
S E C T I O N

I

Introduction to
Embedded Systems

3

Introduction to Embedded Systems

The field of embedded systems is wide and varied, and it is difficult to pin down exact defi-
nitions or descriptions. However, Chapter 1 introduces a useful model that can be applied
to any embedded system. This model is introduced as a means for the reader to understand
the major components that make up different types of electronic devices, regardless of their
complexity or differences. Chapter 2 introduces and defines the common standards adhered to
when building an embedded system. Because this book is an overview of embedded systems
architecture, covering every possible standards-based component that could be implemented is
beyond its scope. Therefore, significant examples of current standards-based components were
selected, such as networking and Java, to demonstrate how standards define major components
in an embedded system. The intention is for the reader to be able to use the methodology
behind the model, standards, and real-world examples to understand any embedded system,
and to be able to apply any other standard to an embedded system’s design.

5

C H A P T E R 1
A Systems Engineering Approach

to Embedded Systems Design

1.1 What Is an Embedded System?
An embedded system is an applied computer system, as distinguished from other types of com-
puter systems such as personal computers (PCs) or supercomputers. However, you will find
that the definition of “embedded system” is fluid and difficult to pin down, as it constantly
evolves with advances in technology and dramatic decreases in the cost of implementing vari-
ous hardware and software components. In recent years, the field has outgrown many of its
traditional descriptions. Because the reader will likely encounter some of these descriptions
and definitions, it is important to understand the reasoning behind them and why they may
or may not be accurate today, and to be able to discuss them knowledgeably. Following are a
few of the more common descriptions of an embedded system:

• Embedded systems are more limited in hardware and/or software functionality than
a personal computer (PC). This holds true for a significant subset of the embed-
ded systems family of computer systems. In terms of hardware limitations, this can
mean limitations in processing performance, power consumption, memory, hardware
functionality, and so forth. In software, this typically means limitations relative to a
PC—fewer applications, scaled-down applications, no operating system (OS) or a
limited OS, or less abstraction-level code. However, this definition is only partially
true today as boards and software typically found in PCs of past and present have
been repackaged into more complex embedded system designs.

• An embedded system is designed to perform a dedicated function. Most embedded
devices are primarily designed for one specific function. However, we now see
devices such as personal data assistant (PDA)/cell phone hybrids, which are embed-
ded systems designed to be able to do a variety of primary functions. Also, the latest
digital TVs include interactive applications that perform a wide variety of general

In This Chapter

  Define embedded system
  Introduce the design process
  Define an embedded systems architecture
  Discuss the impact of architecture
  Summarize the remaining sections of the book

Chapter 1

6

functions unrelated to the “TV” function but just as important, such as e-mail, web
browsing, and games.

• An embedded system is a computer system with higher quality and reliability require-
ments than other types of computer systems. Some families of embedded devices
have a very high threshold of quality and reliability requirements. For example, if a
car’s engine controller crashes while driving on a busy freeway or a critical medical
device malfunctions during surgery, very serious problems result. However, there are
also embedded devices, such as TVs, games, and cell phones, in which a malfunction
is an inconvenience but not usually a life-threatening situation.

• Some devices that are called embedded systems, such as PDAs or web pads, are not
really embedded systems. There is some discussion as to whether or not computer
systems that meet some, but not all of the traditional embedded system definitions are
actually embedded systems or something else. Some feel that the designation of these
more complex designs, such as PDAs, as embedded systems is driven by nontechnical
marketing and sales professionals, rather than engineers. In reality, embedded engi-
neers are divided as to whether these designs are or are not embedded systems, even
though currently these systems are often discussed as such among these same design-
ers. Whether or not the traditional embedded definitions should continue to evolve, or
a new field of computer systems be designated to include these more complex systems
will ultimately be determined by others in the industry. For now, since there is no new
industry-supported field of computer systems designated for designs that fall in between
the traditional embedded system and the general-purpose PC systems, this book
supports the evolutionary view of embedded systems that encompasses these types of
computer system designs.

Electronic devices in just about every engineering market segment are classified as embedded
systems (see Table 1-1). In short, outside of being “types of computer systems,” the only spe-
cific characterization that continues to hold true for the wide spectrum of embedded system
devices is that there is no single definition reflecting them all.

