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Introduction to Survey Sampling

Ken Brewer and Timothy G. Gregoire

1. Two alternative approaches to survey sampling inference

1.1. Laplace and his ratio estimator

At some time in the mid-1780s (the exact date is difficult to establish), the eminent
mathematician Pierre Laplace started to press the ailing French government to conduct
an enumeration of the population in about 700 communes scattered over the Kingdom
(Bru, 1988), with a view to estimating the total population of France. He intended to
use for this purpose the fact that there was already a substantially complete registration
of births in all communes, of which there would then have been of the order of 10,000.
He reasoned that if he also knew the populations of those sample communes, he could
estimate the ratio of population to annual births, and apply that ratio to the known
number of births in a given year, to arrive at what we would now describe as a ratio
estimate of the total French population (Laplace, 17831, 1786). For various reasons, AQ1
however, notably the ever-expanding borders of the French empire during Napoleon’s
early years, events militated against him obtaining a suitable total of births for the entire
French population, so his estimated ratio was never used for its original purpose (Bru,
1988; Cochran, 1978; Hald, 1998; Laplace, 1814a and 1814b, p. 762). He did, however,
devise an ingenious way for estimating the precision with which that ratio was measured.
This was less straightforward than the manner in which it would be estimated today, but
at the time, it was a very considerable contribution to the theory of survey sampling.

1.2. A prediction model frequently used in survey sampling

The method used by Laplace to estimate the precision of his estimated ratio was not
dependent on the knowledge of results for the individual sample communes, which

1 This paper is the text of an address given to the Academy on 30 October 1785, but appears to have been
incorrectly dated back to 1783 while the Memoirs were being compiled. A virtually identical version of this
address also appears in Laplace’s Oeuvres Complètes bf 11 pp. 35–46. This version also contains three tables
of vital statistics not provided in the Memoirs’ version. They should, however, be treated with caution, as they
contain several arithmetical inconsistencies.
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would normally be required these days for survey sampling inference. The reason why
it was not required there is chiefly that a particular model was invoked, namely one
of drawing balls from an urn, each black ball representing a French citizen counted in
Laplace’s sample, and each white ball representing a birth within those sample com-
munes in the average of the three preceding years. As it happens, there is another model
frequently used in survey sampling these days, which leads to the same ratio estimator.
That model is

Yi = βXi + Ui, (1a)

which together with

E {Ui} = 0, (1b)

E
{
U2

i

} = σ2Xi (1c)

and

E(UiUj) = 0 (1d)

for all j �= i can also be used for the same purpose.
Equation (1a) describes a survey variable value Yi (for instance the population of

commune i) as generated by a survey parameter, β, times an auxiliary value, Xi, (that
commune’s average annual births) plus a random variable, Ui. Equation (1b) stipulates
that this random variable has zero mean, Eq. (1c) that its variance is proportional to the
auxiliary variable (in this case, annual births), and Eq. (1d) that there is no correlation
between any pair of those random variables.

Given this model, the minimum variance unbiased estimator of β is given by

β̂ =

n∑

i=1
Yi

n∑

i=1
Xi

, (2)

which in this instance is simply the ratio of black to white balls in Laplace’s urn.

1.3. The prediction model approach to survey sampling inference

While, given the model of Eqns. (1), the logic behind the ratio estimator might appear to
be straightforward, there are in fact two very different ways of arriving at it, one obvious
and one somewhat less obvious but no less important. We will examine the obvious one
first.

It is indeed obvious that there is a close relationship between births and population.
To begin with, most of the small geographical areas (there are a few exceptions such as
military barracks and boarding schools) have approximately equal numbers of males and
females. The age distribution is not quite so stable, but with a high probability different
areas within the same country are likely to have more or less the same age distribution,
so the proportion of females of child-bearing age to total population is also more or less
constant. So, also with a reasonable measure of assurance, one might expect the ratio of
births in a given year to total population to be more or less constant, which makes the
ratio estimator an attractive choice.
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We may have, therefore, a notion in our minds that the number in the population in
the ith commune, Yi, is proportional to the number of births there in an average year,
Xi, plus a random error, Ui. If we write that idea down in mathematical form, we arrive
at a set of equations similar to (1) above (though possibly with a more general variance
structure than that implied by Eq. (1b), and that set would enable us to predict the value
of Yi given only the value of Xi together with an estimate of the ratio β. Laplace’s
estimate of β was a little over 28.35.

The kind of inference that we have just used is often described as “model-based,”
but because it is a prediction model and because we shall meet another kind of model
very shortly, it is preferable to describe it as “prediction-based,” and this is the term that
will be used here.

1.4. The randomization approach to survey sampling inference

As already indicated, the other modern approach to survey sampling inference is more
subtle, so it will take a little longer to describe. It is convenient to use a reasonably
realistic scenario to do so.

The hypothetical country of Oz (which has a great deal more in common with
Australia than with Frank L. Baum’s mythical Land of Oz) has a population of 20 million
people geographically distributed over 10,000 postcodes. These postcodes vary greatly
among themselves in population, with much larger numbers of people in a typical urban
than in a typical rural postcode.

Oz has a government agency named Centrifuge, which disburses welfare payments
widely over the entire country. Its beneficiaries are in various categories such as Age
Pensioners, Invalid Pensioners, and University Students. One group of its beneficiaries
receives what are called Discretionary Benefits. These are paid to people who do not
fall into any of the regular categories but are nevertheless judged to be in need of and/or
deserving of financial support.

Centrifuge staff, being human, sometimes mistakenly make payments over and above
what their beneficiaries are entitled to. In the Discretionary Benefits category, it is more
difficult than usual to determine when such errors (known as overpayments) have been
made, so when Centrifuge wanted to arrive at a figure for the amounts of Overpayments
to Discretionary Beneficiaries, it decided to do so on a sample basis. Further, since it
keeps its records in postcode order, it chose to select 1000 of these at random (one tenth
of the total) and to spend considerable time and effort in ensuring that the Overpayments
in these sample postcodes were accurately determined. (In what follows, the number of
sample postcodes, in this case 1000, will be denoted by n and the number of postcodes
in total, in this case 10,000, denoted by N.)

The original intention of the Centrifuge sample designers had been to use the same
kind of ratio estimator as Laplace had used in 1802, namely

Ŷ =

N∑

i=1
δiYi

N∑

i=1
δiXi

N∑

i=1

Xi, (3)

with Yi being the amount of overpayments in the ith postcode and Xi the corresponding
postcode population. In (6), δi is a binary (1/0) indicator of inclusion into the sample
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of size n: for any particular sample, all but n of the N elements of the population will
have a value of δ = 0 so that the sum of δiYi over i = 1 . . . N yields the sum of just the
n values of Y on those elements selected into the sample.

However, when this proposal came to the attention of a certain senior Centrifuge
officer who had a good mathematical education, he queried the use of this ratio estimator
on the grounds that the relationship between Overpayments (in this particular category)
and Population in individual postcodes was so weak that the use of the model (1) to
justify it was extremely precarious. He suggested that the population figures for the
selected postcodes should be ignored and that the ratio estimator should be replaced by
the simpler expansion estimator, which was

Ŷ = (N/n)

N∑

i=1

δiYi. (4)

When this suggestion was passed on to the survey designers, they saw that it was
needed to be treated seriously, but they were still convinced that there was a sufficiently
strong relationship between Overpayments and Population for the ratio estimator also
to be a serious contender. Before long, one of them found a proof, given in several
standard sampling textbooks, that without reliance on any prediction model such as
Eqns. (1), the ratio estimator was more efficient than the expansion estimator provided
(a) that the sample had been selected randomly from the parent population and (b) that
the correlation between the Yi and the Xi exceeded a certain value (the exact nature
of which is irrelevant for the time being). The upshot was that when the sample data
became available, that requirement was calculated to be met quite comfortably, and in
consequence the ratio estimator was used after all.

1.5. A comparison of these two approaches

The basic lesson to be drawn from the above scenario is that there are two radically
different sources of survey sampling inference. The first is prediction on the basis of a
mathematical model, of which (1), or something similar to it, is the one most commonly
postulated. The other is randomized sampling, which can provide a valid inference
regardless of whether the prediction model is a useful one or not. Note that a model can
be useful even when it is imperfect. The famous aphorism of G.E.P. Box, “All models
are wrong, but some are useful.” (Box, 1979), is particularly relevant here.

There are also several other lessons that can be drawn. To begin with, models such
as that of Eqns. (1) have parameters. Equation (1a) has the parameter β, and Eq. (1c)
has the parameter σ2 that describes the extent of variability in the Yi. By contrast, the
randomization-based estimator (4) involves no estimation of any parameter. All the
quantities on the right hand side of (4), namely N, n, and the sample Yi, are known, if
not without error, at least without the need for any separate estimation or inference.

In consequence, we may say that estimators based on prediction inference are para-
metric, whereas those based on randomization inference are nonparametric. Parametric
estimators tend to be more accurate than nonparametric estimators when the model on
which they are based is sufficiently close to the truth as to be useful, but they are also
sensitive to the possibility of model breakdown. By contrast, nonparametric estimators
tend to be less efficient than parametric ones, but (since there is no model to break
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down) they are essentially robust. If an estimator is supported by both parametric and
nonparametric inference, it is likely to be both efficient and robust. When the correla-
tion between the sample Yi and the sample Xi is sufficiently large to meet the relevant
condition, mentioned but not defined above in the Oz scenario, it is also likely to be
both efficient and robust, but when the correlation fails to meet that condition, another
estimator has a better randomization-based support, so the ratio estimator is no longer
robust, and the indications are that the expansion estimator, which does not rely upon
the usefulness of the prediction model (1), would be preferable.

