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ACETOACETIC ESTER SYNTHESIS 
(References are on page 531) 

Importance: 
 

[Seminal Publications1-4; Reviews5-9; Modifications & Improvements10-19] 
 
The preparation of ketones via the C-alkylation of esters of 3-oxobutanoic acid (acetoacetic esters) is called the 
acetoacetic ester synthesis. Acetoacetic esters can be deprotonated at either the C2 or at both the C2 and C4 
carbons, depending on the amount of base used. The C-H bonds on the C2 carbon atom are activated by the 
electron-withdrawing effect of the two neighboring carbonyl groups. These protons are fairly acidic (pKa ~11 for C2 
and pKa ~24 for C4), so the C2 position is deprotonated first in the presence of one equivalent of base (sodium 
alkoxide, LDA, NaHMDS or LiHMDS, etc.). The resulting anion can be trapped with various alkylating agents. A 
second alkylation at C2 is also possible with another equivalent of base and alkylating agent. When an acetoacetic 
ester is subjected to excess base, the corresponding dianion (extended enolate) is formed.13-15,18,19 When an 
electrophile (e.g., alkyl halide) is added to the dianion, alkylation occurs first at the most nucleophilic (reactive) C4 
position. The resulting alkylated acetoacetic ester derivatives can be subjected to two types of hydrolytic cleavage, 
depending on the conditions: 1) dilute acid hydrolyzes the ester group, and the resulting β-keto acid undergoes 
decarboxylation to give a ketone (mono- or disubstituted acetone derivative); 2) aqueous base induces a retro-
Claisen reaction to afford acids after protonation. The hydrolysis by dilute acid is most commonly used, since the 
reaction mixture is not contaminated with by-products derived from ketonic scission. More recently the use of the 
Krapcho decarboxylation allows neutral decarboxylation conditions.11,12 As with malonic ester, monoalkyl derivatives 
of acetoacetic ester undergo a base-catalyzed coupling reaction in the presence of iodine. Hydrolysis and 
decarboxylation of the coupled products produce γ-diketones. The starting acetoacetic esters are most often obtained 
via the Claisen condensation of the corresponding esters, but other methods are also available for their 
preparation.5,8  

 
Mechanism: 3,20 
 
The first step is the deprotonation of acetoacetic ester at the C2 position with one equivalent of base. The resulting 
enolate is nucleophilic and reacts with the electrophilic alkyl halide in an SN2 reaction to afford the C2 substituted 
acetoacetic ester, which can be isolated. The ester is hydrolyzed by treatment with aqueous acid to the 
corresponding β-keto acid, which is thermally unstable and undergoes decarboxylation via a six-membered transition 
state. 
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ACETOACETIC ESTER SYNTHESIS 
 
Synthetic Applications: 
 
In the laboratory of H. Hiemstra, the synthesis of the bicyclo[2.1.1]hexane substructure of solanoeclepin A was 
undertaken utilizing the intramolecular photochemical dioxenone-alkene [2+2] cycloaddition reaction.21 The 
dioxenone precursor was prepared from the commercially available tert-butyl acetoacetate using the acetoacetic 
ester synthesis. When this dioxenone precursor was subjected to irradiation at 300 nm, complete conversion of the 
starting material was observed after about 4h, and the expected cycloadduct was formed in acceptable yield. 

 
R. Neier et al. synthesized substituted 2-hydroxy-3-acetylfurans by the alkylation of tert-butylacetoacetate with an α-
haloketone, followed by treatment of the intermediate with trifluoroacetic acid.22 When furans are prepared from β-
ketoesters and α-haloketones, the reaction is known as the Feist-Bénary reaction. A second alkylation of the C2 
alkylated intermediate with various bromoalkanes yielded 2,2-disubstituted products, which upon treatment with TFA, 
provided access to trisubstituted furans. 
 

 
M. Nakada and co-workers developed a novel synthesis of tetrahydrofuran and tetrahydropyran derivatives by 
reacting dianions of acetoacetic esters with epibromohydrin derivatives.23 The selective formation of the 
tetrahydrofuran derivatives was achieved by the use of LiClO4 as an additive. 
 

 
 
A synthetic strategy was developed for the typical core structure of the Stemona alkaloids in the laboratory of C.H. 
Heathcock.24 The precursor for the 1-azabicyclo[5.3.0]decane ring system was prepared via the successive double 
alkylation of the dianion of ethyl acetoacetate. 
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BAKER-VENKATARAMAN REARRANGEMENT 
(References are on page 542) 

Importance: 
 

[Seminal Publications1-4; Reviews5-7; Modifications & Improvements8-17] 
 

The base-catalyzed rearrangement of aromatic ortho-acyloxyketones to the corresponding aromatic β-diketones is 
known as the Baker-Venkataraman rearrangement. β-Diketones are important synthetic intermediates, and they are 
widely used for the synthesis of chromones, flavones, isoflavones, and coumarins. The most commonly used bases 
are the following: KOH, potassium tert-butoxide in DMSO, Na metal in toluene, sodium or potassium hydride, 
pyridine, and triphenylmethylsodium.  
 

 
 
Mechanism: 18-22 
 
In the first step of the mechanism, the aromatic ketone is deprotonated at the α-carbon and an enolate is formed. 
This nucleophile attacks the carbonyl group of the acyloxy moiety intramolecularly to form a tetrahedral intermediate 
that subsequently breaks down to form the aromatic β-diketone. 
 

 
 
 
Synthetic Applications: 
 
In the laboratory of K. Krohn, the total synthesis of aklanonic acid and its derivatives was undertaken, utilizing the 
Baker-Venkataraman rearrangement of ortho-acetyl anthraquinone esters in the presence of lithium hydride.23 Using 
this method, it was possible to introduce ketide side-chains on anthraquinones in a facile manner. 
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BAKER-VENKATARAMAN REARRANGEMENT 
 
Synthetic Applications: 
 
V. Snieckus and co-workers developed a new carbamoyl Baker-Venkataraman rearrangement, which allowed a 
general synthesis of substituted 4-hydroxycoumarins in moderate to good overall yields.16 The intermediate 
arylketones were efficiently prepared from arylcarbamates via directed ortho metallation and Negishi cross coupling. 
The overall sequence provided a regiospecific anionic Friedel-Crafts complement for the construction of ortho-acyl 
phenols and coumarins. 
 

 
Stigmatellin A is a powerful inhibitor of electron transport in mitochondria and chloroplasts. During the diastereo- and 
enantioselective total synthesis of this important natural product, D. Enders et al. utilized the Baker-Venkataraman 
rearrangement for the construction of the chromone system in good yield.24 
 

 
 
A highly efficient and operationally simple domino reaction was developed in the laboratory of S. Ruchiwarat for the 
synthesis of benz[b]indeno[2,1-e]pyran-10,11-diones.25 The initial aroyl-transfer was achieved by the Baker-
Venkataraman rearrangement by subjecting the starting material to KOH in pyridine under reflux for 30 minutes. 
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BALDWIN’S RULES / GUIDELINES FOR RING-CLOSING REACTIONS 
(References are on page 542) 

Importance: 
 

[Seminal Publication1; Reviews2,3; Related Publications4-14] 
 
In 1976, J.E. Baldwin formulated a set of rules/guidelines governing the ease of intramolecular ring-closing reactions, 
the so-called Baldwin’s rules or Baldwin's guidelines.1  Baldwin used these rules/guidelines to gain valuable insight 
into the role of stereoelectronic effects in organic reactions and predict the feasibility of these reactions in synthetic 
sequences. A few years later in 1983, J.D. Dunitz and co-workers demonstrated that there are favored trajectories for 
the approach of one reactant molecule toward another.15 We must note, however, that there is substantial limitation 
on these rules/guidelines; a large number of examples are known for which they do not apply.  
 
 
 
Summary of most important ring closures: 
 
 

 (F=favored, D=disfavored) 
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BALDWIN’S RULES / GUIDELINES FOR RING-CLOSING REACTIONS 
 
Synthetic Applications: 
 
D.L Boger and co-workers reported an asymmetric total synthesis of ent-(–)-roseophilin, the unnatural enantiomer of 
a naturally occurring antitumor antibiotic.16 Their approach featured a 5-exo-trig acyl radical-alkene cyclization to 
construct the fused cyclopentanone unit. To this end, the hindered methyl ester functionality was hydrolyzed and the 
resulting acid was transformed to the corresponding phenyl selenoester via a two-step sequence. The 5-exo-trig acyl 
radical-alkene cyclization was achieved by using AIBN and Bu3SnH to provide the tricyclic ansa-bridged azafulvene 
core. 

