Fundamentals of Optical Waveguides

Fundamentals of Optical Waveguides

Second Edition

KATSUNARI OKAMOTO

Okamoto Laboratory Ltd Ibaraki, Japan

AMSTERDAM • BOSTON • HEIDELBERG • LONDON NEW YORK • OXFORD • PARIS • SAN DIEGO SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO

Academic Press is an imprint of Elsevier

Academic Press is an imprint of Elsevier 30 Corporate Drive, Suite 400, Burlington, MA 01803, USA 525 B Street, Suite 1900, San Diego, California 92101-4495, USA 84 Theobald's Road, London WC1X 8RR, UK

This book is printed on acid-free paper. ⊗

Copyright © 2006, Elsevier Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the publisher.

Permissions may be sought directly from Elsevier's Science & Technology Rights Department in Oxford, UK: phone: (+44) 1865 843830, fax: (+44) 1865 853333, E-mail: permissions@elsevier.co.uk. You may also complete your request on-line via the Elsevier homepage (http://elsevier.com), by selecting "Customer Support" and then "Obtaining Permissions."

Library of Congress Cataloging-in-Publication Data

Application Submitted

British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library

ISBN 13: 978-0-12-525096-2 ISBN 10: 0-12-525096-7

For information on all Elsevier Academic Press publications visit our Web site at www.books.elsevier.com

Printed in the United States of America 05 06 07 08 09 10 9 8 7 6 5 4 3 2 1

To Kuniko, Hiroaki and Masaaki

Contents

.

Preface to the First edition Preface to the Second edition			xiii xv
1	Wave Theory of Optical Waveguides		
	1.1	Waveguide Structure	1
	1.2	Formation of Guided Modes	2
	1.3	Maxwell's Equations	7
	1.4	Propagating Power	10
2	Plai	nar Optical Waveguides	13
	2.1	Slab Waveguides	13
		2.1.1 Derivation of Basic Equations	13
		2.1.2 Dispersion Equations for TE and TM Modes	16
		2.1.3 Computation of Propagation Constant	19
		2.1.4 Electric Field Distribution	22
		2.1.5 Dispersion Equation for TM Mode	25
	2.2	Rectangular Waveguides	27
		2.2.1 Basic Equations	27
		2.2.2 Dispersion Equations for E_{pq}^x and E_{pq}^y Modes	29
		2.2.3 Kumar's Method	31
		2.2.4 Effective Index Method	37
	2.3	Radiation Field from Waveguide	41
		2.3.1 Fresnel and Fraunhofer Regions	41
		2.3.2 Radiation Pattern of Gaussian Beam	43
	2.4	Multimode Interference (MMI) Device	46
3	Opt	57	
	3.1	Basic Equations	57
	3.2	Wave Theory of Step-index Fibers	58
		3.2.1 TE Modes	58
		3.2.2 TM Modes	62
		3.2.3 Hybrid Modes	63

Contents

	3.3	Optica	al Power Carried by Each Mode	67
		3.3.1	TE Modes	68
		3.3.2	TM Modes	69
		3.3.3	Hybrid Modes	70
	3.4	Linear	rly Polarized (LP) Modes	71
		3.4.1	Unified Dispersion Equation for LP Modes	71
		3.4.2	Dispersion Characteristics of LP Modes	75
		3.4.3	Propagating Power of LP Modes	78
	3.5	Funda	mental HE ₁₁ Mode	80
	3.6	Disper	rsion Characteristics of Step-index Fibers	83
		3.6.1	Signal Distortion Caused by Group Velocity Dispersion	83
		3.6.2	Mechanisms Causing Dispersion	88
		3.6.3	Derivation of Delay-time Formula	92
		3.6.4	Chromatic Dispersion	96
		3.6.5	Zero-dispersion Wavelength	102
	3.7	Wave	Theory of Graded-index Fibers	103
		3.7.1	Basic Equations and Mode Concepts in	
			Graded-index Fibers	103
		3.7.2	Analysis of Graded-index Fibers by the WKB Method	108
		3.7.3	Dispersion Characteristics of Graded-index Fibers	113
	3.8	Relati	on Between Dispersion and Transmission Capacity	117
		3.8.1	Multimode Fiber	119
		3.8.2	Single-mode Fiber	119
	3.9	Birefr	ingent Optical Fibers	120
		3.9.1	Two Orthogonally-polarized Modes in Nominally	
			Single-mode Fibers	120
		3.9.2	Derivation of Basic Equations	123
		3.9.3	Elliptical-core Fibers	126
		3.9.4	Modal Birefringence	127
		3.9.5	Polarization Mode Dispersion	130
	3.10	Dispe	rsion Control in Single-Mode Optical Fibers	134
		3.10.1	Dispersion Compensating Fibers	134
		3.10.2	Dispersion-shifted Fibers	135
		3.10.3	Dispersion Flattened Fibers	139
		3.10.4	Broadly Dispersion Compensating Fibers	142
	3 1 1	Photo	nic Crystal Fibers	144
	2.11	1 11010		111
4	Cou	pled M	Iode Theory	159
	4.1	Deriva	ation of Coupled Mode Equations Based	

