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1.1 Introduction

In this chapter, we look at basic algorithms for

scientific visualization. In practice, a typical al-

gorithm can be thought of as a transformation

from one data form into another. These oper-

ations may also change the dimensionality of the

data. For example, generating a streamline from

a specification of a starting point in an input 3D

dataset produces a 1D curve. The input may be

represented as a finite element mesh, while the

output may be represented as a polyline. Such

operations are typical of scientific visualization

systems that repeatedly transform data into dif-

ferent forms and ultimately transform it into a

representation that can be rendered by the com-

puter system.

The algorithms that transform data are the

heartofdatavisualization.Todescribe thevarious

transformations available, we need to categorize

algorithms according to the structure and type of

transformation. By structure, we mean the effects

that transformation has on the topology and

geometry of the dataset. By type, we mean the

type of dataset that the algorithm operates on.

Structural transformations can be classified in

fourways,dependingonhowtheyaffect thegeom-

etry, topology, and attributes of a dataset. Here,

we consider the topology of the dataset as the

relationship of discrete data samples (one to an-

other) that are invariant with respect to geometric

transformation. For example, a regular, axis-

aligned sampling of data in three dimensions is

referred to as a volume, and its topology is a rect-

angular (structured) lattice with clearly defined

neighborhood voxels and samples. On the other

hand, the topology of a finite element mesh is

represented by an (unstructured) list of elements,

eachdefinedbyanorderedlistofpoints.Geometry

is a specificationof the topology in space (typically

3D), including point coordinates and interpol-

ation functions. Attributes are data associated

with the topology and/or geometry of the dataset,

such as temperature, pressure, or velocity. Attri-

butes are typically categorized as being scalars

(single value per sample), vectors (n-vector of

values), tensor (matrix), surface normals, texture

coordinates, or general field data. Given these

terms, the following transformations are typical

of scientific visualization systems:

. Geometric transformations alter input geom-

etry but do not change the topology of the

dataset. For example, if we translate, rotate,

and/or scale the points of a polygonal dataset,

the topology does not change, but the point

coordinates, and therefore the geometry, do.

. Topological transformations alter input top-

ology but do not change geometry and attri-

bute data. Converting a dataset type from

polygonal to unstructured grid, or from

image to unstructured grid, changes the top-

ology but not the geometry. More often,

however, the geometry changes whenever

the topology does, so topological transform-

ation is uncommon.

. Attribute transformations convert data attri-

butes from one form to another, or create

new attributes from the input data. The

structure of the dataset remains unaffected.
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Computing vector magnitude and creating

scalars based on elevation are data attribute

transformations.

. Combined transformations change both

dataset structure and attribute data. For

example, computing contour lines or sur-

faces is a combined transformation.

We also may classify algorithms according to

the type of data they operate on. The meaning

of the word ‘‘type’’ is often somewhat vague.

Typically, ‘‘type’’ means the type of attribute

data, such as scalars or vectors. These categories

include the following:

. Scalar algorithms operate on scalar data. An

example is the generation of contour lines of

temperature on a weather map.

. Vector algorithms operate on vector data.

Showing oriented arrows of airflow (direc-

tion and magnitude) is an example of vector

visualization.

. Tensor algorithms operate on tensor matri-

ces. One example of a tensor algorithm is to

show the components of stress or strain in a

material using oriented icons.

. Modeling algorithms generate dataset top-

ology or geometry, or surface normals or tex-

ture data. ‘‘Modeling algorithms’’ tends to be

the catch-all category for algorithms that do

not fit neatly into any single category men-

tioned above. For example, generating glyphs

oriented according to the vector direction and

then scaled according to the scalar value is a

combined scalar/vector algorithm. For

convenience, we classify such an algorithm as

a modeling algorithm because it does not

fit squarely into any other category.

Note that an alternative classification scheme is

to refer to the topological type of the input data

(e.g., image, volume, or unstructured mesh) that

a particular algorithm operates on. In the re-

mainder of the chapter we will classify the type

of the algorithm as the type of attribute data on

which it operates. Be forewarned, though, that

alternative classification schemes do exist and

may be better suited to describing the true

nature of the algorithm.

1.1.1 Generality Vs. Efficiency

Most algorithms can be implemented specific-

ally for a particular data type or, more gener-

ally, for treating any data type. The advantage

of a specific algorithm is that it is usually faster

than a comparable general algorithm. An imple-

mentation of a specific algorithm may also be

more memory-efficient, and it may better reflect

the relationship between the algorithm and the

dataset type it operates on.

One example of this is contour surface cre-

ation.Algorithms for extracting contour surfaces

were originally developed for volume data,

mainly for medical applications. The regularity

of volumes lends itself to efficient algorithms.

However, the specialization of volume-based

algorithms precludes their use for more general

datasets such as structured or unstructured grids.

Although the contour algorithms can be adapted

to these other dataset types, they are less efficient

than those for volume datasets.

The presentation of algorithms in this chapter

favors more general implementations. In some

special cases, authors will describe performance-

improving techniques for particular dataset

types. Various other chapters in this book

also include detailed descriptions of specialized

algorithms.

1.1.2 Algorithms as Filters

In a typical visualization system, algorithms are

implemented as filters that operate on data. This

approach is due in some part to the success of

early systems like the Application Visualization

System [2] and Data Explorer [9] and the popu-

larity of systems like SCIRun [37] and the Visu-

alization Toolkit [36] that are built around the

abstraction of data flow. This abstraction is nat-

ural because of the transformative nature of visu-

alization. The basic idea is that two types of

objects—data objects and process objects—are

connected together into visualization pipelines.
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The process objects, or filters, are the algorithms

that operate on the data objects and in turn

produce data objects as output. In this abstrac-

tion, filters that initiate the pipeline are referred

to as sources; filters that terminate the pipeline

are known as sinks (or mappers). Depending on

their particular implementation, filters may have

multiple inputs and/or may produce multiple

outputs.

1.2 Scalar Algorithms

Scalars are single data values associated with

each point and/or cell of a dataset. Because

scalar data is commonly found in real-world

applications, and because it is so easy to work

with, there are many different algorithms to

visualize it.

1.2.1 Color Mapping

Color mapping is a common scalar visualization

technique that maps scalar data to colors and

displays the colors using the standard coloring

and shading facilities of the graphics library.

The scalar mapping is implemented by indexing

into a color lookup table. Scalar values serve as

indices into the lookup table.

The mapping proceeds as follows. The

lookup table holds an array of colors (e.g., red,

green, blue, and alpha transparency compon-

ents or other comparable representations). As-

sociated with the table is a minimum and

maximum scalar range (min, max) into which

the scalar values are mapped. Scalar values

greater than the maximum range are clamped

to the maximum color, and scalar values less

than the minimum range are clamped to the

minimum color value. For each scalar value si,

the index i into the color table with n entries

(and 0-offset) is given by Fig. 1.1.

A more general form of the lookup table is

called a transfer function. A transfer function

is any expression that maps scalar value into

a color specification. For example, Fig. 1.2

maps scalar values into separate intensity values

for the red, green, and blue color components.

We can also use transfer functions to map scalar

data into other information, such as local trans-

parency. A lookup table is a discrete sampling

of a transfer function. We can create a lookup

table from any transfer function by sampling

the transfer function at a set of discrete points.

Color mapping is a 1D visualization tech-

nique. It maps one piece of information (i.e., a

scalar value) into a color specification. However,

the display of color information is not limited

to 1D displays. Often the colors are mapped

onto 2D or 3D objects. This is a simple way

to increase the information content of the visual-

izations.

The key to color mapping for scalar

visualization is to choose the lookup table

entries carefully. Fig. 1.3 shows four different

lookup tables used to visualize gas density as

fluid flows through a combustion chamber. The

first lookup table is grey-scale. Grey-scale tables

often provide better structural detail to the eye.
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Figure 1.1 Mapping scalars to colors via a lookup table.
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Figure 1.2 Transfer function for color components red, green, and blue as a function of scalar value.

Figure 1.3 Flow density colored with different lookup tables. (Top left) Grey-scale; (top right) rainbow (blue to red); (lower

left) rainbow (red to blue); (lower right) large contrast. (See also color insert.)
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The other three images in Fig. 1.3 use different

color lookup tables. The second uses rainbow

hues from blue to red. The third uses rainbow

hues arranged from red to blue. The last image

uses a table designed to enhance contrast. Care-

ful use of colors can often enhance important

features of a dataset. However, any type of

lookup table can exaggerate unimportant details

or create visual artifacts because of unforeseen

interactions among data, color choice, and

human physiology.

