Engineering Rock Mass Classification
Engineering Rock Mass Classification
Tunneling, Foundations, and Landslides

Bhawani Singh
Former Professor of Civil Engineering
Indian Institute of Technology
Roorkee - 247 667 (India)

R. K. Goel
Scientist G
Central Institute of Mining and Fuel Research
Regional Centre, CBRI Campus
Roorkee - 247 667 (India)
Dedicated to

Researchers and Readers
1. Philosophy of Engineering Classifications
 - The Classification 1
 - Philosophy of Classification System 2
 - Need for Engineering Geological Map 2
 - Management of Uncertainties 3
 - Present-Day Practice 3
 - Scope of the Book 4

2. Shear Zone Treatment in Tunnels and Foundations 7
 - Shear Zone 7
 - Treatment for Tunnels 7
 - Treatment for Dam Foundations 9

3. Rock Material 13
 - Rock Material 13
 - Homogeneity and Inhomogeneity 13
 - Classification of Rock Material 13
 - Class I and II Brittle Rocks 15
 - Uniaxial Compression 16
 - Stability in Water 17
 - Classification on the Basis of Slake Durability Index 18

4. Rock Quality Designation 21
 - Rock Quality Designation 21
 - Direct Method 21
 - Indirect Methods 23
 - Weighted Joint Density 24
 - Red-Flag Effect of Low RQD 29
 - Application of RQD 30

5. Terzaghi’s Rock Load Theory 33
 - Introduction 33
 - Rock Classes 33
 - Rock Load Factor 33
 - Modified Terzaghi’s Theory for Tunnels and Caverns 42
6. Rock Mass Rating

Introduction
Collection of Field Data
Estimation of RMR
Applications of RMR
Precautions
Rock Mass Excavability Index for TBM
Tunnel Alignment

7. Tunneling Hazards

Introduction
Tunneling Conditions
Empirical Approach for Predicting Ground Conditions
Theoretical/Analytical Approach
Effect of Thickness of Weak Band on Squeezing Ground Condition
Sudden Flooding of Tunnels
Chimney Formation
Environmental Hazards due to Toxic or Explosive Gases and Geothermal Gradient
Concluding Remarks

8. Rock Mass Quality Q-System

The Q-System
Joint Orientation and the Q-System
Updating the Q-System
Collection of Field Data
Classification of the Rock Mass
Estimation of Support Pressure
Estimation of Deformation or Closure
Unsupported Span
Design of Supports
New Austrian Tunneling Method
Norwegian Method of Tunneling
Rock Mass Characterization
Drainage Measures
Experiences in Poor Rock Conditions
Concluding Remarks

9. Rock Mass Number

Introduction
Interrelation Between Q and RMR
Prediction of Ground Conditions
Prediction of Support Pressure
Effect of Tunnel Size on Support Pressure
Correlations for Estimating Tunnel Closure
Contents

Effect of Tunnel Depth on Support Pressure and Closure in Tunnels 127
Approach for Obtaining Ground Reaction Curve 127
Coefficient of Volumetric Expansion of Failed Rock Mass 129

10. Rock Mass Index 133
 Introduction 133
 Selection of Parameters used in RMi 133
 Calibration of RMi from Known Rock Mass Strength Data 134
 Scale Effect 137
 Examples (Palmstrom, 1995) 140
 Applications of RMi 141
 Benefits of Using RMi 141
 Limitations of RMi 142

11. Rate of Tunneling 145
 Introduction 145
 Classification of Ground/Job Conditions for Rate of Tunneling 146
 Classification of Management Conditions for Rate of Tunneling 146
 Combined Effect of Ground and Management Conditions on Rate of Tunneling 153
 Tunnel Management (Singh, 1993) 154
 Poor Tender Specifications 155
 Contracting Practice 156
 Quality Management by International Tunneling Association 156

12. Support System in Caverns 159
 Support Pressure 159
 Wall Support in Caverns 160
 Roof Support in Caverns 162
 Stress Distribution in Caverns 163
 Opening of Discontinuities in Roof Due to Tensile Stress 164
 Rock Reinforcement Near Intersections 164
 Radial Displacements 164
 Precautions 164