4.1	Derivation of Coupled Mode Equations Based	
	on Perturbation Theory	159
4.2	Codirectional Couplers	166

viii

	4.3	Contradirectional Coupling in Corrugated Waveguides 4.3.1 Transmission and Reflection Characteristics in	169
		Uniform Gratings	169
		4.3.2 Phase-shift Grating	175
	4.4	Derivation of Coupling Coefficients	177
		4.4.1 Coupling Coefficients for Slab Waveguides	177
		4.4.2 Coupling Coefficients for Rectangular Waveguides	178
		4.4.3 Derivation of Coupling Coefficients Based on Mode	
		Interference	180
		4.4.4 Coupling Coefficients for Optical Fibers	183
		4.4.5 Coupling Coefficients for Corrugated Waveguides	187
	4.5	Optical Waveguide Devices using Directional Couplers	195
		4.5.1 Mach–Zehnder Interferometers	195
		4.5.2 Ring Resonators	197
		4.5.3 Bistable Devices	200
	4.6	Fiber Bragg Gratings	203
5	Nonl	inear Optical Effects in Optical Fibers	209
	5.1	Figure of Merit for Nonlinear Effects	209
	5.2	Optical Kerr Effect	211
		5.2.1 Self-phase Modulation	211
		5.2.2 Nonlinear Schrödinger Equation	213
	5.3	Optical Solitons	217
		5.3.1 Fundamental and Higher-Order Solitons	217
		5.3.2 Fiber Loss Compensation by Optical Amplification	223
		5.3.3 Modulational Instability	225
		5.3.4 Dark Solitons	229
	5.4	Optical Pulse Compression	230
	5.5	Light Scattering in Isotropic Media	233
		5.5.1 Vibration of One-Dimensional Lattice	233
		5.5.2 Selection Rules for Light Scattering by Phonons	236
	5.6	Stimulated Raman Scattering	240
	5.7	Stimulated Brillouin Scattering	243
	5.8	Second-Harmonic Generation	246
	5.9	Erbium-doped Fiber Amplifier	250
	5.10	Four-wave Mixing in Optical Fiber	252
6	Finit	e Element Method	261
	6.1	Introduction	261
	6.2	Finite Element Method Analysis of Slab Waveguides	262
		6.2.1 Variational Formulation	262
		6.2.2 Discretization of the Functional	264

ix

Contents

		6.2.3	Dispersion Equation Based on the Stationary Condition	266
		0.2.4	Slab Wayequides	260
	63	Finito	Flament Method Analysis of Optical Fibers	209
	0.5	631	Variational Formulation	273
		632	Discretization of the Functional	275
		633	Dispersion Equation Based on the Stationary Condition	275
		634	Single-mode Conditions of Graded-index Fibers	273
		635	Variational Expression for the Delay Time	279
	6.4	Finite	Element Method Analysis of Rectangular Waveguides	284
	0	6.4.1	Vector and Scalar Analyses	284
		6.4.2	Variational Formulation and Discretization into Finite	-0.
			Number of Elements	284
		6.4.3	Dispersion Equation Based on the Stationary Condition	289
	6.5	Stress	Analysis of Optical Waveguides	298
		6.5.1	Energy Principle	298
		6.5.2	Plane Strain and Plane Stress	301
		6.5.3	Basic Equations for Displacement,	
			Strain and Stress	301
		6.5.4	Formulation of the Total Potential Energy	303
		6.5.5	Solution of the Problem by the Stationary Condition	308
		6.5.6	Combination of Finite-Element Waveguide and	
			Stress Analysis	309
	6.6	Semi-	Vector FEM Analysis of High-Index Contrast	
		Wave	guides	315
		6.6.1	E-field Formulation	316
		6.6.2	H-field Formulation	317
		6.6.3	Steady State Mode Analysis	318
7	Bea	m Proj	pagation Method	329
	7.1	Basic	Equations for Beam Propagation Method Based on the FFT	329
		7.1.1	Wave Propagation in Optical Waveguides	329
		7.1.2	Pulse Propagation in Optical Fibers	331
	7.2	FFTB	PM Analysis of Optical Wave Propagation	332
		7.2.1	Formal Solution Using Operators	332
		7.2.2	Concrete Numerical Procedures Using Split-step	
			Fourier Algorithm	334
	7.3	FFTB	PM Analysis of Optical Pulse Propagation	336
	7.4	Discre	ete Fourier Transform	339
	7.5	Fast F	ourier Transform	346
	7.6	6 Formulation of Numerical Procedures Using Discrete		
		Fourie	er Transform	348

х

.

