Computational Finance Using C and C#
Quantitative Finance Series

Aims and Objectives

• Books based on the work of financial market practitioners and academics
• Presenting cutting-edge research to the professional/practitioner market
• Combining intellectual rigour and practical application
• Covering the interaction between mathematical theory and financial practice
• To improve portfolio performance, risk management and trading book performance
• Covering quantitative techniques

Market
Brokers/Traders; Actuaries; Consultants; Asset Managers; Fund Managers; Regulators; Central Bankers; Treasury Officials; Technical Analysis; and Academics for Masters in Finance and MBA market.

Series Titles
Computational Finance Using C and C#
The Analytics of Risk Model Validation
Forecasting Expected Returns in the Financial Markets
Corporate Governance and Regulatory Impact on Mergers and Acquisitions
International Mergers and Acquisitions Activity Since 1990
Forecasting Volatility in the Financial Markets, Third Edition
Venture Capital in Europe
Funds of Hedge Funds
Initial Public Offerings
Linear Factor Models in Finance
Computational Finance
Advances in Portfolio Construction and Implementation
Advanced Trading Rules, Second Edition
Real R&D Options
Performance Measurement in Finance
Economics for Financial Markets
Managing Downside Risk in Financial Markets
Derivative Instruments: Theory, Valuation, Analysis
Return Distributions in Finance

Series Editor: Dr Stephen Satchell

Dr Satchell is Reader in Financial Econometrics at Trinity College, Cambridge; Visiting Professor at Birkbeck College, City University Business School and University of Technology, Sydney. He also works in a consultative capacity to many firms, and edits the journal Derivatives: use, trading and regulations and the Journal of Asset Management.
Computational Finance
Using C and C#

George Levy
To my parents Paul and Paula
Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td></td>
<td>xi</td>
</tr>
<tr>
<td>1</td>
<td>Overview of financial derivatives</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Introduction to stochastic processes</td>
<td>5</td>
</tr>
<tr>
<td>2.1</td>
<td>Brownian motion</td>
<td>5</td>
</tr>
<tr>
<td>2.2</td>
<td>A Brownian model of asset price movements</td>
<td>9</td>
</tr>
<tr>
<td>2.3</td>
<td>Ito’s formula (or lemma)</td>
<td>10</td>
</tr>
<tr>
<td>2.4</td>
<td>Girsanov’s theorem</td>
<td>12</td>
</tr>
<tr>
<td>2.5</td>
<td>Ito’s lemma for multiasset geometric Brownian motion</td>
<td>13</td>
</tr>
<tr>
<td>2.6</td>
<td>Ito product and quotient rules in two dimensions</td>
<td>15</td>
</tr>
<tr>
<td>2.7</td>
<td>Ito product in (n) dimensions</td>
<td>18</td>
</tr>
<tr>
<td>2.8</td>
<td>The Brownian bridge</td>
<td>19</td>
</tr>
<tr>
<td>2.9</td>
<td>Time-transformed Brownian motion</td>
<td>21</td>
</tr>
<tr>
<td>2.10</td>
<td>Ornstein–Uhlenbeck process</td>
<td>24</td>
</tr>
<tr>
<td>2.11</td>
<td>The Ornstein–Uhlenbeck bridge</td>
<td>27</td>
</tr>
<tr>
<td>2.12</td>
<td>Other useful results</td>
<td>31</td>
</tr>
<tr>
<td>2.13</td>
<td>Selected problems</td>
<td>33</td>
</tr>
<tr>
<td>3</td>
<td>Generation of random variates</td>
<td>37</td>
</tr>
<tr>
<td>3.1</td>
<td>Introduction</td>
<td>37</td>
</tr>
<tr>
<td>3.2</td>
<td>Pseudo-random and quasi-random sequences</td>
<td>38</td>
</tr>
<tr>
<td>3.3</td>
<td>Generation of multivariate distributions: independent variates</td>
<td>41</td>
</tr>
<tr>
<td>3.4</td>
<td>Generation of multivariate distributions: correlated variates</td>
<td>47</td>
</tr>
<tr>
<td>4</td>
<td>European options</td>
<td>59</td>
</tr>
<tr>
<td>4.1</td>
<td>Introduction</td>
<td>59</td>
</tr>
<tr>
<td>4.2</td>
<td>Pricing derivatives using a martingale measure</td>
<td>59</td>
</tr>
<tr>
<td>4.3</td>
<td>Put call parity</td>
<td>60</td>
</tr>
<tr>
<td>4.4</td>
<td>Vanilla options and the Black–Scholes model</td>
<td>62</td>
</tr>
<tr>
<td>4.5</td>
<td>Barrier options</td>
<td>85</td>
</tr>
<tr>
<td>5</td>
<td>Single asset American options</td>
<td>97</td>
</tr>
<tr>
<td>5.1</td>
<td>Introduction</td>
<td>97</td>
</tr>
<tr>
<td>5.2</td>
<td>Approximations for vanilla American options</td>
<td>97</td>
</tr>
<tr>
<td>5.3</td>
<td>Lattice methods for vanilla options</td>
<td>114</td>
</tr>
</tbody>
</table>
5.4 Grid methods for vanilla options 135
5.5 Pricing American options using a stochastic lattice 172

