand, if you are analyzing the entire capacitor (plates and dielectric), then Eq. (4.47)
must be used to determine the correct electrical work mode value.

4.7.3 Magnetic Work
Materials are classified as either diamagnetic, paramagnetic, or ferromagnetic. Diamagnetic materials have no per-
manently established molecular magnetic dipoles. However, when they are placed in a magnetic field, their mole-
cules develop magnetic dipoles whose magnetic field opposes the applied field (the Greek prefix dia means “to
oppose”). Paramagnetic materials have naturally occurring molecular magnetic dipoles. When placed in a mag-
netic field, these dipoles tend to align themselves parallel to the field (the Greek prefix para means “beside”). Fer-
romagnetic materials retain some magnetism after the removal of a magnetic field. The thermodynamic state of
these materials depends not only on the present values of their thermomagnetic properties, but also on their mag-
netic history. In this sense, ferromagnetic materials have a “memory” of their previous magnetic exposure.

As in the case of an electric field, the work associated with the initiation or destruction of a magnetic field con-
sists of two parts. The first part is the work required to change the magnetic field itself (as though it existed
within a vacuum), and the second part is the work required to change the magnetization of the material present
inside the magnetic field.

For calculating the total work of magnetization, the generalized force is the intensive property H
!

(in A/m2), the mag-
netic field strength, and the generalized displacement is the extensive property V B

!
, the product of the system volume V

(in m3) and the magnetic induction B
!

(in tesla or V ·s/m2). Thus, assuming the magnetic field is applied to the system,

ðdWÞmagnetic = −H
!.dðV B

!Þ (4.56)

and since H
!

and B
!

are always parallel and point in the same direction in magnetic materials, this reduces to

ðdWÞmagnetic = −H .dðVBÞ (4.57)

where H is the magnitude of H
!

and B is the magnitude of B
!
. The magnetic induction can be decomposed into two

vectors as

B
!

= μ0H
!

+ μ0M
!

(4.58)

where M
!

is the magnetization vector per unit volume of material exposed to the magnetic field (in a vacuum, M
!

is
equal to the null vector 0

!
), and μ0= 4π × 10−7 V · s/(A ·m) is a universal constant called the magnetic permeability.

Inserting this information into Eq. (4.57) gives

ðdWÞmagnetic
ðtotalÞ

= − μ0HdðV HÞ− μ0H dðV MÞ (4.59)
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Equation (4.59) is the differential of the total work associated with changing a material’s magnetic field. The first term
corresponds to the work required just to change the field itself (in a vacuum); and the second term corresponds to the
work associated with the alignment of the molecular magnetic dipoles of the material present inside the magnetic
field and represents the work of magnetization of the material exposed to the magnetic field. Hence, we can write

ðdWÞ
material
magnetization

= − μ0HdðV MÞ (4.60)

A simple and useful equation of state for a magnetic field is

M = χmH (4.61)

where χm is the magnetic susceptibility (a dimensionless number) of the material. The magnetic susceptibility is
negative for diamagnetic materials and positive for paramagnetic materials (see Table 4.4). For a constant
volume magnetization process, Eq. (4.61) can be used in Eq. (4.59) to give

ðdWÞmagnetic
ðtotalÞ

= − μ0Vð1+ χmÞHdH

and assuming a constant volume and a constant magnetic susceptibility, this can be integrated to give the total
magnetic work:

Total magnetic work

1W2ð Þ
magnetic
ðtotalÞ

= − μ0V 1+ χmð Þ H2
2 −H2

1

2

� �
(4.62)

where the increment to the total work due to the actual magnetization of the exposed material is just the actual
magnetic work:

Actual magnetic work

1W2ð Þ
material
magnetization

= −μ0Vχm
H2

2 −H2
1

2

� �
(4.63)

Table 4.5 summarizes the electrical and magnetic symbols used in this section.

Table 4.4 The Magnetic Susceptibility of Various Materials

Material Temperature (°C/°F) χm (dimensionless)

Mercury 18/26 −3.2 × 10−5

Quartz 25/77 −1.65 × 10−5

Ice 0/32 −0.805 × 10−5

Nitrogen (14.7 psia) 20/68 −0.0005 × 10−5

Oxygen (14.7 psia) 20/68 0.177 × 10−5

Aluminum 18/64 2.21 × 10−5

Platinum 18/64 29.7 × 10−5

Source: Reprinted by permission of the publisher from Zemansky, M. W., Abbott, M. M., Van Ness, H. C., 1975. Basic Engineering
Thermodynamics, second ed. McGraw-Hill, New York.

Table 4.5 Summary of Electrical and Magnetic Terms

Symbol Name SI Units

E Electric field strength V/m

P Polarization A ·s/m2

ε0 Permittivity of free space 8.85419 × 10−12 N/V2

χe Electric susceptibility Dimensionless

H Magnetic field strength A/m

B Magnetic induction Tesla or V ·s/m2

M Magnetization A/m

μ0 Magnetic permeability 4π × 10−7 V ·s/A ·m
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EXAMPLE 4.10
The magnetic susceptibility of the diamond in the gold engagement ring shown in
Figure 4.17 is −2.20 × 10−5 at 20.0°C. Determine the (a) total magnetic and (b) material
magnetic work required to change the magnetic field of a 1 carat diamond having a
volume of 5.00 × 10−6 m3 from 0.00 to 1.00 × 103 A/m.

Solution
a. The total magnetic work required is given by Eq. (4.62) as

1W2ð Þmagnetic = − μ0V 1+ χmð Þ H2
2 −H2

1

2

� �

where μ0= 4π × 10−7 V · s/A ·m and χm=−2.20 × 10−5. Then,

1W2ð Þmagnetic = − 4π × 10−7 V ⋅ s
A ⋅m

	 

ð5:00× 10− 6 m3Þð1− 2:20× 10−5Þ 1:00×106 − 0A2/m2

2

� �
= −3:14× 10−6 J

b. The magnetic work required to change the magnetic field strength inside the diamond alone is given by Eq. (4.63) as

1W2ð Þ
materia1
magnetization

= − μ0Vχm
H2

2 −H2
1

2

� �

and, using the values from part a, we get

2W
2

	 

magnetic

= − 4π ×10− 7 V ⋅ s
A ⋅m

	 

5:00×10− 6 m3ð Þ −2:20×10− 5ð Þ 1:00×106 −0A2/m2

2

� �

= 6:91×10− 11 J

Exercises
22. The magnetic susceptibility of gold is −3.60 × 10−5. If the gold in the ring of Example 4.10 has a volume of 1.00 × 10−5 m3,

determine the total magnetic work required to change the magnetic field strength of the ring (the gold plus the diamond)
from 0 to 1.00 × 103 A/m. Answer: (1W2)magnetic=−9.42 × 10−6 J.

23. The magnetic susceptibility of a ferromagnetic material such as iron varies with the applied magnetic field. However, if we
assume it is constant over a small range of field strength at a value of 1800, then determine the (a) total work and (b) the
material work required to magnetize a rectangular iron bar 0.500 inches square by 6.00 inches long from an initial magnetic
field strength of zero to a magnetic field strength of 100. A/m. Answer: (1W2)total= (1W2)iron=−2.78 × 10−4 J.

4.7.4 Chemical Work
Chemical work occurs whenever a specific chemical species is added to or removed from a system. Here, the
generalized force is the intensive property μi, the Gibbs chemical potential of chemical species i, and the general-
ized displacement is the extensive property mi, the mass of the chemical species added or removed.8 Since any
number of chemical species may be involved in a process, we write the chemical work as the sum over all k of
the i species that are moved from the system to the surroundings as

ðdWÞchemical = −∑
k

i=1

μi dmi (4.64)

and so

ð1W2Þchemical = −
Z 2

1
∑
k

i=1

μi dmi (4.65)

8 In chemistry texts, the chemical potential is usually defined on a molar (i.e., per unit gram mole) basis. In this text, we define it as a
standard intensive (per unit mass) property.

1 carat diamond

a) Wtotal magnetic = ? 

b) Wmaterial magnetic = ? 

FIGURE 4.17
Example 4.10.
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When the chemical potential is constant during the mass transfer from state 1 to state 2, Eq. (4.65) can be
integrated to give the chemical work of adding chemical species:

Chemical work of adding chemical species

ð1W2Þchemica1
μi = constant

= −∑
k

i=1

μiðm2 −m1Þi (4.66)

Chemical work does not include the energy transports produced by chemical reactions, nor does it include the
energy transported across the system boundary with the mass transport itself. Mass flow energy transport is con-
sidered later in this chapter, and the energy transports of chemical reactions are studied in detail in Chapter 9.
The chemical work presented here essentially deals only with those energy transports involved in the mixing or
separating of chemical species.

4.7.5 Mechanochemical Work
Mechanochemical work occurs whenever there is a direct energy conversion from chemical to mechanical energy.
Animal muscles are examples of mechanochemical systems. Small mechanochemical engines have also been
built using this work mode, and Figure 4.18 shows a small hydraulic pump driven by a mechanochemical con-
tractile fiber. The “fuel” used in mechanochemical engines is not “burned,” as in a standard heat engine. Often
it is merely diluted and a small amount of chemical work is simultaneously extracted.

Mechanochemical work is calculated as basic mechanical work. The generalized force is the intensive property
f, the force generated by or within the mechanochemical system, and the generalized displacement is the exten-
sive property ℓ, the mechanical displacement of the system. Therefore,

ðdWÞmechanochemical = f dℓ (4.67)

Generally, the mechanochemical force f is not constant during the contraction-expansion cycle, so the total
mechanochemical work must be determined by a careful integration:

Mechanochemical work

ð1W2Þmechanochemical =
Z 2

1
f dℓ

(4.68)

Note that, since the mechanochemical force comes from inside the system, a negative sign is not needed in Eqs. (4.67)
and (4.68).

A system may be exposed to only one of these work modes of energy trans-
port, or it may be exposed to several of them simultaneously. Since work is
an additive quantity, to get the total (or net) work of a system that has more
than one work mode present, we simply add all these work terms together:

Total differential work of all the work modes present

ðdWÞtotal = p dV +T .dθ− σ dε− σs dA

−ϕi dt−E dP− μ0HdðVMÞ−∑
k

i =1

μi dmi+fdℓ+ : : :

(4.69)

It is generally the engineer’s responsibility to determine the number and
type of work modes present in any problem statement or real world situa-
tion. Often, the work modes of a problem are affected by how the system
boundaries are drawn (recall that boundary definition is a prerogative of the
problem solver). For example, if a system contains an electrical heater, then
electrical current work is done on the system. However, if the boundary is
drawn to exclude the heating element itself, then no electrical work occurs
and the energy transport becomes a heat transport from the surface of the
heating element into the system.

