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1. INTRODUCTION

In this chapter we deal with the simplest ideas that have been used

in the past to attain an understanding of solar cell efficiencies from a theo-

retical point of view. The first and most obvious attack on this problem is

to use thermodynamics, and we offer four such estimates in Section 2.

Only the first of these is the famous Carnot efficiency. The other three

demonstrate that one has more possibilities even within the framework

of thermodynamics. To make progress, however, one has to introduce at

least one solid-state characteristic, and the obvious one is the energy gap,

Eg. That this represents an advance in the direction of a more realistic

model is obvious, but it is also indicated by the fact that the efficiency

now calculated is lower than the (unrealistically high) thermodynamic

efficiencies (Section 3). In order to get closer to reality, we introduce in

Section 4 the fact that the radiation is effectively reduced from the normal

blackbody value (Equation (6)) owing to the finite size of the solar disc.

This still leaves important special design features such as the number of

series-connected tandem cells and higher-order impact ionisation, and

these are noted in Section 5.
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2. THERMODYNAMIC EFFICIENCIES

The formulae for ideal efficiencies of solar cells are simplest when

based on purely thermodynamic arguments. We here offer four of these:

they involve only (absolute) temperatures:

• Ta, temperature of the surroundings (or the ambient),

• Ts, temperature of the pump (i.e., the sun),

• Tc, temperature of the actual cell that converts the incoming radiation

into electricity.

From these temperatures, we form the following efficiencies [1]:

ηC � 1� Ta=Ts; the Carnot efficiency ð1Þ

ηCA � 1� Ta=Ts

� �1
2; the Curzon�Ahlborn efficiency ð2Þ

ηL � l � 4=3
� �

Ta=Ts

� �
1 1=3
� �

Ta=Ts

� �4
; the Landsberg efficiency ð3Þ

ηPT 5 1� ðTc=TsÞ4
� �

1� Ta=Tc

� �
; the photo�thermal efficiency

due to Müser
ð4Þ

In the latter efficiency, the cell temperature is determined by the quin-

tic equation

4T 5
C � 3TaT

4
c � TaT

4
s 5 0 ð5Þ

The names associated with these efficiencies are not historically strictly

correct: for example, in Equations (2) and (3) other authors have played a

significant part.

Figure 1 [1] shows curves of the four efficiencies, which all start at

unity when Ta/Ts�0, and they all end at zero when Ta5Ts. No effi-

ciency ever beats the Carnot efficiency, of course, in accordance with the

rules of thermodynamics. Values near Ts5 5760�5770 K seem to give

the best agreement with the observed solar spectrum and the total energy

received on Earth, but a less accurate but more convenient value of

Ts5 6000 K is also commonly used. Using the latter value of Ts and

Ta5 300 K as the temperature for Earth, one finds

ηC 5 95%; ηCA5 77:6%; ηL 5 93:3%; ηPT 5 85%

If Ts5Ta5Tc one has in effect an equilibrium situation, so that the

theoretical efficiencies are expected to vanish.
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The above thermodynamic efficiencies utilise merely temperatures,

and they lie well above experimental results. One needs an energy gap

(Eg) as well to take us from pure thermodynamics to solid-state physics.

Incident photons can excite electrons across this gap, thus enabling the

solar cell to produce an electric current as the electrons drop back again.

The thermodynamic results presented earlier, on the other hand, are

obtained simply by considering energy and entropy fluxes.

3. EFFICIENCIES IN TERMS OF ENERGIES

In order to proceed, we need next an expression for the number of

photons in blackbody radiation with an energy in excess of the energy

gap, Eg say, so that they can excite electrons across the gap. At blackbody

temperature Ts the number of photons incident on unit area in unit time

is given by standard theory as an integral over the photon energy [2]:

Φ ðEg;TsÞ5
2πk3

h3c2
T3
s

ðN
Eg=kTs

x2dx

ex 2 1
ð6Þ

Now suppose that each of these photons contributes only an energy

equal to the energy gap to the output of the device, i.e., a quantity

proportional to
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Figure 1 The efficiencies (1)�(4) as functions of Ta /Ts.
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xg

