
//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH001.3D – 1 – [1–27/27]
28.11.2003 5:04PM

1
Introduction to Microcontrollers

1.1 Introduction

A microcontroller is a computer with most of the necessary support chips
onboard. All computers have several things in common, namely:

. A central processing unit (CPU) that ‘executes’ programs.

. Some random-access memory (RAM) where it can store data that is variable.

. Some read onlymemory (ROM)where programs to be executed can be stored.

. Input and output (I/O) devices that enable communication to be established
with the outside world i.e. connection to devices such as keyboard, mouse,
monitors and other peripherals.

There are a number of other common characteristics that define microcon-
trollers. If a computer matches a majority of these characteristics, then it can be
classified as a ‘microcontroller’. Microcontrollers may be:

. ‘Embedded’ inside some other device (often a consumer product) so that
they can control the features or actions of the product. Another name for a
microcontroller is therefore an ‘embedded controller’.

. Dedicated to one task and run one specific program. The program is stored
in ROM and generally does not change.

. A low-power device. A battery-operated microcontroller might consume as
little as 50 milliwatts.

A microcontroller may take an input from the device it is controlling and
controls the device by sending signals to different components in the device.
A microcontroller is often small and low cost. The components may be chosen
to minimise size and to be as inexpensive as possible.

The actual processor used to implement a microcontroller can vary widely. In
many products, such as microwave ovens, the demand on the CPU is fairly low



//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH001.3D – 2 – [1–27/27]
28.11.2003 5:04PM

and price is an important consideration. In these cases, manufacturers turn to
dedicated microcontroller chips – devices that were originally designed to be
low-cost, small, low-power, embedded CPUs. The Motorola 6811 and Intel
8051 are both good examples of such chips.

A typical low-end microcontroller chip might have 1000 bytes of ROM and
20 bytes of RAM on the chip, along with eight I/O pins. In large quantities, the
cost of these chips can sometimes be just a few pence.

In this book the authors will introduce the reader to some of the Philips’ 8051
family of microcontrollers, and show their working, with applications,
throughout the book. The programming of these devices is the same and,
depending on type of device chosen, functionality of each device is determined
by the hardware devices onboard the chosen device.

1.2 Microcontroller types

The predominant family of microcontrollers are 8-bit types since this word
size has proved popular for the vast majority of tasks the devices have been
required to perform. The single byte word is regarded as sufficient for most
purposes and has the advantage of easily interfacing with the variety of IC
memories and logic circuitry currently available. The serial ASCII data is also
byte sized making data communications easily compatible with the microcon-
troller devices. Because the type of application for the microcontroller may vary
enormously most manufacturers provide a family of devices, each member of
the family capable of fitting neatly into the manufacturer’s requirements. This
avoids the use of a common device for all applications where some elements of
the device would not be used; such a device would be complex and hence
expensive. The microcontroller family would have a common instruction subset
but family members differ in the amount, and type, of memory, timer facility,
port options, etc. possessed, thus producing cost-effective devices suitable for
particular manufacturing requirements. Memory expansion is possible with off-
chip RAM and/or ROM; for some family members there is no on-chip ROM,
or the ROM is either electrically programmable ROM (EPROM) or electrically
erasable PROM (EEPROM) known as flash EEPROM which allows for the
program to be erased and rewritten many times. Additional on-chip facilities
could include analogue-to-digital conversion (ADC), digital-to-analogue con-
version (DAC) and analogue comparators. Some family members include
versions with lower pin count for more basic applications to minimise costs.
Many microcontroller manufacturers are competing in the market place and
rather than attempting to list all types the authors have restricted the text to
devices manufactured by one maker. This does not preclude the book from
being useful for applications involing other manufacturer’s devices; there is a
commonality among devices from various sources, and descriptions within the
text can, in most cases, be applied generally. The chapters that follow will deal
with microcontroller family members available from Philips Semiconductors,
and acknowledgement is due to the considerable assistance given by that

2 Introduction to microcontrollers



//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH001.3D – 3 – [1–27/27]
28.11.2003 5:04PM

company in the production of this text. The Philips products are identified by
the numbering system:

8XCXXX

where in general, since there are exceptions, the digit following the 8 is:

0 for a ROMless device
3 for a device with ROM
7 for a device with EPROM/OTP (one time programmable)
9 for a device with FEEPROM (flash).

Following the C there may be 2 or 3 digits. Additional digits, not shown above,
would include such factors as clock speed, pin count, package code and tempera-
ture range. Philips also produces a family of 16-bit microcontrollers in the eXtended
Architecture (XA) range. For these devices Philips claims compatibility with the
80C51 at source code level with full support for the internal registers, operating
modes and 8051 instructions. Also claimed is a much higher speed of operation
than the 8051 devices. The XA products are identified by the numbering system:

PXAG3XXXX

where:

PXA is Philips 80C51 XA
G3 is the derivative name
next digit is memory option:

0 ¼ ROM less

3 ¼ ROM

5 ¼ Bond-out ðemulationÞ
7 ¼ EPROM=OTP

9 ¼ FEEPROM ðflashÞ
next digit is speed:

J ¼ 25MHz

K ¼ 30MHZ

next digit is temperature:
B ¼ 0�C toþ 70�C

F ¼ �40�C toþ 85�C
final digit is package code:

A ¼ Plastic Leaded Chip Carrier (PLCC)

B ¼ Quad Flat Pack (QFP)

etc.