 
The total synthesis of balanol, a fungal metabolite was accomplished by K.C. Nicolaou et al.17 For the construction of 
the central hexahydroazepine ring, they have utilized a 7-exo-tet cyclization. The substitution reaction between the 
mesylate of the primary alcohol and the Cbz-protected amine was effected by a slight excess of base to produce the 
desired 7-membered ring in high yield. 

 
The total synthesis of pyrrolidinol alkaloid, (+)-preussin was achieved in five efficient transformations from 
commercially available tert-Boc-(S)-phenylalanine in the laboratory of S.M. Hecht.18 The key step involved the Hg(II)-
mediated 5-endo-dig cyclization of ynone substrate affording the desired pyrrolidinone which, in two more steps, was 
converted into the natural product. 
 

 
In the laboratory of K. Nacro, a cyclization process leading stereoselectively to six- and/or five-membered ring 
lactones and lactone ethers from optically active epoxy- or diepoxy β-hydroxyesters or diastereomeric epoxy lactones 
was developed.19 The diastereomeric lactones were prepared from nerol and geraniol. The acid catalyzed cyclization 
of epoxyalcohols is one of the most effective methods for constructing cyclic ethers. The cyclization proceeds in the 
exo mode giving cyclic ethers with a hydroxyl group in the side chain. The regioselectivity of the cyclization is 
predicted by the Baldwin’s rules; in the case shown below the ether formation takes place via a 5-exo-tet cyclization. 
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BALZ-SCHIEMANN REACTION  
(SCHIEMANN REACTION) 
(References are on page 543) 

Importance: 
 

[Seminal Publication1; Reviews2-6; Modifications & Improvements7-14] 
 
The thermal decomposition of aromatic diazonium tetrafluoroborates (ArN2

+BF4
-) to give aromatic fluorides is called 

the Balz-Schiemann reaction. Normally diazonium salts are unstable but diazonium tetrafluoroborates are fairly stable 
and may be obtained in high yields. Aromatic heterocyclic diazonium tetrafluoroborates may also be used. The 
diazonium salts are obtained from the diazotization of aromatic amines in the presence of hydrogen tetrafluoroborate 
(HBF4). Improved yields of aryl fluorides may be achieved when instead of tetrafluoroborates, hexafluorophosphates 
(PF6

-) or hexafluoroantimonates (SbF6
-) are used as counterions.7,8 One drawback of the reaction is the potential 

danger of explosion when large-scale thermal decomposition of the aromatic diazonium tetrafluoroborates is 
attempted. However, when the decomposition is carried out, either thermally or photolytically, in pyridine·HF solution, 
the reaction proceeds smoothly even on a larger scale. This approach is especially useful for the preparation of aryl 
fluorides having polar substituents (OH, OMe, CF3, etc.).15 
 
 

 
 
Mechanism: 16-24 
 
The mechanism involves a positively charged intermediate,21 which is attacked by BF4

- rather than the fluoride ion.20 
Both the thermal and photochemical decomposition of diazonium tetrafluoroborates afford the same product ratio, 
which suggests the intermediacy of the aryl cation. The decomposition follows a first-order rate law, so it is probably 
of SN1 type.  
 

 
Synthetic Applications: 
 
In the laboratory of D.A. Holt, the synthesis of a new class of steroid 5α-reductase inhibitors was undertaken.25 They 
found that unlike the steroidal acrylates, steroidal A ring aryl carboxylic acids exhibit greatly reduced affinity for rat 
liver steroid 5α-reductase. The tested steroidal A ring carboxylic acids were synthesized from estrone; in one 
example, fluorine was incorporated into the 4-position of estrone via the Balz-Schiemann reaction. 
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BALZ-SCHIEMANN REACTION  
(SCHIEMANN REACTION) 

 
Synthetic Applications: 

 
C. Wiese and co-workers have synthesized 5-fluoro-D/L-dopa and the corresponding [18F]5-Fluoro-L-dopa starting 
from 5-nitrovanillin via malonic ester synthesis, the Balz-Schiemann reaction, and the separation of the racemic 
mixture [18F]5-fluoro-D/L-dopa utilizing a chiral HPLC system.26 The inactive 5-fluoro-D/L-dopa was obtained in an 
eight-step synthesis with an overall yield of 10%. 
 
 

 
D.R. Thakker synthesized K-region monofluoro- and difluorobenzo[c]phenanthrenes using the Balz-Schiemann 
reaction in order to elucidate the metabolic activation and detoxification of polycyclic aromatic compounds.27 
 
 

 
Dibenzo[a,d]cycloalkenimines were synthesized and pharmacologically evaluated as N-methyl-D-aspartate 
antagonists by P.S. Anderson et al.28 A symmetrical 3,7-difluoro derivative was accessed by applying the Balz-
Schiemann reaction on the corresponding 3,7-diamino analog. 

 
The synthesis of 7-azaindoles is a challenging task and there are few efficient routes to substituted derivatives. In the 
laboratory of C. Thibault, the concise and efficient synthesis of 4-fluoro-1H-pyrrolo[2,3-b]pyridine was achieved.29 The 
fluorination was carried out using the Balz-Schiemann reaction. The aromatic amine precursor was prepared via the 
Buchwald-Hartwig coupling of the aryl chloride with N-allylamine followed by deallylation. The diazonium 
tetrafluoroborate intermediate was generated at 0 °C and it decomposed spontaneously in 48% HBF4 solution to 
afford the desired aromatic fluoride. 
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COREY-CHAYKOVSKY EPOXIDATION AND CYCLOPROPANATION 
(References are on page 565)  

Importance: 
 

[Seminal Publications1,2; Reviews3-11; Modifications & Improvements12-14; Theoretical Studies15-17]  
 
In 1962, E.J. Corey and M. Chaykovsky deprotonated trimethylsulfoxonium halides using powdered sodium hydride 
under nitrogen at room temperature to form a reactive compound, dimethylsulfoxonium methylide (I).1 When simple 
aldehydes and ketones were mixed with I, the formation of epoxides was observed. Likewise, the reaction of 
dimethylsulfonium methylide (II) with aldehydes and ketones also resulted in epoxide formation.2 Compounds I and II 
are both sulfur ylides and are prepared by the deprotonation of the corresponding sulfonium salts. The preparation of 
epoxides (oxiranes) from aldehydes and ketones using sulfur ylides is known as the Corey-Chaykovsky epoxidation. 
When I is reacted with α,β-unsaturated carbonyl compounds, a conjugate addition takes place to produce a 
cyclopropane as the major product. This reaction is known as the Corey-Chaykovsky cyclopropanation.1 Sulfur ylide 
II is more reactive and less stable than I, so it is generated and used at low temperature. The reaction of substituted 
sulfur ylides with aldehydes is stereoselective, leading predominantly to trans epoxides. Asymmetric epoxidations are 
also possible using chiral sulfides.12,6 The use of various substituted sulfur ylides allows the transfer of substituted 
methylene units to carbonyl compounds (isopropylidene or cyclopropylidene fragments) to prepare highly substituted 
epoxides. Since the S-alkylation of sulfoxides is not a general reaction, it is not practical to obtain the precursor salts 
in the trialkylsulfoxonium series. This shortcoming limits the corresponding sulfur ylides to the unsubstituted 
methylide. However, sulfur ylide reagents derived from sulfoximines offer a versatile way to transfer substituted 
methylene units to carbonyl compounds to prepare oxiranes and cyclopropanes.12 
 
 

 
Mechanism: 18-25 
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COREY-CHAYKOVSKY EPOXIDATION AND CYCLOPROPANATION 
  

Synthetic Applications: 
 
During the total synthesis of (+)-phyllanthocin, A.B. Smith and co-workers installed the epoxide functionality chemo- 
and stereoselectively at the C7 carbonyl group of the intermediate diketone by using dimethylsulfoxonium-methylide 
in a 1:1 solvent mixture of DMSO-THF at 0 °C.26 The success of this chemoselective methylenation was attributed to 
the two α-alkoxy substituents, which render the C7 carbonyl group much more electrophilic than C10. 
 