ðN
xg

x2dx

ex2 1
ðxg � Eg=kTsÞ ð7Þ

To obtain the efficiency η of energy conversion, we must divide this quan-

tity by the whole energy that is, in principle, available from the radiation:

η5 xg

ðN
xG

x2dx

ex2 1
=

ðN
0

x2dx

ex2 1
ð8Þ

Equation (8) gives the first of the Shockley�Queisser estimates for the

limiting efficiency of a solar cell, the ultimate efficiency (see Figure 5). The

argument neglects recombination in the semiconductor device, even radia-

tive recombination, which is always present (a substance that absorbs radia-

tion can always emit it!). It is also based on the blackbody photon flux

(Equation (6)) rather than on a more realistic spectrum incident on Earth.

We shall return to these points in Section 4, but first a brief discussion

of Equation (8) is in order. There is a maximum value of η for some

energy gap that may be seen by noting that η5 0 for both xg5 0 and for

xg very large. So there is a maximum efficiency between these values.

Differentiating η with respect to xg and equating to zero, the condition

for a maximum is

xg 5 xgopt 5 2:17

corresponding to η5 44%.

This is still higher than most experimental efficiencies, but the beauty

of it is that it is a rather general result that assumes merely properties of

blackbody radiation.

Let f(x) be a generalised photon distribution function; then a general-

ised efficiency can be defined by

η5
xg
ÐN
xg

f ðxÞdxÐN
0

xf ðxÞdx ð9Þ

The maximum efficiency with respect to xg is then given by

xgopt f xgopt
� �

5

ðN
xgopt

f ðxÞdx ð10Þ

This is rather general and will serve also when the photon distribution

departs from the blackbody forms and even for radiation in different

numbers of dimensions.
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4. EFFICIENCIES USING THE SHOCKLEY SOLAR CELL
EQUATION

A further step in finding the appropriate efficiency limits for single-

junction solar cells can be made by estimating the relevant terms in the

Shockley ideal solar cell equation (Equation (1) in Chapter Ia-1). To this

end, further remarks must be made about the solar spectrum and solar

energy incident on Earth’s surface. The ultimate efficiency, discussed in

Section 3, was based on the blackbody photon flux (Equation (6)), a rig-

orous thermodynamic quantity but not a very good estimate of the solar

spectrum as seen on Earth. By virtue of the large distance between the

Sun and Earth, the radiative energy incident on Earth’s surface is less than

that of Equation (6) by a factor fω, which describes the size of the solar

disk (of solid angle ωs) as perceived from Earth:

f ω5
Rs

RSE

� �2

5
ωs

π
ð11Þ

where Rs is the radius of the Sun (6963 103 km), and RSE is the mean dis-

tance between the Sun and Earth (149.63 106 km), giving ωs5 6.853 1025

sterad and fω5 2.183 1025. The resulting spectrum is shown in Figure 2

alongside the standard terrestrial AM1.5 spectrum (a further discussion of the
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Figure 2 The blackbody spectrum of solar radiation and the AM1.5 spectrum, nor-
malised to total irradiance 1 kW/m2, which is used for the calibration of terrestrial
cells and modules.
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spectra that are used for solar cell measurements in practice can be found in

Chapter III-2, which also shows the extraterrestrial spectrum AMO).

The maximum value of the photogenerated current Iph now follows if

we assume that one absorbed photon contributes exactly one electron to

the current in the external circuit:

Iph5Aqf ωΦ Eg;Ts

� � ð12Þ
where A is the illuminated area of the solar cell and q is the electron

charge. The maximum photogenerated current density Jph5 IPh/A that

can be produced by a solar cell with band gap Eg is shown in Figure 3.

To allow a comparison with photocurrents measured in actual devices,

Figure 3 is plotted for the AM1.5 solar spectrum, which is used for cali-

bration of terrestrial solar cells, rather than for the blackbody spectrum

used in Section 3.