The XA architecture supports:

. 16-bit fully static CPU with a 24-bit program and data address range;

. eight 16-bit CPU registers, each capable of performing all arithmetic and
logic operations as well as acting as memory pointers;

Microcontroller types 3



//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH001.3D – 4 – [1–27/27]
28.11.2003 5:04PM

. both 8-bit and 16-bit CPU registers, each capable of performing all arith-
metic and logic operations;

. an enhanced instruction set that includes bit-intensive logic operations and
fast signed or unsigned 16� 16 multiplies and 32/16 divide;

. instruction set tailored for high-level language support;

. multitasking and real-time executives that include up to 32 vectored inter-
rupts, 16 software traps, segmented data memory and banked registers to
support context switching.

The next section of this chapter will look at a member of the Philips 80C51
family in more detail.

1.3 P89C66x microcontroller

Figure 1.1 shows a P89C664 microcontroller in a PLCC package.

Figure 1.1 Philips P89C664 PLCC package microcontroller

4 Introduction to microcontrollers



//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH001.3D – 5 – [1–27/27]
28.11.2003 5:04PM

P means the device is manufactured by Philips Semiconductors
8 means the micro belongs to the 8-bit 8051 family
9 means Flash code (program) memory
C means CMOS technology and
664 belongs to the 66x family

where:

x ¼ 0 16KB Flash code memory, 512 bytes onboard RAM
x ¼ 2 32KB Flash code memory, 1KB onboard RAM
x ¼ 4 64KB Flash code memory, 2KB onboard RAM
x ¼ 8 64KB Flash code memory, 8KB onboard RAM

All devices belonging to this family of devices have a universal asynchronous
receive transmit (UART), which is a serial interface similar to the COM inter-
face on a PC. Figure 1.2 shows the logic symbol for the device and illustrates
the pin functions.

The P89C66x family of microcontrollers have four 8-bit ports: port 0, port 1,
port 2 and port 3.

Traditionally in the 80C51 family of microcontrollers the function of port 0
and port 2 is primarily to allow for connection to an external PROM (code
memory chip). Port 0 provides both the 8-bit data and the lower 8 bits of the
address bus, A0 to A7. Port 2 provides the upper 8 address bits, A8 to A15. All
of the flash microcontrollers referred to in this text have onboard code memory,
which can be as much as 64KB.

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

01234567

01234567

Port 0

Port 3

P
or

t 2
P

ort 1 

Vcc (5 V DC)
Vcc (power supply)

(Clock) xtal1

(Signal) xtal2

Figure 1.2 Logic symbol for the P89C66x family

P89C66x microcontroller 5



//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH001.3D – 6 – [1–27/27]
28.11.2003 5:04PM

Port 0 pins are all from open-drain transistors and the port pins should
have pull-up resistors (e.g. 2.7 k� from pin to 5V DC supply) if the port is to
be used as a general-purpose interface.

Port 3 has some special function pins, e.g. pins 0 and 1 of port 3 may be used
as receive and transmit for the UART. Functions of other pins will be covered
in later chapters.

In the 80C51 family of microcontrollers the RAM is organised into 8-bit
locations.

MSB LSB

7 6 5 4 3 2 1 0

The bits are numbered 7, 6, 5, 4, 3, 2, 1, 0 where bit 7 is the most significant bit
(MSB) and bit 0 the least significant bit (LSB).

A bit (binary digit) has two values, logic 0 or logic 1. Electrically logic 0 is 0V
whereas logic 1 is the value of the microcontroller IC positive supply voltage.
Logic 1 is usually 5V but nowadays with increasing use of batteries for power
supplies logic 1 could be 3V or 1.8V.

Power depends on the square of the voltage and there is a significant saving
in power (i.e. battery lasts longer) if the microcontroller is powered by 3V or
1.8V power supplies.

The maximum number that can be stored in an 8-bit memory location is
28 � 1, which equals 255. This would occur when all the bits are equal to 1 i.e.:

MSB LSB

1 1 1 1 1 1 1 1

Binary is a base 2 number system and the electronic devices in the microcon-
troller’s logic circuits can be set to logic 0 and logic 1.

The value of each bit is:

MSB LSB

27 26 25 24 23 22 21 20

128 64 32 16 8 4 2 1

Example 1.1

Show that if an 8-bit register contains all logic 1s then the value stored is 255.

Solution

With all bits of the register set to logic 1 the total value stored is given by:

128þ 64þ 32þ 16þ 8þ 4þ 2þ 1 ¼ 255

Remember the sequence by recalling that the LSB is 1 and the other numbers
are successively doubled.

6 Introduction to microcontrollers



//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH001.3D – 7 – [1–27/27]
28.11.2003 5:04PM

Exercise 1.1

What is the maximum number that can be stored in a 10-bit wide register?

1.4 Bits, nibbles, bytes and number conversions

BITS, BYTES AND NIBBLES

A bit is a single binary digit of value logic 1 or logic 0. A nibble is a group of
4 bits, e.g. 1010 is a nibble. A byte is a group of 8 bits e.g. 10100111 is a byte and
the byte is made up of two nibbles 1010 and 0111.

DECIMAL TO BINARY CONVERSION

A decimal number may be converted to binary by dividing the number by 2,
giving a quotient with a remainder of 0 or 1. The process repeats until the final
quotient is 0. The remainders with the first remainder being the least significant
digit determine the binary value. The process is best explained with an example.

Example 1.2

Express the decimal number 54 as a binary number.

Solution

54=2 ¼ 27; remainder 0

27=2 ¼ 13; remainder 1

13=2 ¼ 6; remainder 1

6=2 ¼ 3; remainder 0

3=2 ¼ 1; remainder 1

1=2 ¼ 0; remainder 1

Thus 54 decimal ¼ 110110 and in an 8-bit register the value would be 00110110. A
binary value is often expressed with a letter B following the value i.e. 00110110B.