Table 1-1: Examples of embedded systems and their markets [1-1]

Market Embedded Device
Automotive Ignition System

Engine Control
Brake System (i.e., Antilock Braking System)

Consumer Electronics Digital and Analog Televisions
Set-Top Boxes (DVDs, VCRs, Cable Boxes, etc.)
Personal Data Assistants (PDAs)
Kitchen Appliances (Refrigerators, Toasters, Microwave Ovens)
Automobiles
Toys/Games
Telephones/Cell Phones/Pagers
Cameras
Global Positioning Systems (GPS)

A Systems Engineering Approach to Embedded Systems Design

7

Market Embedded Device
Industrial Control Robotics and Control Systems (Manufacturing)
Medical Infusion Pumps

Dialysis Machines
Prosthetic Devices
Cardiac Monitors

Networking Routers
Hubs
Gateways

Office Automation Fax Machine
Photocopier
Printers
Monitors
Scanners

1.2 Embedded Systems Design
When approaching embedded systems architecture design from a systems engineering point
of view, several models can be applied to describe the cycle of embedded system design.
Most of these models are based upon one or some combination of the following development
models:[1-5]

• The big-bang model, in which there is essentially no planning or processes in place
before and during the development of a system.

• The code-and-fix model, in which product requirements are defined but no formal
processes are in place before the start of development.

• The waterfall model, in which there is a process for developing a system in steps,
where results of one step flow into the next step.

• The spiral model, in which there is a process for developing a system in steps, and
throughout the various steps, feedback is obtained and incorporated back into the
process.

This book supports the model shown in Figure 1-1, which I refer to as the Embedded Sys-
tems Design and Development Lifecycle Model. This model is based on a combination of the
popular waterfall and spiral industry models.[1-2] When I investigated and analyzed the many
successful embedded projects that I have been a part of or had detailed knowledge about over
the years, and analyzed the failed projects or those that ran into many difficulties meeting
technical and/or business requirements, I concluded that the successful projects contained at
least one common factor that the problem projects lacked. This factor is the process shown
in Figure 1-1, and this is why I introduce this model as an important tool in understanding an
embedded system’s design process.

As shown in Figure 1-1, the embedded system design and development process is divided into
four phases: creating the architecture, implementing the architecture, testing the system, and

Table 1-1: Examples of embedded systems and their markets [1-1] (continued)

Chapter 1

8

Figure 1-1: Embedded Systems Design and Development Lifecycle Model [1-2]

maintaining the system. Most of this book is dedicated to discussing phase 1, and the rest of
this chapter is dedicated to discussing why so much of this book has been devoted to creating
an embedded system’s architecture.

Within this text, phase 1 is defined as being made up of six stages: having a strong techni-
cal foundation (stage 1), understanding the Architectural Business Cycle (stage 2), defining
the architectural patterns and models (stage 3), defining the architectural structures (stage 4),
documenting the architecture (stage 5), and analyzing and reviewing the architecture (stage
6)[1-3]. Chapters 2–10 focus on providing a strong technical foundation for understanding the
major components of an embedded system design. Chapter 11 discusses the remaining stages
of phase 1, and Chapter 12 introduces the last three phases.

 Product
Concept

Preliminary Analysis
of Requirements

Creation of
Architecture Design

Develop Version of
Architecture

Deliver Version of
Architecture

Review and Obtain
Feedback

Incorporate
Feedback

Deliver Final Version
of Architecture

Develop [Implement]
the System

Review and Test the
System

Deliver and Maintain
the System

Incorporate
Feedback

Phase 1: Creating the Architecture

Phase 2: Implementing the Architecture

Phase 3: Testing the System

Phase 4: Maintaining the System

A Systems Engineering Approach to Embedded Systems Design

9

1.3 An Introduction to Embedded Systems Architecture
The architecture of an embedded system is an abstraction of the embedded device, meaning
that it is a generalization of the system that typically doesn’t show detailed implementation
information such as software source code or hardware circuit design. At the architectural
level, the hardware and software components in an embedded system are instead represented
as some composition of interacting elements. Elements are representations of hardware and/or
software whose implementation details have been abstracted out, leaving only behavioral
and inter-relationship information. Architectural elements can be internally integrated within
the embedded device, or exist externally to the embedded system and interact with internal
elements. In short, an embedded architecture includes elements of the embedded system, ele-
ments interacting with an embedded system, the properties of each of the individual elements,
and the interactive relationships between the elements.