 

 
 
A short enantiospecific total synthesis of (+)-aphanamol I and II from limonene was achieved and the absolute 
stereochemistry of I and II established in the laboratory of B. Wickberg.27 The key steps were a de Mayo 
photocycloaddition, a Corey-Chaykovsky epoxidation and finally a base-catalyzed fragmentation of the γ,δ-
epoxyalcohol intermediate. Upon treating the photocycloadduct with dimethylsulfoxonium methylide, only the endo 
epoxide diastereomer was formed due to the steric hindrance provided by the methyl and isopropyl groups. 
 
 

 
 
 
The conversion of a bicyclo[2.2.1]octenone derivative to the corresponding bicyclo[3.3.0]octenone, a common 
intermediate in the total synthesis of several iridoid monoterpenes, was achieved by N.C. Chang et al. The target was 
obtained by sequential application of the Corey-Chaykovsky epoxidation, Demjanov rearrangement and a 
photochemical [1,3]-acyl shift. 28 
 
 

 
 
One of the steps in the highly stereoselective total synthesis of (±)-isovelleral involved the cyclopropanation of an α,β-
unsaturated ketone using dimethylsulfoxonium methylide.29 C.H. Heathcock and co-workers studied this 
transformation under various conditions and they found that THF at ambient temperature gave superior results to 
DMSO, which is the most common solvent for the Corey-Chaykovsky cyclopropanation. 
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SAKURAI ALLYLATION 
(References are on page 668) 

Importance: 
 

[Seminal Publications1,2; Reviews3-9; Modifications & Improvements10-23; Theoretical Studies24,25] 
 
In 1976, H. Sakurai reported that allylsilanes react with a wide variety of aldehydes and ketones in the presence of 
stoichiometric quantities of TiCl4 to form the corresponding homoallylic alcohols. Today, this transformation is referred 
to as the Sakurai allylation, and it is one of the most important carbon-carbon bond forming reactions. The general 
features of the reaction are: 1) typically, it is carried out in dichloromethane under nitrogen atmosphere at a 
temperature range between -78 °C and 25 °C; 2) in addition to TiCl4, several other Lewis acids can be used such as 
AlCl3, BF3·OEt2, SnCl4, EtAlCl2;1,2 3) most commonly trimethylallylsilanes and phenyldimethylallylsilanes are utilized 
as the allylsilane reactant;4,6 4) the reaction is highly regioselective, the electrophile attacking at the C3 terminus of 
the allylsilane;1,2,4 5) C1 substituted allylsilanes give the (E)-alkene product;26 6) allenyl-,27 propargyl-,28 vinyl-,29 and 
ethynylsilanes29 also undergo the reaction in the presence of Lewis acids; 7) the most commonly used electrophiles 
are aldehydes and ketones, but acetals and ketals30 are also often utilized; 8) dithioacetals,31 monothioacetals,32 
alkoxymethyl-,33 and phenylthiomethyl chlorides34 undergo the allylation reaction; 9) α,β-unsaturated aldehydes react 
at the carbonyl group, while  α,β-unsaturated ketones undergo conjugate addition;35,36 10) intramolecular reactions 
are also feasible;37 and 11) C3 monosubstituted allysilanes give the syn-diastereomer as the major product.38 
Common side reactions in the Sakurai allylation are the following: 1) protodesilylation;39 2) allylic alcohol products, 
especially tertiary allylic alcohols can undergo ionization;40 and 3) in the case of 1,1-disubstituted allylsilanes, the 
trisubstituted alkene product may react further.41 Side reactions usually can be avoided by carefully controlled 
conditions or utilizing acetal or ketal substrates. Catalytic versions of the Sakurai allylation are known as well, utilizing 
TMSOTf,10 TMSI,11 Ph3CClO4,12 Cp2Ti(CF3SO3)2,14 TMSOMs,19 and InCl3/TMSCl20 as catalysts. Recently, catalytic 
asymmetric versions were developed.15,22,23 

 
 
 
Mechanism:42,43,38,44-46  
 
The reaction starts with the activation of the carbonyl group by the Lewis acid. Subsequent carbon-carbon bond 
formation leads to a silyl-stabilized carbocation,45 which after loss of the trimethylsilyl group, gives the double bond. 
From studies conducted on chiral allylsilanes, it was concluded that the incoming electrophile attacks the double bond 
on the surface opposite to the silyl group.42 The reaction of aldehydes with C3 substituted allylsilanes leads to the 
syn-diastereomer as the major product, and (E)-allylsilanes give higher diastereoselectivities than (Z)-allylsilanes. 
The reaction presumably goes through an open transition state.38 The possible transition states leading to the syn-
diastereomer are depicted below.43,44 
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SAKURAI ALLYLATION 
 
Synthetic Applications: 
  
In the laboratory of B.M. Trost, a modular approach toward the total syntheses of furaquinocins was developed.47 To 
introduce the homoallylic side chain in a diastereoselective fashion, they utilized the Sakurai allylation reaction. 
During their studies they found that the highest diastereoselectivity can be achieved using 1 equivalent of TiCl4 at 
room temperature. Application of other Lewis acids such as BF3·OEt2 gave the product with lower selectivity. 
Attempts to perform the allylation using catalytic amounts of Lewis acids such as FeCl3 or Sc(OTf)3 led to no 
conversion. The resulting homoallylic alcohol served as a common intermediate toward the syntheses of both 
furaquinocin A and B. 
 

 
 
 
A convergent total synthesis of 15-membered macrolactone, (–)-amphidinolide P was reported by D.R. Williams and 
coworkers.48 In their approach, they utilized the Sakurai allylation to introduce the C7 hydroxyl group and the 
homoallylic side chain. The transformation was effected by BF3·OEt2 at -78 °C to provide the homoallylic alcohol as a 
2:1 mixture of diastereomers. The desired alcohol proved to be the major diastereomer, as it resulted from the Felkin-
Ahn controlled addition of the allylsilane to the aldehyde. The minor diastereomer was converted into the desired 
stereoisomer via a Mitsunobu reaction. 
 

 
 
A highly convergent, enantioselective total synthesis of structurally novel, cancer therapeutic lead, (–)-laulimalide was 
achieved by P.A. Wender and co-workers.49 During the synthesis, they performed an unprecedented complex 
asymmetric Sakurai allylation reaction as a key step to form the C14-C15 carbon-carbon bond. In this transformation, 
they utilized a chiral, nonracemic (acyloxy)borane Lewis acid that was developed by H. Yamamoto.15 According to 
Yamamoto’s original procedure, only a catalytic amount (10-20 mol%) of the Lewis acid was needed to bring about 
the desired transformation with high yield and enantioselectivity. However, in this case, one equivalent of the Lewis 
acid was necessary to effect the allylation. The reaction was carried out in propionitrile at -78 °C, and the product was 
obtained in high yield and as the only detectable diastereomer by spectroscopic methods.  
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SANDMEYER REACTION 
(References are on page 669) 

Importance: 
 

 [Seminal Publications1-4; Reviews5-11; Modifications & Improvements12-19] 
 
In 1884, T. Sandmeyer intended to prepare phenylacetylene by reacting benzenediazonium chloride with copper(I) 
acetylide, but the major product of the reaction was chlorobenzene, and no trace of the desired product was 
detected.3 Careful examination of the reaction conditions revealed that copper(I) chloride was formed in situ and it 
catalyzed the replacement of the diazonium group with a chlorine atom.4 Sandmeyer also showed that 
bromobenzene was formed by using copper(I) bromide, and copper(I) cyanide led to benzonitrile. The substitution of 
aryldiazonium salts with halides or pesudohalides is known as the Sandmeyer reaction. The general features of this 
transformation are: 1) the required aryldiazonium halides are usually prepared from arylamines via diazotization using 
either NaNO2/hydrohalic acid in water or alkyl nitrites (e.g., tert-butyl nitrite) under anhydrous conditions; 2) the 
aryldiazonium halides are not isolated but reacted in the same pot with copper(I) chloride, bromide or cyanide to 
obtain the corresponding aryl chloride, aryl bromide, and aryl nitrile, respectively; 3) the counterion of the copper(I) 
salt has to match the conjugate base of the hydrohalic acid otherwise product mixtures are formed; 4) the preparation 
of aryl iodides does not require the use of a copper(I) salts; simply adding potassium iodide brings about the 
substitution accompanied by the loss of dinitrogen; and 5) the substitution pattern on the aromatic amine can be 
widely varied, both electron-donating and electron-withdrawing groups are tolerated. There are other useful 
substitution reactions of aryldiazonium salts, but these are referred to with different names (or with no specific 
name):8 1) when the aryldiazonium halides are treated with hydrogen chloride or hydrogen bromide in the presence 
of copper metal to afford aryl chlorides and bromides, the process is called the Gattermann reaction; 2) the thermal 
decomposition of aryldiazonium tetrafluoroborates to give aryl fluorides is known as the Balz-Schiemann reaction; 3) 
aryldiazonium tetrafluoroborates react with sodium nitrite in the presence of catalytic amounts of copper(I) salt to give 
nitroarenes;20,21 and 4) aryldiazonium salts can also be converted to phenols by heating with trifluoroacetic acid, 
aqueous sulfuric acid, or with aqueous solution of copper salts (occasionally called the Sandmeyer hydroxylation).22-