It may be easier to use the weighted values of an 8-bit register to determine
the binary equivalent of a decimal number i.e. to break the decimal number
down to those weighted elements, which have a logic 1 level.

Example 1.3
Express the decimal number 54 as a binary number using weighted values.

Solution

54 ¼ 32þ 16þ 6

0� 128 þ 0� 64 þ 1� 32 þ 1� 16 þ 0� 8 þ 1� 4 þ 1� 2 þ 0� 1

0 0 1 1 0 1 1 0

Hence 54 decimal ¼ 00110110B.

Bits, nibbles, bytes and number conversions 7



//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH001.3D – 8 – [1–27/27]
28.11.2003 5:04PM

Example 1.4

Express decimal 167 as a binary number.

Solution

Using the technique of Example 1.3:

167 ¼ 128þ 32þ 4þ 2þ 1 ¼ 10100111B

Exercise 1.2
Represent decimal numbers 15 and 250 in binary format.

It follows that to convert binary to decimal the reverse procedure applies i.e.
to convert the binary number 00110110 to decimal is achieved by simply adding
the weighted values of the logic 1 states. This is shown in the answer to Example
1.3 where 00110110B ¼ 54 decimal.

BINARY, HEXADECIMAL (HEX) AND DECIMAL

When working out values at the port pins, the tendency is to think in binary,
e.g. which LED to turn on, the logic level on a switch, etc.

The assembly language software tends to use hexadecimal, a base 16 number
system useful for grouping nibbles. Since childhood we have been taught to
become familiar with the base 10 decimal system. It is useful to be able to work
between the three number systems:

Binary Hex Decimal

0 0 0 0 00 00

0 0 0 1 01 01

0 0 1 0 02 02

0 0 1 1 03 03

0 1 0 0 04 04

0 1 0 1 05 05

0 1 1 0 06 06

0 1 1 1 07 07

1 0 0 0 08 08

1 0 0 1 09 09

1 0 1 0 0A 10

1 0 1 1 0B 11

1 1 0 0 0C 12

1 1 0 1 0D 13

1 1 1 0 0E 14

1 1 1 1 0F 15

8 Introduction to microcontrollers



//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH001.3D – 9 – [1–27/27]
28.11.2003 5:04PM

Consider the following examples:

Example 1.5

Express ABCD as binary.

Solution

ABCD ¼ 1010 1011 1100 1101

Example 1.6

Express 101111000001 as a hexadecimal value.

Solution

1011 1100 0001 ¼ BC1

Example 1.7

Express 01110011110 as a hexadecimal value.

Solution

0011 1001 1110 ¼ 39E

Because in this last example the number of bits does not subdivide into groups
of four bits, the method used is to group into nibbles from the right, filling the
spaces at the front with zeros.

Example 1.8

Express decimal 71 as a hex number.

Solution

71=16 ¼ 4 remainder 7 ¼ 47 Hex; usually written as 47H

Example 1.9

Express decimal 143 as a hex number.

Solution

143=16 ¼ 8 remainder 15 ¼ 8FH

Conversion from binary to decimal can be achieved quickly by first convert-
ing the binary number to hex and then converting the hex number to decimal.
An example illustrates the process.

Example 1.10

Express 11000101B in decimal form.

Solution

Converting to hex:

11000101B ¼ C5H

Bits, nibbles, bytes and number conversions 9



//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH001.3D – 10 – [1–27/27]
28.11.2003 5:04PM

The hex number represents a nibble of binary data and each value is to a power
of 16 with the least significant nibble equal to 160(¼1) and the next significant
nibble equal to 161(¼16). Hence the decimal number is:

ðC� 16Þ þ ð5� 1Þ ¼ ð12� 16Þ þ ð5� 1Þ ¼ 197 decimal

Check:

11000101 ¼ ð1� 128Þ þ ð1� 64Þ þ ð1� 4Þ þ ð1� 1Þ ¼ 197 decimal

Exercise 1.3

Express decimal 200 as a hex number and then as a binary number.

Exercise 1.4

Express the following binary numbers as hex and then decimal numbers.

1. 10000110
2. 10011000011

1.5 Inside microcontrollers

Microcontrollers normally contain RAM, ROM (EEPROM, EPROM,
PROM), logic circuits designed to do specific tasks (UART, I2C, SPI) and
square-wave oscillator (clock).

Built from the logic circuitry the microcontroller has two parts, the processor
core and the onboard peripherals. See Figure 1.3.

RAM locations that have special functions and support the processor core
and onboard peripheral circuitry are called special function registers (SFRs)
and are reserved areas.

The program instructions provide the primary inputs to the processor core
circuitry. See Figure 1.4.

The microcontroller program resides in the PROM (programmable ROM),
which, in the microcontrollers we are considering, uses Flash technology and is
located in the microcontroller IC.

Processor
core

Registers

Onboard
peripherals

Registers

RAM

P
or

ts

C
lo

ck

Figure 1.3 Constituent parts of a microcontroller

10 Introduction to microcontrollers



//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH001.3D – 11 – [1–27/27]
28.11.2003 5:04PM

1.6 Microcontroller programming

The microcontroller program comprises a set of instructions written by the
program designer. There are four classes of instructions:

1. Arithmetic operations
2. Logic operations
3. Data transfer operations
4. Branch operations.

ARITHMETIC OPERATIONS

Arithmetic instructions operate on whole numbers only and support addition,
subtraction, multiplication and division.