Designing lookup tables is as much an art as

it is a science. From a practical point of view,

tables should accentuate important features

while minimizing less important or extraneous

details. It is also desirable to use palettes that

inherently contain scaling information. For

example, a color rainbow scale from blue to

red is often used to represent temperature

scale, since many people associate blue with

cold temperatures and red with hot tempera-

tures. However, even this scale is problematic:

a physicist would say that blue is hotter than

red, since hotter objects emit more blue (i.e.,

shorter-wavelength) light than red. Also, there

is no need to limit ourselves to ‘‘linear’’ lookup

tables. Even though the mapping of scalars into

colors has been presented as a linear operation

(Fig. 1.1), the table itself need not be linear; that

is, tables can be designed to enhance small vari-

ations in scalar value using logarithmic or other

schemes.

1.2.2 Contouring

One natural extension to color mapping is con-

touring. When we see a surface colored with

data values, the eye often separates similarly

colored areas into distinct regions. When we

contour data, we are effectively constructing

the boundary between these regions. A particu-

lar boundary can be expressed as the n-dimen-

sional separating surfaces

F (x) ¼ c (1:1)

between the two regions F (x) < c and F (x) > c,

where c is the contour value and x is an n-dimen-

sional point in the dataset. These two regions

are typically referred to as the inside or outside

regions of the contour.

Examples of 2D contour displays include

weather maps annotated with lines of constant

temperature (isotherms) or topological maps

drawn with lines of constant elevation. 3D

contours are called isosurfaces and can be ap-

proximated by many polygonal primitives.

Examples of isosurfaces include constant med-

ical image intensity corresponding to body

tissues such as skin, bone, or other organs.

Other abstract isosurfaces, such as surfaces of

constant pressure or temperature in fluid flow,

may also be created.

Consider the 2D structured grid shown in Fig.

1.4. Scalar values are shown next to the points

that define the grid. Contouring always begins

when one specifies a contour value defining the

contour line or surface to be generated. To gen-

erate the contours, some form of interpolation

must be used. This is because we have scalar

values at a discrete set of (sample) points in

the dataset, and our contour value may lie be-

tween the point values. Since the most common

interpolation technique is linear, we generate

points on the contour surface by linear interpol-

ation along the edges. If an edge has scalar

values 10 and 0 at its two endpoints, for example,

and if we are trying to generate a contour line of

value 5, then edge interpolation computes that
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Figure 1.4 Contouring a 2D structured grid with contour

line value ¼ 5.
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the contour passes through the midpoint of the

edge.

Once the points on cell edges are generated,

we can connect these points into contours using

a few different approaches. One approach

detects an edge intersection (i.e., the passing of

a contour through an edge) and then ‘‘tracks’’

this contour as it moves across cell boundaries.

We know that if a contour edge enters a cell, it

must exit a cell as well. The contour is tracked

until it closes back on itself or exits a dataset

boundary. If it is known that only a single con-

tour exists, then the process stops. Otherwise,

every edge in the dataset must be checked to see

whether other contour lines exist.

Another approach uses a divide-and-conquer

technique, treating cells independently. This is

called the marching squares algorithm in 2D and

the marching cubes algorithm [23] in 3D. The

basic assumption of these techniques is that a

contour can pass through a cell in only a finite

number of ways. A case table is constructed that

enumerates all possible topological states of a

cell, given combinations of scalar values at the

cell points. The number of topological states

depends on the number of cell vertices and the

number of inside/outside relationships a vertex

can have with respect to the contour value. A

vertex is considered inside a contour if its scalar

value is larger than the scalar value of the con-

tour line. Vertices with scalar values less than

the contour value are said to be outside the

contour. For example, if a cell has four vertices

and each vertex can be either inside or outside

the contour, there are 24 ¼ 16 possible ways

that the contour passes through the cell. In the

case table, we are not interested in where the

contour passes through the cell (e.g., geometric

intersection), just how it passes through the cell

(i.e., topology of the contour in the cell).

Fig. 1.5 shows the 16 combinations for a

square cell. An index into the case table can be

computed by encoding the state of each vertex

as a binary digit. For 2D data represented on a

rectangular grid, we can represent the 16 cases

with a 4-bit index. Once the proper case is

selected, the location of the contour line/cell

edge intersection can be calculated using inter-

polation. The algorithm processes a cell and

then moves, or marches, to the next cell. After

all the cells are visited, the contour will be com-

pleted. In summary, the marching algorithms

proceed as follows:

1. Select a cell.

2. Calculate the inside/outside state of each

vertex of the cell.

3. Create an index by storing the binary state

of each vertex in a separate bit.

4. Use the index to look up the topological

state of the cell in a case table.

5. Calculate the contour location (via interpol-

ation) for each edge in the case table.

This procedure will construct independent

geometric primitives in each cell. At the cell
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Figure 1.5 Sixteen different marching squares cases. Dark vertices indicate scalar value is above contour value. Cases 5 and 10

are ambiguous.
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boundaries, duplicate vertices and edges may be

created. These duplicates can be eliminated by

use of a special coincident point-merging oper-

ation. Note that interpolation along each edge

should be done in the same direction. If it is not,

numerical round-off will likely cause points to

be generated that are not precisely coincident

and will thus not merge properly.

There are advantages and disadvantages

to both the edge-tracking and the marching

cubes approaches. The marching squares algo-

rithm is easy to implement. This is particularly

important when we extend the technique into

three dimensions, where isosurface tracking be-

comes much more difficult. On the other hand,

the algorithm creates disconnected line seg-

ments and points, and the required merging

operation requires extra computation resources.

The tracking algorithm can be implemented to

generate a single polyline per contour line,

avoiding the need to merge coincident points.

As mentioned previously, the 3D analogy of

marching squares is marching cubes. Here, there

are 256 different combinations of scalar value,

given that there are eight points in a cubical cell

(i.e., 28 combinations). Figure 1.6 shows these

combinations reduced to 15 cases by arguments

of symmetry. We use combinations of rotation

and mirroring to produce topologically equiva-

lent cases. (This is the so-called marching cubes

case table.)

An important issue is contouring ambiguity.

Careful observation of marching squares cases 5

and 10 and marching cubes cases 3, 6, 7, 10, 12,

and 13 show that there are configurations where

a cell can be contoured in more than one

way. (This ambiguity also exists in an edge-

tracking approach to contouring.) Contouring

ambiguity arises on a 2D square or the face of a

3D cube when adjacent edge points are in

different states but diagonal vertices are in the

same state.

In two dimensions, contour ambiguity is

simple to treat: for each ambiguous case, we

implement one of the two possible cases. The

choice for a particular case is independent of all

other choices. Depending on the choice, the

contour may either extend or break the current

contour, as illustrated in Fig. 1.8. Either choice

is acceptable since the resulting contour lines

will be continuous and closed (or will end at

the dataset boundary).

In three dimensions the problem is more com-

plex. We cannot simply choose an ambiguous

case independent of all other ambiguous cases.

For example, Fig. 1.9 shows what happens if we

carelessly implement two cases independent of

one another. In this figure we have used the

usual case 3 but replaced case 6 with its comple-

mentary case. Complementary cases are formed

by exchanging the ‘‘dark’’ vertices with ‘‘light’’

vertices. (This is equivalent to swapping vertex

scalar value from above the isosurface value to

below the isosurface value, and vice versa.) The

result of pairing these two cases is that a hole is

left in the isosurface.

Several different approaches have been taken

to remedy this problem. One approach tessel-

lates the cubes with tetrahedra and uses a

marching tetrahedra technique. This works be-

cause the marching tetrahedra exhibit no am-

biguous cases. Unfortunately, the marching

tetrahedra algorithm generates isosurfaces con-

sisting of more triangles, and the tessellation

of a cube with tetrahedra requires one to make

a choice regarding the orientation of the tetra-

hedra. This choice may result in artificial

‘‘bumps’’ in the isosurface because of inter-

polation along the face diagonals, as shown in

Fig. 1.7. Another approach evaluates the

asymptotic behavior of the surface and then

chooses the cases to either join or break the

contour. Nielson and Hamann [28] have de-

veloped a technique based on this approach

that they call the asymptotic decider. It is based

on an analysis of the variation of the scalar

variable across an ambiguous face. The analysis

determines how the edges of isosurface poly-

gons should be connected.