Architecture-level information is physically represented in the form of structures. A structure
is one possible representation of the architecture, containing its own set of represented ele-
ments, properties, and inter-relationship information. A structure is therefore a “snapshot” of
the system’s hardware and software at design time and/or at run-time, given a particular envi-
ronment and a given set of elements. Since it is very difficult for one “snapshot” to capture all
the complexities of a system, an architecture is typically made up of more than one structure.
All structures within an architecture are inherently related to each other, and it is the sum of
all these structures that is the embedded architecture of a device. Table 1-2 summarizes some
of the most common structures that can make up embedded architectures, and shows gener-
ally what the elements of a particular structure represent and how these elements interrelate.
While Table 1-2 introduces concepts to be defined and discussed later, it also demonstrates
the wide variety of architectural structures available to represent an embedded system. Ar-
chitectures and their structures—how they interrelate, how to create an architecture, and so
on—will be discussed in more detail in Chapter 11.

Chapter 1

10

Table 1-2: Examples of architectural structures [1-4]

Structure Types* Definition
Module Elements (referred to as modules) are defined as the different functional components

(the essential hardware and/or software that the system needs to function correctly)
within an embedded device. Marketing and sales architectural diagrams are typically
represented as modular structures, since software or hardware is typically packaged for
sale as modules (i.e., an operating system, a processor, a JVM, and so on).

Uses (also referred to as
subsystem and component)

A type of modular structure representing system at runtime in which modules are
inter-related by their usages (what module uses what other module, for example).

Layers A type of Uses structure in which modules are organized in layers (i.e., hierarchical) in
which modules in higher layers use (require) modules of lower layers.

Kernel Structure presents modules that use modules (services) of an operating system kernel
or are manipulated by the kernel.

Channel
Architecture

Structure presents modules sequentially, showing the module transformations through
their usages.

Virtual
Machine

Structure presents modules that use modules of a virtual machine.

Decomposition A type of modular structure in which some modules are actually subunits (decom-
posed units) of other modules, and inter-relations are indicated as such. Typically used
to determine resource allocation, project management (planning), data management
(encapsulation, privitization, etc.).

Class
(also referred to as generalization)

This is a type of modular structure representing software and in which modules are re-
ferred to as classes, and inter-relationships are defined according to the object-oriented
approach in which classes are inheriting from other classes, or are actual instances of a
parent class (for example). Useful in designing systems with similar foundations.

Component and
Connector

These structures are composed of elements that are either components (main hw/sw
processing units, such as processors, a Java Virtual Machine, etc.) or connectors
(communication mechanism that inter-connects components, such as a hw bus, or sw
OS messages, etc.).

Client/Server
(also referred to as distribution)

Structure of system at runtime where components are clients or servers (or objects),
and connectors are the mechanisms used (protocols, messages, packets, etc.) used to
intercommunicate between clients and servers (or objects).

Process
(also referred to as communicating processes)

This structure is a SW structure of a system containing an operating system. Com-
ponents are processes and/or threads (see Chapter 9 on OSes), and their connecters
are the inter-process communication mechanisms (shared data, pipes, etc.) Useful for
analyzing scheduling and performance.

Concurrency and Resource This structure is a runtime snap shot of a system containing an OS, and in which
components are connected via threads running in parallel (see Chapter 9, Operating
Systems). Essentially, this structure is used for resource management and to determine
if there are any problems with shared resources, as well as to determine what sw can
be executed in parallel.

Interrupt Structure represents the interrupt handling mechanisms in system.

Scheduling (EDF,
priority, round-
robin)

Structure represents the task scheduling mechanism of threads demonstrating the
fairness of the OS scheduler.

Memory This runtime representation is of memory and data components with the memory al-
location and deallocation (connector) schemes—essentially the memory management
scheme of the system.

Garbage
Collection

This structure represents the garbage allocation scheme (more in Chapter 2).

Allocation This structure represents the memory allocation scheme of the system (static or
dynamic, size, and so on).

Safety and Reliability This structure is of the system at runtime in which redundant components (hw and
sw elements) and their intercommunication mechanisms demonstrate the reliability
and safety of a system in the event of problems (its ability to recover from a variety
of problems).

Allocation A structure representing relationships between sw and/or hw elements, and external
elements in various environments.

Work Assignment This structure assigns module responsibility to various development and design teams.
Typically used in project management.

Implementation This is a sw structure indicating where the sw is located on the development system’s
file system.

Deployment This structure is of the system at runtime where elements in this structure are hw and
hw, and the relationship between elements are where the sw maps to in the hardware
(resides, migrates to, etc).