Water

B

A

Concentrated LiBr solution

Coupling
belt

Collagen
strip

r1

r2 < r1

FIGURE 4.18
A simple mechanochemical Katchalsky engine.
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4.8 POWER MODES OF ENERGY TRANSPORT
In thermodynamics, the time rate of change of a work mode, dW/dt, is called power, and it represents the power
mode of an energy transport _W. Dividing each of the previous nine differential work mode equations by the time
differential dt produces an equation for the associated power mode. These results, summarized in Table 4.6, are
useful in calculating the power (i.e., work rates) in problems in which continuous rate processes occur. While
continuous rate processes can occur in both closed and open systems, they are more common in open systems.

4.9 WORK EFFICIENCY
Notice that, in all the work mode formulae given so far, no mention was made of the efficiency of the work transport
of energy. This is because all the mechanical and nonmechanical work mode formulae discussed earlier were devel-
oped under the presumption of ideal circumstances, in which there were no friction losses or other inefficiencies
within the system. Under these conditions the work process could ideally be reversed at any time, and all the work
put into a system could be removed again simply by reversing the direction of the generalized force. Therefore, we
call all the mechanical and nonmechanical work (or power) mode formulae developed previously reversible work (or
power) formulae. Consequently—and this is very important—work or power calculations made with these formulae
do not agree with the measurement of actual work that occurs in a real system. In real systems that absorb work,
more actual work than that calculated from the previous formulae are required to produce the same effect on the sys-
tem, and in real work producing systems, less actual work is produced than calculated from the previous formulae.

In the real world, nothing is reversible. Not one of the work modes discussed earlier can actually be carried out
with 100% efficiency. Some are very close to being reversible (i.e., they have very high efficiencies) but none is
completely reversible. This lack of reversibility in the real world is due to a phenomenon of nature that we
describe with the second law of thermodynamics, which is discussed in detail in Chapter 7. Work modes with a
low degree of reversibility (i.e., high irreversibility) are those carried out with systems far from thermodynamic
equilibrium. Heat transfer, rapid chemical reactions (explosions), mechanical friction, and electrical resistance
are all common sources of irreversibility in engineering systems.

Engineers use the concept of a work transport energy conversion efficiency to describe the difference between
reversible and actual work. A general definition of the concept of an energy conversion efficiency is

Energy conversion efficiency = ηE =
Desired energy result
Required energy input

(4.70)

Table 4.6 Power Modes of Energy Transport

Work Mode Power Equation

Mechanical moving boundary ð _WÞ
moving
boundary

=pd�Vdt = p _�V

Mechanical rotating shaft ð _WÞ
rotating
shaft

=T d
dt

	 

= Tω

Mechanical elastic ð _WÞelastic = −σ�V dε
dt

	 

= −σ�V _ε

Mechanical surface tension ð _WÞsurface
tension

= −σs dA
dt

	 

= −σs _A

Electrical current ð _WÞ
electrical
current

= −ϕi

Electrical polarization ð _WÞelectrical
polarization

= − E dP
dt

	 

= − E _P

Magnetic ð _WÞmagnetic = − μ0�Vð1+ χmÞH dH
dt

	 

= − μ0�Vð1+ χmÞH _H

Chemical ð _WÞchemical = −∑μi
dmi
dt

	 

= −∑μi _m i

Mechanochemical ð _WÞmechanochemical = f dℓ
dt

	 

= fℓ

⋅
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In the case of work-absorbing systems, such as pumps or compressors, we can use an equation similar to
Eq. (4.70) to define a work transport energy conversion efficiency, or reversible efficiency, ηW, as work efficiency for
work-absorbing systems:

Work efficiency for work-absorbing systems

ηWð%Þ = Wrev

Wact
× 100 =

_Wrev

_Wact
× 100 (4.71)

In the case of work-producing systems, such as engines or electrical generators, the reversible or work transport
energy conversion efficiency becomes:

Work efficiency for work-producing systems

ηWð%Þ = Wact

Wrev
× 100 =

_Wact

_W rev
× 100 (4.72)

When these systems consist only of mechanical components, as, for example, in an internal combustion engine, the
work transport energy conversion efficiency is simply called the mechanical efficiency and ηW is usually written as ηm.

Even though work transport energy conversion efficiencies are always less than 100%, not all energy conversion
efficiencies are less than 100%. The value of the efficiency depends on the nature of the desired result in
Eq. (4.70). An electrical resistance can convert electrical energy (the energy input) into heat (the desired result)
with an energy conversion efficiency of 100%, but when this process is reversed, we find that the conversion of
heat into work occurs with a much lower efficiency (a consequence of the second law of thermodynamics). On
the other hand, refrigeration systems normally produce more “desired result” (cooling) than it actually costs in
required energy input. Such systems normally have energy conversion efficiencies far in excess of 100%, not
because they violate any law of physics, but simply because of the way their energy conversion efficiency is
defined. Because it seems paradoxical to most people to speak of efficiencies in excess of 100%, we call such
efficiencies coefficients of performance (COPs) instead. For example,

ðCOPÞrefrigerator =
Refrigerator cooling rate
Refrigerator power input

EXAMPLE 4.11
The automobile engine shown in Figure 4.19 produces 150. hp on a test
stand while consuming fuel with a heat content of 20.0 × 103 Btu/lbm at
a rate of 1.10 lbm/min. A design engineer calculates the reversible power
output from the engine as 223 hp. Determine

a. The energy conversion efficiency of the engine.
b. The work efficiency of the engine.

Solution
a. The energy conversion efficiency is given by Eq. (4.70) as

ηE =
Desired energy result
Required energy input

The desired energy result here is the engine output power, 150. hp. The required energy input here is the energy coming from

the fuel, 20.0 × 103 Btu/lbm × 1.10 lbm/min × 60 min/h= 1320 × 103 Btu/h × (1 hp)/(2545 Btu/h)= 519 hp. Then,

η
E
=

150:hp
519hp

= 0:289 = 28:9%

b. Since an engine is a work producing machine, Eq. (4.72) gives the work efficiency as

ηW =
_Wactual

_Wreversible
×100 =

150:hp
223hp

×100 = 67:3%

(Continued )

Wactual = 150. hp

Wreversible = 233 hp

1.10 lbm/min of fuel

FIGURE 4.19
Example 4.11.
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EXAMPLE 4.11 (Continued )

Exercises
24. If the energy conversion efficiency in Example 4.11 were 15.5%, what would be the power output of the engine

measured on the test stand for the same fuel flow rate? Answer: _Wactual = 80:4hp.
25. An engineer designs a pump that requires 1.30 kW of reversible power to operate. A prototype pump is made and taken

to the test laboratory. The actual power required to operate the prototype pump is measured at 1.50 kW. Determine the
work (or mechanical) efficiency of this pump. Answer: ηW= 86.7%.

26. A refrigeration system is powered by a 5.0 kW electric motor. It removes 18 × 103 J/s from the cold storage space. What
is the coefficient of performance of this refrigeration system? Answer: COP= 3.6.

Because of the many irreversibilities that occur within a system, we cannot calculate actual work absorbed or
produced from a theoretical formula. All efficiency values are determined from laboratory or field measurements
on the actual work of real operating systems. When energy conversion efficiencies are to be taken into account
in textbook problems, the efficiency values usually are provided within the problem statement. Experienced
engineers often have a “feel” for what the efficiencies of certain devices should be, and they can use these effi-
ciency estimations in their design calculations. Student engineers, however, are not presumed to be innately
blessed with this knowledge.

The general form of Eq. (4.70) allows the creation of many different types of efficiencies. There are ther-
mal, mechanical, volumetric, thermodynamic, and total efficiencies (to name just a few) in today’s engi-
neering literature. One should always be sure to understand the type of efficiency being used in any
calculation.

4.10 THE LOCAL EQUILIBRIUM POSTULATE
Surprisingly, there is no adequate definition for the thermodynamic properties of a system that is not in an
equilibrium state. Some extension of classical equilibrium thermodynamics is necessary for us to be able to
analyze nonequilibrium (or irreversible) processes. We do this by subdividing a nonequilibrium system into
many small but finite volume elements, each of which is larger than the local molecular mean free path, so
that the continuum hypothesis holds. We then assume that each of these small volume elements is in local
equilibrium. Thus, a nonequilibrium system can be broken down into a very large number of very small sys-
tems, each of which is at a different equilibrium state. This technique is similar to the continuum hypoth-
esis, wherein continuum equations are used to describe the results of the motion of discrete molecules (see
Chapter 2).

The differential time quantity dt used in nonequilibrium thermodynamic analysis cannot be allowed to go to
zero as in normal calculus. We require that dt > σs, where σ is the time it takes for one of the volume elements
of the subdivided nonequilibrium system just described to “relax” from its current nonequilibrium state to an
appropriate equilibrium state. This is analogous to not allowing the physical size of the element to be less than
its local molecular mean free path, as required by the continuum hypothesis. The error incurred by these postu-
lates is really quite small, because they are the result of second-order variations of the thermodynamic variables
from their equilibrium values. However, just as the continuum hypothesis can be violated by systems such as
rarefied gases, the local equilibrium postulate can also be violated by highly nonequilibrium systems such as
explosive chemical reactions. In the case of such violations, the analysis must be carried forward with techniques
of statistical thermodynamics.

Because of the similarity between the local equilibrium postulate and the continuum hypothesis, it is clear that
the local equilibrium postulate could as well be called the continuum thermodynamics hypothesis.

SIMPLE SYSTEM

Any two independent intensive property values are sufficient to determine (or “fix”) the local equilibrium state of a simple
system.
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4.11 THE STATE POSTULATE
To carry out a reversible work mode calculation using the formulae given earlier, we must know the exact beha-
vior of both the generalized force (an intensive property) and the generalized displacement (an extensive prop-
erty) for each work mode. Systems with multiple work modes have a variety of property values that must be
monitored during the work process to utilize the proper work mode formulae. Therefore, it seems reasonable to
expect that a simple relation exists between the number of work modes present in any given system and the
number of independent property values required to fix the state of that system. This is the purpose of the fol-
lowing state postulate:

The number of independent intensive thermodynamic property values required to fix the state of a closed sys-
tem that is

1. Subject to the conditions of local equilibrium,
2. Exposed to n (nonchemical) work modes of energy transport, and
3. Composed of m pure substances is n + m.

Therefore, a pure substance (m= 1) subjected to only one work mode (n= 1) requires two (n + m= 2) indepen-
dent property values to fix its state. Such systems are called simple systems, and any two independent intensive
properties determine (or “fix”) its state.