A simple and effective solution extends the

original 15 marching cubes cases by adding add-

itional complementary cases. These cases are

designed to be compatible with neighboring

cases and prevent the creation of holes in the
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isosurface. There are six complementary

cases required, corresponding to the marching

cubes cases 3, 6, 7, 10, 12, and 13. The comple-

mentary marching cubes cases are shown in

Fig. 1.10. In practice the simplest approach is

to create a case table consisting of all 256 pos-

sible combinations and to design them in such

a way as to prevent holes. A successful marching

cubes case table will always produce manifold

surfaces (i.e., interior edges are used by exactly

two triangles; boundary edges are used by exactly

one triangle).

We can extend the general approach of

marching squares and marching cubes to other

topological types such as triangles, tetrahedra,

pyramids, and wedges. In addition, although we

refer to regular types such as squares and cubes,

marching cubes can be applied to any cell type
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Figure 1.6 Marching cubes cases for 3D isosurface generation. The 256 possible cases have been reduced to 15 cases using

symmetry. Vertices with a dot are greater than the selected isosurface value.
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topologically equivalent to a cube (e.g., a hexa-

hedron or noncubical voxel).

Fig. 1.11 shows four applications of contour-

ing. In Fig. 1.11a we see 2D contour lines of CT

density value corresponding to different tissue

types. These lines were generated using march-

ing squares. Figs 1.11b through 1.11d are iso-

surfaces created by marching cubes. Fig. 1.11b

is a surface of constant image intensity from a

computed tomography (CT) x-ray imaging

system. (Fig. 1.11a is a 2D subset of these

data.) The intensity level corresponds to

human bone. Fig. 1.11c is an isosurface of

constant flow density. Figure 1.11d is an isosur-

face of electron potential of an iron protein

molecule. The image shown in Fig. 1.11b

is immediately recognizable because of our fa-

miliarity with human anatomy. However, for

those practitioners in the fields of computa-

tional fluid dynamics (CFD) and molecular

biology, Figs. 1.11c and 1.11d are equally famil-

iar. As these examples show, methods for con-

touring are powerful, yet general, techniques for

visualizing data from a variety of fields.

1.2.3 Scalar Generation

The two visualization techniques presented thus

far, color mapping and contouring, are simple,

effective methods to display scalar information.

It is natural to turn to these techniques first

when visualizing data. However, often our

data are not in a form convenient to these tech-

niques. The data may not be single-valued (i.e., a

scalar), or they may be a mathematical or other

complex relationship. That is part of the fun

and creative challenge of visualization: we must

tap our creative resources to convert data into a

form on which we can bring our existing tools to

bear.

For example, consider terrain data. We

assume that the data are x-y-z coordinates,

where x and y represent the coordinates in the

plane and z represents the elevation above sea

level. Our desired visualization is to color the

terrain according to elevation. This requires us

to create a color map—possibly using white for

high altitudes, blue for sea level and below, and

various shades of green and brown for different

elevations between sea level and high altitude.

We also need scalars to index into the color
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Figure 1.7 Usingmarching triangles ormarching tetrahedra

to resolve ambiguous cases on rectangular lattice (only the

face of the cube is shown). Choice of diagonal orientation can

result in ‘‘bumps’’ in the contour surface. In two dimensions,

diagonal orientation can be chosen arbitrarily, but in three

dimensions the diagonal is constrained by the neighbor.

(a) Break contour (b) Join contour

Figure 1.8 Choosing a particular contour case will (a) break or (b) join the current contour. The case shown is marching

squares case 10.
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map. The obvious choice here is to extract the z

coordinate. That is, scalars are simply the z-co-

ordinate value.

This example can be made more interesting by

generalizing the problem. Although we could

easily create a filter to extract the z coordinate,

we can create a filter that produces elevation

scalar values where the elevation is measured

along any axis. Given an oriented line starting

at the (low) point pl (e.g., sea level) and end-

ing at the (high) point ph (e.g., mountain top),

we compute the elevation scalar si at point

pi ¼ (xi, yi, zi) using the dot product as shown

in Fig. 1.12. The scalar is normalized using the

magnitude of the oriented line and may be

clamped between minimum and maximum scalar

values (if necessary). The bottom half of this

figure shows the results of applying this tech-

nique to a terrain model of Honolulu, Hawaii.

A lookup table of 256 points ranging from deep

blue (water) to yellow-white (mountain top) is

used to color map this figure.

Scalar visualization techniques are decep-

tively powerful. Color mapping and isocontour

generation are the predominant methods used

in scientific visualization. Scalar visualization

techniques are easily adapted to a variety of

situations through creation of a relationship

that transforms data at a point into a scalar

value. Other examples of scalar mapping in-

clude an index value into a list of data, comput-

ing vector magnitude or matrix determinant,

evaluating surface curvature, or determining

distance between points. Scalar generation,

when coupled with color mapping or contour-

ing, is a simple yet effective technique for

visualizing many types of data.
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Case 3 Case 6c

Figure 1.9 Arbitrarily choosing marching cubes cases leads

to holes in the isosurface.

Case 3c Case 6c Case 7c

Case 10c Case 12c Case 13c

Figure 1.10 Marching cubes complementary cases.
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1.3 Vector Algorithms

Vector data is a 3D representation of

direction and magnitude. Vector data often

results from the study of fluid flow or data

derivatives.

1.3.1 Hedgehogs and Oriented Glyphs

A natural vector visualization technique is to

draw an oriented, scaled line for each vector in

a dataset (Fig. 1.13a). The line begins at the

point with which the vector is associated and is

oriented in the direction of the vector compon-

ents (vx, vy, vz). Typically, the resulting line must

be scaled up or down to control the size of its

visual representation. This technique is often

referred to as a hedgehog because of the bristly

result.

There are many variations of this technique

(Fig. 1.13b). Arrows may be added to indicate

the direction of the line. The lines may be

colored according to vector magnitude or some

other scalar quantity (e.g., pressure or tempera-

ture). Also, instead of using a line, oriented
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Figure 1.11 Contouring examples. (a) Marching squares used to generate contour lines; (b) marching cubes surface of human

bone; (c) marching cubes surface of flow density; (d) marching cubes surface of iron–protein.
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si = 
(pi − pl) . (ph − pl)

ph − pl
2

pi

pl

si
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Figure 1.12 Computing scalars using normalized dot product. The bottom half of the figure illustrates a technique applied to

terrain data from Honolulu, HI. (See also color insert.)

2D Glyphs

3D Glyphs

(b) (c)(a)

Figure 1.13 Vector visualization techniques. (a) Oriented lines; (b) oriented glyphs; (c) complex vector visualization. (See also

color insert.)
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‘‘glyphs’’ can be used. By glyph we mean any

2D or 3D geometric representation, such as an

oriented triangle or cone.

Care should be used in applying these tech-

niques. In three dimensions it is often difficult to

understand the position and orientation of a

vector because of its projection into the 2D

view plane. Also, using large numbers of vectors

can clutter the display to the point where the

visualization becomes meaningless. Figure 1.13c

shows 167,000 3D vectors (using oriented and

scaled lines) in the region of the human carotid

artery. The larger vectors lie inside the arteries,

and the smaller vectors lie outside the arteries

and are randomly oriented (measurement error)

but small in magnitude. Clearly, the details of

the vector field are not discernible from this

image.

Scaling glyphs also poses interesting problems.

In what Tufte [39] has termed a ‘‘visualization

lie,’’ scaling a 2D or 3D glyph results in nonlinear

differences in appearance. The surface area of an

object increases with the square of its scale

factor, so two vectors differing by a factor of

two in magnitude may appear up to four times

different based on surface area. Such scaling

issues are common in data visualization, and

great care must be taken to avoid misleading

viewers.

1.3.2 Warping

Vector data is often associated with ‘‘motion.’’

The motion is in the form of velocity or dis-

placement. An effective technique for displaying

such vector data is to ‘‘warp’’ or deform geom-

etry according to the vector field. For example,

imagine representing the displacement of a

structure under load by deforming the structure.

If we are visualizing the flow of fluid, we can

create a flow profile by distorting a straight line

inserted perpendicular to the flow.

