Contents

Preface .. vii
About the Author ... ix

CHAPTER 1. Fluid Mechanics Challenges and Technology Overview 1
 Section 1.1. Managed pressure drilling fluid flow challenges 10
 Section 1.2. MPD flow simulator: Steady, two-dimensional, single-phase flow ... 14
 Section 1.3. MPD flow simulator: Transient, two-dimensional, single-phase flow .. 27
 Section 1.4. MPD flow simulator: Transient, three-dimensional, multiphase flow .. 35

CHAPTER 2. General Theory and Physical Model Formulation 47
 Example 2.1. Newtonian flow circular cylindrical coordinates 47
 Example 2.2. Shear-thinning and non-Newtonian flow effects 52
 Example 2.3. Curvilinear grid formulation for highly eccentric annular flows with general non-Newtonian fluids without rotation .. 59
 Example 2.4. Curvilinear grid formulation for eccentric annular flows with general non-Newtonian fluids with rotation .. 72

CHAPTER 3. Numerical Analysis and Algorithm Development Strategies 75
 Example 3.1. Grid generation for eccentric annular flow 75
 Example 3.2. Mappings for flows in singly connected ducts 86
 Example 3.3. Solids deposition modeling and applications............................... 86
 Example 3.4. Finite difference details for annular flow problems 120

CHAPTER 4. Steady, Two-Dimensional, Non-Newtonian, Single-Phase, Eccentric Annular Flow ... 127
 Example 4.1. Newtonian flow eccentric annulus applications 127
 Example 4.2. Power law flow in eccentric annuli .. 131
 Example 4.3. Turbulence modeling and Power law flow analogy 144
 Example 4.4. Pressure gradient versus flow rate curve computation for non-Newtonian eccentric annuli ... 145
 Example 4.5. Effects of influx-outflux along the borehole path for non-Newtonian eccentric annuli without rotation ... 150
 Example 4.6. Steady-state swab-surge in eccentric annuli for Power law fluids with and without circulation (no rotation) ... 151
Example 4.7. Steady-state swab-surge in concentric annuli for Power law fluids with drillpipe rotation but small pipe movement 164
Example 4.8. Steady-state swab-surge in eccentric annuli for Herschel-Bulkley fluids with drillpipe rotation and axial movement 165
Example 4.9. Transient swab-surge on a steady-state basis 177
Example 4.10. Equivalent circulating density calculations 179

CHAPTER 5. More Steady Flow Applications ... 183
Model 5.1. Newtonian flow in concentric annulus with axially moving (but nonrotating) pipe or casing ... 183
Model 5.2. Density stratification (barite sag) and recirculating annular vortexes that impede fluid flow ... 185
Model 5.3. Herschel-Bulkley flow in concentric annulus with axially stationary and nonrotating drillpipe or casing 196
Model 5.4. Extended Herschel-Bulkley flow in eccentric annulus with axially moving but nonrotating drillpipe or casing 203
Model 5.5. Steady non-Newtonian flow in boreholes with bends 207
Model 5.6. Newtonian and Power law flow in concentric annulus with rotating (but axially stationary) pipe or casing 215
Model 5.7. Cuttings transport flow correlations in deviated wells 243
Model 5.8. Cuttings bed growth as an unstable flow process 253
Model 5.9. Spotting fluid evaluation for stuck pipe and jarring applications .. 257
Model 5.10. Newtonian flow in rectangular ducts 262

CHAPTER 6. Transient, Two-Dimensional, Single-Phase Flow Modeling 267
Section 6.1. Governing equations for transient flow 267
Section 6.2. Rotation paradox ... 269
Section 6.3. Operational consequences for the transient rotation algorithm .. 270
Section 6.4. Transient pressure gradient and volume flow rate 271