 Causes of Strength Enhancement 169
 Effect of Intermediate Principal Stress on Tangential Stress at Failure in Tunnels 169
 Uniaxial Compressive Strength of Rock Mass 172
 Reason for Strength Enhancement in Tunnels and a New Failure Theory 173
 Critical Strain of Rock Mass 177
 Criterion for Squeezing Ground Condition 178
 Rock Burst in Brittle Rocks 178
Tensile Strength Across Discontinuous Joints 180
Dynamic Strength of Rock Mass 181
Residual Strength Parameters 181

14. Rock Mass Quality for Open Tunnel Boring Machines 185
 Introduction 185
 Q and QTBM 186
 Penetration and Advance Rates 188
 Cutter Wear 189
 Penetration and Advance Rates versus QTBM 189
 Estimating Time for Completion 190
 Risk Management 190

15. Strength of Discontinuities 193
 Introduction 193
 Joint Wall Roughness Coefficient 193
 Joint Wall Compressive Strength 196
 Joint Matching Coefficient 198
 Residual Angle of Friction 198
 Shear Strength of Joints 200
 Dynamic Shear Strength of Rough Rock Joints 201
 Theory of Shear Strength at Very High Confining Stress 202
 Normal and Shear Stiffness of Rock Joints 203

16. Shear Strength of Rock Masses in Slopes 205
 Mohr-Coulomb Strength Parameters 205
 Non-Linear Failure Envelopes for Rock Masses 205
 Strength of Rock Masses in Slopes 209
 Back Analysis of Distressed Slopes 210

17. Types of Failures of Rock and Soil Slopes 211
 Introduction 211
 Planar (Translational) Failure 211
 3D Wedge Failure 211
 Circular (Rotational) Failure 211
 Toppling Failure (Topples) 213
 Ravelling Slopes (Falls) 214
 Effect of Slope Height and Groundwater Conditions on Safe Slope Angle 214
 A Basic Landslide Classification System 216
 Causative Classification 217
 Comprehensive Classification System of Landslides 217
 Landslide in Over-Consolidated Clays 217
 Rock Slope Failures 224
 Landslide Dams 229
18. Slope Mass Rating
 The Slope Mass Rating 231
 Slope Stability Classes 234
 Support Measures 235
 Modified SMR Approach 236
 Case Study of Stability Analysis using Modified SMR Approach 238
 Portal and Cut Slopes 238

19. Landslide Hazard Zonation
 Introduction 245
 Landslide Hazard Zonation Maps—The Methodology 246
 A Case History (Gupta and Anbalagan, 1995) 251
 Proposition for Tea Gardens 262
 Geographic Information System 262
 Mega-Regional Landslide Zonation 264

20. Allowable Bearing Pressure for Shallow Foundations
 Introduction 267
 A Classification for Net Safe Bearing Pressure 267
 Allowable Bearing Pressure 269
 Coefficient of Elastic Uniform Compression for Machine Foundations 273
 Scour Depth Around Bridge Piers 273
 Rock Parameters to Select Type of Dam 274

21. Method of Excavation
 Excavation Techniques 281
 Assessing the Rippability 281
 Rock Mass Classification According to Ease of Ripping 282
 Empirical Methods in Blasting 284

22. Rock Drillability
 Drillability and Affecting Parameters 287
 Classification for Drilling Condition 288
 Other Approaches 291

23. Permeability and Groutability
 Permeability 293
 Permeability of Various Rock Types 293
 Permeability for Classifying Rock Masses 295
 Permeability versus Grouting 295
 Determination of Permeability 296
 Grouting 296
24. Gouge Material

<table>
<thead>
<tr>
<th>Gouge Material</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gouge</td>
<td>307</td>
</tr>
<tr>
<td>Shear Strength of Filled Discontinuities (Silty to Clayey Gouge)</td>
<td>310</td>
</tr>
<tr>
<td>Dynamic Strength</td>
<td>311</td>
</tr>
</tbody>
</table>

25. Engineering Properties of Hard Rock Masses

<table>
<thead>
<tr>
<th>Engineering Properties of Hard Rock Masses</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hard Rock Masses</td>
<td>313</td>
</tr>
<tr>
<td>Modulus of Deformation</td>
<td>313</td>
</tr>
<tr>
<td>UCS</td>
<td>314</td>
</tr>
<tr>
<td>Uniaxial Tensile Strength</td>
<td>314</td>
</tr>
<tr>
<td>Strength Criterion</td>
<td>314</td>
</tr>
<tr>
<td>Support Pressure in Non-Squeezing/Non-Rock Burst Conditions (H < 350 Q^{1/3})</td>
<td>315</td>
</tr>
<tr>
<td>Half-Tunnels</td>
<td>315</td>
</tr>
</tbody>
</table>