	7.7	Applic	ations of FFTBPM	350
	7.8	Finite	Difference Method Analysis of Planar Optical	
		Waveg	uides	364
		7.8.1	Derivation of Basic Equations	364
		7.8.2	Transparent Boundary Conditions	366
		7.8.3	Solution of Tri-diagonal Equations	368
	7.9	FDMB	PM Analysis of Rectangular Waveguides	370
	7.10	FDMB	PM Analysis of Optical Pulse Propagation	373
	7.11	Semi-V	ector FDMBPM Analysis of High-Index	
		Contra	st Waveguides	377
		7.11.1	Quasi-TE Modes	378
		7.11.2	Quasi-TM Modes	380
		7.11.3	Polarization Splitter Using Silicon-on-Insulator	
			(SOI) Waveguide	382
	7.12	Finite 1	Difference Time Domain (FDTD) Method	383
8	Stair	rase Co	nestenation Method	300
0	8 1	Stairca	se Approximation of Wayequide Boundary	300
	87	Amplit	udes and Phases Between the Connecting Interfaces	403
	0.2 8 3	Wayak	and bivision Multiplexing Couplers	405
	0.J 0 1	Wavel	angth flattened Couplers	408
	0.4	wavele	engui-nationed Couplers	408
9	Plan	ar Light	twave Circuits	417
	9.1	Waveg	uide Fabrication	418
	9.2	$N \times N$	Star Coupler	419
	9.3	Arraye	d-waveguide Grating	423
		9.3.1	Principle of Operation and Fundamental	
			Characteristics	423
		9.3.2	Analytical Treatment of AWG Demultiplexing	
			Properties	428
		9.3.3	Waveguide Layout of AWG	434
		9.3.4	Gaussian Spectral Response AWG	436
		9.3.5	Polarization Dependence of Pass Wavelength	439
		9.3.6	Vernier Technique for the Center Wavelength	
			Adjustment	442
	9.4	Crossta	alk and Dispersion Characteristics of AWGs	443
		9.4.1	Crosstalk of AWGs	443
		9.4.2	Dispersion Characteristics of AWGs	448
	9.5	Functio	onal AWGs	458
		9.5.1	Flat Spectral Response AWG	458
		9.5.2	Loss Reduction in AWG	473
		9.5.3	Unequal Channel Spacing AWG	476

xi

	9.5.4 Variable Bandwidth AWG	478
	9.5.5 Uniform-loss and Cyclic-frequency (ULCF) AWG	479
	9.5.6 Athermal (Temperature Insensitive) AWG	484
	9.5.7 Multiwavelength Simultaneous Monitoring Device	
	Using AWG	490
	9.5.8 Phase Error Compensation of AWG	495
	9.5.9 Tandem AWG Configuration	499
9.6	Reconfigurable Optical Add/Drop Multiplexer (ROADM)	500
9.7	$N \times N$ Matrix Switches	505
9.8	Lattice-form Programmable Dispersion Equalizers	508
9.9	Temporal Pulse Waveform Shapers	511
9.10	Coherent Optical Transversal Filters	515
9.11 Optical Label Recognition Circuit for Photonic Label		
Switch Router		
9.12	Polarization Mode Dispersion Compensator	522
9.13	Hybrid Integration Technology Using PLC Platforms	524
Sever	al Important Theorems and Formulas	535
10.1	Gauss's Theorem	535
10.2	Green's Theorem	539
10.3	Stokes' Theorem	540
10.4	Integral Theorem of Helmholtz and Kirchhoff	545
10.5	Fresnel-Kirchhoff Diffraction Formula	547
10.6	Formulas for Vector Analysis	551
10.7	Formulas in Cylindrical and Spherical Coordinates	553
	10.7.1 Cylindrical Coordinates	553
	10.7.2 Spherical Coordinates	554
	9.6 9.7 9.8 9.9 9.10 9.11 9.12 9.13 Sever 10.1 10.2 10.3 10.4 10.5 10.6 10.7	 9.5.4 Variable Bandwidth AWG 9.5.5 Uniform-loss and Cyclic-frequency (ULCF) AWG 9.5.6 Athermal (Temperature Insensitive) AWG 9.5.7 Multiwavelength Simultaneous Monitoring Device Using AWG 9.5.8 Phase Error Compensation of AWG 9.5.9 Tandem AWG Configuration 9.6 Reconfigurable Optical Add/Drop Multiplexer (ROADM) 9.7 N × N Matrix Switches 9.8 Lattice-form Programmable Dispersion Equalizers 9.9 Temporal Pulse Waveform Shapers 9.10 Coherent Optical Transversal Filters 9.11 Optical Label Recognition Circuit for Photonic Label Switch Router 9.12 Polarization Mode Dispersion Compensator 9.13 Hybrid Integration Technology Using PLC Platforms Several Important Theorems and Formulas 10.1 Gauss's Theorem 10.2 Green's Theorem 10.3 Stokes' Theorem 10.4 Integral Theorem of Helmholtz and Kirchhoff 10.5 Fresnel–Kirchhoff Diffraction Formula 10.6 Formulas for Vector Analysis 10.7 Formulas in Cylindrical and Spherical Coordinates 10.7.1 Cylindrical Coordinates 10.7.2 Spherical Coordinates 10.7.2 Spherical Coordinates