Addition

ADD A,#66H ; add the hex number 66 to the accumulator A

This is an example of immediate addressing.
The # sign is important, if it were omitted the operation would have a

different meaning.

ADD A,66H ; add to accumulator A the contents of RAM address
; 0066H

This is an example of direct addressing.
Accumulator A is an SFR; it is an 8-bit register and its RAM address is

00E0H. A large number of instructions use accumulator A, but not all.

INC 66H ; increment (add 1) the contents of address 0066H

Exercise 1.5

Is there any difference between the following two instructions?
A) INC A B) ADD A,#1

Microcontroller
program

Instruction
decoder

Processor
core

Onboard
peripherals

Clock oscillator
circuitry

SFR RAM SFR

P
or

ts

Figure 1.4 Block diagram of a microcontroller

Microcontroller programming 11



//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH001.3D – 12 – [1–27/27]
28.11.2003 5:04PM

Subtraction

SUBB A, #66H ; subtract hex66 from the contents of A

The extra B in the instruction implies Borrow. If the contents of A are less than
the number being subtracted then bit 7 of the program status word (PSW)
SFR will be set. (For details of the PSW and other SFRs, see Appendix C.)

DEC A ; decrement A by 1, put result into A

Exercise 1.6

Is there any difference between the following two instructions?

(1) DEC A (2) SUBB A,#1

Multiplication

MUL AB ; multiply the contents of A and B, put the answer in AB

A is the accumulator and B is another 8-bit SFR provided for use with the
instructions multiply and divide. A and B are both 8-bit registers. The product
of the multiplication process could be a 16-bit answer.

Example 1.11
A ¼ 135 decimal, B ¼ 36 decimal. What would be the value in each register
after executing the instruction MUL AB?

Solution

A� B ¼ 4860 ¼ 0001 0010 1111 1100B ¼ 12FCH
0001 0010 or 12H would be placed in A; 1111 1100 or FCH in B

Exercise 1.7

If A ¼ 2FH and B ¼ 02H, what would each register contain after execution of
the instruction MUL AB?

Division

DIV AB ; divide A by B, put quotient in A and remainder in B

Example 1.12

A ¼ 135, B ¼ 36. What would be the value in each register after execution of
the instruction DIV AB?

Solution

Decimal values are assumed if the value quoted is not followed by an H

A=B ¼ 3; remainder 27 ð27 ¼ 1BHÞ: Hence 03H in A, 1BH in B

If multiplication or division is not being used then register B, which is bit
addressable, can be used as a general-purpose register.

12 Introduction to microcontrollers



//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH001.3D – 13 – [1–27/27]
28.11.2003 5:04PM

Exercise 1.8

If A ¼ 2FH and B ¼ 02H, what would each register contain after the execution
of the instruction DIV AB?

LOGIC OPERATIONS

The set of logic functions include:

ANL AND Logic
ORL OR Logic
XRL exclusive OR Logic
CPL Complement (i.e. switch to the opposite logic level)
RL Rotate Left (i.e. shift byte left)
RR Rotate Right (i.e. shift byte right)
SETB Set bit to logic 1
CLR Clear bit to logic 0

AND operation

The ANL instruction is useful in forcing a particular bit in a register to logic 0
whilst not altering other bits. The technique is called masking.

Suppose register 1 (R1) contains EDH (1110 1101B),

1 1 1 0 1 1 0 1

bit 1 and bit 4 are at logic 0, the rest at logic 1.

ANL R1, #7FH ; 7FH ¼ 0111 1111B, forces bit 7 to zero

1 1 1 0 1 1 0 1

AND

0 1 1 1 1 1 1 1

¼

0 1 1 0 1 1 0 1

Exercise 1.9

If A ¼ 2D, what would be the accumulator contents after execution of the
instruction ANL A, #3BH?

Microcontroller programming 13



//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH001.3D – 14 – [1–27/27]
28.11.2003 5:04PM

ORL operation

Another aspect of masking is to use the ORL instruction to force a particular
bit to logic 1, whilst not altering other bits.

The power control (PCON) SFR in the 8051 family, is not bit addressable
and yet has a couple of bits that can send the microcontroller into idle mode or
power down mode, useful when the power source is a battery.

The contents of the PCON SFR are:

PCON

SMOD1 SMOD2 POF GPF1 GPF2 PD IDL

SMOD1 and 2 are used when setting the baud rate of the serial onboard peripheral.
POF, GPF1 and GPF2 are indictor flag bits. IDL is the idle bit; when set to 1 the
microcontroller core goes to sleep and becomes inactive. The on-chip RAM and
SFRs retain their values. PD is the Power Down bit, which also retains the on-chip
RAM and SFR values but saves the most power by stopping the oscillator clock.

ORL PCON,#02H ; enables Power Down
ORL PCON,#01H ; enables Idle mode

Either mode can be terminated by an external interrupt signal. Details of all
device SFRs are to be found in Appendix C.

Exercise 1.10

If the contents of register 0 (R0) ¼ 38H, what would the contents of that
register be after execution of the following instruction?

ORL R0,#9AH

CPL complement operation

The instructions described so far have operated on bytes (8 bits) but some
instructions operate on bits and CPL is an example.

CPL P1.7 ; complement bit 7 on Port 1

Port 1 is one of the microcontroller’s ports with 8 pins.

Port 1

P1.7 P1.6 P1.5 P1.4 P1.3 P1.2 P1.1 P1.0

MSB LSB

Complement has the action of the inverter logic gate as shown in Figure 1.5.