* Note that in many cases the terms “architecture” and “structure” (one snapshot) are sometimes used inter-
changeably, and this will be the case in this book.

A Systems Engineering Approach to Embedded Systems Design

11

1.4 Why Is the Architecture of an Embedded System Important?
This book uses an architectural systems engineering approach to embedded systems because
it is one of the most powerful tools that can be used to understand an embedded systems
design or to resolve challenges faced when designing a new system. The most common of
these challenges include:

• defining and capturing the design of a system

• cost limitations

• determining a system’s integrity, such as reliability and safety

• working within the confines of available elemental functionality
(i.e., processing power, memory, battery life, etc.)

• marketability and sellability

• deterministic requirements

In short, an embedded systems architecture can be used to resolve these challenges early in
a project. Without defining or knowing any of the internal implementation details, the archi-
tecture of an embedded device can be the first tool to be analyzed and used as a high-level
blueprint defining the infrastructure of a design, possible design options, and design con-
straints. What makes the architectural approach so powerful is its ability to informally and
quickly communicate a design to a variety of people with or without technical backgrounds,
even acting as a foundation in planning the project or actually designing a device. Because
it clearly outlines the requirements of the system, an architecture can act as a solid basis for
analyzing and testing the quality of a device and its performance under various circumstances.
Furthermore, if understood, created, and leveraged correctly, an architecture can be used to
accurately estimate and reduce costs through its demonstration of the risks involved in imple-
menting the various elements, allowing for the mitigation of these risks. Finally, the various
structures of an architecture can then be leveraged for designing future products with similar
characteristics, thus allowing design knowledge to be reused, and leading to a decrease of
future design and development costs.

By using the architectural approach in this book, I hope to relay to the reader that defining
and understanding the architecture of an embedded system is an essential component of
good system design. This is because, in addition to the benefits listed above:

1. Every embedded system has an architecture, whether it is or is not documented,
because every embedded system is composed of interacting elements (whether hard-
ware or software). An architecture by definition is a set of representations of those
elements and their relationships. Rather than having a faulty and costly architecture
forced on you by not taking the time to define an architecture before starting develop-
ment, take control of the design by defining the architecture first.

2. Because an embedded architecture captures various views, which are representa-
tions of the system, it is a useful tool in understanding all of the major elements, why
each component is there, and why the elements behave the way they do. None of the

Chapter 1

12

elements within an embedded system works in a vacuum. Every element within a
device interacts with some other element in some fashion. Furthermore, externally
visible characteristics of elements may differ given a different set of other elements to
work with. Without understanding the “whys” behind an element’s provided function-
ality, performance, and so on, it would be difficult to determine how the system would
behave under a variety of circumstances in the real world.

Even if the architectural structures are rough and informal, it is still better than nothing. As
long as the architecture conveys in some way the critical components of a design and their re-
lationships to each other, it can provide project members with key information about whether
the device can meet its requirements, and how such a system can be constructed successfully.

1.5 The Embedded Systems Model
Within the scope of this book, a variety of architectural structures are used to introduce
technical concepts and fundamentals of an embedded system. I also introduce emerging
architectural tools (i.e., reference models) used as the foundation for these architectural struc-
tures. At the highest level, the primary architectural tool used to introduce the major elements
located within an embedded system design is what I will refer to as the Embedded Systems
Model, shown in Figure 1-2.

Hardware Layer
(Required)

System Software Layer
(Optional)

Application Software Layer
(Optional)

Figure 1-2: Embedded Systems Model

What the Embedded Systems Model indicates is that all embedded systems share one simi-
larity at the highest level; that is, they all have at least one layer (hardware) or all layers
(hardware, system software and application software) into which all components fall. The
hardware layer contains all the major physical components located on an embedded board,
whereas the system and application software layers contain all of the software located on and
being processed by the embedded system.

This reference model is essentially a layered (modular) representation of an embedded
systems architecture from which a modular architectural structure can be derived. Regard-
less of the differences between the devices shown in Table 1-1, it is possible to understand
the architecture of all of these systems by visualizing and grouping the components within
these devices as layers. While the concept of layering isn’t unique to embedded system
design (architectures are relevant to all computer systems, and an embedded system is a type

A Systems Engineering Approach to Embedded Systems Design

13

of computer system), it is a useful tool in visualizing the possible combinations of hundreds,
if not thousands, of hardware and software components that can be used in designing an
embedded system. In general, I selected this modular representation of embedded systems
architecture as the primary structure for this book for two main reasons:

1. The visual representation of the main elements and their associated functions. The
layered approach allows readers to visualize the various components of an embedded
system and their interrelationship.