The compression or expansion of a pure gas or vapor is a simple system. The work mode is moving system
boundary work, and any two independent intensive property values (p, v; p, T; v, T, etc.) fix its state. In fact, a
simple system occurs when each of the nonchemical reversible work modes just discussed is individually applied
to a pure substance. On the other hand, if two of them are simultaneously applied to a pure substance, then
n + m = 3 and three independent intensive property values are required to fix the state of the system.

4.12 HEAT MODES OF ENERGY TRANSPORT
We now introduce the three basic modes of heat transport of energy. Since a good heat mode analysis is some-
what more complex than a work mode analysis and since its understanding is very important to a good engi-
neering education, most mechanical engineering curricula include a separate heat transfer course on this subject.
Consequently, this section is meant to be only an elementary introduction to this subject.

A system with no heat transfer is said to be adiabatic, and all well-insulated systems are considered to be adia-
batic. A process that occurs with no heat transport of energy is called an adiabatic process.

In the late 18th century, heat was thought to be a colorless, odorless, and weightless fluid, then called caloric. By
the middle of the 19th century, it had been determined that heat was in fact not a fluid but rather it represented
energy in transit. Unfortunately, many of the early heat-fluid technical terms survived and are still in use today.
This is why we speak of heat transfer and heat flow, as though heat were something physical, but it is not.
Because these conventions are so deeply ingrained in our technical culture, we use the phrases heat transfer, heat
transport, and the heat transport of energy interchangeably.

After it was determined that heat was not a fluid, late 19th century physicists defined heat transfer simply as
energy transport due to a temperature difference. In this framework, temperature was the only intensive property
driving force for the heat transport of energy.

Today, the simplest way to define heat transport of energy is as any energy transport that is neither a work mode
nor a mass flow energy transport mode. More precisely, modern nonequilibrium thermodynamics defines heat
transfer as just the transport of internal energy into or out of a system. With this definition, all other energy
transport modes are automatically either work or mass flow modes.

The basic heat transfer formulae were developed empirically and, unlike the previous work mode formulae, give
actual rather than reversible heat transport values. In fact, since heat transfer always occurs as a result of energy

WHAT DOES THE WORD ADIABATIC MEAN?

The term adiabatic was coined in 1859 by the Scottish engineer William John Macquorn Rankine (1820−1872). It comes
from the Greek word, αδιαβατοσ, meaning “not to pass through.” In thermodynamics, it means heat does not pass through
the system boundary, or simply that there is no heat transfer. Adiabatic is the analog of the word aergonic (meaning “no
work”) introduced earlier in this chapter.
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spontaneously moving down a potential gradient (such as from high to a low temperature) and the reverse can-
not spontaneously occur, no heat transfer process can be reversed in any way whatsoever. Therefore, all finite
heat transfer processes are irreversible.

4.13 HEAT TRANSFER MODES
Heat transfer is such a large and important mechanical engineering topic that most curricula have at least one
required course in it. Heat transfer equations are always cast as heat transfer rate (i.e., _Q) equations. To deter-
mine the amount of heat energy transport that occurs as a system undergoes a process from one equilibrium

state to another you must integrate _Q over the time interval of the process, or 1Q2 =
Z 2

1

_Q dt. Normally, we

choose processes in which _Q is constant in time so that the integral becomes simply 1Q2 = _Q ðt2 − t1Þ = _QðΔtÞ,
where Δt is the time required for the process to occur.

Historically, the field has been divided into three heat transfer modes: conduction, convection, and radiation.
These three modes are briefly described next.

4.13.1 Conduction
The basic equation of conduction heat transfer is Fourier’s law:

_Qcond = −ktA
dT
dx

	 

(4.73)

where _Qcond is the conduction heat transfer rate, kt is the thermal conductivity of the material, A is the cross-
sectional area normal to the heat transfer direction, and dT/dx is the temperature gradient in the direction of
heat transfer. The algebraic sign of this equation is such that a positive _Qcond always corresponds to heat transfer
in the positive x direction, and a negative _Qcond always corresponds to heat transfer in a negative x direction.
Since this is not the same sign convention adopted earlier in this text, the sign of the values calculated from
Fourier’s law may have to be altered to produce a positive when it enters a system and a negative when it leaves
a system.

For steady conduction heat transfer through a plane wall (Figure 4.20), Fourier’s law can be integrated to give

ð _QcondÞplane = − ktA
T2 −T1
x2 − x1

� �
(4.74)

and for steady conduction heat transfer through a hollow cylinder of length L, Fourier’s law can be integrated to give

ð _QcondÞcylinder = −2πLkt
Tinside −Toutside
lnðrinside/routside

� �
(4.75)

Table 4.7 gives thermal conductivity values for various materials.

(a) Plane wall (b) Cylindrical and spherical 
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FIGURE 4.20
Thermal conduction notation in plane, cylindrical, and spherical coordinates.
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4.13.2 Convection
Convective heat transfer occurs whenever an object is either hotter or colder than the surrounding fluid. The
basic equation of convection heat transfer is Newton’s law of cooling:

_Qconv = hAðT∞ −TsÞ (4.76)

where _Qconv is the convection heat transfer rate, h is the convective heat transfer coefficient, A is the surface area
of the object being cooled or heated, T∞ is the bulk temperature of the surrounding fluid, and Ts is the surface
temperature of the object. The algebraic sign of Newton’s law of cooling has been chosen to be positive for
T∞ > Ts (i.e., for heat transfer into the object). This corresponds to our thermodynamic sign convention for heat
transfer when the object is the system. The convective heat transfer coefficient h is always a positive, empirically
determined value. Table 4.8 lists typical heat transfer coefficients.

4.13.3 Radiation
All electromagnetic radiation is classified as radiation heat transfer. Infrared, ultraviolet, visible light, radio and
television waves, X rays, and so on are all forms of radiation heat transfer. The radiation heat transfer between
two objects situated in a nonabsorbing or emitting medium is given by the Stefan-Boltzmann law:

_Qrad = F1−2ε1A1σðT4
2 − T4

1 Þ (4.77)

where _Qrad is the radiation heat transfer rate, F1–2 is called the view factor between objects 1 and 2 (it describes how
well object 1 “sees” object 2), ε1 is the dimensionless emissivity or absorptivity (the hotter object is said to emit
energy while the colder object absorbs energy) of object 1, A1 is the surface area of object 1, σ is the Stefan-
Boltzmann constant (5.69 × 10−8 W/m2 ·K4 or 0.1714 × 10−8 Btu/h · ft2 ·R4), and T1 and T2 are the surface
temperatures of the objects. A black object is defined to be any object whose emissivity is ε = 1.0. Table 4.9 lists
some typical emissivity values. Also, if object 1 is completely enclosed by object 2, then F1–2= 1.0. For a comple-
tely enclosed black object, the Stefan-Boltzmann law reduces to

ð _QradÞblack
enclosed

= A1σðT4
2 − T4

1 Þ (4.78)

Table 4.7 Thermal Conductivity of Various Materials

Material

Thermal Conductivity kt

Temperature (°C/°F) Btu/(h · ft ·R) W/(m ·K)

Air (14.7 psia) 27/81 0.015 0.026

Hydrogen (14.7 psia) 27/81 0.105 0.182

Saturated water vapor (14.7 psia) 100/212 0.014 0.024

Saturated liquid water (14.7 psia) 0/32 0.343 0.594

Engine oil 20/68 0.084 0.145

Mercury 20/68 5.02 8.69

Window glass 20/68 0.45 0.78

Glass wool 20/68 0.022 0.038

Aluminum (pure) 20/68 118.0 204.0

Copper (pure) 20/68 223.0 386.0

Carbon steel (1% carbon) 20/68 25.0 43.0

Table 4.8 Typical Values of the Convective Heat Transfer Coefficient

Type of Convection

Convective Heat Transfer Coefficient h

Btu/(h · ft2 ·R) W/(m2 ·k)

Air, free convection 1–5 2.5–25
Air, forced convection 2–100 10–500
Liquids, forced convection 20–3000 100–15,000
Boiling water 500–5000 2500–25,000
Condensing water vapor 1000–20,000 5000–100,000
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The sign convention in the Stefan-Boltzmann law has been chosen to be positive when T2 > T1; therefore, the
“system” should be object 1 to achieve the correct thermodynamic sign convention. Also note that this equation con-
tains the temperature raised to the fourth power. This means that absolute temperature units must always be used.

4.14 A THERMODYNAMIC PROBLEM SOLVING TECHNIQUE
The previous 11 example problems have been relatively straightforward, mainly illustrating the use of specific
energy and work mode equations. However, most thermodynamics problems are not so straightforward, and
now we are ready to introduce a comprehensive thermodynamic problem solving technique that allows you to
set up and solve even the most complex thermodynamics problems.

Thermodynamic problem statements sometimes have the appearance of being stories full of technical jargon,
liberally sprinkled with numbers. All too often, your first instinct on being faced with such a situation is to cal-
culate something—anything—because the act of calculation brings about the euphoria of apparent progress
toward a solution. However, this approach is quickly stalled by the inability to reach the final answer, followed
by long frustrating periods of shoe shuffling and window staring until either enlightenment, discouragement, or
sleep occurs. This is definitely the wrong problem solving technique. A good technique must have definite start-
ing and ending points, and it must contain clear and logical steps that carry you toward a solution.

As a prelude to discussing the details of the problem solving technique, you should realize that the general
structure of a thermodynamic word problem usually contains the following three features.

1. A thermodynamic problem statement is usually a small “story” that is too long to be completely and
accurately memorized no matter how many times you read it. So simply reading the problem statement
once is usually not enough; you must translate it into your own personal environment by adding a
schematic drawing, writing down relevant assumptions, and beginning a structured solution.

2. To completely understand the problem statement, you must first “decode” it. That is, you must dissect and
rearrange the problem statement until it fits into a familiar pattern. Any problem solving technique is, of
course, based on the premise that the problem has a solution. Curiously, it is very easy to construct problem
statements that are not solvable without the introduction of extraneous material (judiciously called
assumptions).

3. Thermodynamic problem statements tend to be very wide ranging. They can be written about virtually any
type of system and can deal with virtually any form of technology. To give the problem statements a
pragmatic engineering flavor, they are usually written as tiny stories that are designed to reflect what you
will encounter as a working engineer.

Unfortunately, many students facing thermodynamics for the first time are overwhelmed by these factors. How
are you supposed to know anything about how a nuclear power plant operates, how the combustion chamber
of a turbojet engine functions, or how a boiler feed pump works if you have never actually seen one in opera-
tion? The key is that you really do not have to know that much about how these things work to carry out a
good thermodynamic analysis of them. But, you do have to understand how problem statements are written
and how to analyze them correctly. This is the core of the problem solving technique.