P 1.7 P 1.7

Figure 1.5 Production of the complement of pin function

14 Introduction to microcontrollers



//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH001.3D – 15 – [1–27/27]
28.11.2003 5:04PM

Exercise 1.11

If the contents of port 0 (P0) ¼ 125, what would be the port contents after
execution of the following instruction?

CPL P0

RL, rotate left one bit, RR, rotate right one bit operations

Suppose the accumulator A contents are 0000 0001B; this is 01H.

RL A ; contents of A become 0000 0010B or 02H
RL A ; 0000 0100B or 04H
RL A ; 0000 1000B or 08H

RL three times has the effect of multiplying A by 23 i.e. by 8.
Suppose the accumulator A contents are 1000 0000B, or 128 decimal, then:

RR A ; contents of A become 0100 0000B which is 64 decimal
RR A ; A becomes 0010 0000B=32 decimal
RR A ; A becomes 0001 0000B=16 decimal
RR A ; A becomes 0000 1000B=8 decimal

RR four times has the same effect as dividing A by 24 i.e. 16.

128

16
¼ 8

Exercise 1.12

If the content of A is 128 and B is 2, what would the register contents be after
execution of the following instructions?

RR A
RL B
RR A
RR A
RL B?

SETB set bit, CLR clear bit operations

This instruction operates on a bit, setting it to logic 1.

SETB P1.7 ; set bit 7 on Port 1 to logic 1

Consider Figure 1.6 where pin 7 of port 1 is connected as shown.
SETB P1.7 puts logic 1 (e.g. 5 V) onto the inverter input and therefore its

output, the LED cathode, is at 0V causing current to flow through the LED.
The LED has a particular forward voltage Vf (refer to component specification
e.g. www.farnell.com).

Microcontroller programming 15



//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH001.3D – 16 – [1–27/27]
28.11.2003 5:04PM

Typically Vf ¼ 2:2V and forward current If ¼ 8mA so that:

R¼ 5V�Vf

If
¼ 5� 2:2

8� 10�3
¼ 2:8� 1000

8
¼ 350�¼ 330� (preferred value)

CLR P1.7 ; clears bit 7 on port 1 to zero

CLR P1.7 puts logic 0 on the inverter gate input and therefore its output, the
LED cathode, becomes logic 1 which is 5V. This gives a voltage difference
(5V DC� cathode voltage) of 0V and the LED turns off.

The inverter gate in the above circuit provides a good current buffer
protecting the microcontroller port pin from unnecessary current loading.
In the above circuit the current flow is between the inverter gate and the 5V
DC supply.

If an inverter gate is not used to drive a LED then the control may be directly
from the port pin but this will demand a current in milliamps from the port pin.

Generally a microcontroller port pin can sink current better than it can
source current. See Figure 1.7.

CLR port_pin; will ground the LED cathode in the SINK circuit and turn it
on. This will turn the LED off in the SOURCE circuit.

5 V DC

R

LED

Cathode

Inverter
gate

P1.7

Figure 1.6 Use of an LED to indicate the state of port 1, pin 7

5 V DC

R

LED

SINK
Port pin

Port pin

R

LED

Ground

SOURCE

Figure 1.7 Arrangements to allow a port pin to SINK or SOURCE current

16 Introduction to microcontrollers



//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH001.3D – 17 – [1–27/27]
28.11.2003 5:04PM

SETB port_pin; will put logic 1 on the LED cathode in the SINK circuit and
turn it off. This will turn the LED on in the SOURCE circuit.

Exercise 1.13

If Vcc ¼ 5V and for an LED, Vf ¼ 0:7V and the pin P0.0 of the microcon-
troller port can sink 10mA and source 50 mA.

1. How you connect the LED to the microcontroller and
2. Calculate the value of series resistor R.

Data transfer operations

This is mainly concerned with transfer of data bytes (8 bits). SETB and CLR
have just been covered; they operate on bits.

MOV operation

MOV moves bytes of data. Consider driving a seven-segment display (decimal
point dp included) where each LED is driven by the sink method. See Figure 1.8.

Each LED illuminates a segment. The seven-segment display is shown to the
right with its standard segment identification letters.

Example 1.13

Write two program lines, one to display 3, the second to display 4. In both cases
turn the decimal point off.

Solution

P1.7 P1.6 P1.5 P1.4 P1.3 P1.2 P1.1 P1.0

dp g f e d c b a

3 1 0 1 1 0 0 0 0 B0H

4 1 0 0 1 1 0 0 1 99H

5 V DC

R

P1.7

5 V DC

R

P1.6

5 V DC

R

P1.5

5 V DC

R

P1.4

5 V DC

R

P1.3

5 V DC

R

P1.2

5 V DC

R

P1.1

5 V DC

R

P1.0

dp g f e d c b a

a

b

c

gf

e
d

dp

Figure 1.8 Arrangement for a seven-segment LED display

Microcontroller programming 17



//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH001.3D – 18 – [1–27/27]
28.11.2003 5:04PM

MOV P1,#B0H ; display 3
MOV P1,#99H ; display 4

Note: MOV P1,#B0H would give a syntax error. In common with a number
of cross assemblers the software would see B0H as a label because it starts with
a hex symbol; 99H would be acceptable since it starts with a number. The
correct program line should be MOV P1,#0B0H i.e. a zero must be placed in
front of the hex symbol.

The instruction MOV is used to move RAM data that is onboard the
microcontroller.