Figure 1.14 shows two examples of vector

warping. In the first example the motion of a

vibrating beam is shown. The original un-

deformed outline is shown in wireframe. The

second example shows warped planes in a struc-

tured grid dataset. The planes are warped

according to flow momentum. The relative

back and forward flows are clearly visible in

the deformation of the planes.

Typically, we must scale the vector field to

control geometric distortion. Too small a dis-

tortion might not be visible, while too large a

distortion can cause the structure to turn inside

out or self-intersect. In such a case, the viewer of

the visualization is likely to lose context, and the

visualization will become ineffective.

1.3.3 Displacement Plots

Vector displacement on the surface of an object

can be visualized with displacement plots. A

displacement plot shows the motion of an object

in the direction perpendicular to its surface. The

object motion is caused by an applied vector

field. In a typical application the vector field is

a displacement or strain field.

Vector displacement plots draw on the ideas

in Section 1.2.3. Vectors are converted to scalars

by computation of the dot product between the

surface normal and vector at each point (Fig.

1.15a). If positive values result, the motion at

the point is in the direction of the surface

normal (i.e., positive displacement). Negative

values indicate that the motion is opposite the

surface normal (i.e., negative displacement).

A useful application of this technique is the

study of vibration. In vibration analysis, we are

interested in the eigenvalues (i.e., natural reson-

ant frequencies) and eigenvectors (i.e., mode

shapes) of a structure. To understand mode

shapes, we can use displacement plots to indicate

regions ofmotion.There are special regions in the

structure where positive displacement changes to

negative displacement. These are regions of zero

displacement. When plotted on the surface of the

structure, these regions appear as the so-called

modal lines of vibration. The study of modal lines

has long been an important visualization tool for

understanding mode shapes.

Figure 1.15b shows modal lines for a vibrating

rectangular beam. The vibration mode in

this figure is the second torsional mode, clearly
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indicated by the crossing modal lines. (The alias-

ing in the figure is a result of the coarseness of the

analysis mesh.) To create the figure we combined

the procedure of Fig. 1.15a with a special

lookup table. The lookup table was arranged

with dark areas in the center (corresponding

to zero dot products) and bright areas at the

beginning and end of the table (corresponding

to 1 or �1 dot products). As a result, regions of

large normal displacement are bright and regions

near the modal lines are dark.

1.3.4 Time Animation

Some of the techniques described so far can be

thought of as moving a point or object over a

small time-step. The hedgehog line is an ap-

proximation of a point’s motion over a time
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Figure 1.14 Warping geometry to show vector field. (a) Beam displacement; (b) flow momentum. (See also color insert.)

(a) (b)

n

v

s = v . n

Figure 1.15 Vector displacement plots. (a) Vector converted to scalar via dot product computation; (b) surface plot of vibrating

plate. Dark areas show nodal lines and bright areas show maximum motion. (See also color insert.)
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period whose duration is given by the scale

factor. In other words, if the vector is con-

sidered to be a velocity ~VV ¼ dx=dt, then the

displacement of a point is

dx ¼ ~VVdt (1:2)

This suggests an extension to our previous tech-

niques: repeatedly displace points over many

time-steps. Fig. 1.16 shows such an approach.

Beginning with a sphere S centered about some

point C, we move S repeatedly to generate the

bubbles shown. The eye tends to trace out a

path by connecting the bubbles, giving the ob-

server a qualitative understanding of the vector

field in that area. The bubbles may be displayed

as an animation over time (giving the illusion of

motion) or as a multiple-exposure sequence

(giving the appearance of a path).

Such an approach can be misused. For one

thing, the velocity at a point is instantaneous.

Once we move away from the point, the velocity

is likely to change. Using Equation 1.2 assumes

that the velocity is constant over the entire step.

By taking large steps, we are likely to jump over

changes in the velocity. Using smaller steps, we

will end in a different position. Thus, the choice

of step size is a critical parameter in constructing

accurate visualization of particle paths in a

vector field.

To evaluate Equation 1.2, we can express it as

an integral:

~xx(t) ¼
ð
t

~VVdt (1:3)

Although this form cannot be solved analytic-

ally for most real-world data, its solution can

be approximated using numerical integration

techniques. Accurate numerical integration is a

topic beyond the scope of this book, but it is

known that the accuracy of the integration is a

function of the step size dt. Because the path is

an integration throughout the dataset, the ac-

curacy of the cell interpolation functions and

the accuracy of the original vector data play

important roles in realizing accurate solutions.

No definitive study that relates cell size or inter-

polation function characteristics to visualiza-

tion error is yet available. But the lesson is

clear: the result of numerical integration must

be examined carefully, especially in regions with

large vector field gradients. However, as with

many other visualization algorithms, the insight

gained by using vector-integration techniques is

qualitatively beneficial, despite the unavoidable

numerical errors.

The simplest form of numerical integration is

Euler’s method,

~xxiþ1 ¼~xxi þ ~VViDt (1:4)

where the position at time~xxiþ1 is the vector sum

of the previous position plus the instantaneous

velocity times the incremental time step Dt.

Euler’s method has error on the order of

O(Dt2), which is not accurate enough for some

applications. One such example is shown in

Fig. 1.17. The velocity field describes perfect

rotation about a central point. Using Euler’s

method, we find that we will always diverge

and, instead of generating circles, will generate

spirals.

In this chapter we will use the Runge-Kutta

technique of order 2 [8]. This is given by the

expression

~xxiþ1 ¼~xxi þ
Dt

2
(~VVi þ ~VViþ1) (1:5)
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Figure 1.16 Time animation of a point C. Although the spacing between points varies, the time increment between each point is

constant.
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where the velocity ~VViþ1 is computed using

Euler’s method. The error of this method is

O(Dt3). Compared to Euler’s method, the

Runge-Kutta technique allows us to take a

larger integration step at the expense of one

additional function evaluation. Generally, this

tradeoff is beneficial, but like any numerical

technique, the best method to use depends on

the particular nature of the data. Higher-order

techniques are also available, but generally not

necessary, because the higher accuracy is coun-

tered by error in interpolation function or in-

herent in the data values. If you are interested in

other integration formulas, please check the ref-

erences at the end of the chapter.

One final note about accuracy concerns: the

error involved in either perception or computa-

tion of visualizations is an open research area.

The discussion in the preceding paragraph is a

good example of this: there, we characterized

the error in streamline integration using conven-

tional numerical integration arguments. But

there is a problem with this argument. In visu-

alization applications, we are integrating across

cells whose function values are continuous but

whose derivatives are not. As the streamline

crosses the cell boundary, subtle effects may

occur that are not treated by the standard nu-

merical analysis. Thus, the standard arguments

need to be extended for visualization applica-

tions.

Integration formulas require repeated trans-

formation from global to local coordinates.

Consider moving a point through a dataset

under the influence of a vector field. The first

step is to identify the cell that contains the

point. This operation is a search plus a conver-

sion to local coordinates. Once the cell is found,

then the next step is to compute the velocity

at that point by interpolating the velocity

from the cell points. The point is then incremen-

tally repositioned (using the integration formula

in Equation 1.5). The process is then repeated

until the point exits the dataset or the distance

or time traversed exceeds some specified

value.

This process can be computationally

demanding. There are two important steps we

can take to improve performance:

1. Improve search procedures. There are two

distinct types of searches. Initially, the

starting location of the particle must be

determined by a global search procedure.

Once the initial location of the point is de-

termined in the dataset, an incremental

search procedure can be used. Incremental

searching is efficient because the motion of

the point is limited within a single cell, or, at

most, across a cell boundary. Thus, the

search space is greatly limited, and the

incremental search is faster relative to the

global search.

2. Coordinate transformation. The cost of a co-

ordinate transformation from global to local

coordinates can be reduced if either of the
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(a) Rotational vector field (b) Euler�s method (c) Runge-Kutta

Figure 1.17 Euler’s integration (b) and Runge-Kutta integration of order 2 (c) applied to a uniform rotational vector field (a).

Euler’s method will always diverge.
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following conditions is true: the local and

global coordinate systems are identical to

each other (or vary by x-y-z translation), or

the vector field is transformed from global

space to local coordinate space. The image

data coordinate system is an example of local

coordinates that are parallel to global coord-

inates, and thus a situation in which global-

to-local coordinate transformation can be

greatly accelerated. If the vector field is

transformed into local coordinates (either

as a preprocessing step or on a cell-by-cell

basis), then the integration can proceed com-

pletely in local space. Once the integration

path is computed, selected points along the

path can be transformed into global space

for the sake of visualization.