24 

 
 
 
Mechanism: 25-32,9,33,34,16,35,36,19,24 
 
The mechanism of the Sandmeyer reaction is not completely understood. For a long time it was believed to proceed 
via aryl cations, but later W.A. Waters and then later J.K. Kochi proposed a radical mechanism which was catalytic for 
the copper(I) salt.25,26 In a single electron-transfer event the diazonium halide is reduced to a diazonium radical which 
quickly loses dinitrogen to afford an aryl radical. A final ligand transfer from the copper(II) salt completes the catalytic 
cycle and regenerates the copper(I) species. 
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SANDMEYER REACTION 
 
Synthetic Applications: 
 
In the laboratory of D.A. Evans the total synthesis of the teicoplanin aglycon was accomplished.37 In the endgame of 
the synthetic effort the introduction of the required chloro substituent on ring-2 under mild conditions was necessary. 
The authors chose the Sandmeyer reaction to bring about the desired transformation of the aromatic amine moiety. 
First the substrate was diazotized with t-butyl nitrite and HBF4 in acetonitrile and then in the same pot a mixture of 
copper(I) chloride and copper(II) chloride in large excess was added at low temperature. The desired aryl chloride 
was isolated in moderate yield. To complete the synthesis, the following steps had to be carried out: 1) deprotection 
of the carboxy-terminal N-methylamide with N2O4 followed by a pH neutral hydrolysis; and 2) global demethylation at 
room temperature using AlBr3/EtSH with concomitant N-terminal trifluoroacetamide hydrolysis. 
 

 
The neurotoxic quaterpyridine natural product nemertelline was successfully synthesized by S. Rault et al. using a 
Suzuki cross-coupling as the key step. The boronic acid coupling partner, required for the Suzuki reaction, was 
prepared by first subjecting 3-amino-2-chloropyridine to the conditions of the Sandmeyer reaction followed by a 
lithium-halogen exchange and trapping the lithiopyridine derivative with triisopropylborate. 
 

 
M. Nakata and co-workers completed the concise total synthesis of (±)-A80915G, which belongs to the 
napyradiomycin family of antibiotics.38 There were two key carbon-carbon bond forming reactions in the synthetic 
sequence: a Stille cross-coupling between an aromatic trihalide and geranyl tributyltin and a Diels-Alder cycloaddition 
employing the Danishefsky-Brassard diene. A Sandmeyer reaction was used to introduce the iodine substituent to the 
2-bromo-4-chloro-3,6-dimethoxy-aniline substrate in order to obtain the required trihalogenated 1,4-dimethoxy-
benzene precursor.  
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STORK ENAMINE SYNTHESIS 
(References are on page 689) 

Importance: 
 

 [Seminal Publications1-4; Reviews5-11; Modifications & Improvements12-21; Theoretical Studies22] 
 
In 1936, C. Mannich and H. Davidson reported that in the presence of a dehydrating agent (K2CO3 or CaO), 
secondary amines underwent facile condensation with aldehydes or ketones to afford enamines (non-charged 
enolate equivalents).23 At that time the reaction of enamines with electrophiles was not investigated, but it was 
established that enamines were relatively labile compounds that underwent facile hydrolysis upon exposure to dilute 
aqueous acid. Two decades later, in 1954, G. Stork and co-workers discovered that the reaction enamines with alkyl- 
or acyl halides followed by acidic hydrolysis constituted a novel way for the α-alkylation or α-acylation of carbonyl 
compounds.3,4 The synthesis of α-alkyl- or acyl carbonyl compounds via the alkylation or acylation of the 
corresponding enamines is known as the Stork enamine synthesis. The general features of this method are: 1) the 
enamines are prepared by reacting the aldehyde or ketone with one equivalent of secondary amine (e.g., piperidine, 
morpholine or pyrrolidine) in the presence of a catalyst (or dehydrating agent); 2) with unsymmetrical ketones the 
formation of enamine regioisomers is expected but usually the less substituted regioisomer is favored; 3) the 
preparation of aldehyde enamines is often accompanied by the formation of aminals, which can be converted to the 
desired enamines by destructive distillation;9 4) activated alkyl and acyl halides are the best reaction partners (e.g., 
allyl-, benzyl-, propargylic-, or activated aryl halides); 5) tertiary alkyl halides do not alkylate the enamines but rather 
undergo elimination; 6) other electrophiles such as Michael acceptors and epoxides can also be used; and 7) the 
bulkier the ketone and the amine components, the better the yields of the monolakylated product, but the reaction 
rates tend to drop. Advantages of the Stork enamine synthesis are: 1) the alkylation of the enamine takes place under 
neutral conditions, which is important when the substrate is base or acid sensitive; 2) polyalkylated products are 
seldom observed; 3) the alkylation takes place on the less substituted side of the ketone; and 4) an asymmetric 
version utilizing chiral enamines is also available.  

 
Mechanism: 24,25  
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STORK ENAMINE SYNTHESIS 
 
Synthetic Applications: 
 
The total synthesis of the phenolic sesquiterpene (±)-parviflorine was accomplished by L.A. Maldonado and co-
workers.26 The key step in the synthetic sequence was the reaction of an enamine with acrolein to form a bicyclic 
intermediate, which was subjected to a Grob fragmentation to afford the eight-membered ring of the natural product. 
The bicyclic ketone substrate was refluxed in benzene using a Dean-Stark trap and the resulting enamine was taken 
to the next step as crude material.  

 
The biomimetic synthesis of the structurally novel bisesquiterpenoid (±)-biatractylolide was reported by J.E. Baldwin 
et al.27 The cornerstone of the synthetic strategy was the radical dimerization of two atractylolide units. The 
atractylolide precursor was prepared from a bicyclic ketone using the Stork enamine synthesis. The pyrrolidine 
enamine was generated using large excess of pyrrolidine in refluxing benzene (the excess pyrrolidine was removed 
under reduced pressure). The alkylation of the crude enamine with ethyl α-bromopropionate took place in refluxing 
dioxane and afforded a mixture of ethyl ester diastereomers. 

 
In the laboratory of A.B. Smith, the synthesis of (+)-jatropholone A and B was achieved using a high-pressure Diels-
Alder cycloaddition between a tetrasubstituted furan and a homochiral enone. During the preparation of the furan 
component, the Stork enamine synthesis was used. The α-benzyloxy cyclopentanone was converted to the 
corresponding morpholine enamine in quantitative yield. The enamine was isolated as a single regioisomer. In 
contrast, the corresponding piperidine or pyrrolidine enamines were obtained always as a mixture of regioisomers. 
The acylation of the enamine with O-acetoxyacetyl chloride yielded a 1,3-diketone, which was converted to the 
desired tetrasubstituted furan component. 