26. Geological Strength Index

<table>
<thead>
<tr>
<th>Geological Strength Index</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geological Strength Index</td>
<td>319</td>
</tr>
<tr>
<td>Generalized Strength Criterion</td>
<td>323</td>
</tr>
<tr>
<td>Mohr-Coulomb Strength Parameters</td>
<td>326</td>
</tr>
<tr>
<td>Modulus of Deformation</td>
<td>327</td>
</tr>
<tr>
<td>Rock Parameters for Intact Schistose</td>
<td>329</td>
</tr>
<tr>
<td>Estimation of Residual Strength of Rock Masses</td>
<td>329</td>
</tr>
<tr>
<td>Classification of Squeezing Ground Condition</td>
<td>330</td>
</tr>
</tbody>
</table>

27. Evaluation of Critical Rock Parameters

<table>
<thead>
<tr>
<th>Evaluation of Critical Rock Parameters</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>335</td>
</tr>
<tr>
<td>Critical Parameters</td>
<td>335</td>
</tr>
<tr>
<td>Parameter Intensity and Dominance</td>
<td>336</td>
</tr>
<tr>
<td>Classification of Rock Mass</td>
<td>338</td>
</tr>
<tr>
<td>Example for Studying Parameter Dominance in Underground Excavation for a Coal Mine with a Flat Roof</td>
<td>338</td>
</tr>
<tr>
<td>Relative Importance of Rock Parameters in Major Projects</td>
<td>340</td>
</tr>
<tr>
<td>Interaction between Rock Parameters</td>
<td>340</td>
</tr>
<tr>
<td>Application in Entropy Management</td>
<td>344</td>
</tr>
</tbody>
</table>

28. In Situ Stresses

<table>
<thead>
<tr>
<th>In Situ Stresses</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Need for In Situ Stress Measurement</td>
<td>345</td>
</tr>
<tr>
<td>Classification of Geological Conditions and Stress Regimes</td>
<td>345</td>
</tr>
<tr>
<td>Variation of In Situ Stresses with Depth</td>
<td>347</td>
</tr>
<tr>
<td>Effect of In Situ Stress on Rock Mass Properties</td>
<td>349</td>
</tr>
<tr>
<td>Core Discing</td>
<td>349</td>
</tr>
</tbody>
</table>

Appendix I Shear and Normal Stiffness of Rock Joints 351
Appendix II Bond Shear Strength of Grouted Bolts 355
Index 357
The urgent need for this book, *Engineering Rock Mass Classification: Tunneling, Foundations, and Landslides*, was our motivation to write it. Many questions went through our minds: Is Classification reasonably reliable? Can it be successful in crisis management of geohazards? Can a single classification system be general enough for rock structures? Is classification a scientific approach? Laborious field research was needed to find answers to these vital questions.

By God’s grace, scientists of the Central Institute of Mining and Fuel Research (CIMFR), IIT Roorkee, Central Soil and Material Research Station (CSMRS), Irrigation Research Institute (IRI), and the Norwegian Geotechnical Institute (NGI) came together. These God-gifted ideas and the reliable field data made our task of interpretation less tortuous. Consequently, several improvements in correlations have been possible and practical doubts were erased. At this point, consultancy works were started in the previously mentioned institutions. The success in consultancy further boosted our morale. Finally, the research work for this book was systematically compiled to help a new confident generation. The aim of this book is to generate more creative confidence and interest among civil, mining, and petroleum engineers and geologists. This book is a comprehensive revision of our book, *Rock Mass Classification—A Practical Approach in Civil Engineering*, and includes rock mass characterization, examples, and modern classifications.

Based on research, many classification approaches are scientific. Nevertheless, the scientific spirit of prediction, check, and cross-check should be kept alive; thus, many alternative classification systems have been presented here for particular rock structures. In feasibility designs of major projects, the suggested correlations in this book may be used. For final designs of complex openings, rational approaches are recommended. In the design of minor projects, field correlations may be used. The notation for uniaxial compressive strength of rock material in this book is \(q_c \) instead of \(\sigma_c \). The engineering rock mass classification is an amazingly successful approach because it is simple, reliable, and time-tested for more than three decades.