In fact, it would be possible to write a computer program that could solve any thermodynamic word problem.
What we are going to do is to show you how to solve thermodynamic problems by using a computerlike flow-
chart approach, as in Figure 4.21.

The technique is really very simple. First, you must learn to formulate a general starting point. Then you must
learn to identify the key logical decisions that have to be made as the solution progresses. Finally, when all the

Table 4.9 Typical Emissivity Values for Various Materials

Material Temperature (°C/°F) Emissivity ε (dimensionless)

Aluminum 100/212 0.09

Iron (oxidized) 100/212 0.74

Iron (molten) 1650/3000 0.28

Concrete 21/70 0.88

Flat black paint 21/70 0.90

Flat white paint 21/70 0.88

Aluminum paint 21/70 0.39

Water 0–100/32–212 0.96
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analysis and algebraic manipulations are complete, you make the necessary calculations (paying close attention
to units and significant figures) to obtain the desired results.

The steps to be followed are shown in Figure 4.21, and each step is discussed in detail next.

Begin by carefully reading the problem statement completely through.

Step 1. Make a sketch of the system or device described in the problem statement and determine the
material (air, steam, liquid water, etc.) with which you are working. Then, carefully define the part(s) you
choose to analyze by inserting a dashed line to identify the system boundary.
Step 2. Identify the problem’s unknown(s) by rereading the problem statement and picking out all the
things you are supposed to determine. Write them on your system sketch.
Step 3. Determine whether it is a closed system or an open system. If your system is closed, identify as
many of the state properties as you can. Most problems have only two states (initial and final), but some
also have intermediate states with which you have to contend. To keep the numerical values and units of
the state properties straight, list each one under a “state” heading.

Read next problem statement
Yes

5a) Basic equations:
 > Conservation of mass
 > Conservation of
          energy (1st law)
 > Second law
5b) Auxiliary equations:
 > Heat modes
 > Work modes
 > Mass flow
 > Equations of state, etc.

No

1a) Draw a sketch of the system
1b) Label the sketch with data
 from the problem statement 

3a) Is it a closed system?
 Identify the system “States”
3b) Is it a open system?
 Identify the inlet and outlet
 “Stations”

Start by reading the
problem statement

2) List the problem
 unknown(s) on the
 system sketch

4) Identify the “process”
 connecting the states or
 stations

5) Write the basic equations
 and write any necessary
 auxiliary equations

6) Algebraically solve for
 the unknown(s)

7) Calculate the value(s)
 for the unknown(s)

8) Check all algebra,
 calculations, and units

 Another problem?

End

1) Identify the system 

3) Identify the type of
 system

FIGURE 4.21
Flowchart for solving thermodynamic problems.
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Notice that, for “simple” thermodynamic systems, we always are looking for the values of two independent
properties in each state. These two property values fix (i.e., determine) the state and we can then find the values
of any of the other properties needed at that state.

Often a problem statement gives only one property value at a system state. In this case, the remaining indepen-
dent property value at that state is usually given by the process path statement that indicates how that state was
achieved (e.g., an isothermal process tells us that T2 = T1) or else it may be a problem unknown to be
determined.

If it is an open system, we are interested in any changes that occur in the system bulk properties of the system
plus all the properties of the entering and exiting flow streams. Flow stream properties are referred to as moni-
toring station properties, to clearly separate them from bulk system properties.

WHAT IS THE SECRET TO SOLVING THERMODYNAMICS PROBLEMS?

The secret to solving thermodynamic problems is to do the analysis first and do the calculations last, not the other way around.
The basic process for solving a thermodynamics problem is this:

Begin by carefully reading the problem statement completely through.

Step 1. Make a sketch of the system and put a dashed line around the system boundary.
Step 2. Identify the unknown(s) and write them on your system sketch.
Step 3. Identify the type of system (closed or open) you have.
Step 4. Identify the process that connects the states or stations.
Step 5. Write down the basic thermodynamic equations and any useful auxiliary equations.
Step 6. Algebraically solve for the unknown(s).
Step 7. Calculate the value(s) of the unknown(s).
Step 8. Check all algebra, calculations, and units.

The process is this:

Sketch ! Unknowns ! System ! Process ! Equations ! Solve ! Calculate ! Check

For example, if you have a flow stream entering the system at station 1 with a temperature of 300.°C and a pressure of
1.00 MPa, and a flow stream exiting the system at station 2 with a specific volume of 26.3 m3/kg and a quality of 99.0%,
you should write this information on your work sheet as (always be sure to include the units on these values):

Station1
Process path������! Station2

p1 = 1:00MPa v2 = 26:3m3/kg
T1 = 300:°C x2 = 0:990

Here, too, we are trying to identify two independent property values at each station, because in simple systems, they fix the
state of the material at that station.

For example, if you have a closed system that is initially at 14.7 psia with a specific volume of 0.500 ft3/lbm and by some
process it ends up at 200. psia at a quality of 90.0%, you should write this information on your work sheet in the follow-
ing form (always be sure to include the units on these values):

State 1
Process path������! State 2

p1 = 14:7psia p2 = 200:psia
v1 = 0:500 ft3/lbm x2 = 0:900
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Step 4. Now identify the process connecting the state or stations. The process path statement is usually given
in technical terms such as a closed, rigid vessel, meaning an isochoric (or constant volume) process will occur.
Proper identification of the process path is very important, because it often provides numerical values for state
properties (e.g., v2= v1 for a closed, rigid vessel) or heat, work, or other thermodynamic quantities (e.g., an
insulated or adiabatic system has 1Q2 = _Q = 0, an aergonic system has 1W2= _W =0, and so forth). When two
independent property values are given in the problem statement for each state or station of the system, the
process path is not necessary unless it provides values for heat, work, kinetic energy, or potential energy.

Step 5. Write down all the basic equations. Your work sheet should now have all the details of the
problem on it and you should not have to look at the problem statement again. The actual solution to the
problem is begun by automatically writing down (whether you think you need them or not) all the relevant
basic equations. Thermodynamics has only three basic equations:
a. The conservation of mass (which is also called the mass balance).
b. The first law of thermodynamics (which is also called the energy balance or the conservation of energy).
c. The second law of thermodynamics (which is also called the entropy balance).

In closed systems, the conservation of mass is automatically satisfied and need not be written down. Also, since
the entropy balance is not be introduced until Chapter 7, it does not enter into the solution of any problems until
then. So, for solving the closed system problems of Chapter 5, there is really only one relevant basic equation: the
first law of thermodynamics. In solving the open system problems of Chapter 6, there are two relevant basic
equations: the conservation of mass and the first law of thermodynamics.

Write any necessary auxiliary equations. All the equations developed in this book that are not one of the
three basic equations discussed previously are called auxiliary equations. For example, all equations of state
(ideal gas and incompressible materials), all work mode equations (mechanical, electrical, etc.), all heat
mode equations (conduction, convection, radiation), all property-defining equations (specific heats,

The easiest way to show the process path on your work sheet is to write the statement “Process: process name” on a connect-
ing arrow between the state or station data sets. In the closed system example used in step 3, if the state change occurs in a
closed, rigid vessel and we do not know the final quality, then we would write

State 1
Process: v = constant����������! State 2

p1 = 14:7psia p2 = 200:psia
v1 = 0:500 ft3/lbm v2 = v1 = 0:500 ft3/lbm

And, if the open system of step 3 is operated at a constant pressure (i.e., an isobaric process) and we do not know the final
quality, then we would write

Station1
Process: p = constant����������!

Station2
p1 = 1:00MPa v2 = 26:3m3/kg
T1 = 300:°C p2 = p1 = 1:00MPa

Always write down the complete general form of the basic equations. Do not try to second-guess the problem by writing
the shorter specialized forms of the basic equations that were developed for specific applications. Then, cross out all terms
that vanish as a result of given constraints or process statements. For example, for a closed, adiabatic, stationary system, we
write the energy balance as (see Eq. (4.20), where we have used the abbreviation KE = mV 2/2gc and PE = mgZ/gc)

1Q2
⎵

= 0 ðadiabatic ðinsulatedÞ systemÞ

− 1W2 = mðu2 − u1Þ + KE2 −KE1 +PE2 −PE1
⎵

j
= 0 ðstationary - i.e., not moving)

Notice that we write why each crossed out term vanishes (“adiabatic” and “stationary” in this case). This makes the
solution easier to follow and to check later if the correct answer was not obtained.
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enthalpy, etc.), and all specialized equations (such as KE=mV2/2gc, etc.) are auxiliary equations. If the
problem statement describes a mechanical, electrical, or other work mode, then write the equation for
calculating the value of that work mode. Auxiliary equations ultimately provide numerical values for use in
the basic mass, energy, and entropy balance equations.
Step 6. Algebraically solve for the unknown(s). Do not calculate anything yet. By algebraically
manipulating the basic and auxiliary equations you should be able to develop a separate equation for each
unknown. Remember, you can solve for only as many unknowns as you have independent equations. All of
the basic equations and most of the auxiliary equations are independent, so many times unknowns are
determined directly from an auxiliary equation. For example, in the problem statements dealing with closed
systems, we have only one applicable basic equation, the first law of thermodynamics (the energy balance).
Therefore, if there is more than one unknown in these problem statements, then all but one of these
unknowns must be determined directly from an appropriate auxiliary equation.
Step 7. Calculate the value(s) of the unknown(s). Once all the algebra has been completed, then and only
then should you begin to calculate numerical values.
Step 8. Check all algebra, calculations, and units. This is self-explanatory, but pay particular attention to
checking the units. With the calculational accuracy of today’s inexpensive electronic calculators and
microcomputers, most of your errors occur as a result of poor units handling rather than from numerical
manipulations.

These eight steps are illustrated in detail in the examples in the next chapter. They will lead you through even
the most difficult thermodynamic problems. Once you become familiar with them, the solutions flow quite
rapidly and naturally. It must be emphasized that these steps are not the only solution technique possible, but
they have proven successful for many engineering students.

4.15 HOW TO WRITE A THERMODYNAMICS PROBLEM
A good test of your problem solving skills is to see whether or not you can write a thermodynamics problem
that can be solved. The technique of writing your own thermodynamics problem is just the reverse of solving
one. It is as simple as A, B, C.

A. First, you first decide (1) the type of system (closed or open) you want to use, (2) the equations you want
to use in the solution (thermodynamic laws, equations of state, work mode equation, and so forth), and (3)
the unknown(s) you want to find in the solution.