 
An intramolecular variant of the Stork enamine synthesis was utilized during the asymmetric total synthesis of (–)-8-
aza-12-oxo-17-desoxoestrone by A.I. Meyers et al.28 
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VILSMEIER-HAACK FORMYLATION 
(References are on page 699) 

Importance: 
 

 [Seminal Publications1,2; Reviews3-16; Modifications & Improvements17-30; Theoretical Studies31-33] 
 
In 1925, A. Vilsmeier and co-workers reported that upon treatment with phosphoryl chloride (POCl3), N-
methylacetanilide gave rise to a mixture of products among which 4-chloro-1,2-dimethylquinolinium chloride was one 
of the major products.1 Further investigation revealed that the reaction between N-methylformanilide and POCl3 gave 
rise to a chloromethyliminium salt (Vilsmeier reagent), which readily reacts with electron-rich aromatic compounds to 
yield substituted benzaldehydes.2 The introduction of a formyl group into electron-rich aromatic compounds using a 
Vilsmeier reagent is known as the Vilsmeier-Haack formylation (Vilsmeier reaction). The general features of this 
transformation are:8,11 1) the Vilsmeier reagent is prepared from any N,N-disubstituted formamide by reacting it with 
an acid chloride (e.g., POCl3, SOCl2, oxalyl chloride); 2) most often the combination of DMF and POCl3 is used and 
the resulting Vilsmeier reagent is usually isolated before use; 3) mostly electron-rich aromatic or heteroaromatic 
compounds8 as well as electron-rich alkenes and 1,3-dienes11 are substrates for the transformation, since the 
Vilsmeier reagent is a weak electrophile; 4) the relative reactivity of five-membered heterocycles is pyrrole > furan > 
thiophene; 5) the solvent is usually a halogenated hydrocarbon, DMF or POCl3 and the nature of the solvent has a 
profound effect on the electrophilicity of the reagent, so it should be carefully chosen; 6) the required reaction 
temperature varies widely depending on the reactivity of the substrate and it ranges from below 0 °C up to 80 °C; 7) 
the initial product is an iminium salt, which can be hydrolyzed with water to the corresponding aldehyde, treated with 
H2S to afford thioaldehydes, reacted with hydroxylamine to afford nitriles, or reduced to give amines; 8) the 
transformation is regioselective favoring the less sterically hindered position (this means the para position on a 
substituted benzene ring); but electronic effects can also influence the product distribution; and 9) vinylogous 
chloromethyliminium salts undergo similar reaction to afford the corresponding α,β-unsaturated carbonyl compounds 
upon hydrolysis. 

 
Mechanism: 34-41,8,42,11 
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VILSMEIER-HAACK FORMYLATION 
Synthetic Applications: 
 
The total synthesis of the calophylium coumarin (–)-calanolide A was accomplished by D.C. Baker and co-workers.43 
This compound attracted considerable attention because it is a potent inhibitor of HIV-1 reverse transcriptase. In 
order to introduce a formyl group at C8, a regioselective Vilsmeier reaction was employed on a coumarin lactone 
substrate.  

 
In the laboratory of F.E. Ziegler, the cyclization of a chiral aziridinyl radical into an indole nucleus was utilized to 
prepare the core nucleus of the potent antitumor agent FR-900482.44 In the early stages of the synthetic effort, the 
Vilsmeier-Haack formylation was chosen to install an aldehyde functionality at the C3 position of a substituted indole 
substrate. The initial iminium salt was hydrolyzed under very mildly basic conditions to minimize the hydrolysis of the 
methyl ester moiety. Eventually the formyl group was removed from the molecule via decarbonylation using 
Wilkinson's catalyst. 

 
Since the Vilsmeier-Haack formylation is feasible on electron-rich alkenes such as enol ethers, it was a method of 
choice to prepare an α,β-unsaturated aldehyde during the total synthesis of (±)-illudin C by R.L. Funk et al.45 The TES 
enol ether was treated with several reagent combinations (e.g., PBr3/DMF/DCM), but unfortunately only regioisomeric 
product mixtures were obtained. However, the use of POBr3/DMF/DCM allowed the clean preparation of the desired 
aldehyde regioisomer in good yield.  

 
The marine sponge pigment homofascaplysin C was synthesized by the research team of G.W. Gribble.46 The natural 
product had a novel 12H-pyrido[1,2-a:3,4-b']diindole ring system and a formyl group at the C13 position. The 
Vilsmeier reaction allowed the introduction of this substituent in excellent yield. 
 

 
The total synthesis of (–)-(R)-MEM-protected arthrographol was accomplished by G.L.D. Krupadanam et al.47 The 
authors used sequential Vilsmeier reaction/Dakin oxidation to prepare a 1,2,4-trihydroxybenzene derivative. 
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WHARTON FRAGMENTATION 
(References are on page 705) 

Importance: 
 

[Seminal Publications1-5; Reviews;6-11 Modifications & Improvements12-17] 
 
In 1961, P.S. Wharton investigated the potassium-tert-butoxide-induced heterolytic fragmentation of a bicyclic 1,3-diol 
monomesylate ester (functionalized decalin system), to form a 10-membered cyclic alkene stereospecifically.2 The 
base-induced stereospecific fragmentation of cyclic 1,3-diol monosulfonate esters (X=OSO2R; Y=OH)  to form 
medium-sized cyclic alkenes is known as the Wharton fragmentation. Wharton and co-workers contributed to this 
area extensively by uncovering the stereoelectronic requirements for the reaction as well as demonstrating its 
synthetic utility. This fragmentation, however, falls into the category of Grob-type fragmentations in which carbon 
chains with a variety of combinations of nucleophilic atoms (heteroatoms) and leaving groups give rise to three 
fragments.18 The general features of the Wharton fragmentation are the following: 1) synthetically, cyclic 1,3-diol 
derivatives are the most useful substrates, since acyclic precursors often give rise to side-products (e.g., oxetanes, 
Y=O) resulting from an intramolecular displacement; 2) cyclic 1,3-hydroxy monotosylates and monomesylates are the 
most widely used substrates, and they are prepared by treating the unsymmetrical 1,3-diol with one equivalent of 
MsCl or TsCl; 3)  the rate of the fragmentation depends on the concentration of the anion derived from the 1,3-diol 
derivative; 3) strong and less nucleophilic bases favor the fragmentation, whereas more nucleophilic bases favor 
intramolecular substitution and elimination of the leaving group; 4) KOt-Bu/t-BuOH and dimsylsodium/DMSO are the 
most often used base/solvent combination; 5) if the substrate has considerable ring strain (e.g., n=1), even weaker 
bases (e.g., NEt3) will initiate successful fragmentation; 6) when the fragmentation product is labile (e.g., aldehyde), 
LiAlH4 can serve as both a basic initiator and a reducing agent, since it instantly traps (reduces) the initial product 
avoiding undesired side reactions (e.g., aldol condensation); 7) alkenes are generated stereospecifically from cyclic 
substrates in high yield; 8) fragmentations leading to ketones occur more readily than those that give aldehydes; 9) 
more highly substituted alkenes are formed faster than less substituted ones; and 10) substrates with more ring strain 
generally fragment faster. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Mechanism:  4,19,10 
 
The Wharton fragmentation is a concerted reaction and the stereoelectronic requirement is that the bonds that are 
undergoing the cleavage must be anti to each other. This requirement is easily met in cyclic systems; however, 
acyclic systems have much larger conformational freedom, so side reactions may arise when the conformation of the 
bonds undergoing cleavage is gauche. In cyclic systems the fragmentation becomes slow and complex product 
mixtures are formed when the conformation of the bonds undergoing cleavage is gauche. 
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WHARTON FRAGMENTATION 
 

Synthetic Applications: 
 
The Wharton fragmentation was used as a key step in an approach toward the total synthesis of xenicanes by H. 
Pfander et al.20  Two optically active substituted trans-cyclononenes were synthesized starting from (-)-Hajos-Parrish 
ketone. First, the bicyclic 1,3-diol was protected regioselectively on the less sterically hindered hydroxyl group with p-
toluenesulfonyl chloride in quantitative yield. Next, the monosulfonate ester was exposed to dimsylsodium in DMSO, 
which is a strong base, to initiate the desired heterolytic fragmentation.   
 
 
 
 
 
 
 
 
 
 
 
 
 
A novel synthetic approach was developed for the norbornane-based carbocyclic core of CP-263,114 in the 
laboratory of J.L. Wood.21 Initial attempts to prepare the core using the oxy-Cope rearrangement failed even under 
forcing conditions, so an alternative approach utilizing the Wharton fragmentation was chosen. The tricyclic 1,3-diol 
substrate was prepared by the SmI2-mediated 5-exo-trig ketyl radical cyclization. The resulting tertiary alcohol was 
mesylated and subjected to methanolysis, which afforded the Wharton fragmentation product in an almost 
quantitative yield. 
 
 
 
 
 
 
 
 
 
Research by S. Arseniyadis and co-workers showed that the aldol-annelation-fragmentation strategy could be used 
for the synthesis of complex structures, which are precursors of a variety of taxoid natural products.22 This strategy 
allows the preparation of the twenty-carbon framework of taxanes from inexpensive and simple starting materials. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The stereocontrolled synthesis of 5β-substituted kainic acids was achieved by A. Rubio et al.23 The C3 and C4 
substituents were introduced by the Wharton fragmentation of a bicyclic monotosylated 1,3-diol. When this secondary 
alcohol was exposed to KOt-Bu, the corresponding fragmentation product was obtained in moderate yield. Jones 
oxidation of the aldehyde to the carboxylic acid followed by hydrolysis of the ester and removal of the Boc group 
resulted in the desired substituted kainic acid. 
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8.1   Brief explanation of the organization of this section 
 

 The primary function of this section is to help advanced undergraduate students and first year graduate 

students in organizing the large amount of information available on various chemical transformations. It is important 

to note that the categorization of named reactions is a subjective one and has been addressed differently in other 

textbooks.  