The open-circuit voltage Voc can now be obtained using the photo-

generated current Iph (Equation (12)) and the (dark) saturation current I0
that appears in the ideal solar cell equation:

Voc 5
kT

q
ln 11

Iph

Io

� �
ð13Þ

The current I0 can be obtained by a similar argument as the photo-

generated current Iph, since, as argued by Shockley and Queisser, it can
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Figure 3 The theoretical limit on photogenerated current, compared with the best
measured values. The curve is obtained by replacing the product fωΦ(Eg,Ts ) in
Equation (12) by the appropriate AM1.5 photon flux. Full symbols correspond to crys-
talline materials, open symbols to thin films.
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be equated to the blackbody photon flux at the cell temperature Tc (in

what follows, the cell temperature Tc will be assumed to be equal to the

ambient temperature Ta):

I0 5Aqf0Φ Eg;Ta

� � ð14Þ
where the coefficient f0 has been inserted to describe correctly the total

area f0A exposed to the ambient photon flux. Various values of f0 (some

dependent on the refractive index n of the cell material) can be found,

appropriate for different device structures and geometries. The usual

value is f05 2, as suggested by Shockley and Queisser [2], since this radia-

tion is incident through the two (front and rear) surfaces of the cell. A

similar argument for a spherical solar cell yields an effective value f05 4

[3]. Henry [4] gives f05 11n2 for a cell grown on a semiconductor sub-

strate, but the value f05 1 is also sometimes used (see, for example, [5]).

Green [6] gives a semi-empirical expression for the dark saturation cur-

rent density J05 Io/A:

J0ðin Amps=cm2Þ5 1:5 3 105exp

�
2
Eg

kTa

�
ð15Þ

An approximate analytical method for estimating Voc can also be use-

ful, particularly as it stresses the thermodynamic origin of Voc. Indeed, it

can be shown [7] that, near the open circuit, the solar cell behaves as an

ideal thermodynamic engine with Carnot efficiency (12Tc/Ts). Ruppel

and Würfel [3] and Araùjo [8] show that Voc can be approximated to a

reasonable accuracy by the expression

Voc

Eg

q
12

Tc

Ts

� �
1

kT

q
ln
fω

f0
1

kTc

q
ln
Ts

Tc

ð16Þ

which depicts the dependence of Voc on the band gap Eg and on the cell

temperature Tc. Figure 4 compares this theoretical values for the open-

circuit voltage with data for the best solar cells to date from different

materials.

Using now an expression for the fill factor (defined by Equation (3) in

Chapter Ia-1), one readily obtains a theoretical estimate for the efficiency.

Slightly different results may be encountered, principally by virtue of the

different ways one can estimate the current and the voltage. Figure 5

shows the best-known result, the celebrated Shockley�Queisser ideal

efficiency limit [2]. Shockley and Queisser call this limit the nominal
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efficiency, to be compared with the ultimate efficiency, which is discussed in

Section 3. Figure 5 shows two such curves: one labelled ‘one-sun’ corre-

sponds to the AMO solar intensity, as observed outside Earth’s atmo-

sphere. A second curve, labelled ‘maximum concentration’ corresponds
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Figure 4 The theoretical Shockley�Queisser limit on open-circuit voltage: values
exceeding this limit lie in the shaded area of the graph. Line corresponding to
Equation (16) appears as identical to within the accuracy of this graph. Full symbols
correspond to crystalline materials, open symbols to thin films.
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Figure 5 The ‘ultimate’ and two ‘nominal’ Shockley�Queisser efficiencies. Note that
the blackbody radiation with temperature Ts5 6000 K has been used here, in keep-
ing with the Shockley�Queisser work [2].
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to light focused on the cell, by a mirror or a lens, at the maximum con-

centration ratio of l/fω5 45,872 [9].

The various unavoidable losses in photovoltaic energy conversion by

single-junction solar cells can be depicted in a graph constructed by

Henry [4] and analogous to Figure 6. There are two curves in this graph:

• The photogenerated current density Jph from Equation (12) as a func-

tion of photon energy. Jph is divided here by the total irradiance, mak-

ing the area under this curve equal to unity by construction.

• The maximum voltage that can be extracted from the cell at the maxi-

mum power point. This curve is drawn in such a way that the ratio of

lengths of the two arrows b/a is equal to Vm/Eg.

The three shaded areas then depict the three fundamental losses in a

single junction solar cell (shown here for silicon with band gap Eg equal

to 1.12 eV):

• Shaded area marked hv , Eg is equal to the loss of current due to the

inability of the semiconductor to absorb below-band-gap light.