It could be argued, however, that the expansion estimator itself could be considered
as based on the simpler prediction model

Yi = α + Ui, (5)

where the random terms Ui have zero means and zero correlations as before. In this
case, the parameter to be estimated is α, and it is optimally estimated by the mean
of the sample observations Yi. However, the parametrization used here is so simple
that the parametric estimator based upon it coincides with the nonparametric estimator
provided by randomization inference. This coincidence appears to have occasioned
some considerable confusion, especially, but not exclusively in the early days of survey
sampling.

Moreover, it is also possible to regard the randomization approach as implying its
own quite different model. Suppose we had a sample in which some of the units had
been selected with one chance in ten, others with one chance in two, and the remainder
with certainty. (Units selected with certainty are often described as “completely
enumerated.”) We could then make a model of the population from which such a sample
had been selected by including in it (a) the units that had been selected with one chance
in ten, together with nine exact copies of each such unit, (b) the units that had been
selected with one chance in two, together with a single exact copy of each such unit,
and (c) the units that had been included with certainty, but in this instance without any
copies. Such a model would be a “randomization model.” Further, since it would be a
nonparametric model, it would be intrinsically robust, even if better models could be
built that did use parameters.

In summary, the distinction between parametric prediction inference and nonpara-
metric randomization inference is quite a vital one, and it is important to bear it in
mind as we consider below some of the remarkable vicissitudes that have beset the
history of survey sampling from its earliest times and have still by no means come to a
definitive end.

2. Historical approaches to survey sampling inference

2.1. The development of randomization-based inference

Although, as mentioned above, Laplace had made plans to use the ratio estimator as early
as the mid-1780s, modern survey sampling is more usually reckoned as dating from the
work of Anders Nicolai Kiaer, the first Director of the Norwegian Central Bureau of
Statistics. By 1895, Kiaer, having already conducted sample surveys successfully in his
own country for fifteen years or more, had found to his own satisfaction that it was
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not always necessary to enumerate an entire population to obtain useful information
about it. He decided that it was time to convince his peers of this fact and attempted
to do so first at the session of the International Statistical Institute (ISI) that was held
in Berne that year. He argued there that what he called a “partial investigation,” based
on a subset of the population units, could indeed provide such information, provided
only that the subset had been carefully chosen to reflect the whole of that population in
miniature. He described this process as his “representative method,” and he was able to
gain some initial support for it, notably from his Scandinavian colleagues. Unfortunately,
however, his idea of representation was too subjective and lacking in probabilistic rigor to
make headway against the then universally held belief that only complete enumerations,
“censuses,” could provide any useful information (Lie, 2002; Wright, 2001).

It was nevertheless Kiaer’s determined effort to overthrow that universally held belief
that emboldened Lucien March, at the ISI’s Berlin meeting in 1903, to suggest that
randomization might provide an objective basis for such a partial investigation (Wright,
2001). This idea was further developed byArthur Lyon Bowley, first in a theoretical paper
(Bowley, 1906) and later by a practical demonstration of its feasibility in a pioneering
survey conducted in Reading, England (Bowley, 1912).

By 1925, the ISI at its Rome meeting was sufficiently convinced (largely by the
report of a study that it had itself commissioned) to adopt a resolution giving accep-
tance to the idea of sampling. However, it was left to the discretion of the investigators
whether they should use randomized or purposive sampling for that purpose. With the
advantage of hindsight, we may conjecture that, however vague their awareness of the
fact, they were intuiting that purposive sampling was under some circumstances capable
of delivering accurate estimates, but that under other circumstances, the underpinning
of randomization inference would be required.

In the following year, Bowley published a substantial monograph in which he pre-
sented what was then known concerning the purposive and randomizing approaches to
sample selection and also made suggestions for further developments in both of them
(Bowley, 1926). These included the notion of collecting similar units into groups called
“strata,” including the same proportion of units from each stratum in the sample, and
an attempt to make purposive sampling more rigorous by taking into account the cor-
relations between, on the one hand, the variables of interest for the survey and, on the
other, any auxiliary variables that could be helpful in the estimation process.

2.2. Neyman’s establishment of a randomization orthodoxy

A few years later, Corrado Gini and Luigi Galvani selected a purposive sample of 29 out
of 214 districts (circondari) in the 1921 Italian Population Census (Gini and Galvani,
1929). Their sample was chosen in such a way as to reflect almost exactly the whole-of-
Italy average values for seven variables chosen for their importance, but it was shown
by Jerzy Neyman (1934) that it exhibited substantial differences from those averages
for other important variables.

Neyman went on to attack this study with a three pronged argument. His criticisms
may be summarized as follows:

(1) Because randomization had not been used, the investigators had not been able to
invoke the Central Limit Theorem. Consequently, they had been unable to use
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the normality of the estimates to construct the confidence intervals that Neyman
himself had recently invented and which appeared in English for the first time
in his 1934 paper.

(2) On the investigators’own admission, the difficulty of achieving their “purposive”
requirement (that the sample match the population closely on seven variables)
had caused them to limit their attention to the 214 districts rather than to the
8354 communes into which Italy had also been divided. In consequence, their
15% sample consisted of only 29 districts (instead of perhaps 1200 or 1300
communes). Neyman further showed that a considerably more accurate set of
estimates could have been expected had the sample consisted of this larger num-
ber of smaller units. Regardless of whether the decision to use districts had
required the use of purposive sampling, or whether the causation was the other
way round, it was evident that purposive sampling and samples consisting of far
too few units went hand in hand.

(3) The population model used by the investigators was demonstrably unrealistic and
inappropriate. Models by their very nature were always liable to represent the
actual situation inadequately. Randomization obviated the need for population
modeling.2 With randomization-based inference, the statistical properties of an
estimator are reckoned with respect to the distribution of its estimates from all
samples that might possibly be drawn using the design under consideration.
The same estimator under different designs will admit to differing statistical
properties. For example, an estimator that is unbiased under an equal probability
design (see Section 3 of this chapter for an elucidation of various designs that
are in common use) may well be biased under an unequal probability design.

In the event, the ideas that Neyman had presented in this paper, though relevant for
their time and well presented, caught on only gradually over the course of the next
decade. W. Edwards Deming heard Neyman in London in 1936 and soon arranged for
him to lecture, and his approach be taught, to U.S. government statisticians. A crucial
event in its acceptance was the use in the 1940 U.S. Population and Housing Census of
a one-in-twenty sample designed by Deming, along with Morris Hansen and others, to
obtain answers to additional questions. Once accepted, however, Neyman’s arguments
swept all other considerations aside for at least two decades.

Those twenty odd years were a time of great progress. In the terms introduced by
Kuhn (1996), finite population sampling had found a universally accepted “paradigm”
(or “disciplinary matrix”) in randomization-based inference, and an unusually fruitful
period of normal science had ensued. Several influential sampling textbooks were pub-
lished, including most importantly those by Hansen et al. (1953) and by Cochran (1953,
1963). Other advances included the use of self-weighting, multistage, unequal proba-
bility samples by Hansen and Hurwitz at the U.S. Bureau of the Census, Mahalanobis’s
invention of interpenetrating samples to simplify the estimation of variance for complex
survey designs and to measure and control the incidence of nonsampling errors, and the
beginnings of what later came to be described as “model-assisted survey sampling.”

2 The model of Eqns. (1) above had not been published at the time of Neyman’s presentation. It is believed
first to have appeared in Fairfield Smith (1938) in the context of a survey of agricultural crops. Another early
example of its use is in Jessen (1942).
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A lone challenge to this orthodoxy was voiced by Godambe (1955) with his proof of the
nonexistence of any uniformly best randomization-based estimator of the population
mean, but few others working in this excitingly innovative field seemed to be concerned
by this result.

2.3. Model-assisted or model-based? The controversy over prediction inference

It therefore came as a considerable shock to the finite population sampling establishment
when Royall (1970b) issued his highly readable call to arms for the reinstatement of
purposive sampling and prediction-based inference. To read this paper was to read
Neyman (1934) being stood on its head. The identical issues were being considered, but
the opposite conclusions were being drawn.

By 1973, Royall had abandoned the most extreme of his recommendations. This was
that the best sample to select would be the one that was optimal in terms of a model
closely resembling Eqns. (1). (That sample would typically have consisted of the largest
n units in the population, asking for trouble if the parameter β had not in fact been
constant over the entire range of sizes of the population units.) In Royall and Herson
(1973a and 1973b), the authors suggested instead that the sample should be chosen to
be “balanced,” in other words that the moments of the sample Xi should be as close as
possible to the corresponding moments of the entire population. (This was very similar
to the much earlier notion that samples should be chosen purposively to resemble the
population in miniature, and Samples of Gini and Galvani (1929) had been chosen in
much that same way!)

With that exception, Royall’s original stand remained unshaken. The business of a
sampling statistician was to make a model of the relevant population, design a sample
to estimate its parameters, and make all inferences regarding that population in terms of
those parameter estimates. The randomization-based concept of defining the variance of
an estimator in terms of the variability of its estimates over all possible samples was to
be discarded in favor of the prediction variance, which was sample-specific and based
on averaging over all possible realizations of the chosen prediction model.

Sampling statisticians had at no stage been slow to take sides in this debate. Now the
battle lines were drawn. The heat of the argument appears to have been exacerbated by
language blocks; for instance, the words “expectation” and “variance” carried one set of
connotations for randomization-based inference and quite another for prediction-based
inference. Assertions made on one side would therefore have appeared as unintelligible
nonsense by the other.