Examples

MOV 0400H,#33H ;move the number 33 hex toRAMaddress 0400 hex
MOV A,P1 ; move the contents of port 1 to accumulator A
MOV R0,P3 ; move the contents of port 3 into register R0

Note: As well as the accumulator A the microcontroller has 32 registers in
four banks of eight in the processor core. These 32 bytes are fast RAM and
should be used in preference to standard onboard RAM.

Each of the banks contain 8 registers R7, R6, R5, R4, R3, R2, R1, R0. There
are four banks: 0, 1, 2 and 3.

Bank 0 is the default bank; the other banks can be selected by two bits
(RS1,RS0) in the program status word (PSW) SFR

PSW

CY AC F0 RS1 RS0 OV F1 P

0 0 Register bank 0 (default)

0 1 Register bank 1

1 0 Register bank 2

1 1 Register bank 3

Other PSW bits are indicator flags:

CY (carry flag)
AC (auxiliary carry flag)
OV (overflow flag)
P (parity flag)
F0, F1 (general-purpose user-defined flags)

More information on the register banks and the SFRs can be found in
Appendix C. MOVX is used to move data between the microcontroller and
the external RAM. MOVC is used to move data (e.g. table data) from PROM
(also called code memory) to RAM.

18 Introduction to microcontrollers



//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH001.3D – 19 – [1–27/27]
28.11.2003 5:04PM

Exercise 1.14

Write an instruction to select the register bank 2 of the microcontroller.

Branch operations

There are two types, unconditional and conditional branching. Unconditional
branch operations are

ACALL absolute call
LCALL long call

ACALL calls up a subroutine, the subroutine must always have RET as its last
operation. ACALL range is limited to þ127 places forward or �128 places
backward. If your program jumps further than ACALL the compiler will
report that the program is jumping out of bounds and replacement by LCALL
will solve the problem.

ACALL is two bytes long, LCALL is three bytes long.

AJMP absolute jump
LJMP long jump
SJMP short jump

Similar to ACALL and LCALL, AJMP and LJMP jump to addresses whereas
SJMP, which has a similar range to ACALL and AJMP, jumps a number of
places.

The difference could be seen in the machine code. Consider the program:

$INCLUDE (REG66X.INC) ; lists all sfr addresses
ORG 0 ; sets start address to 0
SJMP START ; short jump to START label
ORG 0040H ; puts next program line at address 0040H

START: SETB P1.7 ; set pin 7 on port 1 to logic 1
CLR P1.7 ; clear pin 7 on port 1 to logic 0
AJMP START ; jump back to START label
END ; no more assembly language

The machine code can be viewed in the list file, progname.lst:

SJMP START
Shows as 803E 80 is the hex for instruction SJMP

3E is the relative jump to reach 0040H where START is; it
jumps from address 0002, the address after SJMP START,
0002þ 3E ¼ 0040H

AJMP START
Shows as 0140 01 is the hex for instruction AJMP

40 is short for address 0040

Microcontroller programming 19



//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH001.3D – 20 – [1–27/27]
28.11.2003 5:04PM

If LJMP had been used instead of AJMP then,
LJMP START
Shows as 020040 02 is the hex for instruction LJMP

0040 is the full address

Exercise 1.15

In your own words describe the difference between ACALL and AJMP instruc-
tions.
Conditional branch operations:

JZ Jump if zero
JNZ Jump if not zero
DJNZ Decrement and jump if not zero

Consider an example (a subroutine called by ACALL):

DELAY: MOV R0,#34 ; move decimal 34 into register R0
TAKE: DJNZ R0,TAKE ; keep subtracting 1 from R0 until zero
RET ; return from subroutine

CJNE Compare and jump if not equal
Consider:

DELAY: MOV R0,#34 ; move decimal 34 into register R0
TAKE: DEC R0 ; decrement R0

CJNE R0,#12,TAKE ; compare R0 with 12 jump to TAKE if not
RET ; return when R0 equals 12

Other instructions are:

JC jump if carry is 1
JNC jump if carry is 0

JB jump if bit ¼ 1
JNB jump if bit ¼ 0

Consider a practical example of testing switched logic levels. Refer to Figure 1.9.
If the switch is not pressed the voltage on the port pin is 0V. When the switch
is pressed and held, then the port pin is connected directly to 5V. To test for
switch being pressed, the following program could be used:

$INCLUDE (REG66X.INC) ; lists all sfr addresses
ORG 0 ; sets start address to 0
SJMP START ; short jump to START label
ORG 0040H ; putsnextprogramlineataddress0040H

START: JB P1.0,PULSE ; jump to PULSE if pin 0 port 1 is logic 1
CLR P1.7 ; otherwise clear pin 7 port 1 to zero
SJMP START ; go to START check switch

20 Introduction to microcontrollers



//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH001.3D – 21 – [1–27/27]
28.11.2003 5:04PM

PULSE: SETB P1.7 ; set pin 7 on port 1 to logic 1
CLR P1.7 ; clear pin 7 on port 1 to logic 0
AJMP START ; go to START check switch
END ; no more assembly language

Also, consider the case when pressing the switch generates a logic ‘0’, as shown
in Figure 1.10.

If the switch is not pressed the voltage on the port pin is 5V. When the switch
is pressed and held, the port pin is directly connected to ground or 0V. The test
instruction could be:

CHECK: JNB P1.0,PULSE ; jump to PULSE if pin 0 port 1 is logic 0
SJMP CHECK

PULSE:

Exercise 1.16

In your own words describe the difference between JNB and JNC instructions.