6 Multiasset options 181
6.1 Introduction 181
6.2 The multiasset Black–Scholes equation 181
6.3 Multidimensional Monte Carlo methods 183
6.4 Introduction to multidimensional lattice methods 185
6.5 Two asset options 190
6.6 Three asset options 201
6.7 Four asset options 205

7 Other financial derivatives 209
7.1 Introduction 209
7.2 Interest rate derivatives 209
7.3 Foreign exchange derivatives 228
7.4 Credit derivatives 232
7.5 Equity derivatives 237

8 C# portfolio pricing application 245
8.1 Introduction 245
8.2 Storing and retrieving the market data 254
8.3 The PricingUtils class and the Analytics_MathLib 262
8.4 Equity deal classes 267
8.5 FX deal classes 280

Appendix A: The Greeks for vanilla European options 289
A.1 Introduction 289
A.2 Gamma 290
A.3 Delta 291
A.4 Theta 292
A.5 Rho 293
A.6 Vega 294

Appendix B: Barrier option integrals 295
B.1 The down and out call 295
B.2 The up and out call 298

Appendix C: Standard statistical results 303
C.1 The law of large numbers 303
C.2 The central limit theorem 303
C.3 The variance and covariance of random variables 305
C.4 Conditional mean and covariance of normal distributions 310
C.5 Moment generating functions 311
Preface

This book builds on the author’s previous book Computational Finance: Numerical Methods for Pricing Financial Instruments, which contained information on pricing equity options using C code. The current book covers the following instrument types:

- Equity derivatives
- Interest rate derivatives
- Foreign exchange derivatives
- Credit derivatives

There is also an extensive final chapter which demonstrates how a C-based analytics pricing library can be used by C# portfolio valuation software. In addition this application:

- illustrates the use of C# dictionaries, abstract classes and .NET InteropServices
- permits the reader to value bespoke portfolios
- allows market data to be specified via a configuration file
- contains a generic basket pricer for which the reader can specify the payoff function
- can be freely downloaded for use by the reader.

The current book also contains increased coverage of stochastic processes, Ito calculus and Monte Carlo simulation. These topics are supported by practical applications and solved example problems.

In addition the Numerical Algorithms Group (NAG) have allowed readers to enjoy an extended trial licence for the NAG C library and associated financial routines from the following url: www.nag.co.uk-market/elsevier_glevy. The NAG C library may be called into C# and provides a large suite of mathematical routines addressing many areas covered in this book (random numbers, statistical distributions, option pricing, correlation and covariance matrices etc.).

Computational Finance Using C and C# also includes supporting software that may be downloaded for free. The software consists of executable files, configuration files and results files. With these files the user can run the example portfolio application in Chapter 8 and change the portfolio composition and the attributes of the deals.

Additional upgrade software is available for purchase with Computational Finance Using C and C#. The software includes:

- Code to run all the C, C# and Excel examples in the book
• Complete C source code for the Analytics_Mathlib math library that is used in the book
• C# source code, market data and portfolio files for the portfolio application described in Chapter 8

All the C/C# software in the book can be compiled using either Visual Studio .NET 2005, or the freely available Microsoft Visual C#/C++ Express Editions.

I would like to take this opportunity of thanking my wife Kathy for her support.

In addition I am grateful to Karen Maloney of Elsevier for her patience with regard to the book’s delivery date, and Dr. Stephen Satchell of Trinity College Cambridge for allowing me the opportunity to write a sequel.

George Levy
Benson, Oxfordshire, UK
2008