A major establishment counterattack was launched with Hansen et al. (1983). A small
(and by most standards undetectable) divergence from Royall’s model was shown nev-
ertheless to be capable of distorting the sample inferences substantially. The obvious
answer would surely have been “But this distortion would not have occurred if the sam-
ple had been drawn in a balanced fashion. Haven’t you read Royall and Herson (1973a
and b)?” Strangely, it does not seem to have been presented at the time.

Much later, a third position was also offered, the one held by the present authors,
namely that since there were merits in both approaches, and that it was possible to
combine them, the two should be used together. For the purposes of this Handbook
volume, it is necessary to consider all three positions as dispassionately as possible.
Much can be gained by asking the question as to whether Neyman (1934) or Royall



“Ch01-N53124” 2009/2/13 page 9

Introduction to Survey Sampling 9

(1970b) provided the more credible interpretation of the facts, both as they existed in
1934 or 1970 and also at the present day (2007).

2.4. A closer look at Neyman’s criticisms of Gini and Galvani

The proposition will be presented here that Neyman’s criticisms and prescriptions were
appropriate for his time, but that they have been overtaken by events. Consider first his
contention that without randomization, it was impossible to use confidence intervals to
measure the accuracy of the sample estimates.

This argument was received coolly enough at the time. In moving the vote of thanks
to Neyman at the time of the paper’s presentation, Bowley wondered aloud whether
confidence intervals were a “confidence trick.” He asked “Does [a confidence interval]
really lead us to what we need—the chance that within the universe which we are
sampling the proportion is within these certain limits? I think it does not. I think we
are in the position of knowing that either an improbable event had occurred or the
proportion in the population is within these limits. . . The statement of the theory is not
convincing, and until I am convinced I am doubtful of its validity.”

In his reply, Neyman pointed out that Bowley’s question in the first sentence above
“contain[ed] the statement of the problem in the form of Bayes” and that in conse-
quence its solution “must depend upon the probability law a priori.” He added “In so
far as we keep to the old form of the problem, any further progress is impossible.”
He thus concluded that there was a need to stop asking Bowley’s “Bayesian” question
and instead adopt the stance that the “either. . .or” statement contained in his second
quoted sentence “form[ed] a basis for the practical work of a statistician concerned with
problems of estimation.” There can be little doubt but the Neyman’s suggestion was a
useful prescription for the time, and the enormous amount of valuable work that has
since been done using Neyman and Pearson’s confidence intervals is witness to this.

However, the fact remains that confidence intervals are not easy to understand.
A confidence interval is in fact a sample-specific range of potentially true values of
the parameter being estimated, which has been constructed so as to have a particular
property. This property is that, over a large number of sample observations, the propor-
tion of times that the true parameter value falls inside that range (constructed for each
sample separately) is equal to a predetermined value known as the confidence level. This
confidence level is conventionally written as (1 − α), where α is small compared with
unity. Conventional choices for α are 0.05, 0.01, and sometimes 0.001. Thus, if many
samples of size n are drawn independently from a normal distribution and the relevant
confidence interval for α = 0.05 is calculated for each sample, the proportion of times
that the true parameter value will lie within that sample’s own confidence interval will
be 0.95, or 95%.

It is not the case, however, that the probability of this true parameter value lying
within the confidence interval as calculated for any individual sample of size n will
be 95%. The confidence interval calculated for any individual sample of size n will, in
general, be wider or narrower than average and might be centered well away from the
true parameter value, especially if n is small. It is also sometimes possible to recognize
when a sample is atypical and, hence, make the informed guess that in this particular
case, the probability of the true value lying in a particular 95% confidence interval differs
substantially from 0.95.
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If, however, an agreement is made beforehand that a long succession of wagers is
to be made on the basis that (say) Fred will give Harry $1 every time the true value
lies inside any random sample’s properly calculated 95% confidence interval, and Harry
will give Fred $19 each time it does not; then at the end of that long sequence, those two
gamblers would be back close to where they started. In those circumstances, the 95%
confidence interval would also be identical with the 95% Bayesian credibility interval
that would be obtained with a flat prior distribution over the entire real line ranging from
minus infinity to plus infinity. In that instance, Bowley’s “Bayesian question” could be
given an unequivocally affirmative answer.

The result of one type of classical hypothesis test is also closely related to the confi-
dence interval. Hypothesis tests are seldom applied to data obtained from household or
establishment surveys, but they are frequently used in other survey sampling contexts.

The type of classical test contemplated here is often used in medical trials. The
hypothesis to be tested is that a newly devised medical treatment is superior to an
existing standard treatment, for which the effectiveness is known without appreciable
error. In this situation, there can never be any reason to imagine that the two treatments
are identically effective so that event can unquestionably be accorded the probability
zero. The probability that the alternative treatment is the better one can then legitimately
be estimated by the proportion of the area under the likelihood function that corresponds
to values greater than the standard treatment’s effectiveness. Moreover, if that standard
effectiveness happens to be lower than that at the lower end of the one-sided 95%
confidence interval, it can reasonably be claimed that the new treatment is superior to
the standard one “with 95% confidence.”

However, in that situation, the investigators might well wish to go further and quote
the proportion of the area corresponding to all values less than standard treatment’s
effectiveness (Fisher’s p-statistic). If, for instance, that proportion were 0.015, they
might wish to claim that the new treatment was superior “with 98.5% confidence.”
To do so might invite the objection that the language used was inappropriate because
Neyman’s α was an arbitrarily chosen fixed value, whereas Fisher’s p was a realization
of a random variable, but the close similarity between the two situations would be
undeniable. For further discussions of this distinction, see Hubbard and Bayarri (2003)
and Berger (2003).

The situation would have been entirely different, however, had the investigation
been directed to the question as to whether an additional parameter was required for
a given regression model to be realistic. Such questions often arise in contexts such
as biodiversity surveys and sociological studies. It is then necessary to accord the null
hypothesis value itself (which is usually but not always zero) a nonzero probability. It
is becoming increasingly well recognized that in these circumstances, the face value
of Fisher’s p can give a grossly misleading estimate of the probability that an addi-
tional parameter is needed. A relatively new concept, the “false discovery rate” (Ben-
jamini and Hochberg, 1995; Benjamini and Yekutieli, 2001; Efron et al., 2001; Sorić,
1989), can be used to provide useful insights. To summarize these findings in these
papers very briefly, those false discovery rates observed empirically have, more often
than, not been found to exceed the corresponding p-statistic by a considerable order of
magnitude.

It is also relevant to mention that the populations met with in finite population sam-
pling, and especially those encountered in establishment surveys, are often far removed
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from obeying a normal distribution, and that with the smaller samples often selected
from them, the assumption of normality for the consequent estimators is unlikely even
to produce accurate confidence intervals!

Nevertheless, and despite the misgivings presented above, it is still the case that
randomization does provide a useful basis for the estimation of a sample variance. The
criterion of minimizing that variance is also a useful one for determining optimum
estimators. However, we should not expect randomization alone to provide anything
further.

Neyman’s second contention was that purposive sampling and samples consisting of
fewer than an adequate number of units went hand in hand. This was undoubtedly the
case in the 1930s, but a similar kind of matching of sample to population (Royall and
his co-authors use the expression “balanced sampling”) can now be undertaken quite
rapidly using third-generation computers, provided only that the matching is not made
on too many variables simultaneously. Brewer (1999a) presents a case that it might be
preferable to choose a sample randomly and use calibrated estimators to compensate
for any lack of balance, rather than to go to the trouble of selecting balanced samples.
However, those who prefer to use balanced sampling can now select randomly from
among many balanced or nearly balanced samples using the “cube method” (Deville
and Tillé, 2004). This paper also contains several references to earlier methods for
selecting balanced samples.

Neyman’s third contention was basically that population models were not to be
trusted. It is difficult here to improve on the earlier quote from George Box that “All
models are wrong, but some models are useful.” Equations (1) above provide a very
simple model that has been in use since 1938. It relates a variable of interest in a sample
survey to an auxiliary variable, all the population values of which are conveniently
known.

In its simplest form, the relationship between these variables is assumed to be basi-
cally proportional but with a random term modifying that proportional relationship for
each population unit. Admittedly, in some instances, it is convenient to add an intercept
term, or to have more than one regressor variable, and/or an additional equation to model
the variance of that equation’s random term, but nevertheless that simple model can be
adequate in a remarkably wide set of circumstances.

As previously mentioned, such models have been used quite frequently in survey
sampling. However, it is one thing to use a prediction model to improve on an existing
randomization-based estimator (as was done in the Oz scenario above) and it is quite
another thing actually to base one’s sampling inference on that model. The former, or
“model-assisted” approach to survey sampling inference, is clearly distinguished from
prediction-based inference proper in the following quotation, taken from the Preface to
the encyclopedic book, Model Assisted Survey Sampling by Särndal et al. (1992, also
available in paperbook 2003):

Statistical modeling has strongly influenced survey sampling theory in recent years.
In this book, sampling theory is assisted by modeling. It becomes simple to explain
how the auxiliary information in a given survey will lead to a particular estimation
technique. The teaching of sampling and the style of presentation in journal articles
have changed a great deal by this new emphasis. Readers of this book will become
familiar with this new style.
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We use the randomization theory or design-based point of view. This is the tra-
ditional mode of inference in surveys, ever since the sampling breakthroughs in the
1930s and 1940s. The reasoning is familiar to survey statisticians in government and
elsewhere.

As this quotation indicates, using a prediction model to form an estimator as Royall
proposed, without regard to any justification in terms of randomization theory, is quite
a different approach. It is often described as “model-based,” or pejoratively as “model-
dependent,” but it appears preferable to use the expression, “prediction-based.”

A seminal paper attacking the use of a prediction model for such purposes was
that by Hansen et al. (1983), which has already been mentioned; but there can be no
serious doubt attached to the proposition that this model provides a reasonable first
approximation to many real situations. Once again, Neyman’s contention has been
overtaken by events.