2. Modular architectural representations are typically the structures leveraged to
structure the entire embedded project. This is mainly because the various modules
(elements) within this type of structure are usually functionally independent. These
elements also have a higher degree of interaction, thus separating these types of ele-
ments into layers improves the structural organization of the system without the risk
of oversimplifying complex interactions or overlooking required functionality.

Sections 2 and 3 of this book define the major modules that fall into the layers of the Embed-
ded Systems Model, essentially outlining the major components that can be found in most
embedded systems. Section 4 then puts these layers together from a design and development
viewpoint, demonstrating to the reader how to apply the technical concepts covered in previ-
ous chapters along with the architectural process introduced in this chapter. Throughout this
book, real-world suggestions and examples are provided to present a pragmatic view of the
technical theories, and as the key teaching tool of embedded concepts. As you read these vari-
ous examples, in order to gain the maximum benefits from this text and to be able to apply the
information provided to future embedded projects, I recommend that the reader note:

• the patterns that all these various examples follow, by mapping them not only to
the technical concepts introduced in the section, but ultimately to the higher-level
architectural representations. These patterns are what can be universally applied to
understand or design any embedded system, regardless of the embedded system de-
sign being analyzed.

• where the information came from. This is because valuable information on embed-
ded systems design can be gathered from a variety of sources, including the internet,
articles from embedded magazines, the Embedded Systems Conference, data sheets,
user manuals, programming manuals, and schematics—to name just a few.

1.6 Summary
This chapter began by defining what an embedded system is, including in the definition the
most complex and recent innovations in the market. It then defined what an embedded sys-
tems architecture is in terms of the sum of the various representations (structures) of a system.
This chapter also introduced why the architectural approach is used as the approach to intro-
ducing embedded concepts in this book, because it presents a clear visual of what the system
is, or could be, composed of and how these elements function. In addition, this approach can
provide early indicators into what may and may not work in a system, and possibly improve
the integrity of a system and lower costs via reusability.

Chapter 1

14

The next chapter contains the first real-world examples of the book in reference to how indus-
try standards play into an embedded design. Its purpose is to show the importance of knowing
and understanding the standards associated with a particular device, and leveraging these
standards to understand or create an architecture.

15

Chapter 1 Problems

1. Name three traditional or not-so-traditional definitions of embedded systems.

2. In what ways do traditional assumptions apply and not apply to more recent complex
embedded designs? Give four examples.

3. [T/F] Embedded systems are all:
 A. medical devices.
 B. computer systems.
 C. very reliable.
 D. All of the above.
 E. None of the above.

4. [a] Name and describe five different markets under which embedded systems
 commonly fall.

 [b] Provide examples of four devices in each market.

5. Name and describe the four development models which most embedded projects are
based upon.

6. [a] What is the Embedded Systems Design and Development Lifecycle Model [draw it]?
 [b] What development models is this model based upon?
 [c] How many phases are in this model?
 [d] Name and describe each of its phases.

7. Which of the stages below is not part of creating an architecture, phase 1 of the
Embedded Systems Design and Development Lifecycle Model?

 A. Understanding the architecture business cycle.
 B. Documenting the architecture.
 C. Maintaining the embedded system.
 D. Having a strong technical foundation.
 E. None of the above.

8. Name five challenges commonly faced when designing an embedded system.

9. What is the architecture of an embedded system?

Chapter 1

16

10. [T/F] Every embedded system has an architecture.

11. [a] What is an element of the embedded system architecture?
 [b] Give four examples of architectural elements.

12. What is an architectural structure?

13. Name and define five types of structures.

14. [a] Name at least three challenges in designing embedded systems.
 [b] How can an architecture resolve these challenges?

15. [a] What is the Embedded Systems Model?
 [b] What structural approach does the Embedded Systems Model take?
 [c] Draw and define the layers of this model.
 [d] Why is this model introduced?

16. Why is a modular architectural representation useful?

17. All of the major elements within an embedded system fall under:
 A. The Hardware Layer.
 B. The System Software Layer.
 C. The Application Software Layer.
 D. The Hardware, System Software, and Application Software Layers.
 E. A or D, depending on the device.

18. Name six sources that can be used to gather embedded systems design information.