 The categorization of named reactions is mainly based on the mechanism of the various processes. To 

make studying more friendly, we included a brief description of each named reaction and the page number for that 

particular transformation.  

 Because a large number of functional group transformations are affected by the reactions covered in the 

book, we felt that tables showing the interconversion of functional groups should be included.  

 Various functional groups are listed in alphabetical order in the first column and the functionalities that can 

be created from them are shown in the second column. The names of all reactions that can bring about these 

transformations are listed in the third column. 

 In the second table we listed the target functional groups in alphabetical order in the first column and 

showed the substrate functionalities in the second column. In the third column the names of these transformations 

are listed. 

 A note of caution: none of these tables were created with the intent to be comprehensive, since that would 

be beyond the scope of this book. The reader should always check the details for each reaction to find out the true 

scope and limitations of a given transformation. We welcome any suggestions on how to make this section more 

effective in future editions. 
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8.2   LIST OF NAMED REACTIONS IN CHRONOLOGICAL ORDER OF 
THEIR DISCOVERY 

 
YEAR OF  

DISCOVERY 
NAME OF THE 

 TRANSFORMATION 
PAGE # 

1822 Lieben Haloform Reaction 264 

1838 Benzilic Acid Rearrangement 52 

1839 Aldol Reaction 8 

1844 Dieckmann Condensation 138 

1850 Strecker Reaction 446 

1851 Hofmann Elimination 206 

1852 Williamson Ether Synthesis 484 

1853 Cannizzaro Reaction 74 

1855 Wurtz Coupling 498 

1860 Kolbe-Schmitt Reaction 248 

1860 Pinacol and Semipinacol Rearrangement 350 

1861 Acyloin Condensation 4 

1861 Hunsdiecker Reaction (Borodin Reaction) 218 

1868 Perkin Reaction 338 

1869 Glaser Coupling Reaction 186 

1869 Lossen Rearrangement 266 

1876 Reimer-Tiemann Reaction 378 

1877 Friedel-Crafts Acylation 176 

1877 Friedel-Crafts Alkylation 178 

1877 Malonic Ester Synthesis 272 

1877 Pinner Reaction 352 

1879 Koenigs-Knorr Glycosidation 246 

1880 Skraup and Doebner-Miller Reaction 414 

1881 Ciamician-Dennstedt Rearrangement 84 

1881 Fries-, Photo-Fries and Anionic Ortho-Fries Rearrangement 180 

1881 Hell-Volhard-Zelinsky Reaction 200 

1881 Hofmann Rearrangement 210 

1882 Hantzsch Dihydropyridine Synthesis 194 

1883 Combes Quinoline Synthesis 94 

1883 Fischer Indole Synthesis 172 

1883 Hofmann-Löffler-Freytag Reaction 208 

1883 Michael Addition  286 

1883 von Pechmann Reaction 472 

1884 Paal-Knorr Furan Synthesis 326 

1884 Paal-Knorr Pyrrole Synthesis 328 

1884 Sandmeyer Reaction 394 

1884 Schotten-Baumann Reaction 398 

1885 Buchner Method of Ring Enlargement (Buchner Reaction) 68 

1885 Curtius Rearrangement 116 

1886 Beckman Rearrangement 50 

1886 Knorr Pyrrole Synthesis 244 

1887 Claisen Condensation/(Claisen Reaction) 86 

1887 Gabriel Synthesis 182 

1887 Japp-Klingemann Reaction 224 

1887 Reformatsky Reaction 374 

1887 Tishchenko Reaction 456 

1888 Dimroth Rearrangement 144 

1891 Biginelli Reaction 58 

1892 Darzens Glycidic Ester Condensation 128 

1893 Bischler-Napieralski Isoquinoline Synthesis 62 

1893 Dienone-Phenol Rearrangement 142 
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8.3   REACTION CATEGORIES 
 

REACTION 
CATEGORY 

NAME OF 
REACTIONS 

BRIEF DESCRIPTION OF 
SYNTHETIC USE 

Page# 

CARBOCYCLE 
FORMATION 

 

 Acyloin condensation Formation of cyclic α-hydroxy ketones from diesters. 4 

 Alkene metathesis Formation of cyclic alkenes from dienes. 10 

 Alkyne metathesis Formation of cyclic alkynes from diynes. 12 

 Danheiser cyclopentene annulation Formation of cyclopentenes from enones and allenes. 124 

 Danishefsky's diene cycloaddition Formation of six-membered carbocycles using 1-
methoxy-3-trimethylsilyloxy-1,3-butadiene. 

126 

 Dieckmann condensation Formation of cyclic β-keto esters from diesters. 138 

 Diels-Alder cycloaddition The [4+2] cycloaddition of alkenes and dienes to afford 
substituted cyclohexenes.  

140 

 Hajos-Parrish reaction Enantio-enriched bicyclic enones from 1,5-diketones. 192 

 Nazarov cyclization Cyclopentenones and cyclopentanones from divinyl 
ketones. 

304 

 Pauson-Khand reaction Formation of cyclopentenones from alkenes, alkynes and 
CO. 

334 

 Robinson annulation  Formation of bicyclic enones from 1,5-diketones. 384 
CYCLO-

AROMATIZATION 
 

 Bergman cycloaromatization 
reaction 

Thermal or photochemical cycloaromatization of 
enediynes to form substituted benzene rings. 

56 

 Danheiser benzannulation Reaction of cyclobutenones with alkynes to give highly 
substituted benzene rings. 

122 

 Dötz benzannulation Reaction of Fischer chromium carbenes with alkynes to 
give substituted hydroquinone derivatives. 

148 

DEGRADATION  

 Hofmann rearrangement Conversion of primary carboxamides to one-carbon 
shorter primary amines. 

210 

 Hunsdiecker reaction Conversion of carboxylic acids to one-carbon shorter 
alkyl, alkenyl or aryl halides. 

218 

 Lieben haloform reaction Conversion of methyl ketones to one-carbon shorter 
carboxylic acids. 

262 

ELECTROPHILIC 
ADDITION TO  C-C 
MULTIPLE BONDS 

 

Addition to 
alkenes 

   

cyclopropanation Simmons-Smith cyclopropanation Formation of cyclopropanes from alkenes. 412 
epoxidation Davis' oxaziridine oxidation Formation of epoxides from alkenes using oxaziridines. 130 
epoxidation Jacobsen-Katsuki epoxidation Formation of epoxides from alkenes using metal salen 

complexes. 
222 

epoxidation Prilezhaev reaction Formation of epoxides from alkenes using peracids. 362 
epoxidation Sharpless asymmetric epoxidation Formation of epoxy alcohols from allylic alcohols. 408 
epoxidation Shi asymmetric epoxidation Formation of epoxides from alkenes. 410 
hydrogenation Noyori asymmetric hydrogenation Formation of enantio-enriched carboxylic acids, alcohols 

and amino acids from unsaturated carboxylic acids, allylic 
alcohols and enamides, respectively. 

316 

hydrometalation Brown hydroboration reaction Formation of alkylboranes from alkenes. 66 
hydrometalation Schwartz hydrozirconation  Formation of alkylzirconium compounds from alkenes. 400 

Addition to 
alkynes 

 

hydrometalation Brown hydroboration reaction Formation of alkenylboranes from alkynes. 66 
hydrometalation Schwartz hydrozirconation  Formation of alkenylzirconium compounds from alkynes. 400 
ELECTROPHILIC 

AROMATIC 
SUBSTITUTION 

 

 Bischler-Napieralski isoquinoline 
synthesis 

Preparation of isoquinolines from acylated 
phenylethylamines. 

62 

 Combes Quinoline synthesis Preparation of quinolines from aryl amines and 1,3-
diketones. 

94 

 Friedel-Crafts acylation Synthesis of aromatic ketones using acyl halides or 
anhydrides. 

176 

 Friedel-Crafts alkylation Synthesis of alkylbenzenes using alkyl halides. 178 
 Fries rearrangement  Synthesis of acylated phenols from O-acyl phenols. 