1.3.5 Streamlines

A natural extension of the previous time anima-

tion techniques is to connect the point position

~xx(t) over many time-steps. The result is a nu-

merical approximation to a particle trace repre-

sented as a line.

Borrowing terminology from the study of

fluid flow, we can define three related line-repre-

sentation schemes for vector fields.

. Particle traces are trajectories traced by fluid

particles over time.

. Streaklines are the set of particle traces at a

particular time ti that have previously passed

through a specified point xi.

. Streamlines are integral curves along a curve

s satisfying the equation

s ¼
ð
t

~VVds, with s ¼ s(x, t) (1:6)

for a particular time t.

Streamlines, streaklines, and particle traces are

equivalent to one another if the flow is steady.

In time-varying flow, a given streamline exists

only at one moment in time. Visualization

systems generally provide facilities to compute

particle traces. However, if time is fixed, the

same facility can be used to compute stream-

lines. In general, we will use the term streamline

to refer to the method of tracing trajectories in

a vector field. Please bear in mind the differ-

ences in these representations if the flow is

time-varying.

Fig. 1.18 shows 40 streamlines in a small

kitchen. The room has two windows, a door

(with air leakage), and a cooking area with a
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Figure 1.18 Flow velocity computed for a small kitchen (top and side view). Forty streamlines start along the rake positioned

under the window. Some eventually travel over the hot stove and are convected upwards. (See also color insert.)
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hot stove. The air leakage and temperature vari-

ation combine to produce air convection cur-

rents throughout the kitchen. The starting

positions of the streamlines were defined by

creating a rake, or curve (and its associated

points). There, the rake was a straight line.

These streamlines clearly show features of the

flow field. By releasing many streamlines simul-

taneously, we obtain even more information, as

the eye tends to assemble nearby streamlines

into a ‘‘global’’ understanding of flow field fea-

tures.

Many enhancements of streamline visualiza-

tion exist. Lines can be colored according to

velocity magnitude to indicate speed of flow.

Other scalar quantities such as temperature or

pressure also may be used to color the lines. We

also may create constant-time dashed lines.

Each dash represents a constant time increment.

Thus, in areas of high velocity, the length of

the dash will be greater relative to regions of

lower velocity. These techniques are illustrated

in Fig. 1.19 for air flow around a blunt fin. This

example consists of a wall with half of a

rounded fin projecting into the fluid flow.

(Using arguments of symmetry, only half of

the domain was modeled.) Twenty-five stream-

lines are released upstream of the fin. The

boundary layer effects near the junction of the

fin and wall are clearly evident from the stream-

lines. In this area, flow recirculation and the

reduced flow speed are apparent.

1.4 Tensor Algorithms

Tensor visualization is an active area of research.

However, there are a few simple techniques that

we can use to visualize 3� 3 real symmetric

tensors. Such tensors are used to describe the

state of displacement or stress in a 3D material.

The stress and strain tensors for an elastic ma-

terial are shown in Fig. 1.20.

In these tensors, the diagonal coefficients are

the so-called normal stresses and strains, and the

off-diagonal terms are the shear stresses and

strains. Normal stresses and strains act perpen-

dicularly to a specified surface, while shear

stresses and strains act tangentially to the sur-

face. Normal stress is either compression or ten-

sion, depending on the sign of the coefficient.

A 3� 3 real symmetric matrix can be char-

acterized by three vectors in 3D called the

eigenvectors and three numbers called the eigen-

values of the matrix. The eigenvectors form a

3D coordinate system whose axes are mutually

perpendicular. In some applications, particu-

larly the study of materials, these axes are also

referred to as the principal axes of the tensor

and are physically significant. For example, if
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Figure 1.19 Dashed streamlines around a blunt fin. Each dash is a constant time increment. Fast-moving particles create longer

dashes than slower-moving particles. The streamlines also are colored by flow density scalar.
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the tensor is a stress tensor, then the principal

axes are the directions of normal stress and no

shear stress. Associated with each eigenvector is

an eigenvalue. The eigenvalues are often physic-

ally significant as well. In the study of vibration,

eigenvalues correspond to the resonant frequen-

cies of a structure, and the eigenvectors are the

associated mode shapes.

Mathematically we can represent eigenvalues

and eigenvectors as follows. Given a matrix A,

the eigenvector ~xx and eigenvalue l must satisfy

the relation

A �~xx ¼ l~xx (1:7)

For Equation 1.7 to hold, the matrix determin-

ate must satisfy

detjA� lI j ¼ 0 (1:8)

Expanding this equation yields an nth-degree

polynomial in l whose roots are the eigenvalues.

Thus, there are always n eigenvalues, although

they may not be distinct. In general, Equation

1.8 is not solved using polynomial root search-

ing because of poor computational perform-

ance. (For matrices of order 3, root searching

is acceptable because we can solve for the eigen-

values analytically.) Once we determine the

eigenvalues, we can substitute each into

Equation 1.8 to solve for the associated eigen-

vectors.

We can express the eigenvectors of the 3� 3

system as

~vvi ¼ li~eei, with i ¼ 1, 2, 3 (1:9)

with ~eei a unit vector in the direction of the

eigenvalue, and li the eigenvalues of the system.

If we order eigenvalues such that

l 1 � l2 � l3 (1:10)

then we refer to the corresponding eigenvectors

~vv1,~vv2, and ~vv3 as the major, medium, and minor

eigenvectors.

1.4.1 Tensor Ellipsoids

This leads us to the tensor ellipsoid technique

for the visualization of real, symmetric 3� 3

matrices. The first step is to extract eigenvalues

and eigenvectors as described in the previous

section. Since eigenvectors are known to be

orthogonal, the eigenvectors form a local coord-

inate system. These axes can be taken as the

minor, medium, and major axes of an ellipsoid.

Thus, the shape and orientation of the ellipsoid

represent the relative size of the eigenvalues and

the orientation of the eigenvectors.

To form the ellipsoid we begin by positioning

a sphere at the tensor location. The sphere is

then rotated around its origin using the eigen-

vectors, which in the form of Equation 1.9 are

direction cosines. The eigenvalues are used to

scale the sphere. Using 4� 4 transformation

matrices, we form the ellipsoid by transforming

the sphere centered at the origin using the

matrix T:
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Figure 1.20 (a) Stress and (b) strain tensors. Normal stresses in the x-y-z coordinate directions are indicated as sx, sy, sz, and

shear stresses are indicated as tij . Material displacement is represented by u, v, w components.
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T ¼ TT � TR � TS (1:11)

where

TT ¼

1 0 0 tx

0 1 0 ty

0 0 1 tz

0 0 0 1

2
6664

3
7775

TS ¼

sx 0 0 0

0 sy 0 0

0 0 sz 0

0 0 0 1

2
6664

3
7775

TR ¼

cos yx0x cos yx0y cos yx0z 0

cos yy0x cos yy0y cos yy0z 0

cos yz0x cos yz0y cos yz0z 0

0 0 0 1

2
6664

3
7775

(1:12)

where TT , TS, and TR are translation, scale, and

rotation matrices. The eigenvectors can be dir-

ectly plugged in to create the rotation matrix,

while the point coordinates x-y-z and eigen-

values l1 � l2 � l3 are inserted into the trans-

lation and scaling matrices. A concatenation of

these matrices in the correct order forms the

final transformation matrix T.

Fig. 1.21a depicts the tensor ellipsoid tech-

nique. In Fig. 1.22b we show this technique to

visualize material stress near a point load on the

surface of a semi-infinite domain. (This is the

so-called Boussinesq’s problem.) From Saada

[33] we have the analytic expression for the

stress components in Cartesian coordinates

shown in Fig. 1.21c. Note that the z direction

is defined as the axis originating at the point of

application of the force P. The variable r is the

distance from the point of load application to a

point x-y-z. The orientations of the x and y axes

are in the plane perpendicular to the z axis. The

rotation in the plane of these axes is unimport-

ant since the solution is symmetric around the z

axis. The parameter n is Poisson’s ratio, which

is a property of the material. Poisson’s ratio

relates the lateral contraction of a material to

axial elongation under a uniaxial stress condi-

tion [33,35].