Today the rational approach is becoming popular in consultancy on major projects. Our goal should be a reliable engineering strategy/solution of geological problems and not rigorous analysis. This should remove the prevailing dissatisfaction from the minds of designers. Thus, computer modeling may be the future trend of research at this time.

It appears that field testing and monitoring may always be the key approach to use in rock engineering projects, because all practical knowledge has been gained from interpretations of field observations.
The Himalayas provide the best field laboratory to learn rock mechanics and engineering geology because of complex geological problems. Further, the hypnotic charm of the upper Himalayas is very healing especially to concerned engineers and geologists. Natural oxygenation on hill tracking charges our whole nervous system and gives a marvelous feeling of energy and inner healing. So, working in the majestic Himalayas is a twin boon.
Our foremost wish is to express deep gratitude to Professor Charles Fairhurst, University of Minnesota; Dr. N. Barton; Professor J. A. Hudson, Imperial College of Science and Technology, London; Professor E. Hoek, International Consulting Engineer; Professor J.J.K. Daemen, University of Nevada; Dr. E. Grimstad, NGI; Professor G. N. Pandey, University of Swansea; Professor J. Nedoma, Academy of Sciences of the Czech Republic; Professor S. Sakurai; Professor Z. T. Bieniawski; Professor Jian Zhao, LMR, EPFL, Switzerland; Professor T. Ramamurthy, IIT Delhi; Professor V. D. Choubey; Dr. B. Singh, Banaras Hindu University; Professor B. B. Dhar; Professor Jagdish Narain, Former Vice Chancellor, University of Roorkee; Dr. N. M. Raju; Dr. A. K. Dube; Dr. J. L. Jethwa; Dr. Amalendu Sinha, Director, CIMFR; Dr. V. M. Sharma, ATES; Professor Gopal Ranjan; Professor P. K. Jain; Professor M. N. Viladkar; Professor A. K. Srivastava; Professor N. K. Samadhiya; Professor Mahendra Singh; Professor R. Anbalagan; Dr. J. P. Narayan and Dr. Daya Shankar, IIT Roorkee; Dr. T. N. Singh, IIT Mumbai; Dr. V. K. Mehrotra; Dr. Subhash Mitra, IRI, Roorkee; Dr. Bhoop Singh, DST; Dr. Surya Prakash, NIDM; Dr. Rajbal Singh, CSMRS; Dr. S. K. Jain, J. P. University, Solan; and Mr. H. S. Niranjan, HBTI, for constant moral support and vital suggestions and free sharing of precious field data.

We are also grateful to the scientists at CIMFR, CSMRS, IRI, and IIT Roorkee and all project authorities for supporting field research. For whole-hearted moral support, we are grateful to Mr. N. P. Aterkar; Mr. Sandesh Aterkar, Soilex Consultant, Roorkee; Mr. Phillip C. Helwig, Canada; and Mr. A. K. Bajaj, ceramic engineer, Roorkee.

We are very thankful to A. A. Balkema, Rotterdam, Netherlands; the American Society of Civil Engineers (ASCE), Reston; Ellis Horwood, Chichester, UK; the Institution of Mining & Metallurgy, London; John Wiley & Sons, New York; Springer-Verlag, Berlin, Germany; TransTech Europe, Oldenburg, Germany; Taylor & Francis; Maney Publishing; ICIMOD; Van Nostrand Reinhold, New York; ISO; ISRM; and all other publishers whose work has been referred to in this book. We appreciate their kind permission to use excerpts from their publications. In addition, we thank all the eminent researchers whose work is mentioned here. The authors are deeply grateful to Elsevier/Butterworth-Heinemann for the editing, production, and publication of this book.

We are also deeply grateful to our beloved families for their sacrifice, love, deep moral support, and suggestions; and to all of our friends and students. We also thank Holy Teacher Dr. B. K. Saxena, former scientist, CBRI, Roorkee, for his kind blessings.

We wish to encourage all enlightened engineers and geologists to kindly send their important suggestions for improving this book to us.