2.5. Other recent developments in sample survey inference

A similarly detailed assessment of the now classic papers written by Royall and his
colleagues in the 1970s and early 1980s is less necessary, since there have been fewer
changes since they written, but it is worth providing a short summary of some of them.
Royall (1970b) has already been mentioned as having turned Neyman (1934) on its head.
Royall (1971) took the same arguments a stage further. In Royall and Herson (1973a
and 1973b), there is an implicit admission that selecting the sample that minimized the
prediction-based variance (prediction variance) was not a viable strategy. The suggestion
offered there is to select balanced samples instead: one that reflects the moments of
the parent population. In this recommendation, it recalls the early twentieth-century
preoccupation with finding a sample that resembled the population in miniature but, as
has been indicated above, this is not necessarily a count against it.

Royall (1976) provides a useful and entertaining introduction to prediction-based
inference, written at a time when the early criticisms of it had been fully taken into
account. Joint papers by Royall and Eberhardt (1975) and Royall and Cumberland
(1981a and 1981b) deal with various aspects of prediction variance estimation, whereas
Cumberland and Royall (1981) offer a prediction-based consideration of unequal prob-
ability sampling. The book by Valliant et al. (2000) provides comprehensive account
of survey sampling from the prediction-based viewpoint up to that date, and that by
Bolfarine and Zacks (1992) presents a Bayesian perspective on it.

Significant contributions have also been made by other authors. Bardsley and
Chambers (1984) offer ridge regression as an alternative to pure calibration when
the number of regressor variables is substantial. Chambers and Dunstan (1986) and
Chambers et al. (1992) consider the estimation of distribution functions from a
prediction-based standpoint. Chambers et al. (1993) and Chambers and Kokic (1993)
deal specifically with questions of robustness against model breakdown. A more con-
siderable bibliography of important papers relating to prediction-inference can be found
in Valliant et al. (2000).

The randomization-based literature over recent years has been far too extensive to
reference in the same detail, and in any case comparatively little of it deals with the
question of sampling inference. However, two publications already mentioned above
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are of especial importance. These are the polemical paper by Hansen et al. (1983) and
the highly influential text-book by Särndal et al. (1992), which sets out explicitly to
indicate what can be achieved by using model-assisted methods of sample estimation
without the explicit use of prediction-based inference. Other recent papers of particular
interest in this field include Deville and Särndal (1992) and Deville et al. (1993).

Publications advocating or even mentioning the use of both forms of inference simul-
taneously are few in number. Brewer (1994) would seem to be the earliest to appear
in print. It was written in anticipation of and to improve upon Brewer (1995), which
faithfully records what the author was advocating at the First International Confer-
ence on Establishment Surveys in 1993, but was subsequently found not to be as effi-
cient or even as workable as the alternative provided in Brewer (1994). A few years
later, Brewer (1999a) compared stratified balanced with stratified random sampling and
Brewer (1999b) provided a detailed description of how the two inferences can be used
simultaneously in unequal probability sampling; also Brewer’s (2002) textbook has pro-
vided yet further details on this topic, including some unsought spin-offs that follow
from their simultaneous use, and an extension to multistage sampling.

All three views are still held. The establishment view is that model-assisted
randomization-based inference has worked well for several decades, and there is insuf-
ficient reason to change. The prediction-based approach continues to be presented by
others as the only one that can consistently be held by a well-educated statistician. And
a few say “Why not use both?” Only time and experience are likely to resolve the issue,
but in the meantime, all three views need to be clearly understood.

3. Some common sampling strategies

3.1. Some ground-clearing definitions

So far, we have only been broadly considering the options that the sampling statistician
has when making inferences from the sample to the population from which it was
drawn. It is now time to consider the specifics, and for that we will need to use certain
definitions.

A sample design is a procedure for selecting a sample from a population in a specific
fashion. Examples are as follows for instance:

• simple random sampling with and without replacement;
• random sampling with unequal probabilities, again with and without replacement;
• systematic sampling with equal or unequal probabilities;
• stratified sampling, in which the population units are first classified into groups or

“strata” having certain properties in common;
• two-phase sampling, in which a large sample is drawn at the first phase and a

subsample from it at the second phase;
• multistage sampling, usually in the context of area sampling, in which a sample

of large units is selected at the first stage, samples within those first-stage sample
units at the second stage, and so on for possibly third and fourth stages; and

• permanent random number sampling, in which each population unit is assigned a
number, and the sample at any time is defined in terms of the ranges of numbers
that are to be in sample at that time.
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This list is not exhaustive, and any given sample may have more than one of those
characteristics. For instance, a sample could be of three stages, with stratification and
unequal probability sampling at the first stage, unstratified unequal probability sampling
at the second stage, and systematic random sampling with equal probabilities at the third
stage. Subsequently, subsamples could be drawn from that sample, converting it into a
multiphase multistage sample design.

A sample estimate is a statistic produced using sample data that can be used to give
users an indication as to the value of a population quantity. Special attention will be
paid in this Section to estimates of population total and population mean because
these loom so large in the responsibilities of national statistical offices, but there are
many sample surveys that have more ambitious objectives and may be set up so as to
estimate small domain totals, regression and/or correlation coefficients, measures
of dispersion, or even conceivably coefficients of heteroskedaticity (measures of
the extent to which the variance of the Ui can itself vary with the size of the auxiliary
variable Ui).

A sample estimator is a prescription, usually a mathematical formula, indicating how
estimates of population quantities are to be obtained from the sample survey data.

An estimation procedure is a specification as to what sample estimators are to be
used in a given sample survey.

A sample strategy is a combination of a sample design and an estimation procedure.
Given a specific sample strategy, it is possible to work out what estimates can be
produced and how accurate those estimates can be made.

One consequence of the fact that two quite disparate inferential approaches can be
used to form survey estimators is that considerable care needs to be taken in the choice of
notation. In statistical practice generally, random variables are represented by uppercase
symbols and fixed numbers by lowercase symbols, but between the two approaches, an
observed value automatically changes its status. Specifically, in both approaches, a
sample value can be represented as the product of a population value and an inclusion
indicator, δ, which was introduced in (3). However, in the prediction-based approach,
the population value is a random variable and the inclusion indicator is a fixed number,
whereas in the randomization-based approach, it is the inclusion indicator, that is, the
random variable while the population value is a fixed number. There is no ideal way to
resolve this notational problem, but we shall continue to denote population values by,
say, Yi or Xi and sample values by δiYi or δiXi, as we did in Eq. (3).

3.2. Equal probability sampling with the expansion estimator

In what follows, the sample strategies will first be presented in the context of
randomization-based inference, then that of the nearest equivalent in prediction-based
inference, and finally, wherever appropriate, there will be a note as to how they can be
combined.

3.2.1. Simple random sampling with replacement using the expansion estimator
From a randomization-based standpoint, simple random sampling with replacement
(srswr) is the simplest of all selection procedures. It is appropriate for use where (a) the
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population consists of units whose sizes are not themselves known but are known not
to differ too greatly amongst themselves and (b) it has no geographical or hierarchical
structure that might be useful for stratification or area sampling purposes. Examples
are populations of easily accessible individuals or households, administrative records
relating to individuals, households, or family businesses; and franchise holders in a large
franchise.

The number of population units is assumed known, say N, and a sample is selected
by drawing a single unit from this population, completely at random, n times. Each
time a unit is drawn, its identity is recorded, and the unit so drawn is returned to the
population so that it stands exactly the same chance of being selected at any subsequent
draw as it did at the first draw. At the end of the n draws, the ith population unit appears
in the sample vi times, where vi in a number between 0 and n, and the sum of the vi over
the population is n.

The typical survey variable value on the ith population unit may be denoted by Yi.
The population total of the Yi may be written Y . A randomization-unbiased estimator of
Y is the expansion estimator, namely Ŷ = (N/n)

∑N
i=1 viYi. (To form the correspond-

ing unbiased randomization estimator of the population mean, Ȳ = Y/N, replace the
expression N/n in this paragraph by 1/n.)

The randomization variance of the estimator Ŷ is V(Ŷ) = (N2/n)S2
wr, where S2

wr =
1/(N − 1)

∑N
i=1 (Yi − Ȳ )2 · V(Ŷ) is in turn estimated randomization-unbiasedly by

(N2/n)Ŝ2
wr, where Ŝ2

wr = 1/(n − 1)
∑N

i=1 vi(Yi − Ȳ )2. (To form the corresponding
expressions for the population mean, replace the expression N2/n throughout this para-
graph by 1/n. Since these changes from population total to population mean are fairly
obvious, they will not be repeated for other sampling strategies.) Full derivations of
these formulae will be found in most sampling textbooks.

There is no simple prediction-based counterpart to srswr. From the point of view of
prediction-based inference, multiple appearances of a population unit add no informa-
tion additional to that provided by the first appearance. Even from the randomization
standpoint, srswr is seldom called for as simple random sampling without replacement
(or srswor) is more efficient. Simple random sampling with replacement is considered
here purely on account of its extremely simple randomization variance and variance
estimator, and because (by comparison with it) both the extra efficiency of srswor and
the extra complications involved in its use can be readily appreciated.