In Fig. 1.22 we visualize the analytical results

of Boussinesq’s problem from Saada. The left-

hand portion of the figure shows the results by

displaying the scaled and oriented principal axes

of the stress tensor. (These are called tensor

axes.) In the right-hand portion we use tensor

ellipsoids to show the same result. Tensor

ellipsoids and tensor axes are a form of glyph

(see Section 1.5.4) specialized to tensor visual-

ization.

A certain amount of care must be taken to

visualize this result, because there is a stress

singularity at the point of contact of the load.

In a real application, loads are applied over a

small area and not at a single point. Plastic

behavior prevents stress levels from exceeding

a certain point. The results of the visualization,

as with any computer process, are only as good

as the underlying model.

1.5 Modeling Algorithms

‘‘Modeling algorithms’’ is the catch-all category

for our taxonomy of visualization techniques.

Modeling algorithms will typically transform

the type of input dataset or use combinations

of input data and parameters to affect their

result.

1.5.1 Source Objects

Source objects begin the visualization

pipeline. Often, source objects are used to create

geometry such as spheres, cones, or cubes to

support visualization context, or are used

to read in data files. Source objects also may

be used to create dataset attributes. Some

examples of source objects and their use are as

follows.

1.5.1.1 Modeling Simple Geometry

Spheres, cones, cubes, and other simple geo-

metric objects can be used alone or in combina-

tion to model geometry. Often, we visualize

real-world applications such as air flow in a

room and need to show real-world objects such

as furniture, windows, or doors. Real-world

objects often can be represented using these

simple geometric representations. These source
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objects generate their data procedurally. Alter-

natively, we may use reader objects to access

geometric data defined in data files. These data

files may contain more complex geometry, such

as that produced by a 3D Computer-Aided

Design (CAD) system.

1.5.1.2 Supporting Geometry

During the visualization process, we may use

source objects to create supporting geometry.

This may be as simple as three lines to represent

a coordinate axis or as complex as tubes

wrapped around line segments to thicken and

enhance their appearance. Another common

use is as supplemental input to objects such as

streamlines or probe filters. These filters take a

second input that defines a set of points. For

streamlines, the points determine the initial

positions for generating the streamlines. The

probe filter uses the points as the position to

compute attribute values such as scalars, vectors,

or tensors.

1.5.1.3 Data Attribute Creation

Source objects can be used as procedures

to create data attributes. For example, we
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Figure 1.21 Tensor ellipsoids. (a) Ellipsoid oriented along eigenvalues (i.e., principal axes) of tensor; (b) pictorial description of

Boussinesq’s problem; (c) analytic results according to Saada.
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can procedurally create textures and texture

coordinates. Another use is to create scalar

values over a uniform grid. If the scalar

values are generated from a mathematical

function, then we can use the visualiza-

tion techniques described here to visualize

the function. In fact, this leads us to a very

important class of source objects: implicit func-

tions.

1.5.2 Implicit Functions

Implicit functions are functions of the form

F (x) ¼ c (1:13)

where c is an arbitrary constant. Implicit func-

tions have three important properties:

. Simple geometric description. Implicit func-

tions are convenient tools to describe

common geometric shapes, including planes,

spheres, cylinders, cones, ellipsoids, and

quadrics.

. Region separation. Implicit functions separate

3D Euclidean space into three distinct

regions. These regions are inside, on, and out-

side the implicit function. These regions are

defined as F (x, y, z) < 0, F (x, y, z) ¼ 0, and

F (x, y, z) > 0, respectively.

. Scalar generation. Implicit functions convert

a position in space into a scalar value. That

is, given an implicit function, we can sample

it at a point (xi, yi, zi) to generate a scalar

value ci.

An example of an implicit function is the equa-

tion for a sphere of radius R

F (x, y, z) ¼ x2 þ y2 þ z2 � R2 (1:14)

This simple relationship defines the three

regions F (x, y, z) ¼ 0 (on the surface of

the sphere), F (x, y, z) < 0 (inside the sphere),

and F (x, y, z) > 0 (outside the sphere). Any

point may be classified inside, on, or outside the

sphere simply by evaluating Equation 1.14.

If you have been paying attention, you will

note that Equation 1.14 is identical to the equa-

tion defining a contour (Equation 1.1). This

should provide you with a clue as to the many

ways in which implicit functions can be used.

These include geometric modeling, selection of

data, and visualization of complex mathemat-

ical descriptions.

1.5.2.1 Modeling Objects

Implicit functions can be used alone or in

combination to model geometric objects.
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For example, to model a surface described by

an implicit function, we sample F on a dataset

and generate an isosurface at a contour value ci.

The result is a polygonal representation of the

function. Fig. 1.23b shows an isosurface for a

sphere of radius ¼ 1 sampled on a volume. Note

that we can choose nonzero contour values to

generate a family of offset surfaces. This is

useful for creating blending functions and other

special effects.

Implicit functions can be combined to create

complex objects using the Boolean operators

union, intersection, and difference. The union

operation F [ G between two functions

F (x, y, z) and G(x, y, z) at a point (x0, y0, z0) is

the minimum value

F [ G ¼ min (F (x0, y0, z0),

G(x0, y0, z0))
(1:15)

The intersection between two implicit functions

is given by

F \ G ¼ max (F (x0, y0, z0),

G(x0, y0, z0))
(1:16)

The difference of two implicit functions is given

by

F � G ¼ max (F (x0, y0, z0),

� G(x0, y0, z0))
(1:17)

Fig. 1.23c shows a combination of simple

implicit functions to create an ice cream cone.

The cone is created by clipping the (infinite)

cone function with two planes. The ice cream

is constructed by performing a difference oper-

ation on a larger sphere with a smaller offset

sphere to create the ‘‘bite.’’ The resulting surface

was extracted using surface contouring with iso-

surface value 0.0.

1.5.2.2 Selecting Data

We can take advantage of the properties of

implicit functions to select and cut data. In

particular, we will use the region separation

property to select data. (We defer the discussion

on cutting to Section 1.5.5.)

Selecting or extracting data with an implicit

function means choosing cells and points (and

associated attribute data) that lie within a par-

ticular region of the function. To determine

whether a point x-y-z lies within a region, we

simply evaluate the point and examine the sign

of the result. A cell lies in a region if all its points

lie in the region.

Fig. 1.24a shows a 2D implicit function,

here an ellipse, used to select the data (i.e.,

points, cells, and data attributes) contained

within it. Boolean combinations also can be

used to create complex selection regions, as il-

lustrated in Fig. 1.24b. Here, two ellipses are

used in combination to select voxels within a

volume dataset. Note that extracting data
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(b) (c)

Figure 1.23 Sampling functions. (a) 2D depiction of sphere sampling; (b) isosurface of sampled sphere; (c) Boolean combin-

ation of two spheres, a cone, and two planes. (One sphere intersects the other; the planes clip the cone.)
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often changes the structure of the dataset. In

Fig. 1.24 the input type is a volume dataset,

while the output type is an unstructured grid

dataset.

1.5.2.3 Visualizing Mathematical
Descriptions

Some functions, often discrete or probabilistic in

nature, cannot be cast into the form of Equation

1.13. However, by applying some creative think-

ing, we can often generate scalar values that can

be visualized.An interesting example of this is the

so-called strange attractor.

Strange attractors arise in the study of non-

linear dynamics and chaotic systems. In these

systems, the usual types of dynamic motion—

equilibrium, periodic motion, and quasi-periodic

motion—are not present. Instead, the system

exhibits chaotic motion. The resulting behavior

of the system can change radically as a result of

small perturbations in its initial conditions.

A classical strange attractor was developed

by Lorenz [24] in 1963. Lorenz developed a

simple model for thermally induced fluid con-

vection in the atmosphere. Convection causes

rings of rotating fluid and can be developed

from the general Navier-Stokes partial differen-

tial equations for fluid flow. The Lorenz equa-

tions can be expressed in nondimensional form

as

dx

dt
¼ s(y� x)

dy

dt
¼ rx� y� xz

dz

dt
¼ xy� bz

(1:18)

where x is proportional to the fluid velocity in

the fluid ring, y and z measure the fluid tem-

perature in the plane of the ring, the parameters

s and r are related to the Prandtl number and

Raleigh number, respectively, and b is a geomet-

ric factor.