Index

555

xii

Preface to the First Edition

This book is intended to describe the theoretical basis of optical waveguides with particular emphasis on the transmission theory. In order to investigate and develop optical fiber communication systems and planar lightwave circuits thorough understanding of the principle of lightwave propagation and its application to the design of practical optical devices are required. To answer these purposes, the book explains important knowledge and analysis methods in detail.

The book consists of ten chapters. In Chapter 1 fundamental wave theories of optical waveguides, which are necessary to understand the lightwave propagation phenomena in the waveguides, are described. Chapters 2 and 3 deal with the transmission characteristics in planar optical waveguides and optical fibers, respectively. The analytical treatments in Chapters 2 and 3 are quite important to understand the basic subjects of waveguides such as (1) mode concepts and electromagnetic field distributions, (2) dispersion equation and propagation constants, and (3) chromatic dispersion and transmission bandwidths. Directional couplers and Bragg gratings are indispensable to construct practical lightwave circuits. In Chapter 4 coupled mode theory to deal with these devices is explained in detail and concrete derivation techniques of the coupling coefficients for several practical devices are presented. Chapter 5 treats nonlinear optical effects in optical fibers such as optical solitons, stimulated Raman scattering, stimulated Brillouin scattering and second-harmonic generation. Though the nonlinearity of silica-based fiber is quite small, several nonlinear optical effects manifest themselves conspicuously owing to the high power density and long interaction length in fibers. Generally nonlinear optical effects are thought to be harmful to communication systems. But, if we fully understand nonlinear optical effects and make good use of them we can construct much more versatile communication systems and information processing devices. From Chapter 6 to 8 various numerical analysis methods are presented; they are, the finite element method (FEM) waveguide and stress analyses, beam propagation methods (BPM) based on the fast Fourier transform (FFT) and finite difference methods (FDM), and the staircase concatenation method. In the analysis and design of practical lightwave circuits, we often encounter problems to which analytical methods cannot be applied due to the complex waveguide structure and insufficient accuracy in the results. We should rely on numerical techniques in such cases. The finite element method is suitable for the mode analysis and stress analysis of optical waveguides having arbitrary and complicated cross-sectional geometries. The beam propagation method is the most powerful technique for investigating linear and nonlinear lightwave propagation phenomena in axially varying waveguides such as curvilinear directional couplers, branching and combining waveguides and tapered waveguides. BPM is also quite important for the analysis of ultrashort light pulse propagation in optical fibers. Since FEM and BPM are general-purpose numerical methods they will become indispensable tools for the research and development of optical fiber communication systems and planar lightwave circuits. In Chapters 6 to 8, many examples of numerical analyses are presented for practically important waveguide devices. The staircase concatenation method is a classical technique for the analysis of axially varying waveguides. Although FEM and BPM are suitable for the majority of cases and the staircase concatenation method is not widely used in lightwave problems, the author believes it is important to understand the basic concepts of these numerical methods. In Chapter 9, various important planar lightwave circuit (PLC) devices are described in detail. Arrayed-waveguide grating multiplexers (AWGs) are quite important wavelength filters for wavelength division multiplexing (WDM) systems. Therefore the basic operational principles, design procedures of AWGs, as well as their performances and applications, are extensively explained. Finally Chapter 10 serves to describe several important theorems and formulas which are the bases for the derivation of various equations throughout the book.