3.2.2. Simple random sampling without replacement using the expansion estimator
This sample design is identical with srswr, except that instead of allowing selected
population units to be selected again at later draws, units already selected are given
no subsequent probabilities of selection. In consequence, the units not yet selected
have higher probabilities of being selected at later draws. Because the expected num-
ber of distinct units included in sample is always n (the maximum possible number
under srswr), the srswor estimators of population total and mean have smaller vari-
ances than their srswr counterparts. A randomization-unbiased estimator of Y is again
Ŷ = (N/n)

∑N
i=1 viYi, but since under srswor the vi take only the values 0 and 1, it will

be convenient hereafter to use a different symbol, δi, in its place.
The randomization variance of the estimator Ŷ is V(Ŷ) = (N2/n)S2, where

S2 = (1/N)
∑N

i=1(Yi − Ȳ )2. The variance estimator V(Ŷ) is in turn estimated
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randomization-unbiasedly by N(N − n)/nŜ2, where Ŝ2 = 1/(n − 1)
∑N

i=1 δi(Yi − Ȳ )2.
The substitution of the factor N2 (in the srswr formulae for the variance and the unbiased
variance estimator) by the factor N(N − n) (in the corresponding srswor formulae) is
indicative of the extent to which the use of sampling without replacement reduces the
variance.

Note, however, that the sampling fraction, n/N, is not particularly influential in
reducing the variance, even for srswor, unless n/N is an appreciable fraction of unity.
An estimate of a proportion obtained from an srswor sample of 3000 people in, say,
Wales, is not appreciably any more accurate than the corresponding estimate obtained
from a sample of 3000 people in the United States; and this is despite the proportion of
Welsh people in the first sample being about 1 in 1000 and the proportion of Americans
in the second being only 1 in 100,000. For thin samples like these, such variances are
to all intents and purposes inversely proportional to the sample size, and the percentage
standard errors are therefore proportional to the square root of the sample size. Full
derivations of these formulae will be again be found in most sampling textbooks.

Since srswor is both more efficient and more convenient than srswr, it will be assumed,
from this point on, that sampling is without replacement unless otherwise specified.
One important variant on srswor, which also results in sampling without replacement, is
systematic sampling with equal probabilities, and this is the next sampling design that
will be considered.

3.2.3. Systematic sampling with equal probabilities, using the expansion estimator
Systematic sampling, by definition, is the selection of sample units from a comprehensive
list using a constant skip interval between neighboring selections. If, for instance, the
skip interval is 10, then one possible systematic sample from a population of 104 would
consist of the second unit in order, then the 12th, the 22nd, etc. up to and including the
102nd unit in order. This sample would be selected if the starting point (usually chosen
randomly as a number between 1 and the skip interval) was chosen to be 2. The sample
size would then be 11 units with probability 0.4 and of 10 units with probability 0.6, and
the expected sample size would be 10.4, or more generally the population size divided
by the skip interval.

There are two important subcases of such systematic selection. The first is where
the population is deliberately randomized in order prior to selection. The only sub-
stantial difference between this kind of systematic selection and srswor is that in the
latter case, the sample size is fixed, whereas in the former it is a random variable.
Even from the strictest possible randomization standpoint, however, it is possible to
consider the selection procedure as conditioned on the selection of the particular ran-
dom start (in this case 2), in which case the sample size would be fixed at 10 and the
srswor theory would then hold without any modification. This conditional randomiza-
tion theory is used very commonly, and from a model-assisted point of view it is totally
acceptable.

That is emphatically not true, however, for the second subcase, where the population
is not deliberately randomized in order prior to selection. Randomization theory in that
subcase is not appropriate and it could be quite dangerous to apply it. In an extreme
case, the 104 units could be soldiers, and every 10th one from the 3rd onwards could
be a sergeant, the remainder being privates. In that case, the sample selected above
would consist entirely of privates, and if the random start had been three rather than
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two, the sample would have been entirely one of sergeants. This, however, is a rare and
easily detectable situation within this nonrandomized subcase. A more likely situation
would be one where the population had been ordered according to some informative
characteristic, such as age. In that instance, the sample would in one sense be a highly
desirable one, reflecting the age distribution of the population better than by chance. It
would be the kind of sample that the early pioneers of survey sampling would have been
seeking with their purposive sampling, one that reflected in miniature the properties of
the population as a whole.

From the randomization standpoint, however, that sample would have had two
defects, one obvious and one rather more subtle. Consider a sample survey aimed at
estimating the level of health in the population of 104 persons as a whole. The obvi-
ous defect would be that although the obvious estimate based on the systematic sample
would reflect that level considerably more accurately than one based on a random sample
would have done, the randomization-based estimate of its variance would not provide
an appropriate measure of its accuracy.

The more subtle defect is that the randomization-based estimate of its variance would
in fact tend to overestimate even what the true variance would have been if a random-
ized sample had been selected. So the systematic sample would tend to reduce the
actual variance but slightly inflate the estimated variance! (This last point is indeed a
subtle one, and most readers should not worry if they are not able to work out why
this should be. It has to do with the fact that the average squared distance between
sample units is slightly greater for a systematic sample than for a purely random
sample.)

In summary, then, systematic sampling is temptingly easy to use and in most cases
will yield a better estimate than a purely randomized sample of the same size, but the
estimated variance would not reflect this betterment, and in some instances a systematic
sample could produce a radically unsuitable and misleading sample. To be on the safe
side, therefore, it would be advisable to randomize the order of the population units
before selection and to use the srswor theory to analyze the sample.

3.2.4. Simple prediction inference using the expansion estimator
Simple random sampling without replacement does have a prediction-based counterpart.
The appropriate prediction model is the special case of Eqns. (1) in which all the Xi

take the value unity. The prediction variances of the Ui in (1c) are in this instance all
the same, at σ2. Because this very simple model is being taken as an accurate refection
of reality, it would not matter, in theory, how the sample was selected. It could (to
take the extreme case) be a “convenience sample” consisting of all the people in the
relevant defined category whom the survey investigator happened to know personally,
but of course, in practice, the use of such a “convenience sample” would make the
assumptions underlying the equality of the Xi very hard to accept. It would be much
more convincing if the sample were chosen randomly from a carefully compiled list,
which would then be an srswor sample, and it is not surprising that the formulae relevant
to this form of prediction sampling inference should be virtually identical to those for
randomization sampling srswor.

The minimum-variance prediction-unbiased estimator of Y under the sim-
ple prediction model described in the previous paragraph is identical with the
randomization-unbiased estimator under srswor, namely Ŷ = (N/n)

∑N
i=1 δiYi. Further,
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the prediction variance of Ŷ is V(Ŷ) = (N − n)(N/n)σ2. The prediction variance of
that estimator, V(Ŷ), which is also prediction-unbiased, is (N − n)(N/n)σ̂2, where

σ̂2 = [1/(n − 1)]
∑N

i=1(δiYi − ˆ̄Y)2 where ˆ̄Y = Ŷ/N. Note that although the prediction
variance is typically sample-specific, in this instance, it is the same for all samples.
However, the estimated prediction variance does, as always, vary from sample to
sample.

3.3. Equal probability sampling with the ratio estimator

So far, we have been using estimators that depend only on the sample observations
Yi themselves. More often than not, however, the sampling statistician has at hand
relevant auxiliary information regarding most of the units in the population. We have
already noted that Laplace, back at the turn of the 19th century, had access (at least
in principle) to annual birth registration figures that were approximately proportional
to the population figures that he was attempting to estimate. To take a typical modern
example, the population for a Survey of Retail Establishments (shops) would typically
consist mainly of shops that had already been in existence at the time of the most recent
complete Census of Retail Establishments, and the principal information collected at
that Census would have been the sales figures for the previous calendar or financial
year. Current sales would, for most establishments and for a reasonable period, remain
approximately proportional to those Census sales figures.

Returning to the model of Eqns. (1), we may equate the Yi with the current sales of
the sample establishments, the Xi with the Census sales of the sample and nonsample
establishments, and the X with the total Census sales over all sample and nonsample
establishments combined. It may be remembered that “Centrifuge’s” ratio estimators
worked well both when the model of Eqns. (1) was a useful one and also in the weaker
situation when there was a comparatively modest correlation between the Yi and the
Xi. In a similar fashion, the corresponding ratio estimator for this Survey of Retail
Establishments tends to outperform the corresponding expansion estimator, at least until
it is reckoned time to conduct the next Census of Retail Establishments, which would
typically be some time in the next 5–10 years.

It was stated above that the population for a Census of Retail Establishments would
typically consist mainly of shops that had already been in existence at the time of the most
recent complete Census. Such shops would make up the “Main Subuniverse” for the
survey. In practice, there would be a substantial minority of shops of which the existence
would be known, but which had not been in business at the time of that Census, and
for these there would be a separate “New Business Subuniverse,” which for want of a
suitable auxiliary variable would need to be estimated using an expansion estimator, and
in times of rapid growth there might even be an “Unlisted New Business Provision” to
allow for the sales of shops that were so new that their existence was merely inferred on
the basis of previous experience. Nevertheless, even then, the main core of the estimate
of survey period sales would still be the sales of shops in the Main Subuniverse, these
sales would be based on Ratio Estimation, and the relevant Ratio Estimator would be
the product of the β̂ of Eq. (2) and the Total of Census Sales X.

The modern way of estimating the variance of that ratio estimator depends on whether
the relevant variance to be estimated is the randomization variance, which is based on
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the variability of the estimates over all possible samples, or whether it is the prediction
variance, which is sample specific. (For a discussion of the difference between the
randomization and prediction approaches to inference, the reader may wish to refer
back to Subsections 1.3 and 1.4.)

The most common practice at present is to estimate the randomization-variance,
and for that the procedure is as follows: denote the population total of the Yi by Y , its
expansion estimator by Ŷ , and its ratio estimator by ŶR. Then the randomization variance
of ŶR is approximated by

V(ŶR) ≈ V(Ŷ) + β2V(X̂) − 2βC(Ŷ, X̂), (6)

where β is the same parameter as in Eq. (1a), V(Ŷ) is the randomization variance of the
expansion estimator of Y, V(X̂) is the variance of the corresponding expansion estimator
of X, based on the same sample size, and C(Ŷ, X̂) is the covariance between those two
estimators.