Certainly these equations are not in the impli-

cit form of Equation 1.13, so how do we visualize

them? Our solution is to treat the variables x, y,

and z as the coordinates of a 3D space, and

integrate Equation 1.18 to generate the system

‘‘trajectory,’’ that is, the state of the system

through time. The integration is carried out

within a volume and scalars are created by

counting the number of times each voxel is

visited.By integrating long enough,we can create

a volume representing the ‘‘surface’’ of the
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(a) (b)

Figure 1.24 Implicit functions used to select data: (a) 2D cells lying in ellipse are selected; (b) two ellipsoids combined using the

union operation used to select voxels from a volume. Voxels shrank 50%. (See also color insert.)
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strange attractor, Fig. 1.25. The surface of the

strange attractor is extracted by using marching

cubes and a scalar value specifying the number of

visits in a voxel.

1.5.3 Implicit Modeling

In the previous section, we saw how implicit

functions, or Boolean combinations of implicit

functions, could be used to model geometric

objects. The basic approach is to evaluate

these functions on a regular array of points, or

volume, and then to generate scalar values at

each point in the volume. Then either volume

rendering or isosurface generation is used to

display the model.

An extension of this approach, called implicit

modeling, is similar to modeling with implicit

functions. The difference lies in the fact that

scalars are generated using a distance function

instead of the usual implicit function. The dis-

tance function is computed as a Euclidean dis-

tance to a set of generating primitives such

as points, lines, or polygons. For example, Fig.

1.26 shows the distance functions to a point,

line, and triangle. Because distance functions

are well-behaved monotonic functions, we can

define a series of offset surfaces by specifying

different isocontour values, where the value is

the distance to the generating primitive. The

isocontours form approximations to the true

offset surfaces, but using high-volume reso-

lution we can achieve satisfactory results.

Used alone the generating primitives are

limited in their ability to model complex geom-

etry. By using Boolean combinations of the

primitives, however, complex geometry can be

easily modeled. The Boolean operations union,

intersection, and difference (Equations 1.15,

1.16, and 1.17, respectively) are illustrated in

Fig. 1.27. Fig. 1.28 shows the application of

implicit modeling to ‘‘thicken’’ the line segments

in the text symbol ‘‘HELLO.’’ The isosurface is

generated on a 110� 40� 20 volume at a dis-

tance offset of 0.25 units. The generating primi-

tives were combined using the Boolean union

operator. Although Euclidean distance is

always a nonnegative value, it is possible to

use a signed distance function for objects that

have an outside and an inside. A negative dis-

tance is the negated distance of a point inside

the object to the surface of the object. Using a
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Figure 1.25 Visualizing a Lorenz strange attractor by integrating the Lorenz equations in a volume. The number of visits in

each voxel is recorded as a scalar function. The surface is extracted via marching cubes using a visit value of 50. The number of

integration steps is 10 million, in a volume of dimensions 2003. The surface roughness is caused by the discrete nature of the

evaluation function. (See also color insert.)
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signed distance function allows us to create

offset surfaces that are contained within the

actual surface.

Another interesting feature of implicit model-

ing is that when isosurfaces are generated, more

than one connected surface can result. These

situations occur when the generating primitives

form concave features. Fig. 1.29 illustrates this

situation. If desired, multiple surfaces can be

extracted by using a connectivity segmentation

algorithm.

1.5.4 Glyphs

Glyphs, sometimes referred to as icons, are a

versatile technique to visualize data of every

type. A glyph is an ‘‘object’’ that is affected by

its input data. This object may be geometry, a

dataset, or a graphical image. The glyph may

orient, scale, translate, deform, or somehow

alter the appearance of the object in response

to data. We have already seen a simple form of

glyph: hedgehogs are lines that are oriented,

translated, and scaled according to the position

and vector value of a point. A variation of this is

to use oriented cones or arrows (see Section

1.3.1).

More elaborate glyphs are possible. In one

creative visualization technique, Chernoff [6]

tied data values to an iconic representation of

the human face. Eyebrows, nose, mouth, and

other features were modified according to fi-

nancial data values. This interesting technique

built on the human capability to recognize

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 6:48pm page 28

d
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Figure 1.26 Distance functions to a point, line, and triangle.

Original Union Intersection Difference

Figure 1.27 Boolean operations using points and lines as generating primitives.

Figure 1.28 Implicit modeling used to thicken a stroked

font. Original lines can be seen within the translucent impli-

cit surface.
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facial expression. By tying appropriate data

values to facial characteristics, rapid identifica-

tion of important data points is possible.

In a sense, glyphs represent the fundamental

result of the visualization process. Moreover, all

the visualization techniques we present can be

treated as concrete representations of an ab-

stract glyph class. For example, while hedge-

hogs are an obvious manifestation of a vector

glyph, isosurfaces can be considered a topo-

logically 2D glyph for scalar data. Delmarcelle

and Hesselink [11] have developed a unified

framework for flow visualization based on

types of glyphs. They classify glyphs according

to one of three categories:

. Elementary icons represent their data across

the extent of their spatial domain. For

example, an oriented arrow can be used to

represent a surface normal.

. Local icons represent elementary informa-

tion plus a local distribution of the values

around the spatial domain. A surface normal

vector colored by local curvature is one

example of a local icon, because local data

beyond the elementary information is en-

coded.

. Global icons show the structure of the com-

plete dataset. An isosurface is an example of

a global icon.

This classification scheme can be extended to

other visualization techniques such as vector

and tensor data, or even to nonvisual forms

such as sound or tactile feedback. We have

found this classification scheme to be helpful

when designing visualizations or creating visu-

alization techniques. Often, it gives insight into

ways of representing data that can be over-

looked.

Fig. 1.30 is an example of glyphing. Small 3D

cones are oriented on a surface to indicate the

direction of the surface normal. A similar ap-

proach could be used to show other surface

properties such as curvature or anatomical

key points.

1.5.5 Cutting

Often, we want to cut through a dataset with a

surface and then display the interpolated data

values on the surface. We refer to this technique

as data cutting or simply cutting. The data cut-

ting operation requires two pieces of informa-

tion: a definition for the surface and a dataset to

cut. We will assume that the cutting surface is

defined by an implicit function. A typical appli-

cation of cutting is to slice through a dataset

with a plane, and color map the scalar data and/

or warp the plane according to vector value.

A property of implicit functions is to convert

a position into a scalar value (see Section 1.5.2).
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Isodistance
contours

Figure 1.29 Concave features can result in multiple con-

tour lines/surfaces.

Figure 1.30 Glyphs indicate surface normals on a model of

a human face. Glyph positions are randomly selected. (See

also color insert.)
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We can use this property in combination with a

contouring algorithm (e.g., marching cubes) to

generate cut surfaces. The basic idea is to gener-

ate scalars for each point of each cell of a data-

set (using the implicit cut function) and then

contour the surface value F (x, y, z) ¼ 0.

The cutting algorithm proceeds as follows.

For each cell, function values are generated by

evaluating F(x, y, z) for each cell point. If all the

points evaluate positive or negative, then

the surface does not cut the cell. However,

if the points evaluate positive and negative,

then the surface passes through the cell. We

can use the cell contouring operation to gener-

ate the isosurface F (x, y, z) ¼ 0. Data-attribute

values can then be computed by interpolating

along cut edges.

Fig. 1.31 illustrates a plane cut through a

structured grid dataset. The plane passes

through the center of the dataset with normal

(�0:287, 0, 0.9579). For comparison purposes,

a portion of the grid geometry is also shown.

The grid geometry is the grid surface k ¼ 9

(shown in wireframe). One benefit of cut

surfaces is that we can view data on (nearly)

arbitrary surfaces. Thus, the structure of the

dataset does not constrain how we view the

data.

We can easily make multiple planar cuts

through a structured grid dataset by specifying

multiple iso-values for the cutting algorithm.

Fig. 1.32 shows 100 cut planes generated per-

pendicular to the camera’s view plane normal.

Rendering the planes from back to front with an

opacity of 0.05 produces a simulation of volume

rendering.

This example illustrates that cutting the volu-

metric data in a structured grid dataset pro-

duces polygonal cells. Similarly, cutting

polygonal data produces lines. Using a single

plane equation, we can extract ‘‘contour lines’’

from a surface model defined with polygons.