+5 V DC

To micro pin

1 K

Normally logic 0

GND

Figure 1.9 Circuit to produce logic levels 0 or 1 at a port pin. Circuit normally
producing logic 0

+5 V DC

3.3 K

To micro pin

GND

Normally logic 1

Figure 1.10 Circuit to produce logic levels 0 or 1 at a port pin. Circuit normally
producing logic 1

Microcontroller programming 21



//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH001.3D – 22 – [1–27/27]
28.11.2003 5:04PM

1.7 Commonly used instructions of the 8051 microcontroller

The P89C664 is a member of the 8051 family; it is a CISC device having well
over 100 instructions. The instructions used in this text could be the first set to
become familiar with.

MOV move a byte

SETB set or clear bits
CLR

ACALL call up a subroutine
RET

SJMP unconditional jump
AJMP

JB bit test, conditional jump
JNB

DJNZ byte test, conditional jump
CJNE

ORL OR logic, useful for forcing bits to logic 1
ANL AND logic, useful for forcing bits to logic 0

The full 8051 instruction set is shown in Appendix A.

COMMONLY USED ASSEMBLER DIRECTIVES

ORG define address
DB define bytes, useful for table data
END all assembly language programs must end with this.

1.8 Microcontroller clock

The microcontroller may be likened to a logic circuit whose logic states change
in synchronism with the microcontroller clock signal. This is a square-wave
signal as shown in Figure 1.11.

Knowledge of the microcontroller clock cycle time is useful in defining timing
events used in applications.

Example 1.14

A P89C664 microcontroller has a clock frequency of 11.0592MHz. What is the
time for each cycle?

22 Introduction to microcontrollers



//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH001.3D – 23 – [1–27/27]
28.11.2003 5:04PM

Solution

Cyclic time ðTÞ ¼ 1

11:0592� 106
¼ 90:423 ns ðn ¼ 10�9Þ

Now let us look at the previous program:

$INCLUDE (REG66X.INC) ; lists all sfr addresses
ORG 0 ; sets start address to 0
SJMP START ; short jump to START label
ORG 0040H ; putsnextprogramlineataddress0040H

START: JB P1.0,PULSE ; jump to PULSE if pin 0, port 1 is logic 1
CLR P1.7 ; otherwise clear pin 7 port 1 to zero
SJMP START ; go to START check switch

PULSE: SETB P1.7 ; set pin 7 on port 1 to logic 1
CLR P1.7 ; clear pin 7 on port 1 to logic 0
AJMP START ; go to START check switch
END ; no more assembly language

Initial inspection might lead to the conclusion that the output signal on port 1,
pin 7 is a square wave being turned on by SETB and off by CLR. Closer
inspection reveals that CLR is held for the extra duration of AJMP and JB.
Reference to Appendix A shows that:

SETB takes 6 microcontroller clock cycles
CLR takes 6 microcontroller clock cycles
AJMP takes 12 microcontroller clock cycles
JB takes 12 microcontroller clock cycles

SETB is held for 6 clock cycles and CLR is held for 30 clock cycles, not an equal
on/off waveform as Figure 1.12 shows.

If an equal on/equal off waveform is required then the NOP (No OPeration) can
be used. The NOP operation takes 6 clock cycles. The program could be modified:

$INCLUDE (REG66X.INC) ; lists all sfr addresses
ORG 0 ; sets start address to 0
SJMP START ; short jump to START label
ORG 0040H ; putsnextprogramlineataddress0040H

START: JB P1.0,PULSE ; jump to PULSE if pin 0, port 1 is logic 1
CLR P1.7 ; otherwise clear pin 7, port 1 to zero
SJMP START ; go to START check switch

T

Frequency  f  = 1/ T

5 V

0 V

Figure 1.11 Square-wave signal at a frequency f Hz

Microcontroller clock 23



//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH001.3D – 24 – [1–27/27]
28.11.2003 5:04PM

PULSE: SETB P1.7 ; set pin 7 on port 1 to logic 1
NOP ; hold logic 1 on pin 7, port 1
NOP
NOP
NOP
CLR P1.7 ; clear pin 7 on port 1 to logic 0
AJMP START ; go to START check switch
END ; no more assembly language

The modified waveform is shown in Figure 1.13.

The cycle time of the equal on/off waveform¼ 60 microcontroller clock cycles.
If the microcontroller had a clock frequency of 11.0592MHz then a clock cycle
period T is the reciprocal of this frequency, T ¼ 90:423ns. Therefore the cycle time
of the equal on/off signal is 60� 90:423ns¼ 5:43ms. The frequency of this signal is
1/5:43ms¼ 184kHz. The maximum signal frequency would depend on the max-
imum microcontroller clock frequency; for the P89C664 microcontroller the max-
imum clock frequency is 20MHz. Quite often there is a requirement to generate
accurate lower frequency signals and for these the basic signal must be slowed
down using a time delay.

1.9 Time delays

The NOP instruction is a simple time delay but apart from this there are two
methods of creating time delays:

. register decrement

. onboard timers.

SETB
6

SETBCLR
6

AJMP
12

JB
12

Figure 1.12 Waveform produced using specified instructions. Note that the
waveform is not a square wave (i.e. there are unequal ON and OFF periods)

SETB
6

NOP
6

NOP
6

NOP
6

NOP
6

CLR
6

AJMP
12

JB
12

SETB

Figure 1.13 Modification to the waveform of Figure 1.12 using NOP instructions to
produce a square-wave output

24 Introduction to microcontrollers



//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH001.3D – 25 – [1–27/27]
28.11.2003 5:04PM

The use of onboard timers will be described in a later chapter; here the register
decrement method will be described.