CHAPTER 7. Transient Applications: Drillpipe or Casing Reciprocation and Rotation ... 273
Example 7.1. Validation runs: Three different approaches to steady, nonrotating concentric annular Power law flow 273
Example 7.2. Validation run for transient, Newtonian, nonrotating concentric annular flow .. 274
Example 7.3. Validation run for transient, Newtonian, nonrotating eccentric annular flow .. 277
Example 7.4. Effect of steady rotation for laminar Power law flows in concentric annuli	278
Example 7.5. Effect of steady-state rotation for Newtonian fluid flow in eccentric annuli	281
Example 7.6. Effect of steady rotation for Power law flows in highly eccentric annuli at low densities (foams)	284
Example 7.7. Effect of steady rotation for Power law flows in highly eccentric annuli at high densities (heavy muds)	287
Example 7.8. Effect of mud pump ramp-up and ramp-down flow rate under nonrotating and rotating conditions	287
Example 7.9. Effect of rotational and azimuthal start-up	290
Example 7.10. Effect of axial drillstring movement	291
Example 7.11. Combined rotation and sinusoidal reciprocation	296
Example 7.12. Combined rotation and sinusoidal reciprocation in the presence of mud pump flow rate ramp-up for yield stress fluid	296

CHAPTER 8. Cement and Mud Multiphase Transient Displacements

Discussion 8.1. Unsteady three-dimensional Newtonian flows with miscible mixing in long eccentric annular ducts	304
Discussion 8.2. Transient, single-phase, two-dimensional non-Newtonian flow with inner pipe rotation in eccentric annuli	305
Discussion 8.3. Transient, three-dimensional non-Newtonian flows with miscible mixing in long eccentric annular ducts with pipe or casing rotation and reciprocation	308
Discussion 8.4. Subtleties in non-Newtonian convection modeling	310
Discussion 8.5. Simple models for multiple non-Newtonian fluids with mixing	312

CHAPTER 9. Transient, Three-Dimensional, Multiphase Pipe and Annular Flow

Discussion 9.1. Single fluid in pipe and borehole system: Calculating total pressure drops for general non-Newtonian fluids	315
Discussion 9.2. Interface tracking and total pressure drop for multiple fluids pumped in a drillpipe and eccentric borehole system	317
Discussion 9.3. Calculating annular and drillpipe pressure loss	336
Discussion 9.4. Herschel-Bulkley pipe flow analysis	342
Discussion 9.5. Transient, three-dimensional eccentric multiphase flow analysis for nonrotating Newtonian fluids	343
Discussion 9.6. Transient, three-dimensional eccentric multiphase analysis for nonrotating Newtonian fluids: Simulator description	350
Preface

My first exposure to the importance of good hole cleaning and pressure analysis occurred in 1981 when I was initiated into the petroleum industry, having left the aerospace industry, for which I had trained diligently. The new subject matter was not glamorous, to say the least, but years later I would come to understand its significance in both drilling and cementing. The advent of deviated and horizontal wells elevated the role of annular flow in oilfield operations.

A decade later, I published my first book on borehole flow modeling, introducing the use of curvilinear grid systems to accurately capture the physics. Over the years, this effort was self-funded and undertaken as a labor of love. However, another decade later I launched my consulting company, Stratamagnetic Software, LLC, supported by the U.S. Department of Energy through its Small Business Innovation Research Program, under Grant DE-FG03-99ER82895, to improve grid generation techniques for the oil industry. Related work in this area with several clients continued over the years in different and varied applications.

In 2009, the Department of Energy awarded a contract to support my technical proposal “Advanced Steady-State and Transient, Three-Dimensional, Single and Multiphase, Non-Newtonian Simulation System for Managed Pressure Drilling.” This comprehensive effort was administered by the Research Partnership to Secure Energy for America (RPSEA) through its Ultra-Deepwater Program under Subcontract No. 08121-2502-01. This award enabled my colleagues and I to “tie up loose ends” and integrate numerous models developed over two decades. More important, it provided us the opportunity to significantly extend our models in numerous directions—rotating flow, fully transient effects, three-dimensionality, multiphase, and so on—and to perform research and develop software models that we felt would have a lasting influence on the petroleum industry.