 
180 
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8.4   AFFECTED FUNCTIONAL GROUPS 
 

AFFECTED 
FUNCTIONAL 

GROUP 

NEWLY FORMED  
FUNCTIONAL GROUP 

 

NAME OF  
TRANSFORMATION 

ACETAL  

 γ,δ-unsaturated amide Eschenmoser-Claisen rearrangement 
ALCOHOL  

1° alcohol γ-hydroxy oxime Barton nitrite ester reaction 
1° alcohol aldehyde Corey-Kim oxidation, Dess-Martin oxidation, Ley oxidation, 

Oppenauer oxidation, Pfitzner-Moffatt oxidation, Swern oxidation 
1° alcohol alkane Barton-McCombie radical deoxygenation 
1° alcohol alkene Chugaev elimination 
1° alcohol amine Mitsunobu reaction 
1° alcohol azide Mitsunobu reaction 
1° alcohol carboxylic acid Jones oxidation 
1° alcohol ester  Mitsunobu reaction 
1° alcohol ether Mitsunobu reaction, Williamson ether synthesis 
1° alcohol lactone Corey-Nicolaou macrolactonization, Keck macrolactonization, 

Yamaguchi macrolactonization 
1° alcohol nitrile Mitsunobu reaction 
1° alcohol sulfide Mitsunobu reaction 
2° alcohol γ-hydroxy oxime Barton nitrite ester reaction 
2° alcohol alkane Barton-McCombie radical deoxygenation 
2° alcohol alkene Burgess dehydration, Chugaev elimination 
2° alcohol amine Mitsounobu reaction 
2° alcohol azide Mitsunobu reaction 
2° alcohol ester Mitsunobu reaction, Schotten-Baumann reaction 
2° alcohol ether Mitsunobu reaction, Williamson ether synthesis 
2° alcohol ketone Corey-Kim oxidation, Dess-Martin oxidation, Jones oxidation, Ley 

oxidation, Oppenauer oxidation, Pfitzner-Moffatt oxidation, Swern 
oxidation 

2° alcohol lactone Corey-Nicolaou macrolactonization, Keck macrolactonization, 
Yamaguchi macrolactonization 

2° alcohol nitrile Mitsunobu reaction 
2° alcohol sulfide Mitsunobu reaction 
3° alcohol γ-hydroxy oxime Barton nitrite ester reaction 
3° alcohol alkane Barton-McCombie radical deoxygenation 
3° alcohol alkene Burgess dehydration, Chugaev elimination, Grob fragmentation 
3° alcohol amide Ritter reaction 
3° alcohol ester Schotten-Baumann reaction 
3° alcohol ether Williamson ether synthesis 

3° alcohol lactone Corey-Nicolaou macrolactonization, Keck macrolactonization, 
Yamaguchi macrolactonization 

allylic alcohol γ,δ-unsaturated amide Eschenmoser-Claisen rearrangement 
allylic alcohol γ,δ-unsaturated ester Johnson-Claisen rearrangement 
allylic alcohol allylic amide Overman rearrangement 
allylic alcohol epoxy alcohol Sharpless asymmetric epoxidation 
allylic alcohol saturated enantio-enriched alcohol Noyori asymmetric hydrogenation 
propargylic alcohol α,β-unsaturated ketone Meyer-Schuster and Rupe rearrangement 
propargylic alcohol propargyl-substituted compound Nicholas reaction 

ALDEHYDE  
 α,β-epoxy ester Darzens glycidic ester condensation 
 α,β-unsaturated carboxylic acid Perkin reaction 
 α-amino nitrile  Strecker reaction 
 β-nitro alcohol Henry reaction 
 γ-oxo ester Stetter reaction 
 γ-oxo nitrile Stetter reaction 
 1,3-diol Prins reaction 
 1,4,7-triketone Stetter reaction 
 1,4-diketone Stetter reaction 
 alkane Tsuji-Wilkinson decarbonylation 
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8.5   PREPARATION OF FUNCTIONAL GROUPS 
 

TARGET 
FUNCTIONAL 

GROUP 

SUBSTRATE  
FUNCTIONAL GROUP 

 

NAME OF  
TRANSFORMATION 

ALCOHOL  

 α,β-epoxy alcohol Payne rearrangement 
 aldehyde Grignard reaction, Barbier coupling reaction, Nozaki-Hiyama-Kishi 

reaction, Baylis-Hillman reaction, Cannizzaro reaction, Henry 
reaction, Keck asymmetric allylation, MPV reduction, Prins 
reaction, Roush asymmetric allylation, Sakurai allylation, Kagan-
Molander coupling 

 alkene Sharpless asymmetric aminohydroxylation 
 alkenyl halide or triflate Nozaki-Hiyama-Kishi coupling 
 aryl alkyl ether Wittig-[1,2]-rearrangement 
 enol ether and silyl enol ether Davis' oxaziridine oxidation 
 ketone Grignard reaction, Barbier coupling reaction, Nozaki-Hiyama-Kishi 

reaction, Baylis-Hillman reaction, Henry reaction, Keck asymmetric 
allylation, MPV reduction, Prins reaction, Roush asymmetric 
allylation, Sakurai allylation, CBS reduction, Luche reduction, 
Midland Alpine borane reduction, Molander-Kagan coupling, Noyori 
asymmetric hydrogenation 

 nitroalkane Henry reaction 
 organomagnesium species Grignard reaction 
 2° alcohol Mitsunobu reaction 
 silane Fleming-Tamao oxidation 

allylic alcohol aldehyde Baylis-Hillman reaction, Grignard reaction, Prins reaction, Nozaki-
Hiyama-Kishi coupling 

allylic alcohol alkene Prins reaction, Riley selenium dioxide oxidation 
allylic alcohol allylic sulfoxide Mislow-Evans rearrangement 
allylic alcohol enone Luche reduction, Baylis-Hillmann reaction 
allylic alcohol epoxyhydrazone Wharton olefin synthesis 
allylic alcohol epoxyketone Wharton olefin synthesis 
allylic alcohol ketone Baylis-Hillman reaction, Grignard reaction, Nozaki-Hiyama-Kishi 

coupling, Wharton olefin synthesis 
homoallylic alcohol aldehyde Grignard reaction, Barbier coupling reaction, Keck asymmetric 

allylation, Roush asymmetric allylation, Sakurai allylation 
homoallylic alcohol alkyl allyl ether Wittig-[2,3]-rearrangement 
homoallylic alcohol ketone Grignard reaction, Barbier coupling reaction, Keck asymmetric 

allylation, Roush asymmetric allylation, Sakurai allylation 
propargylic alcohol aldehyde Barbier reaction, Grignard reaction 
propargylic alcohol ketone Barbier reaction, Grignard reaction 

ALDEHYDE  
aliphatic aliphatic nitro compound Nef reaction 
aliphatic cyclic epoxy hydrazone Eschenmoser-Tanabe fragmentation 
aliphatic cyclic epoxy ketone Eschenmoser-Tanabe fragmentation 
aliphatic 3° amine N-oxide Polonovski reaction 
aliphatic/aromatic 1° or 2° alkyl halide Kornblum oxidation 
aliphatic/aromatic 1,2-diol Criegee oxidation 
aliphatic/aromatic nitrile Stephen aldehyde synthesis 
aliphatic/aromatic 1° alcohol Corey-Kim oxidation, Dess-Martin oxidation, Ley oxidation, Swern 

oxidation, Oppenauer oxidation, Pfitzner-Moffatt oxidation 
aromatic activated benzyl halide Kornblum oxidation 
aromatic electron-rich heteroaromatic ring Vilsmeier-Haack formylation 
aromatic electron-rich substituted benzene Vilsmeier-Haack formylation, Reimer-Tiemann reation 
aromatic N,N-disubstituted formamide Vilsmeier-Haack formylation 
aromatic substituted benzene Gatterman formylation and Gatterman-Koch formylation 

ALKENE  
 α-halo sulfone Ramberg-Bäcklund rearrangement 

 1,2-diol Corey-Winter olefination 

 1,3-diol monosulfonate ester Wharton fragmentation, Grob fragmentation 

 1,5-diene Cope rearrangement 

 2° or 3° alcohol Burgess dehydration, Chugaev elimination 
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272, 290, 294, 300, 381, 
382, 422, 498 

alkyl hydroperoxide, 408 
alkyl hydroperoxides, 362 
alkyl iminophosphorane, 24 
alkyl iodide, 82, 198, 233, 