The approximate randomization-variance of ŶR can therefore be estimated by

V̂ (ŶR) = V̂ (Ŷ ) + β̂2V̂ (X̂) − 2β̂Ĉ(Ŷ , X̂), (7)

where V̂ (Ŷ ) is the randomization-unbiased estimator of V(Ŷ), given in Section 2.2
(Chapter 3), V̂ (X̂) is the corresponding expression in the X-variable, Ĉ(Ŷ , X̂) is the cor-
responding expression for the randomization-unbiased estimator of covariance between
them, namely (N − n)(N/n)

∑N
i=1 δi(Yi − Ȳ )(Xi − X̄), and β̂ is the sample estimator

of β, as given in Eq. (2).

3.4. Simple balanced sampling with the expansion estimator

An alternative to simple random sampling is simple balanced sampling, which has
already been referred to in Section 2.3. When the sample has been selected in such a
way as to be balanced on the auxiliary variables Xi described in the previous subsection,
the expansion estimator is comparable in accuracy with that subsection’s ratio estimator.
This is because the expansion estimator based on the balanced sample is then “calibrated”
on those Xi. That is to say, the expansion estimate of the total X is necessarily without
error, that is, it is itself exactly equal to X. It is easy to see that in the situation described
in the previous subsection, ŶR was similarly “calibrated” on the Xi, that is, X̂R would
have been exactly equal to X.

It is a matter of some contention as to whether it is preferable to use simple random
sampling and the ratio estimator or simple balanced sampling and the expansion esti-
mator. The choice is basically between a simple selection procedure and a relatively
complex estimator on the one hand and a simple estimator with a relatively complex
selection procedure on the other. The choice is considered at length in Brewer (1999a). It
depends crucially on the prior choice of sampling inference. Those who hold exclusively
to randomization for this purpose would necessarily prefer the ratio estimation option.
It is only those who are prepared to accept prediction inference, either as an alternative
or exclusively, for whom the choice between the two strategies described above would
be a matter of taste.

For a further discussion of balanced sampling, see Section 2.4.
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3.5. Stratified random sampling with equal inclusion probabilities within strata

If any kind of supplementary information is available that enables population units
to be grouped together in such a way that they are reasonably similar within their
groups and reasonably different from group to group, it will usually pay to treat these
groups as separate subpopulations, or strata, and obtain estimates from each stratum
separately. Examples of such groups include males and females, different descriptions
of retail outlets (grocers, butchers, other food and drink, clothing, footwear, hardware,
etc.), industries of nonretail businesses, dwellings in urban and in rural areas, or in
metropolitan and nonmetropolitan areas.

It takes a great deal of similarity to obtain a poorer estimate by stratification, and
the resulting increase in variance is almost always trivial, so the default rule is “Use all
the relevant information that you have. When in doubt, stratify.” There are, however,
several exceptions to this rule.

The first is that if there are many such groups, and all the differences between all
possible pairs of groups are known to be small, there is little to gain by stratification,
and the business of dealing with lots of little strata might itself amount to an appreciable
increase in effort. However, this is an extreme situation, so in most cases, it is safer to
stick with the default rule. (In any case, do not worry. Experience will gradually give
you the feel as to when to stratify and when not to do so.)

The remaining exceptions all relate to stratification by size. Size is an awkward crite-
rion to stratify on because the boundaries between size strata are so obviously arbitrary.
If stratification by size has already been decided upon, one useful rule of thumb is that
size boundaries such as “under 10,000,” “10,000–19,999,” “20,000–49,999,” “50,000–
99,999,” “100,000–199,999,” and “over 200,000” (with appropriate adjustments to take
account of the scale in which the units are measured) are difficult to improve on appre-
ciably. Moreover, there is unlikely to be much gain in forming more than about six size
strata.

Another useful rule of thumb is that each stratum should be of about the same order of
magnitude in its total measure of size. This rule can be particularly helpful in choosing
the boundary between the lowest two and that between the highest two strata. Dalenius
(1957) does give formulae that enable optimum boundaries between size strata to be
determined, but they are not recommended for general use, partly because they are
complicated to apply and partly because rules of thumb and common sense will get
sufficiently close to a very flat optimum. A more modern approach may be found in
Lavalée and Hidiroglou (1988).

Finally, there is one situation where it might very well pay not to stratify by size at
all, and that is where PRN sampling is being used. This situation will be seen later (in
Section 3.9).

3.5.1. Neyman and optimal allocations of sample units to strata
Another important feature of stratification is that once the strata themselves have been
defined, there are some simple rules for allocating the sample size efficiently among
them. One is “Neyman allocation,” which is another piece of sampling methodology
recommended by Neyman in his famous 1934 paper that has already been mentioned
several times. The other, usually known as “Optimum allocation,” is similar to Neyman
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allocation but also allows for the possibility that the cost of observing the value of a
sample unit can differ from stratum to stratum.

Neyman allocation minimizes the variance of a sample estimate subject to a given
total sample size.3 Basically, the allocation of sample units to a stratum h should be
proportional to NhSh, where Nh is the number of population units in the hth stratum and
Sh is the relevant population standard deviation in that stratum.4

Optimum allocation is not very different. It minimizes the variance of a sample
estimate subject to a given total cost and consequently allocates units in a stratum to
sample proportionally to NhSh/

√
Ch, where Ch is the cost of obtaining the value Yi for

a single sample unit in the hth stratum. Since, however, it is typically more difficult
to gather data from small businesses than from large ones, the effect of using Optimal
rather than Neyman allocation for business surveys is to concentrate the sample toward
the larger units.

Strangely, Optimum allocation seems seldom to have been used in survey practice.
This is partly, perhaps, because it complicates the sample design, partly because (for
any given level of accuracy) it results in the selection of a larger sample, and partly
because it is not often known how much more expensive it is to collect data from
smaller businesses.

3.5.2. Stratification with ratio estimation
Since the effect of stratification is effectively to divide the population into a number of
subpopulations, each of which can be sampled from and estimated for separately, it is
theoretically possible to choose a different selection procedure and a different estimator
for each stratum. However, the arguments for using a particular selection procedure and
a particular estimator are usually much the same for each stratum, so this complication
seldom arises.

A more important question that does frequently arise is whether or not there is any
point in combining strata for estimation purposes. This leads to the distinction between
“stratum-by-stratum estimation” (also known as “separate stratum estimation”) and
“across-stratum estimation” (also known as “combined stratum estimation”), which
will be the principal topic of this subsection.

The more straightforward of these two options is stratum-by-stratum estimation, in
which each stratum is regarded as a separate subpopulation, to which the observations
in other strata are irrelevant. The problem with this approach, however, is that in the
randomization approach the ratio estimator is biased, and the importance of that bias,
relative to the corresponding standard error, can be large when the sample size is small.
It is customary in some statistical offices to set a minimum (say six) to the sample size
for any stratum, but even for samples of six, it is possible for the randomization bias

3 We are indebted to Gad Nathan for his discovery that Tschuprow (or Chuprov) had actually published the
same result in 1923, but his result was buried in a heap of less useful mathematics. Also, it was Neyman who
brought it into prominence, and he would presumably have devised it independently of Tschuprow in any
case.

4 A special allowance has then to be made for those population units that need to be completely enumerated,
and the question as to what is the relevant population standard deviation cannot be answered fully at this point,
but readers already familiar with the basics of stratification are referred forward to Section 2.2 (Chapter 3).
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to be appreciable, so the assumption is made that the estimation of the parameter β in
Eq. (1a) should be carried out over all size strata combined. That is to say, the value of
β is estimated as the ratio of the sum over the strata of the expansion estimates of the
survey variable y to the sum over the strata of the expansion estimates of the auxiliary
variable x. This is termed the across-stratum ratio estimator of β, and the product of this
with the known sum over all sampled size strata of the auxiliary variable X is termed
the across-stratum estimator of the total Y of the survey variable y.

This across-stratum ratio estimator, being based on a larger effective sample size than
that of any individual stratum, has a smaller randomization bias than the stratum-by-
stratum ratio estimator, but because the ratio of y to x is being estimated over all size
strata instead of separately for each, there is the strong probability that the randomization
variance of the across-stratum ratio estimator will be greater than that of the stratum-by-
stratum ratio estimator. Certainly, the estimators of variance yield larger estimates for
the former than the latter. So there is a trade-off between unestimated, but undoubtedly
real randomization bias, and estimated randomization variance.

When looked at from the prediction approach, however, the conclusion is quite differ-
ent. If the prediction models used for the individual size strata have different parameters
βh, say, where h is a stratum indicator, then it is the across-stratum ratio estimator that
is now biased (since it is estimating a nonexistent common parameter β) while the
stratum-by-stratum ratio estimator (since it relies on small sample sizes for each) may
have the larger prediction variance. If however, the prediction models for the different
size strata have the same parameter β in common, the stratum-by-stratum ratio estima-
tor is manifestly imprecise, since it is not using all the relevant data for its inferences,
and even the across-stratum ratio estimator, while prediction-unbiased, is not using the
prediction-optimal weights to estimate the common parameter β.

It therefore appears that looked at from either approach, the choice between these
two estimators is suboptimal, and if viewed from both approaches simultaneously, it
would usually appear to be inconclusive. The underlying fact is that stratification by
size is at best a suboptimal solution to the need for probabilities of inclusion in sam-
ple to increase with the size of the population unit. We shall see later (Section 3.9)
that a more logical approach would be to avoid using size as an axis of stratification
entirely and to use unequal probabilities of inclusion in sample instead. While this
does involve certain complications, they are nothing that high-speed computers can-
not cope with, whereas the complications brought about by frequent transitions from
one size stratum to another within the framework of PRN sampling are distinctly less
tractable.