B. Next, you write a short story that provides physical motivation for the problem that contains all the
numerical values necessary to find state properties and any geometry, height, or velocity information needed
to solve for your chosen unknowns.

C. Finally, you solve your problem in a forward direction to see if you have specified all the necessary
information for someone to produce an accurate solution.

This is easier than it sounds. First, let us look at the equations that can be used in a problem solution.

By this point you should be able to see your way to the end of the problem, because the mechanism for finding each of the
unknowns should now be clear. Determine the units on each value calculated and make sure that all values that are added
together or subtracted from each other have the same units. Often one of the unknowns is needed to find another; for
example, you may need to find 1W2 from a work mode auxiliary equation to solve for 1Q2 from the energy balance equation.

Unlike in some other engineering subjects, you will not be able to find all the algebraic manipulations already done for
you in example problems within the text or by the instructor in class. There are simply too many possible variations on a
problem theme to do this. Therefore, you have to carry out the mathematical manipulations suggested here to develop
your own working formulae in almost every problem. This is a fact of thermodynamic problem solving.
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A. Select the working equations and unknowns
The problem unknowns can be any of the variables carried within the basic laws of thermodynamics and any of
the related auxiliary equations introduced thus far. For simplicity, let us limit the discussion to a closed system
analysis. The general closed system energy balance is

1Q2 − 1W2 = m ðu2 − u1Þ+ V2
2 −V2

1

2gc
+

gðZ2 −Z1Þ
gc

� �
system

and the general closed system energy rate balance is

_Q − _W = d
dt

mu+ mV2

2gc
+

mgZ
gc

� �
system

Any of the variables listed in these equations can be an unknown in a problem statement. In addition to the
basic balance equations, we have numerous auxiliary equations, such as

■ Equations of state for ideal gases, incompressible fluids, or other materials.
■ Process path equations such as polytropic, isobaric, and the like.
■ Various work mode equations for mechanical, electrical, and other work modes.

List all the basic (thermodynamics laws) and auxiliary equations you want the person who solves your problem
to use in the solution. Then choose the variables you want to use as unknowns. Remember, you need as many
independent equations in your list of equations as the number of unknowns you choose, so do not choose too
many. Then, assign numerical values to all the remaining variables in the equations that are to be used to solve
for the unknowns. Do not be too concerned about the actual values you pick at this point; if you choose the
wrong values, it will show up in step C, and you can correct them later.

B. Write a short story that contains all the information needed
to solve the problem

It would be helpful if we could categorize to some degree the wide variety of problem types or scenarios com-
monly encountered in thermodynamics. The first classification is by the thermodynamic process used in the pro-
blem scenario, the second classification is by the engineering technology used in the problem scenario, and the
third is by problem unknown. Since the number of variations within these classifications is quite large, they are
explained in detailed here.

Problem classification by thermodynamic process. A problem statement could involve more than one
process or involve unknown processes. Therefore, the process for changing the state of a system could be
the focal point of a problem statement. For example, we might want to find how the temperature
changes during a constant pressure process. This would then be the central theme of the problem
statement.
Problem classification by problem technology. The list of possible engineering technologies is much longer
than the list of known processes. Actually, any device or technology can be analyzed thermodynamically.
A series of “typical” technology based scenarios appear in engineering thermodynamics textbooks. For
example, you might want to find the work required to compress a gas with a piston, the change in
temperature across a nozzle, the power produced by a turbine, and so forth. Then, the problem statement
focuses on these technologies, providing numerical values for all the variables except the problem
unknowns.
Problem classification by problem unknown. These problems are usually the simplest, since they do
not depend on a specific technology or process path. The unknowns are simply calculated directly from
the thermodynamic laws (i.e., Q, W, KE, PE, etc.) or from an auxiliary equation (i.e., the ideal gas
equation, etc.).

C. Solve the problem in the forward direction
Here you (or a friend) must actually solve the problem you wrote using the data you provided in the pro-
blem statement. You will usually find that you get stuck part way through the problem and have to go back
and modify the problem statement. That is OK, do it quickly and go on with the solution. Sometimes, values
you originally chose cannot be found easily in the tables or are unreasonable (for example, maybe you
wanted a state to be a vapor but the values you originally specified for pressure and temperature are for a
liquid). Using the tables in the tables book and your emerging solution, change the original values in your
problem statement so that the problem solution moves along smoothly. Be careful to check the units on each
calculation.
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Now Let us Write a Thermodynamics Problem
Step A. We limit it to a closed system and use the energy balance as our primary equation:

1Q2 − 1W2 = m ðu2 − u1Þ+ V2
2 −V2

1

2gc
+

gðZ2 −Z1Þ
gc

� �
system

Choose the material. Let the system contain an ideal gas. Then auxiliary equations pv= RT and u2 − u1=
cv(T2 − T1) can be used.
Choose the unknowns. With two independent equations, we can have two unknowns. Let us choose
1Q2 and p2 as the unknowns. We can solve for 1Q2 from the energy balance and solve for p2= RT2/v2.
If we put the system in a rigid container, then 1W2=m∫pdv= 0, because for a sealed rigid container,
v = constant, then dv= 0. Let us also add the condition that the process must be isothermal, then
T2 = T1 and thus u2 − u1= cv(T2 − T1)= 0. Further, let us also require that V2= V1, then the energy
balance reduces to

1Q2 −0 = m 0+ 0+
gðZ2 −Z1Þ

gc

� �
system

Now all we need to do is specify m, Z1, and Z2 and we can compute 1Q2.
Step B. The next step is to write a scenario, or a short story, that uses these processes and values to create a

thermodynamic problem. Let us try this:

There are 5.00 kg of hydrogen gas (an ideal gas) at 20.0°C and 0.300 MPa sealed inside a wooden barrel
(a rigid container) at the top of Niagara Falls. The barrel is not insulated and is maintained at a constant
temperature (i.e., isothermal) as it travels over the falls in contact with the water. Determine

a. The heat transfer from the barrel as it travels 50.0 m vertically between the top and bottom of the falls.
b.The final pressure inside the barrel at the bottom of the falls.

Note that the problem scenario does not have to be deadly serious, you can write problem statements
around anything your imagination can conceive.

Step C. Now we must work the problem in the forward direction to see if all the necessary information has
been provided, so let us try it.

Solution
The problem solving technique requires that we start by reading the problem statement carefully.

Step 1 ask us to draw a sketch of the system (the barrel going over the Niagara Falls, see Figure 4.22) and iden-
tify the material in the system, it is the hydrogen in the barrel.

Step 2 asks us to identify the unknowns. Even though we just wrote the problem statement, it is important to
read it again, carefully, to check for errors and completeness. The problem statement should contain clarifying
statements so that the reader need not make any unreasonable assumptions. For example, in our problem state-
ment, we identified the hydrogen as an ideal gas, because it is not obvious to a beginning thermodynamics stu-
dent which materials behave like an ideal gas and
which do not. Also, while it may be obvious to you
when you wrote the problem statement that a barrel
is to be modeled as a sealed, rigid container, it is advi-
sable to tell the reader this in clear terms, since the
purpose of the problem should be to test the pro-
blem solving skills of the reader, not his or her ability
to read your mind about how to interpret unfamiliar
things. The unknowns here are clearly specified in
items (a) and (b) at the end of the problem state-
ment. They are find 1Q2 and p2.

Step 3 asks us to identify the system’s type and its
states. The system here is closed (because the barrel is
sealed). We should be able to identify the system states
from the information given in the problem statement:

State 1 State 2
T1 = 20:0°C T2 = T1 = 20:0°C
p1 = 0:300Mpa ?

State 1 State 2

5.00 kg of hydrogen gas
at 20.0°C and 0.300 MPa

50.0 m
Niagara falls

FIGURE 4.22
A barrel going over Niagara Falls.
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We have now identified two properties in the first state but only one in the second. This is a common structure at
this point in the solution. The missing property must come from somewhere else in the solution, either from the
process path or from the working equations used in the solution.

In step 4 we have to identify the process path taken by the system as it moves between states 1 and 2. Note
that, since the system is at a constant temperature and is a sealed, rigid container, the process path here has both
constant temperature and constant volume and mass, so it is also has a constant specific volume. Now, we
can add the process path line to the state information and the missing second state property, so that it looks
like this:

State 1 − − − −T = costant and v = constant− − − −> State 2
T1 = 20:0°C T2 = T1 = 20:0°C
p1 = 0:300Mpa v2 = v1 = RT1/p1

We now have two properties in each state and can continue with the solution. Note that we do not need to
calculate the value of v2 yet, since we are not sure we need it in the solution.

Step 5 is to write the basic equations. Since this is a closed system, the conservation of mass equation yields no
useful information, as the mass of the system is constant. However, the conservation of energy (the first law of
thermodynamics) is very useful here:

1Q2 − 1W2 = m ðu2 − u1Þ+ V2
2 −V2

1

2gc
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gðZ2 −Z1Þ
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Next, we write all the relevant auxiliary equations. If you do not know whether an auxiliary equation is relevant
or not, write it down anyway and decide later. Let us start with equations of state. If the material in the system
were steam or refrigerant or anything for which there is a table in the tables book, we would use those tables
rather than an equation of state. However, hydrogen was given in the problem statement as an ideal gas, so we
can write its equations of state as

pv = RT and u2 − u1 = cvðT2 − T1Þ

Note that the first equation of state can be used as both p1v1= RT1 and p2v2= RT2.

Next, let us look at work mode equations. No rotating shafts or wires cross the system boundary nor has any
reference been made in the problem statement to any electric or magnetic fields. Consequently, no shaft, electri-
cal, polarization, magnetic, or other work mode is present. We also need to check for moving boundary work,
(1W2)moving boundary =m∫pdv. Since the system is closed (the mass is constant) and rigid (so the volume is con-
stant), the specific volume (total volume divided by mass) is constant. Then dv = 0 and there is no moving
boundary or any other type of work. So, 1W2= 0.

At this point we should also identify any changes in kinetic or potential energy. Our problem statement specifies
the change in height over the falls as 50.0 m, but it does not mention anything about velocity. The intent here is
to have the initial and final velocities of the system be the same, but that might be too much to ask the reader
to assume. Therefore, we should alter the problem statement by replacing the word Determine with the phrase
Assuming the initial and final velocities of the barrel are the same, determine. Then, the problem statement reads as
follows:

Five kilograms of hydrogen gas (an ideal gas) at 20.0°C and 0.300 MPa are sealed inside a wooden barrel
(a sealed, rigid container) at the top of Niagara Falls. The barrel is not insulated and is maintained at a
constant temperature (i.e., isothermal) as it travels over the falls in contact with the water. Assuming the
initial and final velocities of the barrel are the same, determine

a. The heat transfer from the barrel as is travels 50.0 m vertically between the top and bottom of the falls.
b. The final pressure inside the barrel at the bottom of the falls.