The basic single loop program lines are:

DELAY: MOV R0,#number ; move a number into an 8-bit
; register R0

TAKE: DJNZ R0,TAKE ; keep decrementing R0 until it is
; zero

RET ; return from DELAY subroutine

MOV takes 6 clock cycles, DJNZ and RET each take 12 clock cycles. The delay
is called up from the main program using ACALL, which takes 12 clock cycles.
The delay time is (12þ 6þ (number� 12)þ 12) clock cycles. When the num-
ber is small the NOPs (total 24 cycles) should be included,

Delay time ¼ ð24þ 12þ 6þ ðnumber� 12Þ þ 12Þ clock cycles

Delay time ¼ ð54þ ð12� numberÞÞ clock cycles

Example 1.15

A P89C664 microcontroller has an 11.0592MHz crystal-controlled clock oscil-
lator. Write an assembly language program that will generate a 5 kHz square-
wave signal on pin 7 of port 1 when a switch causes pin 0 on the same port to go
to logic 1.

Solution

Clock frequency ¼ 11:0592MHz
Thus period of clock cycle ¼ ð1=11:0592MHzÞ ¼ 90:423 ns
Signal frequency ¼ 5 kHz
Therefore period of signal cycle ¼ ð1=5 kHzÞ ¼ 200 ms

The delay required is half of this value since the square wave has an equal
logic 1/logic 0 time. See Figure 1.14.

Delay ¼ 100 ms ¼ ð54þ ð12� numberÞÞ � 90:423 ns

Hence number¼ ((100 ms/90.423 ns)�54)/12¼ 88 decimal (to the nearest whole
number).

Logic 1

Logic 0

Delay Delay

Cycle time

Figure 1.14 Delay period determination for a square-wave signal

Time delays 25



//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH001.3D – 26 – [1–27/27]
28.11.2003 5:04PM

$INCLUDE (REG66X.INC) ; lists all sfr addresses
ORG 0 ; sets start address to 0
SJMP START ; short jump to START label
ORG 0040H ; putsnextprogramlineataddress0040H

START: JB P1.0,PULSE ; jump to PULSE if pin 0, port 1 is logic 1
CLR P1.7 ; otherwise clear pin 7, port 1 to zero
SJMP START ; go to START check switch

PULSE: SETB P1.7 ; set pin 7 on port 1 to logic 1
ACALL DELAY
NOP ; hold logic 1 on pin 7 port 1
NOP
NOP
NOP
CLR P1.7 ; clear pin 7 on port 1 to logic 0
ACALL DELAY
AJMP START ; go to START check switch

DELAY: MOV R0,#88
TAKE: DJNZ R0,TAKE

RET
END ; no more assembly language

The delay depended on the chosen microcontroller clock frequency and in the
example this was 11.0592MHz. This apparently unusual number gives standard
baud rate values, which will be useful later. For microcontroller clock frequen-
cies in this region the single loop register decrement method gives delays in the
region of microseconds. Generally a double loop gives delays in the region of
milliseconds and a triple loop delay gives delays in the region of seconds.

Exercise 1.17

Using the techniques above, assuming the clock frequency is 11.0592MHz, write
a program to generate a pulse of 20kHz on pin 7 of port 1 of the microcontroller.

DOUBLE LOOP DELAY

DELAY: MOV R1,#number1
INNER: MOV R0,#number2
TAKE: DJNZ R0,TAKE

DJNZ R1,INNER
RET

Approximately the time delay¼ (number 1)� (number 2)� 12 clock cycle periods.
For example, suppose number 1¼ 200 and number 2¼ 240 and 1 clock
cycle¼ 90.423 ns.

Time delay ¼ 200� 240� 12� 90:423 ns ¼ 52:1ms

The bigger the values of number 1 and number 2, the better the approximation.
The software used has simulation and the values of number 1 and number 2 can
be fine tuned to give the accurate delay during simulation.

26 Introduction to microcontrollers



//INTEGRAS/ELS/PAGINATION/ELSEVIER UK/MAB/3B2/FINALS_03-11-03/CH001.3D – 27 – [1–27/27]
28.11.2003 5:04PM

TRIPLE LOOP DELAY

DELAY: MOV R2,#number1
OUTER: MOV R1,#number2
INNER: MOV R0,#number3
TAKE: DJNZ R0,TAKE

DJNZ R1,INNER
DJNZ R2,OUTER
RET

Approximately the delay=(number 1)� (number 2) � (number 3)�12 clock
cycle periods. Suppose number 1=40, number 2=200, number 3=240, 1 clock
cycle period=90.423 ns.

Delay ¼ ð40� 200� 240� 12� 90:423Þ ns � 2 s

Long enough to see a LED going on and off.
In later chapters the use of the microcontroller’s onboard timers will be used

to describe an alternative method of producing time delays. The timer method
will require the configuration of the timer SFRs.

The register decrement method described above is a valid alternative, easy to
implement and does not require the configuration of SFRs.

Summary

. A microcontroller is a computer with most of the necessary support chips
onboard. Microcontrollers can be embedded and are available in a variety
of forms to suit practical applications.

. Number systems, such as binary and hexadecimal, are used in microcon-
troller applications. If decimal numbers are required they can be converted
to binary and/or hexadecimal and vice versa.

. There are four classes of instructions namely: arithmetic, logical, data
transfer and branch instructions.

. The microcontroller port pins may be required to sink and source currents.

. Time delays may be achieved by using register decrement instructions or by
using onboard timer circuits.

. Using register decrement, longer delays can be achieved by the use of double
or triple loops.

Summary 27