A large number of individuals have contributed, either directly or indirectly, to the completion of this book. Thanks are expressed particularly to the late Professor Takanori Okoshi of the University of Tokyo for his continuous encouragement and support. I also owe a great deal of technical support to my colleagues in NTT Photonics Laboratories. I am thankful to Professor Un-Chul Paek of Kwangju Institute of Science & Technology, Korea, and Dr. Ivan P. Kaminow of Bell Labs, Lucent Technologies, who gave me the opportunity to publish this book. I would like to express my gratitude to Prof. Gambling of City University of Hong Kong who reviewed most of the theoretical sections and made extensive suggestions. I am also thankful to Professor Ryouichi Itoh of the University of Tokyo, who suggested writing the original Japanese edition of this book.

May 1999 Katsunari Okamoto

Preface to the Second Edition

Since the publication of the first edition of this book in 1999, dramatic advancement has occurred in the field of optical fibers and planar lightwave circuits (PLCs). Photonic crystal fibers (PCFs) or holey fibers (HFs) are a completely new class of fibers. Light confinement to the core is achieved by the Bragg reflection in a hollow-core PCF. To the contrary, light is confined to the core by the effective refractive-index difference between the solid core and holey cladding in the solid-core HF. One of the most striking features of PCFs is that zero-dispersion wavelength can be shifted down to visible wavelength region. This makes it possible to generate coherent and broadband supercontinuum light from visible wavelength to near infrared wavelength region. Coherent and ultra broadband light is very important not only to telecommunications but also to applications such as optical coherence tomography and frequency metrology.

The research on PLCs has been done for more than 30 years. However, PLC and arrayed-waveguide grating (AWG) began to be practically used in optical fiber systems from the middle of 1990s. Therefore, PLCs and AWGs were in their progress when the first edition of this book was published. Performances and functionalities of AWGs have advanced dramatically after the first edition. As an example, 4200-ch AWG with 5-GHz channel spacing has been fabricated in the laboratory. Narrow-channel and large channel-count AWGs will be important not only in telecommunications but also in spectroscopy.

Based on these rapid advances in optical waveguide devices over the last six years, the publisher and I deemed it necessary to bring out this second edition in order to continue to provide a comprehensive knowledge to the readers.

New subjects have been brought into Chapters 2, 3, 5, 6, 7 and 9. Multimode interference (MMI) devices, which have been added to Chapter 2, are very important integrated optical components which can perform unique splitting and combining functions. In Chapter 3, detailed discussion of the polarization mode dispersion (PMD) and dispersion control in single-mode fibers are added together with the comprehensive treatment of the PCFs. Four-wave mixing (FWM) that has been added to Chapter 5 is an important nonlinear effect especially in wavelength division multiplexing (WDM) systems.

High-index contrast PLCs such as Silicon-on-Insulator (SOI) waveguides are becoming increasingly important to construct optoelectronics integrated circuits. In order to deal with high-index contrast waveguides, semi-vector analysis becomes prerequisite. In Chapters 6 and 7, semi-vector finite element method (FEM) analysis and beam propagation method (BPM) analysis have been newly added. Moreover, comprehensive treatment of the finite difference time domain (FDTD) method is introduced in Chapter 7.

Almost all of the material in Chapter 9 is new because of recent advances in PLCs and AWGs. Readers will acquire comprehensive understanding of the operational principles in various kinds of flat spectral-response AWGs. Origin of crosstalk and dispersion in AWGs are described thoroughly. Various kinds of optical-layer signal processing devices, such as reconfigurable optical add/drop multiplexers (ROADM), dispersion slope equalizers, PMD equalizers, etc., have been described.

I am indebted to a large number of people for the work on which this second edition of the book is based. First, I should like to thank the late Professor Takanori Okoshi of the University of Tokyo for his continuous encouragement and support. I owe a great deal of technical support to my colleagues in NTT Photonics Laboratories. I am thankful to Professor Un-Chul Paek of Gwangju Institute of Science and Technology, Korea, and Dr Ivan P. Kaminow of Kaminow Lightwave Technology, USA, who gave me the opportunity to publish the book. I am also grateful to Prof. Gambling of LTK Industries Ltd, Hong Kong, who made extensive suggestions to the first edition of the book.

Finally, I wish to express my hearty thanks to my wife, Kuniko, and my sons, Hiroaki and Masaaki, for their warm support in completing the book.

June 2005 Katsunari Okamoto