In step 6 we are ready to algebraically solve for the unknowns. From the energy balance, we can solve for the
heat transfer required in part (a) as

1Q2 = m ðu2 − u1Þ+
V

2

2
−V

2

1

2gc
+
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+ 1W2
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Now, we incorporate our earlier results that 1W2 = 0 and u2 − u1 = cv(T2 − T1) = 0, because T2 = T1 here (the
process is also isothermal). Our latest rendition of the problem statement makes it clear that V2 = V1, and when
these conditions are incorporated into the energy balance, we obtain our final equation for the heat transfer as

1Q2 = m 0+0+
gðZ2 −Z1Þ

gc

� �
system

+ 0 =
mg
gc

ðZ2 −Z1Þ

and, from the equation of state, we can determine the solution to part (b) as

p2 = RT2/v2 = RT1/v2 = RT1/v1 = p1

since T2= T1 and v2= v1.

Step 7 allows us to calculate the values of the unknowns:

ðaÞ 1Q2 =
ð5:00 kgÞð9:81m/s2Þ

1
ð0− 50:0mÞ = −2450 kg .m2/s2

= −2450N ⋅m = −2450 J = −2:45 kJ

and

ðbÞ p2 = p1 = 0:300MPa

The negative sign in the answer for part (a) tells us that the heat transfer is out of the system. Note that the
answer in part (b) was not the result of a complex calculation. However, it did result from a rather complex ana-
lysis and, therefore, is not trivial. Also note that we did not need the value of v2 in the solution of the problem,
so it would have been a waste of time to have calculated it early in the solution.

In step 8, since the solution now seems to work well, the problem statement is complete and accurate. We
should now check all the algebra, units, and calculations before creating and solving additional problems with
similar or different scenarios.

Exercises for the problem solved in Steps 1–8
1. Rewrite this problem and make the barrel insulated but not isothermal. (Can it be both insulated and

isothermal?) Resolve the problem with these new conditions. Is any additional information needed to find
T2 and p2?

2. Write a thermodynamics problem about a computer chip. Look up the steady state voltage and current
required by a typical computer chip in a handbook and supply these values in the problem statement. This
is a closed system, and the chip cannot be insulated (otherwise, it would overheat). Use the energy rate
balance in the formulation of your problem scenario.

3. Write a thermodynamics problem about an electrical generator. Use the closed system energy rate balance.
Make the process steady state. You may have the generator insulated or uninsulated. Note that there are two
work modes here, shaft work and electrical work.

4. Write a thermodynamics problem about an airplane. Make it a closed system and have it change altitude and
speed. Choose an appropriate unknown and provide all the necessary values for the remaining variables.

SUMMARY
In this chapter, we discover that the first law of thermodynamics is simply the conservation of energy principle.
Since energy is conserved in all actions, the change in a system’s energy can be equated to the net transport of
energy into the system. Only three possible energy transport mechanisms are available to us: (1) heat transport
of energy (commonly called heat transfer), (2) work transport of energy (commonly called work), and (3) energy
transported with a mass flowing across a system’s boundary. This information produced the very powerful
energy balance and energy rate balance equations.

The general closed system energy balance:

1Q2 − 1W2 = ðE2 −E1Þsystem
= m½ðu2 − u1Þ+ ðV2

2 −V2
1 Þ/ð2gcÞ+ ðZ2 −Z1Þg/gc�system

The general closed system energy rate balance:

_Q − _W = ðdE/dtÞsystem = ðm _u +mV _V /gc +mg _Z/gcÞsystem
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The general open system energy rate balance:

_Q − _W +∑ _E
mass
flow

= d/dtð Þ mu+mV2/2gc +mZg/gc
� �

system

Work modes of energy transport are not discussed in any course outside of thermodynamics and are very impor-
tant for utilizing the full capacity of the first law of thermodynamics. We need to understand and master the
work mode auxiliary equations, because they are often required in the solution of thermodynamic problems.
Some of the important work mode auxiliary equations are given in Table 4.10. The associated power equations
are given in Table 4.6 of the text.

The local equilibrium postulate allows us to deal with nonequilibrium states, and the state postulate defines the
number of independent thermodynamic properties required to determine the local equilibrium state (two, for a
simple system).

Heat transport of energy (heat transfer 1Q2 and heat transfer rate _Q ) is categorized into three modes: (1) con-
duction, (2) convection, and (3) radiation. Heat transfer is sufficiently important to mechanical engineers that
most curricula have separate heat transfer courses. Consequently, the details of this subject are not emphasized
in a thermodynamics course. The heat transfer rate modes are summarized in Table 4.11.

Generally, if you are asked to determine a heat transfer in a problem statement, you should calculate it from the
first law energy balance rather than from one of the heat transfer mode auxiliary equations.

Table 4.10 Work Mode Auxiliary Equations

Work Mode Equation

Moving boundary (general) ð1W2Þmoving
boundary

= ∫ 2
1 pd�V

Polytropic moving boundary (n ≠ 1) ð1W2Þ polytropic ðn≠ 1Þ
ideal gas
moving boundary

= mR
1− n ðT2 −T1Þ

Rotating shaft ð1W2Þ rotating
shaft

= ∫ 2

1
T
!
⋅d

Elastic ð1W2Þelastic = −∫ 2

1
σ�V dε

Surface tension ð1W2Þ surface
tension

= −∫ 2

1
σs dA

Electrical current ð1W2Þ electrical
current

= ∫ 2

1
ϕi dt

Electrical polarization ð1W2Þ electrical
polarization

= −∫ 2

1
E dP

Magnetic ð1W2Þmagnetic = − μ0�Vð1+ χmÞ H
2
2 −H

2
1

2

 !

Chemical ð1W2Þ chemical
μi¼ constant

= −∑
k

i = 1

μiðm2 −m1Þi

Mechanochemical ð1W2Þmechanochemical = ∫ 2

1
f dℓ

Table 4.11 Heat Transfer Rate Modes

Heat Transfer Mode Equation

Conduction _Q cond = − ktA dT
dx

� �
Convection _Q conv = hAðT∞ −TsÞ
Radiation _Q rad = F1− 2ε1A1σðT4

2 −T4
1 Þ
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Finally, we study a special technique that maps the solution of any thermodynamic problem. If you follow
the format given in Figure 4.21, you will breeze through the solution maze. But you must follow it reli-
giously and take no shortcuts. As an extension of your problem solving skills, you are also shown how to
write and solve your own thermodynamic problems. If you can do this successfully, you have mastered the
subject.

Problems (* indicates problems in SI units)
1.* Determine the energy transport required to increase the

temperature of 3.50 kg of air from 20.0 to 100.°C (Figure 4.23).
Assume the air is stationary and behaves as an ideal gas with
constant specific heats.

Air
3.50 kg
20.0°C

Air
3.50 kg
100.°C

Energy
transport = ?

FIGURE 4.23
Problem 1.

2.* Determine the energy transport necessary to decrease the
temperature of 15.0 kg of methane from 500. to 20.0°C. Assume
the methane is stationary and behaves as an ideal gas with
constant specific heats.

3. Determine the gain in energy of a stationary system of
5.00 lbm of argon whose temperature is increased from
70.0 to 1000.°F. Assume ideal gas behavior with constant
specific heats.

4.* Determine the gain in energy of a stationary system of 11.0 kg
of oxygen whose pressure is increased from 0.100 to 100. MPa
isothermally. Assume ideal gas behavior with constant specific
heats.

5. If 150. Btu are transported into a system via a work mode
while 75.0 Btu are removed via heat transfer and mass flow
modes (Figure 4.24), determine the net energy gain for this
system.

Heat and mass flow = 75.0 Btu

W = 150. Btu

Net energy gain = ?

FIGURE 4.24
Problem 5.

6. A jet aircraft with a constant specific internal energy of
3500. Btu/lbm consumes fuel at a rate of 50.0 lbm/min
while flying horizontally at an altitude of 30,000. ft with a
constant velocity of 500. ft/s (Figure 4.25). Determine the net
energy transport rate of the aircraft.

Altitude = 30,000. ft

uaircraft = 3500. Btu/lbm

m = 50.0 lbm/min
V = 500. ft/s

FIGURE 4.25
Problem 6.

7. An automobile transmission has 175 hp of power entering
from the engine, 167 hp leaving to the wheels, while losing
5000. Btu/h to the surroundings as heat. What is the net energy
transport rate of the transmission?

8. To keep the transmission in the previous problem from
overheating, it was decided to cool it by circulating a coolant
through its case. If the coolant enters the transmission with a
mass flow energy rate of 10.0 Btu/s, what is its mass flow energy
rate as it leaves the transmission?

9. Determine the heat transfer rate, in Btu/h, required to cool a
200. kW electric generator that is driven by a 300. hp diesel
engine (Figure 4.26). Note: The generator runs cool if it has a
zero net energy transport rate.

Q = ?

200. kW

300. hp diesel

FIGURE 4.26
Problem 9.

10. In a stationary dynamometer test, an internal combustion
automobile engine has a fuel energy input rate of 1.90 million
Btu/h while producing 150. hp of output power. What other
energy transport mechanisms are present and what are
their magnitudes. Assume that the net energy transport rate is zero.
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11.* Determine the heat transfer per kg necessary to raise
the temperature of a closed rigid tank of saturated
water vapor originality at 0.140 MPa to a temperature
of 800.°C.

12. A closed rigid vessel of volume 5.00 ft3 contains steam at
100. psia with 83.91% moisture. If 9490.4 Btu of heat are
added to the steam, find the final pressure and quality (if wet)
or temperature (if superheated).

13.* A closed rigid vessel having a volume of 0.566 m3 is filled with
steam at 0.800 MPa and 250.°C. Heat is transferred from the
steam until it exists as saturated vapor. Calculate the amount of
heat transferred during this process.

14. A sealed, rigid tank of 10.0 ft3 capacity is initially filled with
steam at 100. psia and 500.°F. The tank and its contents are
then cooled to 260.°F. Find (a) the final quality in the container
and the amounts of liquid water and water vapor (in lbm), and
(b) the amount of heat transfer required (in Btu).

15.* A sealed rigid vessel contains 5.00 kg of water (liquid plus
vapor) at 100.°C and a quality of 30.375%.
a. What is the specific volume of the water?
b. What is the mass of water in the vapor phase?
c. What would be the saturation pressure and temperature of

this water if it had the specific volume determined in part a
and a quality of 100%?

d. What heat transfer would be required to completely
condense the saturated vapor of part c into a saturated
liquid?