We are very fortunate that many in the industry have recognized our efforts. Aside from those who have provided us this source of important funding, anonymous reviewers have made it possible for us to publish five recent papers: four for the American Association of Drilling Engineers (AADE) National Technical Conference and Exhibition, during April 2011 in Houston and one for the Offshore Technology Conference during May 2011, also in Houston. We are of course gratified that Gulf Professional Publishing/Elsevier has agreed to publish this book, Managed Pressure Drilling: Modeling, Strategy and Planning, which will no doubt achieve wide dissemination of our ideas.

Consistent with my belief that scientific research should be openly shared by industry, this book and the papers my colleagues have presented disclose all elements of the new annular flow models: mathematical theory, numerical implementation, source code examples, and computational validations, with comparisons to laboratory and field data and results whenever possible. Because of our research focus, and because our ideas are always evolving, the methods developed here and implemented in software are provided “as is” and no claim is made that they address all potential technical issues.

It is hoped, however, that others will study the models and help to improve them through use and research. Over the next several months, the plan is to widely disseminate the software, on which great effort has been expended in order to optimize the user’s experience through a versatile
and intuitive interface so we can obtain the feedback needed to support continued product development. Access to the fully functional software system flow simulation modules executable over the Internet are available from the book’s website at gulfpp.com/9780123851246

I am deeply appreciative of the U.S. Department of Energy and the Research Partnership to Secure Energy for America for the opportunity they have provided me to work in this exciting technology area, and I look forward to a long collaboration with them and all interested parties.

Acknowledgments

My colleagues and I gratefully acknowledge the U.S. Department of Energy for its support of our technical proposal “Advanced Steady-State and Transient, Three-Dimensional, Single and Multiphase, Non-Newtonian Simulation System for Managed Pressure Drilling” during the period 2009 through 2011. This support was administered and directed by the Research Partnership to Secure Energy for America (RPSEA) through its Ultra-Deepwater Program under Subcontract No. 08121-2502-01. Our curvilinear grid generation research was also supported by the U.S. Department of Energy, under Small Business Innovation Research Grant DE-FG03-99ER82895 from 1999 through 2000.

We thank all of the industry partners we have been privileged to work with for motivating many of the problems and methods addressed in this research. We are indebted to Art Schroeder of Energy Valley, to Jim Chitwood of Chevron, and to James Pappas of RPSEA for their encouragement and advice. We are especially grateful to John Lofton of Chevron for his engineering insights and guidance related to several areas of our modeling of rotating pipe flow effects. James Pappas, in particular, contributed significantly to the manuscript through his meticulous reading and valued comments.

Finally, we thank Ken McCombs, senior acquisitions editor at Elsevier, for his interest in the book and for his support and encouragement throughout the research and writing. Marilyn Rash, with assistance from Dianne Wood and Deborah Prato; Jill Leonard; and other Elsevier staff contributed greatly to the editorial and production efforts and their labors are deeply appreciated.

The views expressed here, of course, are my own and are not necessarily the opinions of any program sponsors or individuals.
Wilson C. Chin earned his Ph.D. from the Massachusetts Institute of Technology and his M.Sc. from the California Institute of Technology. His early interests focused on applied mathematics, fluid mechanics, and electrodynamics. Prior to founding Stratamagnetic Software, LLC, in Houston in 1999, he was affiliated with Boeing Aerospace, United Technologies, Schlumberger Anadrill, BP Exploration, and Halliburton.

Mr. Chin has authored more than 80 technical papers, received almost 20 U.S. patents in oilfield technology, and won 5 Department of Energy awards. In addition, he has written 8 other textbooks on advanced research in petroleum technology:

- *Formation Invasion, with Applications to Measurement-While-Drilling, Time Lapse Analysis and Formation Damage* (Gulf Publishing, 1995)
- *Computational Rheology for Pipeline and Annular Flow* (Elsevier, 2001)
- *Quantitative Methods in Reservoir Engineering* (Elsevier, 2002)
- *MWD Signal Analysis, Optimization and Design* (E&P Press, 2011)

Mr. Chin may be contacted by email at wilsonchin@aol.com or by telephone at (832) 483-6899.