301 
alkyl iodides, 170, 178, 182, 

291, 300, 484 
alkyl isothiocyanates, 24 
alkyl migration, 28, 52, 180, 

184, 428 
alkyl nitrites, 394 
alkyl nitro compound, 171 
alkyl- or acyl halides, 444 
alkyl or aryl sulfoxide, 235 
alkyl or benzyl halides, 498 
alkyl phenylselenide, 241 
alkyl phosphonates, 212 
alkyl radical, 208, 209 
alkyl radicals, 291 
alkyl shift, 174, 370, 490 
alkyl shifts, 142 
alkyl side chain, 443 
alkyl substituents, 152, 486 
alkyl substituted, 178 
alkyl sulfonates, 182 
alkyl tosylate, 171 
alkyl triflates, 148 
alkyl-, alkoxy- and 

halogenated phenols, 
378 

-alkyl, -aryl- or hydride shift, 
476 

alkyl-4-hydroxypiperidine, 
361 

alkylaluminum halides, 178, 
302 

alkylamines, 328 
alkylated aromatic 

compound, 498 

alkylated aromatic 
compounds, 492 

alkylated intermediate, 3 
alkylated ketone, 150 
alkylated phenylglycines, 

339 
alkylated products, 189 
alkylating agent, 300, 493 
alkylating agents, 178 
alkylating reagent, 150 
alkylation, 182 
alkylation of aliphatic 

systems, 178 
alkylation of aromatic 

compounds, 178 
alkylbenzenes, 184, 290 
alkylborane, 449 
alkylcyclopropanols, 256 
alkylcyclopropylamines, 256 
alkylidene, 10, 194, 412 
alkylidene indolinone, 243 
alkylidene succinate, 443 
alkylidene succinic acid 

monoester, 442 
alkylidene succinic acids, 

442 
alkylidene 

triarylphosphorane, 416 
alkylidenefurans, 166 
alkylithiums, 206, 458 
alkyllithium, 36, 188, 402, 

416, 418 
alkyllithium reagents, 300 
alkyllithiums, 37, 146, 270, 

420, 422 
alkylmagnesium halides, 458 
alkylnitrilium salt, 217 
alkylphenols, 378 
alkylpyridines, 120 
alkyl-shift, 134 
alkylsilanes, 344 
alkyl-substituted enol 

lactones, 159 
alkylthiophosphonium salts, 

182 
alkynal, 139, 159 
alkyne, 104, 105, 152, 158, 

190, 247, 402, 424 
alkyne complexes, 314 
alkyne components, 403 
alkyne coupling partner, 260 
alkyne cross metathesis, 12 
alkyne insertion, 148 
alkyne metathesis, 12 
alkyne protecting group, 315 
alkyne substituent, 260, 334 
alkyne substrate, 315 
alkyne-cobalt complexes, 

334 
alkynes, 66, 72, 126, 178, 

218, 278, 296, 320, 362 
alkynoic methyl ketones, 159 
alkynone, 158, 159 
alkynones, 158, 159 
alkynyl carbinols, 228 
alkynyl cyclopropane 

derivative, 425 
alkynyl enone, 401 
alkynyl glycosides, 149 
alkynyl Grignard derivatives, 

186 
alkynyl ketones, 228 
allane, 281 
all-carbon D-A reactions, 

204 
allene, 479 
allene side products, 314 
allene-cyclopropane, 479 
allenes, 124, 140, 146, 424, 

426 
allenic sulfoxides, 292 
allenophile, 124 
allenophiles, 124 
allenyl cation, 284 
allenylboronate, 386 
allenyldisilanes, 125 
allenylsilanes, 124, 125 

allocyathin B3, 263 
allosteric regulator, 431 
alloyohimbane, 63 
allyl, 142 
allyl- and benzylmetals, 498 
allyl anions, 324 
allyl boronate, 387 
allyl bromide, 150 
allyl enol carbonates, 390 
allyl formates, 88 
allyl group, 322, 349 
allyl methyl carbonate, 390 
allyl propynoate, 153 
allyl radicals, 98 
allyl sidechain, 241 
allyl substituents, 174 
allyl terminus, 458 
allyl vinyl ethers, 20, 88 
allyl vinyl ketones, 304 
allylamines, 340 
allylation, 386, 392, 393, 

458, 459 
allylbarium chemistry, 39 
allylboronate, 387 
allylboronates, 386 
allylboronic acid, 386 
allylboronic ester, 386 
allylcyanoacetate, 98 
allyldiisopinocampheylboran

e, 387 
allyldimethylsilyl derivative, 

175 
allylic, 26, 27 
allylic acetals, 366 
allylic alchol, 319 
allylic alcohol, 107, 251, 281, 

305, 333, 364, 381, 413, 
471, 482, 483 

allylic alcohol hydroxyl 
group, 317 

allylic alcohol in moderate 
yield., 207 

allylic alcohol precursor, 39 
allylic alcohol products, 392 
allylic alcohols, 37, 88, 136, 

156, 196, 226, 268, 280, 
292, 322, 336, 350, 380, 
408, 409, 412, 482 

allylic amine, 283, 341, 493 
allylic amines, 322 
allylic and benzylic alcohols, 

276 
allylic and benzylic halides, 

272, 292 
allylic and homoallylic 

alcohol, 320 
allylic and homoallylic 

alcohols, 316 
allylic- and homoallylic 

ethers, 474 
allylic azide, 493 
allylic bromide, 39, 493 
allylic bromination, 492 
allylic carbanion, 39, 292 
allylic carbocation, 124 
allylic carbonate, 459 
allylic carbonates, 458 
allylic chloride, 133, 251, 

273 
allylic compounds, 458 
allylic epoxide, 111 
allylic esters, 90 
allylic ethers, 490 
allylic hydroperoxides, 28 
allylic imidates, 322 
allylic lithiated sulfone, 231 
allylic moiety, 490 
allylic or benzylic position, 

380 
allylic oxidation, 380, 381 
allylic position, 380, 381, 

492, 493 
allylic radical, 492 
allylic rearrangement, 39, 

168, 319, 380 
allylic silane, 173 
allylic stannanes, 236 

allylic substrates, 458 
allylic sulfenates, 292 
allylic sulfides, 6 
allylic sulfoxide intermediate, 

293 
allylic sulfoxides, 292 
allylic trichloroacetimidates, 

322 
allylic trisulfide trigger, 57 
allyloxocarbenium ion, 168 
allylpalladium chloride, 458 
allylpalladium complexes, 

458 
allylsilane, 315, 365, 385 
allylsilane reactant, 392 
allylsilanes, 147, 392 
allylstannanes, 236 
allyltributylstannane, 236 
allyltributyltin, 240, 241 
allyltrichlorosilane, 107 
allyltrimethyltin, 241 
allyltriphenyltin, 349 
ally-phenyl ethers, 88 
allytins, 127 
AlMe3, 170, 454 
Alper, P.B., 423 
Alpine-Borane®, 288, 289 
AlR3, 178 
AlRX2, 178 
altemicidin, 357 
alternative epoxidizing 

agents, 362 
alternative of the W-K 

reduction, 496 
alternative reaction 

pathways, 466 
alumina, 320 
aluminum, 8, 126, 320, 321, 

454 
aluminum alkoxide, 351 
aluminum alkoxides, 280, 

320, 456 
aluminum chloride, 180, 216, 

426 
aluminum ethoxide, 280, 320 
aluminum hydrides, 268 
aluminum isopropoxide, 280, 

281, 320 
aluminum phosphate, 242 
aluminum strips, 178 
aluminum tert-butoxide, 320 
aluminum trialkyls, 178, 302 
aluminum-based Lewis acid, 

342 
AlX3, 176, 184, 302 
Amadori compounds, 14 
Amadori reaction, 14, 15 
amalgam, 92 
amalgamated zinc, 92 
Amarnath, V., 326, 328 
amaryllidacaae alkaloids, 

269 
amaryllidaceae alkaloid, 487 
Amberlyst 15 resin, 373 
ambient temperature, 228, 

343 
ambrosia beetle, 283 
ambruticin, 231, 259, 413 
amiclenomycin, 447 
amide, 18, 52, 267, 352, 464 
amide anions, 52 
amide bond, 399 
amide enolate induced aza-

Claisen rearrangement, 
21 

amide functionality, 322 
amide ion, 80 
amide linkages, 429 
amides, 48, 50, 52, 70, 72, 

128, 152, 164, 234, 256, 
268, 290, 320, 396, 454, 
455, 486, 496 

amidine, 157, 353 
amidine hydrohalide salt, 

352 
amidinium salt, 353 
amidophosphates, 209 
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