16. One pound of saturated liquid water at a pressure of 40.0 psia
is contained in a rigid, closed, stationary tank. A paddle wheel
does 3000. ft · lbf of the work on the system, while heat is
transferred to or from the system. The final pressure of the
system is 20.0 psia. Calculate the amount of heat transferred
and indicate its direction.

17. Identify the following as either point or path functions:
a. u2 + 3u − 5.
b. T(h2 − u2) − 3(u − pv) + 4.
c. sin u3 + sin h3.

d.
Z 2

1
V dp, where V = VðpÞ:

18. Identify the following as either point or path functions:
a. RT/v.

b.
Z 2

1
p dV , where p = p V

	 

:

c. h + pv.
d. u + V2/2gc + gZ/gc.

19. Explain whether u2 − u1 =
Z 2

1
cv dT is a point or a path function

for a given system.

20. Explain whether h2 − h1 =
Z 2

1
cp dT is a point or a path function

for a given system.
21. Explain the meaning of the notation 1Q2 and 1W2. Why do we

not write 1E2, 1u2, or 1h2?
22.* Determine the moving boundary work transport of energy when

4.5 kg of water expands at constant pressure from saturated
liquid to saturated vapor while at 20.0°C.

23. Determine the moving boundary work done by the atmosphere
(14.7 psia) as a cube of ice 2.00 in on a side melts into a pool
of liquid water (Figure 4.27). At 32.0°F, the density of ice is
57.2 lbm/ft3 and that of liquid water is 62.4 lbm/ft3.

2.00 in

2.00 in

2.00 in

Liquid water

Ice cube

State 1 State 2

Melts at
T = 32.0°F

FIGURE 4.27
Problem 23.

24. Determine the moving boundary work done by a cube
of solid CO2 2.00 in on a side as it vaporizes at atmospheric
pressure (14.7 psia) (Figure 4.28). The density of solid CO2 is
97.561 lbm/ft3 and that of CO2 vapor is 0.174 lbm/ft3.

CO2 vapor

CO2 solid

2.00 in

2.00 in

2.00 in

State 1 State 2

p = 1.00 atm

FIGURE 4.28
Problem 24.

25. A weather balloon is filled with helium at 50.0°F so that its
volume is 500. ft3. The balloon is left anchored in the sun and its
temperature rises to 110.°F. How much moving boundary work is
done by the balloon on the atmosphere as its volume increases
due to the increase in temperature? Assume that helium is an
ideal gas and the balloon skin is sufficiently thin that the pressure
in the balloon remains approximately atmospheric.

26.* Suppose 2.00 m3 of air (considered an ideal gas) is initially at a
pressure of 101.3 kPa and a temperature of 20.0°C. The air is
compressed at a constant temperature in a closed system to a
pressure of 0.500 MPa (Figure 4.29). (a) How much work is
done on the air to compress it? (b) How much energy is
transferred as heat during the compression process?

T = constant

Force

Air

Piston

State 1 State 2

p2 = 0.500 MPaV1 = 2.00 m3

p1 = 101.3 kPa
T1 = 20.0°C

Force

FIGURE 4.29
Problem 26.
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27. Show that the first law of thermodynamics requires that, for an
ideal gas with a constant specific heat ratio cp/cv = k undergoing
a polytropic process (i.e., pvn = constant),
a. n must be greater than k for T2 < T1 when there is heat

transfer from the gas.
b. n must be less than k for T2 < T1 when there is a heat

transfer to the gas.
28. Find the moving boundary work done on a gas in compressing

it from V
1
= 10:0 ft3, p1 = 10:0psia to V

2
= 1:000 ft3 according

to the relation p V3 = constant (Figure 4.30).

pV3 = constant

Gas

Piston

Force Force

V2 = 1.000 ft3V1 = 10.0 ft3

p1 = 10.0 psia

State 2State 1

FIGURE 4.30
Problem 28.

29.* A brilliant young engineer claims to have invented an engine
that runs on the following thermodynamic cycle:
a. An isochoric pressurization from p1 to p2 = ∠p1.
b. An isobaric expansion from V

2
to V

3
= 2V

2
:

c. An isochoric depressurization from p3 to p4 = p1.
d. An isobaric compression back to the initial state, p1,V1

:

Determine the net moving boundary work done during this
cycle if p1 = 25.0 kPa and V

1
= 0:0300m3: Sketch this cycle

on a p−V diagram.
30.* A balloon filled with air at 0.100 MPa-absolute is heated in

sunlight. As the balloon is heated, it expands according to the
following pressure-volume relation:

p = 0:1+ 0:15V +0:06V2

where p is in MPa and V is in m3 (Figure 4.31). Determine the
moving boundary work transport of energy as the balloon
expands from 1.00 to 2.00 m3.

V2 = 2.00 m3p1 = 0.100 MN/m2

V1 = 1.00 m3

p = f(V )

State 2State 1

FIGURE 4.31
Problem 30.

31. One lbm of an ideal gas with molecular weight 6.44 lbm/
lbmole is compressed in a closed system from 100. psia, 600.
R to a final specific volume of 8.00 ft3/lbm. At all points
during the compression, the pressure and specific volume are
related by

p = 50+4v+ 0:1v2

where p is in psia and v is in ft3/lbm. Determine the moving
boundary work required and the heat transfer during this
compression if the gas has a constant volume specific heat of
0.200 Btu/(lbm ·R).

32. Three lbm of a substance is made to undergo a reversible
expansion process within a piston-cylinder device, starting from
an initial pressure of 100 psia and an initial volume of 2.00 ft3.
The final volume is 4.00 ft3. Determine the moving boundary
work produced by this expansion for each of the following
process paths. Note which process produces the maximum work
and which produces the minimum.
a. Pressure remains constant (p = K)
b. Pressure times volume remains constant ðpV = KÞ:
c. Pressure is proportional to volume ðp = KVÞ:
d. Pressure is proportional to the square of volume ðp = KV2Þ:
e. Pressure is proportional to the square root of volume

ðp = K
ffiffiffiffi
V

q
Þ, where K is a constant in each case.

33.* The magnitude of the torque T on a shaft is given in
N ·m by

T = 6:3 cos θ

where θ is the angular displacement. If the torque and
displacement vectors are parallel, determine the work required to
rotate the shaft through one complete revolution.

34. The magnitude of the torque vector normal to the axis of a shaft
is given in ft · lbf by

T = 21:7 sin θ for 0< θ≤ π
= 0 for π < θ≤3π/2
= 50:4 for 3π/2< θ≤ 2π

Determine the work done in one complete revolution of the
shaft.

35. When the torque and angular displacement vectors are parallel,
the torque displacement relation for the drive shaft of a 1909
American Underslung automobile is given by

Tθn = K

where K and n are constants. Determine a general formula for
the shaft work when (a) n = 1.0, and (b) n ≠ 1.0.

36. How much elastic work is done in uniaxially stretching an
initially unstrained elastic steel bar (Young’s modulus = 3.0 ×
107 psi = constant) whose volume (also a constant) is 5.00 in3

to a total strain of 0.00200 in/in?
37. When a rubber band is stretched, it exerts a restoring force (F)

that is a function of its initial length (L) and displacement (x).
For a certain rubber band this relation is

F = K x
L
+ x

L

	 
2� �
,
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where K = 0.810 lbf. Determine the elastic work (with the
appropriate sign) required to stretch the rubber band from an
initial length of 2.00 in to a final length of 3.00 in
(Figure 4.32).

3.00 in

2.00 in

FIGURE 4.32
Problem 37.

38.* A 10.0 cm soap bubble is blown on the end of a large-diameter
blowpipe. When the blowpipe end opposite the bubble is
uncovered, the surface tension in the soap bubble causes it to
collapse, thus sending its contents through the blowpipe and
the atmosphere. Estimate the velocity of the air in the blowpipe
as the bubble collapses. For the soap bubble, σs = 0.0400 N/m.

39. At 68.0°F the surface tension of acetic acid is 1.59 × 10−4 lbf/in.
A film of acetic acid is maintained on the wire frame as shown
in Figure 4.33. Determine the surface tension work done when
the wire is moved 1.00 inch in the direction indicated.

2.50 in

Acetic
acid
film

 
1.50 in

Movable wire

F

FIGURE 4.33
Problem 39.

40.* A 12.0 V automobile battery receives a constant charge from the
engine’s alternator. The voltage across the terminals is 12.5 V dc,
and the current is 9.00 A. Determine the electrical work energy
transport rate from the automobile’s engine to the battery in
both watts and horsepower.

41. A battery powered wheelchair uses a standard 12.0 V
automotive lead-acid battery with a capacity of 20.0 A ·h.
Peukert’s law for the discharge of lead-acid batteries is

σi1:4 = K

where σ is the discharge time, i is the discharge current, and K is
a constant that depends on the battery size. The capacity of the
battery is given by capacity = σi = Ki−0.4, and the average voltage
during discharge is given by ϕ = 11.868 − 0.0618i.
a. How much current is drawn from the battery if the torque

on the drive shaft is 1.00 ft · lb when it is rotating at
1.00 rev/s?

b. How long will the wheelchair operate with this current drain
before the battery is discharged?

c. Evaluate the constant K for this battery with this current
drain.

42. Determine the electrical current power averaged over one period,
T, for a sawtooth current waveform passing through a pure
resistance R described by i = imax(t/T) for 0 < t < T.

43. In an ac circuit in which a phase angle θ exists, the voltage and
current are written as

ϕ = ϕmax cos 2πftð Þ
i = imax cos 2πft − θð Þ

Show that the electrical current power averaged over one period
(1/f) is

ð _W Þelectrical avg: = − 1
2

	 

ðϕmaxÞimax cos θð Þ = −ϕeie cos θð Þ

and thus the average power of any purely reactive (θ = π/2)
circuit consisting entirely of ideal inductors and capacitors is
zero. The term cos (θ) is called the power factor, and the product
ϕeie is called the apparent power. For a purely resistive circuit,
θ = 0 and the average power equals the apparent power.

44. Show that the polarization work required to charge a parallel
plate capacitor is given by?A3B2 tptxb +2pt?>

1W2 = −Cϕ2/2

where C = ε0χe A/d is the capacitance, ϕ is the voltage difference,
A is the area of the plates, and d is their separation distance.