Fig. 1.33 shows contours extracted from a sur-

face model of the skin. At each vertex in the

surface model, we evaluate the equation of

the plane F (x, y, z) ¼ c and store the value
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Figure 1.31 Cut through structured grid with plane. The

cut plane is shown solid shaded. A computational plane of

constant k value is shown in wireframe for comparison. The

colors correspond to flow density. Cutting surfaces are not

necessarily planes: implicit functions such as spheres, cylin-

ders, and quadrics can also be used. (See also color insert.)

Figure 1.32 100 cut planes with opacity of 0.05, rendered back-to-front to simulate volume rendering. (See also color insert.)
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of the function as a scalar value. Cutting the

data with 46 iso-values from 1.5 to 136.5 pro-

duces contour lines that are 3 units apart.

1.5.6 Probing

Probing obtains dataset attributes by sampling

one dataset (the input) with a set of one or more

points (the probe), as shown in Fig. 1.34.

Probing is also called resampling. Examples in-

clude probing an input dataset with a sequence

of points along a line, on a plane, or in a

volume. The result of the probing is a new data-

set (the output) with the topological and geo-

metric structure of the probe dataset and point

attributes interpolated from the input dataset.

Once the probing operation is complete, the

output dataset can be visualized with any of the

appropriate techniques described previously.

As Fig. 1.34 indicates, the details of the

probing process are as follows. For every point

in the probe dataset, the location in the input

dataset (i.e., cell, subcell, and parametric coord-

inates) and interpolation weights are deter-

mined. Then the data values from the cell are

interpolated to the probe point. Probe points

that are outside the input dataset are assigned

a nil (or appropriate) value. This process repeats

for all points in the probe dataset.

Probing can be used to reduce data or to view

data in a particular fashion.

. Data is reduced when the probe operation is

limited to a subregion of the input dataset or

the number of probe points is less than the

number of input points.

. Data can be visualized with specialized tech-

niques by sampling on selected datasets. For

example, using a line probe enables x-y plot-

ting along a line, and using a plane probe

allows surface color mapping or line con-

touring on the plane.

Probing must be used carefully or errors may be

introduced. Undersampling data in a region can

miss important high-frequency information or

localized data variations. Oversampling data,

while not creating error, can give false confi-

dence in the accuracy of the data. Thus the

sampling frequency should have a similar dens-

ity as the input dataset, or if higher density, the

visualization should be carefully annotated as to

the original data frequency.

One important application of probing con-

verts irregular or unstructured data to structured

form using a probe volume of appropriate
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Figure 1.33 Cutting a surface model of the skin with a

series of planes produces contour lines. Lines are wrapped

with tubes for visual clarity. (See also color insert.)

Input
dataset

Probe
dataset

r

s

Figure 1.34 Probing data. The geometry of one dataset

(Probe) is used to extract dataset attributes from another

dataset (Input).
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resolution to sample the unstructured data.

This is useful if volume rendering or another

volume technique is to be used to visualize the

data.

Fig. 1.35 shows an example of three

probes. The probes sample flow density in a

structured grid. The output of the probes is

passed through a contour filter to generate con-

tour lines. As this figure illustrates, we can be

selective with the location and extent of the

probe, allowing us to focus on important

regions in the data.

1.5.7 Data Reduction

One of the major challenges facing the scientific

visualization community is the increasing size of

data. While just a short time ago data sizes of a

gigabyte were considered large, terabyte and

even petabyte data sizes are now available.

Because the value of the visualization process

is tied to its ability to effectively convey infor-

mation about large and complex data, it is ab-

solutely essential to find techniques to address

this situation. A simple but effective approach is

to use methods to reduce data size prior to

the visualization process. The approaches

taken depend on the type of data; for example,

subsampling works well for structured

data. Unstructured data (such as polygonal

meshes) requires more sophisticated techniques.

Since this topic is worth several books on

its own, we present some introductory

approaches to data reduction. Note that the

use of probing is also an excellent data-reduc-

tion tool.

1.5.7.1 Subsampling

Subsampling (Fig. 1.36) is a method that

reduces data size by selecting a subset of the

original data. The subset is specified by choos-

ing a parameter n, specifying that every nth data

point is to be extracted. For example, in

structured datasets such as image data and

structured grids, selecting every nth point

produces the results shown in Fig. 1.36.

Subsampling modifies the topology of a data-

set. When points or cells are not selected, this

leaves a topological ‘‘hole.’’ Dataset topology

must be modified to fill the hole. In structured

data, this is simply a uniform selection across

the structured i-j-k coordinates. In structured

data, the hole must be filled in by using

triangulation or other complex tessellation

schemes. Subsampling is not typically per-

formed on unstructured data because of its

inherent complexity.

1.5.7.2 Decimation

Unstructured data can be reduced in size by

applying a variety of decimation algorithms

(also known as polygon reduction when applied

to polygonal meshes). There are several ap-

proaches to decimation based on differing

operations performed on the mesh (Fig. 1.37).

Vertex removal deletes a vertex and all attached

cells. The resulting hole is then triangulated.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 6:48pm page 32

Figure 1.35 Probing data in a combustor. Probes are regu-

lar arrays of 502 points that are passed through a contouring

filter.

Figure 1.36 Subsampling structured data.
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Edge collapse results in merging two vertices into

one. The position of the merged point is

controlled by the particulars of the error metric

and algorithm: choosing one of the two end-

points, or a point on the edge, is common. Some

algorithms compute an optimal merge position

based on minimizing error to the original data.

Finally, some techniques may delete an entire cell

(e.g., triangle) and attached cells and then

retriangulate the resulting hole.

Decimation algorithms depend on the evalu-

ation of an error metric to determine the oper-

ation to apply to the mesh. Simple approaches

such as distance to an ‘‘average’’ plane work

reasonably well. Probably the most widely

used error metric is based on an accumulation

of error represented by a quadric. The so-called

quadric error metric measures the distance to a

set of planes, each plane corresponding to an

original triangle in the input mesh.

1.6 Bibliographic Notes

Color mapping is a widely studied topic in imaging,

computer graphics, visualization, and human factors.

[12,30,42]. You also may want to learn about the

physiological and psychological effects of color on

perception. The text by Wyszecki and Stiles [44]

serves as an introductory reference.

Contouring is a widely studied technique in visu-

alization because of its importance and popularity.

Early techniques were developed for 2D data [43]. 3D

techniques were developed initially as contour con-

necting methods [15]—that is, given a series of 2D

contours on evenly spaced planes, connecting the

contours to create a closed surface. Since the intro-

duction of marching cubes, many other techniques

have been implemented [13,26,28]. A particularly

interesting reference is given by Livnat et al. [22].

They show a contouring method with the addition

of a preprocessing step that generates isocontours in

near-optimal time.

Although we barely touched the topic, the study of

chaos and chaotic vibrations is a delightfully interest-

ing topic. Besides the original paper by Lorenz [24],

the book by Moon [27] is a good place to start.

2Dand3Dvector plots havebeenusedby computer

analysts for many years [16]. Streamlines and stream-

ribbons also have been applied to the visualization of

complex flows [41]. Good general information on

vector visualization techniques is given by Helman

and Hesselink [19] and Richter et al. [31].

Tensor visualization techniques are relatively few

in number. Most techniques are glyph-oriented [10,

18]. We will see more techniques in later chapters.

Blinn [3], Bloomenthal [4,5], and Wyvill [45] have

been important contributors to implicit modeling.

Implicit modeling is currently popular in computer

graphics for modeling ‘‘soft’’ or ‘‘blobby’’ objects.

These techniques are simple, powerful, and becoming

widely used for advanced computer graphics model-

ing.

Polygon reduction is a relatively new field of

study. SIGGRAPH ’92 marked a flurry of interest

with the publication of two papers on this topic [32,

40]. Since then a number of valuable techniques have

been published. One of the best techniques, in terms

of quality of results, is given by Hoppe [21], although

it is limited in time and space because it is based on

formal optimization techniques. Other interesting

methods include those by Hinker and Hansen [20]
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Figure 1.37 Decimating unstructured data.
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and Rossignac and Borel [32]. One promising area of

research is multiresolution analysis, where wavelet

decomposition is used to build multiple levels of

detail (LODs) in a model [14]. The most recent

work in this field stresses progressive transmission

of 3D triangle meshes [21], improved error measures

[17], and algorithms that modify mesh topology

[29,36]. An extensive book on the technology is avail-

able that includes specialized methods for terrain

simplification [25].
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