3.6. Sampling with probabilities proportional to size with replacement

As we have just seen, there are now serious arguments for using Unequal Probability
Sampling within the context of surveys (chiefly establishment surveys) for which the
norm has long been stratification by size and equal inclusion probabilities within strata.
However, the genesis of unequal probability sampling, dating from Hansen and Hurwitz
(1943), occurred in the very different context of area sampling for household surveys.
The objective of Hansen and Hurwitz was to establish a master sample for the con-
duct of household surveys within the continental United States. It was unreasonable



“Ch01-N53124” 2009/2/13 page 23

Introduction to Survey Sampling 23

to contemplate the construction of a framework that included every household in
the United States.5

Because of this difficulty, Hansen and Hurwitz instead constructed a multistaged
framework. They started by dividing the United States into geographical strata, each
containing roughly the same number of households. Within each stratum, each household
was to have the same probability of inclusion in sample and to make this possible that the
selection was carried out in stages. The first stage of selection was of Primary Sampling
Units (PSUs), which were relatively large geographical and administrative areas. These
were sometimes counties, sometimes amalgamations of small counties, and sometimes
major portions of large counties.

The important fact was that it was relatively easy to make a complete list of the PSUs
within each stratum. However, it was not easy to construct a complete list of PSUs that
were of more or less equal size in terms of numbers of households (or dwellings or
individuals, whatever was the most accessible measure of size). Some were appreciably
larger than others, but the intention remained that in the final sample, each household
in the stratum would have the same probability of inclusion as every other household.
So Hansen and Hurwitz decided that they would assign each PSU in a given stratum a
measure of size; that the sum of those measures of size would be the product of the sample
interval (or “spacing interval” or “skip interval”) i and the number of PSUs to be selected
from that stratum, say n, which number was to be chosen beforehand. Then, a random
number r would be chosen between one and the sample interval, and the PSUs selected
would be those containing the size measures numbered r, r + i, r + 2i . . . r + (n − 1)i

(see Table 1).
Clearly, the larger the size of a PSU, the larger would be its probability of inclu-

sion in sample. To ensure that the larger probability of selection at the first stage did
not translate into a larger probability of inclusion of households at the final stage,
Hansen and Hurwitz then required that the product of the probabilities of inclusion
at all subsequent stages was inversely proportional to the probability of selection at
the first stage. So at the final stage of selection (Hansen and Hurwitz contemplated up
to three such stages), the population units were individual households and each had
the same eventual probability of inclusion in sample as every other household in the
stratum.

To ease the estimation of variance, both overall and at each stage, Hansen and Hurwitz
allowed it to proceed as though selection had been with replacement at each stage.
Since the inclusion probabilities, even at each stage, were comparatively small, this
was a reasonable approximation. One of the great simplifications was that the overall
variance, the components from all stages combined, could be estimated as though there
had been only a single stage of selection. Before the introduction of computers, this was
a brilliant simplification, and even today the exact estimation of variance when sampling
is without replacement still involves certain complications, which are considered in the
next subsection.

5 Conceptually, it might be easier to think of this as a list of every dwelling. In fact, the two would have
been identical since the definition of a dwelling was whatever a household was occupying, which might for
instance be a share of a private house. A household in turn was defined as a group of people sharing meals on
a regular basis.
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Table 1
Example of PSU selection with randomized listing

Sample fraction 1/147 Number of sample PSUs 2 Cluster size 32.8

PSU No. No. of No. of Cumulated Selection Within-PSU
Dwellings Clusters Clusters Number Sample Fraction

1 1550 47 47
10 639 20 67

7 728 22 89
5 1055 32 121 103 1/32
9 732 22 143
2 911 28 171
6 553 17 188
3 1153 35 223
4 1457 44 267 250 1/44
8 873 27 294

Total 9651 294

Note: The number of clusters in PSU number 10 has been rounded up from 19.48 to 20 in order for the total
number of clusters to be divisible by 147. Also that the selection number 103 lies in the interval between
90 and 121 while the selection number 250 lies in the interval between 224 and 267.

3.7. Sampling with unequal probabilities without replacement

The transition from sampling with replacement to sampling without replacement was
reasonably simple for simple random sampling but that was far from the case for sam-
pling with unequal probabilities. The first into the field were Horvitz and Thompson
(1952). Their estimator is appropriately named for them and is not uncommonly referred
to as the HTE. It is simply the sum over the sample of the ratios of each unit’s surveyAQ2
variable value (yi for the ith unit) to its probability of inclusion in sample (πi). The
authors showed that this estimator was randomization unbiased. They also produced
a formula for its variance and an (usually unbiased) estimator of that variance. These
last two formulae were functions of the “second-order inclusion probabilities,” that is,
the probabilities of inclusion in sample of all possible pairs of population units. If the
number of units in the population is denoted by N, then the number of possible pairs is
N(N −1)/2, so the variance formula involved a summation over N(N −1)/2 terms, and
even the variance estimation formula required a sum over n(n − 1)/2 pairs of sample
units.

Papers by Sen (1953) and by Yates and Grundy (1953) soon followed. Both of these
made use of the fact that when the selection procedure ensured a sample of predetermined
size (n units), the variance was both minimized in itself and capable of being estimated
much more accurately than when the sample size was not fixed. Both papers arrived at the
same formulae for the fixed-sample-size variance and for an estimator of that variance
that was randomization unbiased, provided that the joint inclusion probabilities, πij ,
for all possible pairs of units were greater than zero. However, this Sen–Yates–Grundy
variance estimator still depended on the n(n−1)/2 values of the πij so that the variance
could not be estimated randomization-unbiasedly without evaluating this large number
of joint inclusion probabilities.
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Many without-replacement selection schemes have been devised in attempts to
minimize these problems. One of the earliest and simplest was randomized systematic
sampling, or “RANSYS,” originally described by Goodman and Kish (1950). It involved
randomizing the population units and selecting systematically with a skip interval that
was constant in terms of the size measures. After 1953, dozens of other methods fol-
lowed in rapid succession. For descriptions of these early methods, see Brewer and
Hanif (1982) and Chaudhury and Vos (1988). However, it seemed to be generally true
that if the sample was easy to select, then the inclusion probabilities were difficult to
evaluate and vice versa.

Poisson sampling (Hájek, 1964) is one such method that deserves a special mention.
Although in its original specification, it did not ensure samples of fixed size, it did
have other interesting properties. To select a Poisson sample, each population in turn
is subjected to a Bernoulli trial, with the probability of “success” (inclusion in sample)
being πi, and the selection procedure continues until the last population unit has been
subjected to its trial. The achieved sample sizes are, however, highly variable, and
consequently, Poisson sampling in its original form was not an immediately popular
choice. However, several modified versions were later formulated; several of these and
also the original version are still in current use.

One of the most important of these modified versions was Conditional Poisson Sam-
pling or CPS, also found in Hájek (1964) and discussed in detail by Chen et al. (1994). For
CPS, Poisson samples with a particular expected sample size are repeatedly selected, but
only to be immediately rejected once it it is certain that the eventual sample will not have
exactly that expected sample size. One notable feature of CPS is that it has the maximum
entropy attainable for any population of units having a given set of first-order inclusion
probabilities πi.6 Several fast algorithms for using CPS are now available, in which the
second-order inclusion probabilities are also computed exactly. See Tillé (2006).

In the meantime, however, another path of investigation had also been pioneered by
Hájek (1964). He was concerned that the estimation of variance for the HTE was unduly
complicated by the fact that both the Sen–Yates–Grundy formula for the randomization
variance and their estimator of that variance required knowledge of the second-order
inclusion probabilities. In this instance, Hájek (and eventually others) approximated the
fixed sample size variance of the HTE by an expression that depended only on the first-
order inclusion probabilities. However, initially these approximations were taken to be
specific to particular selection procedures. For instance, Hájek’s 1964 approximation
was originally taken to be specific to CPS.

In time, however, it was noted that very different selection procedures could have
almost identical values of the πij . The first two for which this was noticed were
RANSYS, for which the πij had been approximated by Hartley and Rao (1962), and
the Rao–Sampford selection procedure (Rao, 1965; Sampford, 1967), for which they

6 Entropy is a measure of unpredictability or randomness. If a population is deliberately arranged in order
of size and a sample is selected from it systematically, that sample will have low entropy. If however (as with
RANSYS) the units are arranged in random order before selection, the sample will have high entropy, only
a few percentage points smaller than that of CPS itself. While low entropy sample designs may have very
high or very low randomization variances, high entropy designs with the same set of first-order inclusion
probabilities all have more or less the same randomization variance. For a discussion of the role of entropy
in survey sampling, see Chen et al. (1994).
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had been approximated by Asok and Sukhatme (1976). These were radically differ-
ent selection procedures, but the two sets of approximations to the πij were identical
to order n3/N3. Although both procedures produced fixed size samples, and the pop-
ulation units had inclusion probabilities that were exactly proportional to their given
measures of size, it appeared that the only other thing that the two selection procedures
had in common was that they both involved a large measure of randomization. Entropy,
defined as sumk = 1M[Pk − log(Pk)], where Pk is the probability of selecting the kth
out of the M possible samples, is a measure of the randomness of the selection. It there-
fore appeared plausible that all high-entropy sampling procedures would have much the
same sets of πij , and hence much the same randomization variance. If so, it followed that
approximate variance formulae produced on the basis of any of these methods would
be valid approximations for them all, and that useful estimators of these approximate
variances would be likely also to be useful estimators of the variances of the HTE for
all high-entropy selection procedures.