45. An electrical capacitor constructed of two parallel conducting
plates of area A, separated by a distance d, has a capacitance C
given by

C = εoχeA/d

where C is in faradays (1 F = 1 J/V2). Determine the polarization
work required to charge an initially discharged 10.0 μF parallel
plate capacitor when the plates are separated by 5.00 × 10−3 m
of Plexiglas and subjected to a potential difference of 300. V at
27.0°C.

46. A typical storm cloud at an altitude of 3000. ft has a cross-
sectional area of 1.00 × 108 ft2 and a surface potential relative
to the earth of 1.00 × 108 V. Determine the amount of electrical
energy stored in the cloud by calculating the polarization work
required to charge the earth-cloud capacitor.

47.* A square aluminum bar 0.0300 m on a side and 1.00 m long is
wrapped with a current-carrying wire (Figure 4.34). When the
current in the wire is turned on, it exposes the aluminum core to a
magnetic field strength of 456 × 103 A/m. Determine the total
magnetic work that occurs when the current is turned on and
determine what percentage of this work is associated with the
alignment of the aluminum’s molecular magnetic dipoles.

Magnetic field
strength = 456 × 103A/m

Square bar:
0.0300 m by 0.0300 m
and 1.00 m long  

FIGURE 4.34
Problem 47.

48.* A quartz rod 0.0100 m in diameter and 0.100 m long is to be
subjected to a magnetic intensity of 10,000. A/m. Determine the



total magnetic work required for this process if the initial
magnetic intensity of the rod is zero.

49.* A Curie substance has a magnetic susceptibility given by

χm = C′/T

where C′ is the Curie constant for the substance and T is its
absolute temperature. Determine an expression for the work per
unit volume for isothermal material magnetization of a constant
volume Curie substance. Evaluate this for
C″ = 153 K, T = 300. K, M1 = 0, M2 = 1000. A/m.

50.* The chemical potential of a professor’s brain in a single species
cranium is constant at −13.2 MJ/kg. Determine the chemical
work required to remove 3.77 kg of this valuable substance
from the cranium.

51. 2.00 lbm of chemical species A (μA = −5700. Btu/lbm) is
removed from a system while 7.30 lbm of species B (μB =
−3850 Btu/lbm) and 11.1 lbm of species C (μC = 1050 Btu/
lbm) are added to the system. Determine the net chemical work
involved. Assume constant chemical potentials.

52. If the total internal energy of an adiabatic, stationary, closed
system is given by

U = − p V +∑μimi − fℓ

Show that the following formula must hold:

−V dp+∑mi dμi −ℓ df = 0

(Hint: Start from the differential form of the energy balance,
dQ− dW = dU and use Eq. (4.69)).

53. A simple mechanochemical engine operates on the
thermodynamic cycle shown in Figure 4.35. The
mechanochemical contractile work output (fdℓ) comes from a
chemical work input (μdm) due to the aqueous dilution of a
single chemical species (i = 1).
a. Show that the net chemical transport per cycle of this engine

is given by

Wð Þchemical
cyc1e net

= μ1 − μ2ð Þ Δmð Þ

where Δm = m3 − m2 = m4 − m1.
b. Write an expression for the work transport energy efficiency

of this engine.

54. A refrigeration cycle is chosen to maintain a freezer
compartment at 10.0°F in a room that is at 90.0°F. If 200. Btu/
min are extracted from the freezer compartment by heat
transfer and the freezer is driven by a 1.00 hp electric motor,
determine the dimensionless coefficient of performance (COP)
of the unit, defined as the cooling rate divided by the input
power.

55. An automobile engine produces 127 hp of actual output
power. If the friction, heat transfer, and other losses consume
23.0 hp, determine the work transport energy efficiency of this
engine.

56.* 60.0 kW enter a mechanical gearbox at its input shaft but only
55.0 kW exit at its output shaft. Determine its work transport
energy efficiency.

57. Find the heat transport rate of energy from a circular pipe with a
2.00 inch outside diameter, 20.0 ft long, and a wall thickness of
0.150 in. The inside and outside surface temperatures of the
pipe are 212 and 200.°F, respectively. The pipe is made of
carbon steel.

58.* A wall is made up of carbon steel 1.00 cm thick. Determine the
conduction heat transport rate per unit area through the wall
when the outside temperature is 20.0°C and the inside
temperature is −10.0°C.

59. A window consists of a 0.125 in glass pane. Determine the
conduction heat transport rate per unit area of window pane
when the inside and outside temperatures to be 70.0 and 0.0°F,
respectively.

60.* Find the surface temperature of a bare 40.0 W fluorescent light
tube, 3.60 cm in diameter and 1.22 m long in room air at
20.0°C. The convective heat transfer coefficient of the tube is
4.80 W/(m2 ·K).

61.* An experiment has been conducted on a small cylindrical
antenna 12.7 mm in diameter and 95.0 mm long. It was
heated internally with a 40.0 W electric heater. During the
experiment, it was put into a cross flow of air at 26.2°C and
10.0 m/s. Its surface temperature was measured and found
to be 127.8°C. Determine the convective heat transfer
coefficient for the antenna.

62. An automobile is parked outdoors on a cold evening, when the
surrounding air temperature is 35.0°F. The convective heat
transfer between the roof of the automobile and the surrounding

6.00 ft

Pivot
Piston

Cylinder

Condensing
water vapor 

2000. lbm
of water

Chain

6.00 ft

FIGURE 4.35
Problem 53.
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air is 1.50 Btu/(h · ft2 ·R). The night sky is cloudless and forms a
black body at a temperature of −30.0°F. By performing a
convective-radiation balance on the roof, determine
a. The roof temperature.
b. Whether or not frost will form on the roof (and why).

63.* Determine the radiation heat transfer rate per unit area between
an infant at 37.0°C in a crib and a nearby window at −10.0°C
in the winter. The view factor between the infant and the
window is 0.310.

64. Determine the radiation heat transfer rate per unit area from a
nuclear fireball at 10,000.°F and a nearby building at 70.0°F
covered with white paint. The view factor between the building
and the fireball is 0.0100.

65. Define the following terms:
a. Adiabatic.
b. Mechanical work.
c. Reversible.
d. The state postulate.

66. Define the following terms:
a. Aergonic.
b. The local equilibrium postulate.
c. Enthalpy.
d. Work efficiency.

67.* A closed system undergoes a cycle made up of three processes.
Fill in the missing data in Table 4.12. All the values are in
kilojoules.

Computer Problems
The following computer assignments are designed to be carried out
on a personal computer using a spreadsheet or equation solver. They
are exercises that use some of the basic formulae of Chapter 4. They
may be used as part of a weekly homework assignment.

68. Develop a program that calculates the work transport for an ideal
gas undergoing a polytropic moving boundary process. Have the
user input all necessary data from the keyboard by responding to
properly worded screen prompts. Make sure that units are
specified when requesting user data input. Output the polytropic
work and all the input data (with corresponding units).

69. Develop a program that calculates the work transport for a
Hookean elastic solid. Have the user input all necessary data
from the keyboard by responding to properly worded screen
prompts. Make sure that units are specified when requesting
user data input. Output the elastic work and all the input data
(with corresponding units).

70. Develop a program that determines the work transport in a
constant volume magnetization process. Have the user input all
necessary data from the keyboard by responding to properly
worded screen prompts. Make sure that units are specified when
requesting user data input. Output the magnetic work, the work

of magnetization of the exposed material, and all the input data
(with corresponding units).

71. Develop a program that determines the chemical work transport
for a system with constant chemical potentials. Have the user
input all the μi and the initial and final mi from the keyboard by
responding to properly worded screen prompts. Make sure that
units are specified when requesting user data input. Output the
chemical work (with corresponding units).

72. Develop a program that determines the total heat transfer rate
from the sum of one or more of the three heat transport modes
(conduction, convection, and radiation). Have the user select
from a menu which heat transport mode or combination of heat
transport modes he or she wishes to use. Then have the user
input all necessary data from the keyboard by responding to
properly worded screen prompts. Output the heat transport rate
and all input data (with corresponding units).

Create and Solve Problems
Engineering education tends to focus only on the process of solving
problems. It ignores teaching the process of formulating solvable pro-
blems. However, working engineers are never given a well-phrased
problem statement to solve. Instead, they need to react to situational
information and organize it into a structure that can be solved using
the methods learned in college.

Also, if you see how problems are written (created), then you have a
better chance of mastering the solution technique and of understand-
ing how to structure information as a working engineer into solvable
situations. These “Create and Solve” problems are designed to help
you learn how to formulate solvable thermodynamics problems from
engineering data. Since you provide the numerical values for some of
the variables, these problems have no unique solutions. Their solu-
tions depend on the assumptions you need to make and how you set
them up to create a solvable problem.

73.* You are a design engineer working on a robotic system. The
robot contains an imbedded circuit board that draws 30.0 mA at
5.00 V. Someone mentions that the circuit board might overheat
during its 30 min. operating cycle. Write and solve a problem
that provides (a) the heat generation rate of the circuit board,
and (b) the temperature of the circuit board if it is insulated
and operated for 30.0 minutes. Choose relevant values for the
necessary variables. Hint: Your problem statement might read
something like this:

An insulated circuit board draws 30.0 mA at 5.00 V.
Determine its heat generation rate and its temperature after
30.0 min of operation. The board has a mass of
1.00 × 10−3 kg and its specific heat is 0.500 kJ/kg ·K.

Now you have to solve your problem to determine the answers
to (a) and (b).

Table 4.12 Problem 67

Process Qcond Qconv Qrad Wmech Welect Wmagn Wchem E2 − E1

1–2 5 13 −34 45 2 −23 11 ?

2–3 12.3 56.1 121. 0.0 85.0 0.0 ? 211.0

3–1 1.1 −23.3 ? −44.8 89.9 −47.3 14.2 0.0
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74. You are designing a new mechanical transmission large rock
crusher used in the mining industry. The transmission is driven
by a 300. hp engine but transmits only 290. hp to the rock
crusher. You need to prevent the transmission from overheating,
so how much cooling is needed to keep it at ambient
temperature?

75.* Dave, your boss, wants you to estimate the amount of heat that
has to be removed from an iron ingot to cool it from 900ºC to
150ºC. Make this request into a thermodynamic problem
statement and solve it.

76.* You are a new engineer at a company that manufactures
gas-filled shock absorbers for racing cars. The chief engineer
wants to understand the relation between the gas pressure inside
the shock absorber and the compression of the gas. The shock
absorbers are essentially piston-cylinder devices that are initially
filled with nitrogen gas at 0.345 MPa and 20.0ºF. When the
piston compresses the gas by 20%, the pressure increases to
0.414 MPa. You think this is a polytropic compression process.
Write and solve a thermodynamics problem to determine the
polytropic exponent for this process.
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