• Shaded area marked hv . Eg represents energy losses due to the ther-

malization of electron�hole pairs to the band-gap energy.

• Hatched area marked V , Eg corresponds to the combined thermo-

dynamic losses due to Voc being less than Eg and losses represented by

the fill factor FF.

The area of the blank rectangle then represents the maximum effi-

ciency that can be obtained for a single junction cell made from a
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Figure 6 Henry’s construction.
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semiconductor with band gap Eg. The graph is drawn here for light with

maximum possible concentration. A different ‘voltage curve’ would result

if light with one-sun intensity were used.

5. GENERAL COMMENTS ON EFFICIENCIES

The ideal solar cell efficiencies discussed above refer to single-

junction semiconductor devices. The limitations considered in the

ultimate efficiency of Section 3 are due to the fact that the simplest semi-

conductor (i.e., one whose defects and impurities can be ignored) cannot

absorb below-band-gap photons. Furthermore, it is also due to the fact

that the part of the energy of the absorbed photons in excess of the band

gap is lost as heat. Radiative recombination at the necessary fundamental

level was taken into account in the treatment of Section 4. It is sometimes

argued that there are other ‘unavoidable’ losses due to electronic energy

transfer to other electrons by the Auger effect (electron�electron colli-

sions) [10�12]. There is also the effect of band-gap shrinkage, discussed

in Chapter Ia-2, and light trapping may also play a part [11]. None of

these effects are discussed here, and the reader is referred to the relevant

literature.

It is clear that it is most beneficial if one can improve the effect of a

typical photon on the electron and hole density. This can be achieved,

for example, if the photon is energetic enough to produce two or more

electron�hole pairs. This is called impact ionisation and has been studied

quite extensively. A very energetic photon can also project an electron

high enough in to the conduction band so that it can, by collision, excite

a second electron from the valence band. This also improves the perfor-

mance of the cell. On the other hand, an electron can combine with a

hole, and the energy release can be used to excite a conduction-band

electron higher into the band. In this case, energy is uselessly dissipated

with a loss of useful carriers and hence of conversion efficiency. This is

one type of Auger effect. For a survey of these and related effects, see

[12]. These phenomena suggest a number of interesting design problems.

For example, is there a way of limiting the deleterious results of Auger

recombination [13]? One way is to try to ‘tune’ the split-off and the fun-

damental band gaps appropriately. If one is dealing with parabolic bands,
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then the obvious way is to examine the threshold energies that an elec-

tron has to have in order to jump across the gap and make these large so

as to make this jump difficult.

Then there is the possibility of placing impurities on the energy band

scale in such a way as to help better use to be made of low-energy

photons, so that they can now increase the density of electrons in the sys-

tem. This is sometimes referred to as the impurity photovoltaic effect. So one

can make use of it [14].

One can also utilise excitons to improve the efficiencies of solar cells.

There may be as many as 1017 cm23 excitons in silicon at room tempera-

ture. If they are split up in the field of a p�n junction, this will increase

the concentration of current carriers and so increase the light generated

current, which is of course beneficial.

We have here indicated some useful ideas for improving solar cells,

There are of course many others, some of which are discussed in

Chapters Ib-2 and Id-2 as well as elsewhere [15]. Note, in particular, the

idea of developing tandem cells in which photons hit a large band-gap

material first and then proceed gradually to smaller band-gap materials.

Tandem cells are now available with three of more stages. Solar cells with

efficiency of order 20% arc predicted to be produced on a large scale in

the near future [16]. Table 2 shows the best laboratory efficiencies at the

present time for different materials.

Table 1 The maximum efficiencies of tandem cells as a function of the number of
cells in the stack for different concentration ratios [17]. Note that de Vos [17] uses a
slightly smaller value of fω than Shockley and Queisser, resulting in a marginally
different maximum concentration ratio than used in Figure 5
Concentration ratio Number of cells in the stack Maximum efficiency (%)

1 1 31.0

2 49.9

3 49.3

. . .
N 68.2

46.300 1 40.8

2 55.7

3 63.9

. . .
N 86.8
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