Whether this is the case or not is currently a matter of some contention, but Preston
and Henderson (2006) provide evidence to the effect that the several randomizationAQ3
variance estimators provided along these lines are all reasonably similar in precision
and smallness of bias, all at least as efficient as the Sen–Yates–Grundy variance estima-
tor (as measured by their randomization MSEs), and all a great deal less cumbersomeAQ4
to use.

In addition, they can be divided into two families, the members of each family having
both a noticeable similarity in structure and a detectable difference in entropy level from
the members of the other family. The first family includes those estimators provided by
Hájek (1964), by Deville (1993, 1999, 2000; see also Chen et al., 1994) initially for
CPS, and by Rosén for Pareto πps (Rosén, 1997a, 1997b). The second family, described
in Brewer and Donadio (2003), is based on the πij values associated with RANSYS
and with the Rao–Sampford selection procedure. These two procedures appear to have
slightly smaller entropies and slightly higher randomization variances than CPS, but the
Preston and Henderson paper seems to indicate that Hájek–Deville family estimators
should be used for CPS, Pareto πps, and similar selection procedures, including in all
probability Tillé (1996), while Brewer–Donadio family estimators would be appropriate
for use with RANSYS and Rao–Sampford.

It is also possible to use replication methods, such as the jackknife and the bootstrap,
to estimate the HTE’s randomization variance. The same Preston and Henderson paper
provides evidence that a particular version of the bootstrap can provide adequate, though
somewhat less accurate, estimates of that variance than can be obtained using the two
families just described.

Finally, it is of interest that the “anticipated variance” of the HTE (that is to say
the randomization expectation of its prediction variance, or equivalently the prediction
expectation of its randomization variance; see Isaki and Fuller, 1982) is a simple function
of the πi and independent of the πij . Hence, for any population that obeys the model of
Eqns. (1), both the randomization variance and the anticipated variance of the HTE can
be estimated without any reference to the πij .

3.8. The generalized regression estimator

Up to this point, it has been assumed that only a single auxiliary variable has been
available for improving the estimation of the mean or total of a survey variable. It
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has also been assumed that the appropriate way to use that auxiliary variable was by
using Eq. (1a), which implies a ratio relationship between those two variables. More
generally, the survey variable could depend on a constant term as well or more than a
single auxiliary variable, or both. However, that relationship is seldom likely to be well
represented by a model that implies the relevance of ordinary least squares (OLS).

One case where OLS might be appropriate is where the survey variable is Expenditure
and the auxiliary variable is Income. The relationship between Income and Expendi-
ture (the Consumption Function) is well known to involve an approximately linear
dependence with a large positive intercept on the Expenditure axis. But OLS assumes
homoskedasticity (the variance of Expenditure remaining constant as Income increases)
and it is more likely that the variance of Expenditure to increase with Income, and in fact
the data from the majority of sample surveys do indicate the existence of a measure of
heteroskedaticity. This in itself is enough to make the use of OLS questionable. Eq. (1c)
allows for the variance of the survey variable to increase linearly with the auxiliary
variable, and in fact it is common for this variance to increase somewhat faster than this,
and occasionally as fast as the square of the auxiliary variable.

A commonly used estimator of total in these more general circumstances is the gen-
eralized regression estimator or GREG (Cassel et al., 1976), which may be written as
follows:

ŶGREG = ŶHTE +
p∑

k=1

(Xk − X̂HTEk)β̂k, (8)

or alternatively as

ŶGREG =
p∑

k=1

Xkβ̂k + (ŶHTE −
p∑

k=1

X̂HTEk)β̂k. (9)

In these two equations, ŶHTE is the HTE of the survey variable, X̂HTEk is the HTE
of the kth auxiliary variable and β̂k is an estimator of the regression coefficient of the
survey variable on the kth auxiliary variable, where the regression is on p auxiliary
variables simultaneously. One of those auxiliary variables may be a constant term, in
which case there is an intercept estimated in the equation. (In that original paper, β̂k was
a generalized least squares estimator, but this was not a necessary choice. For instance,
Brewer (1999b) defined β̂k in such a way as to ensure that the GREG was simultaneously
interpretable in the randomization and prediction approaches to sampling inference, and
also showed that this could be achieved with only a trivial increment to its randomization
variance).

In the second of these two equations, the first term on the right-hand side is a prediction
estimator of the survey variable total, but one that ignores the extend to which the HTE
of the survey variable total differs from the sum of the p products of the individual
auxiliary variable HTEs with their corresponding regression estimates. Särndal et al.
(1992) noted that the first term (the prediction estimator) had a randomization variance
that was of a lower order of magnitude than the corresponding variance of the second
term and therefore suggested that the randomization variance of the GREG estimator
be estimated by estimating only that of the second term. It is true that as the sample
size increases asymptotically, the randomization variance of the prediction estimator
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becomes small with respect to that of the second term, but when the sample size is small,
this can lead to a substantial underestimate of the GREG’s randomization variance.

This is not an easy problem to solve wholly within the randomization approach,
and in Chapter 8 of Brewer (2002, p. 136), there is a recommendation to estimate the
anticipated variance as a substitute. This is obviously not a fully satisfactory solution,
except in the special case considered by Brewer, where the GREG had been devised
to be simultaneously a randomization estimator and a prediction estimator, so more
work on it seems to be called for. Another alternative would be to estimate the GREG’s
randomization variance using a replication method such as the jackknife or the bootstrap,
but again this alternative appears to need further study. For more information regarding
the GREG, see Särndal et al. (1992).

3.9. Permanent random number sampling

One of the important but less obvious objectives of survey sampling is to be able to
control intelligently the manner in which the sample for a repeating survey is allowed to
change over time. It is appropriate for a large sample unit that is contributing substantially
to the estimate of total to remain in sample for fairly long periods, but it is not so
appropriate for small population units to do the same, so it is sensible to rotate the
sample around the population in such a way that the larger the unit is, the longer it
remains in sample. One of the ways of doing this is to assign each unit a PRN, say
between zero and unity, and define the sample as consisting of those population units
that occupy certain regions of that PRN space. Units in a large-size stratum might
initially be in sample if they had PRNs between zero and 0.2 for the initial survey,
between 0.02 and 0.22 for the second, 0.04 and 0.24 for the third, and so on. In this
way, each unit would remain in sample for up to 10 occasions but then be “rested” for
the next 40. Those in a small-size stratum would remain occupy a smaller region of the
PRN space, say initially between zero and 0.04, but the sample PRN space would be
rotated just as fast so that units would remain in sample for no more than two occasions
before being “rested.”

From the data supplier’s point of view, however, it is particularly inappropriate to be
removed from the sample and then included again shortly afterwards. This can easily
happen, however, if a population unit changes its size stratum, particularly if the change
is upward. Consequently, it is inconvenient to use PRN sampling and size stratification
together. Moreover, as already indicated in Section 4 (Chapter 3), stratification by size
is a suboptimal way of satisfying the requirement that the larger the unit, the greater
should be its probability of inclusion in sample.

Hence, when attempting to control and rotate samples using the PRN technique, it
becomes highly desirable, if not indeed necessary, to find a better solution than strati-
fication by size. Brewer (2002) (Chapter 13, pp. 260–265), provides a suggestion as to
how this could be done. It involves the use of a selection procedure known as Pareto
πps sampling, which is due to Rosén (1997a, 1997b). This is a particular form of what
is known as order sampling, and is very similar in its πij values to CPS sampling, so
it is a high-entropy sample selection procedure. It is, however, somewhat complicated
to describe and therefore inappropriate to pursue further in this introductory chapter.
Those who wish to pursue the possibility of using PRN sampling without stratification
by size are referred to those two papers by Rosén and to Chapter 13 of Brewer (2002).
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4. Conclusion

From the very early days of survey sampling, there have been sharp disagreements as
to the relative importance of the randomization and prediction approaches to survey
sampling inference. These disagreements are less severe now than they were in the
1970s and 1980s but to some extent they have persisted into the 21st century. What
is incontrovertible, however, is that prediction inference is parametric and randomiza-
tion nonparametric. Hence the prediction approach is appropriate to the extent that the
prediction models are useful, whereas the randomization approach provides a robust
alternative where they are not useful. It would therefore seem that ideally both should
be used together, but there are those that sincerely believe the one or the other to be
irrelevant. The dialogue therefore continues.

Both the randomization and the prediction approaches offer a wide range of manners
in which the sample can or should be selected, and an equally wide range of manners
in which the survey values (usually, but not exclusively consisting of population totals,
population means, and ratios between them) can be estimated. The choices among them
depend to a large extent on the natures of the populations (in particular, whether they
consist of individuals and households, of establishments and enterprizes, or of some other
units entirely) but also and on the experience and the views of the survey investigators.
However, there are some questions that frequently need to be asked, and these are the
ones that have been focussed on in this chapter. They include, “What are the units
that constitute the population?” “Into what groups or strata do they naturally fall?”
“What characteristics of the population need to be estimated?” “How large a sample is
appropriate?” (or alternatively, “How precise are the estimates required to be?”) “How
should the sample units be selected?” and “How should the population characteristics
be estimated?”

In addition, there are many questions that need to be answered that fall outside the
scope of the discipline of survey sampling. A few of them would be as follows: “What
information are we seeking, and for what reasons?” “What authority, if any, do we have to
ask for this information?” “In what format should it be collected?” “What organizational
structure is required?” “What training needs to be given and to whom?” and not least,
“How will it all be paid for?”

So those questions that specifically relate to survey sampling always need to be
considered in this wider framework. The aim of this Chapter will have been achieved
if the person who has read it has emerged with some feeling for the way in which the
discipline of survey sampling can be used to fit within this wider framework.
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